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ABSTRACT 
 

The ability to detect and respond to environmental signals is fundamental in coordinating floral 

induction in plants to favourable conditions. An important flowering time cue is day length and 

it is proposed that light signals are perceived and measured by an interaction between 

photoreceptors and an internal pacemaker, the circadian clock. The control of flowering has 

been best characterised in the model plant Arabidopsis thaliana L. Heynh (Arabidopsis). The 

GIGANTEA (GI) gene has a complex role in both the promotion of flowering in response to 

photoperiod and the regulation of the circadian clock. The expression of GI is under circadian 

control and is affected by day length, light quality and temperature changes. The GI protein is 

also circadian regulated and is actively degraded in the dark. 

 
 The biochemical function of GI is unknown and one method to elucidate the role of this protein 

is to identify protein interactors. The aim of this thesis project was to characterise proteins that 

interacted with GI. Previously, the BELL-LIKE HOMEODOMAIN 3 (BLH3) protein was 

identified as a putative GI protein interactor. As part of this thesis work, yeast 2-hybrid and in 

vitro pull down assays were utilised to confirm the interaction between GI and BLH3. Sequence 

and phylogenetic analyses were used to further examine the BELL family of proteins. The 

BELL-LIKE HOMEODOMAIN 10 (BLH10) protein was found to be closely related to BLH3 

and also interacted with GI. Reverse 2-hybrid assays were used to determine the regions or 

domains within the GI, BLH3 and BLH10 proteins required to mediate protein interactions. 

 
Expression assays established that the BLH3 and BLH10 transcripts were present throughout 

plant tissues and times of development. Further analyses revealed that BLH3 and BLH10 are not 

directly regulated by the circadian clock. The results of GFP expression assays demonstrated 

that the BLH3 protein is localised to the nucleus in plant cells. Transgenic blh3 and blh10 

mutant plants were identified and analysed for flowering and light response phenotypes. BLH3 

and BLH10 do not function with GI in the photoperiodic pathway to control flowering, yet the 

blh3 and blh10 mutants do have a flowering phenotype in short day conditions. Like gi, the blh3 

and blh10 mutants exhibited exaggerated hypocotyl elongation in response to red and low light 

conditions. These results are suggestive of a role for BLH3, BLH10 and GI in flowering and de-

etiolation responses to specific light conditions in plants. 
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A  adenine 

aa amino acid 

Ac acetate 

AD transcription activation domain 

ATP adenosine triphosphate 
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d day(s) 
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D dark 
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dex dexamethasone 
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DTT 1,4 - dithiothreitol 

dT deoxythymidine 

EDTA ethylene diamine tetraacetic acid 

EMS ethyl methylsulfonate 

EST Expressed Sequence Tag 

EtBr ethidium bromide 

FR far-red light 

g, µg, ng, pg grams, micrograms, nanograms, picograms 

G guanine 

GAL4 Sacromyces cerivisiae GAL4 transcription factor 

GFP green fluorescent protein 

GR glucocorticoid receptor 

GUS E. coli β-glucuronidase reporter gene 

h hour 

HA Influenza A haemagglutinin protein epitope 

HD homeodomain region 

HEPES N-[2-hydroxyethyl] piperazine-N’-[2-ethanesulfonic acid] 

IM infiltration media 

IPTG isopropylthio-ß-D-thiogalactoside 

kb kilobase(s) 

L, mL, µL litre, millilitre, microlitre 

LB left T-DNA border 

LD long day conditions (18 h light; 6 h dark) 

Ler Arabidopsis thaliana ecotype Landsberg erecta 

leu leucine 

L light 

LL continuous light conditions 

m, cm, nm metre, centimetre, nanometre 

MBP Maltose Binding Protein 

min minute 

mRNA messenger RNA 

miRNA microRNA 

M, mM, µM moles per litre, millimoles per litre, micromoles per litre 
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MOPS 3-[N-morpholino]propanesulfonic acid 

MW molecular weight 

mya million years ago 

NCBI National Centre for Biotechnology Information 

nptII neomycin phosphotransferase II gene 

ocs 3' octopine synthase 3' terminator sequence 

OD optical density 

Pa, kPa Pascal, kiloPascal 

PBS phosphate buffered saline 

PEG4000 polyethylene glycol, MW 4000 

pers. comm. personal communication 

pfu plaque forming unit 

pnos nopaline synthase promoter region 

psi pounds per square inch 

QTL quantitative trait loci 

RB right T-DNA border 

Rc constant red light conditions 

RNA ribonucleic acid 

RNase ribonuclease 

rRNA ribosomal RNA 

s second 

SD short day conditions (8 h light; 16 h dark) 

SDS sodium dodecyl sulfate 

SEM standard error of the mean 

SSC standard saline citrate 

T thymine 

TAE tris-acetate-EDTA 

Taq Thermus aquaticus 

TBE tris-borate-EDTA 

TE tris-EDTA 

TEMED N,N,N′,N′-Tetramethyl-ethylendiamine 

Tris tris(hydroxymethyl)-aminomethane 

trp tryptophan 

T-DNA transfer DNA 
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U unit 

UTR untranslated region 

UV ultra violet light 

V volt(s) 

v/v volume/volume 

w/v weight/volume 

×g  times the force of gravity  

~ approximate 

# number 
oC degrees Celsius 

95% CI   95% confidence intervals  
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