

ResearchSpace@Auckland

### **Copyright Statement**

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

### General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library

Thesis Consent Form

# Characterising GIGANTEA interactors: the Arabidopsis BELL-LIKE HOMEODOMAIN 3 and BELL-LIKE HOMEODOMAIN 10 proteins

**Raechel Jean Milich** 

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

School of Biological Sciences, University of Auckland August, 2006

### ABSTRACT

The ability to detect and respond to environmental signals is fundamental in coordinating floral induction in plants to favourable conditions. An important flowering time cue is day length and it is proposed that light signals are perceived and measured by an interaction between photoreceptors and an internal pacemaker, the circadian clock. The control of flowering has been best characterised in the model plant *Arabidopsis thaliana* L. Heynh (*Arabidopsis*). The *GIGANTEA* (*GI*) gene has a complex role in both the promotion of flowering in response to photoperiod and the regulation of the circadian clock. The expression of *GI* is under circadian control and is affected by day length, light quality and temperature changes. The GI protein is also circadian regulated and is actively degraded in the dark.

The biochemical function of GI is unknown and one method to elucidate the role of this protein is to identify protein interactors. The aim of this thesis project was to characterise proteins that interacted with GI. Previously, the BELL-LIKE HOMEODOMAIN 3 (BLH3) protein was identified as a putative GI protein interactor. As part of this thesis work, yeast 2-hybrid and *in vitro* pull down assays were utilised to confirm the interaction between GI and BLH3. Sequence and phylogenetic analyses were used to further examine the BELL family of proteins. The BELL-LIKE HOMEODOMAIN 10 (BLH10) protein was found to be closely related to BLH3 and also interacted with GI. Reverse 2-hybrid assays were used to determine the regions or domains within the GI, BLH3 and BLH10 proteins required to mediate protein interactions.

Expression assays established that the *BLH3* and *BLH10* transcripts were present throughout plant tissues and times of development. Further analyses revealed that *BLH3* and *BLH10* are not directly regulated by the circadian clock. The results of GFP expression assays demonstrated that the BLH3 protein is localised to the nucleus in plant cells. Transgenic *blh3* and *blh10* mutant plants were identified and analysed for flowering and light response phenotypes. *BLH3* and *BLH10* do not function with *GI* in the photoperiodic pathway to control flowering, yet the *blh3* and *blh10* mutants do have a flowering phenotype in short day conditions. Like *gi*, the *blh3* and *blh10* mutants exhibited exaggerated hypocotyl elongation in response to red and low light conditions. These results are suggestive of a role for *BLH3*, *BLH10* and *GI* in flowering and deetiolation responses to specific light conditions in plants.

### ACKNOWLEDGEMENTS

Firstly, I would like to thank my supervisor Jo Putterill and co-supervisor Richard Gardner for their guidance over the years.

Thanks must go to Mr George Mason for his considerable monetary contribution to this thesis project. I feel privileged to be the first recipient of the George Mason Scholarship for Plant Sciences. Thanks also to the University of Auckland for the Doctoral Scholarship.

A big thank you to all PMBies, both past and present. Where would I be without your help? Special thanks to Keith, Rosemary and Robert for help editing this thesis.

The GFP expression assays were carried out with help from Alex Goldshmidt, Pete Murphy and Adrian Walden. Thanks also to Nga for caring for my *Arabidopsis* plants and helping with flowering assays.

Thanks to my friends and family, you make life just that bit better in so many different ways. Thanks Mum and Dad for your support when I really needed it! Finally, a big hug for my two boys.

## ABBREVIATIONS

| А          | adenine                                               |
|------------|-------------------------------------------------------|
| aa         | amino acid                                            |
| Ac         | acetate                                               |
| AD         | transcription activation domain                       |
| ATP        | adenosine triphosphate                                |
| BD         | DNA binding domain                                    |
| bHLH       | basic/helix-loop-helix class of transcription factors |
| BIS        | N,N'-Methylene-bis-acrylamide                         |
| BLAST      | basic local alignment search tool                     |
| bp         | base pair(s)                                          |
| Bq/MBq     | Bequerels, megaBequerels                              |
| С          | cytosine                                              |
| CaMV 35S   | cauliflower mosaic virus 35S promoter sequence        |
| cDNA       | complementary DNA                                     |
| cM         | centimorgan(s)                                        |
| Col-0      | Arabidopsis thaliana ecotype Columbia                 |
| CTAB       | cetyl-trimethylammonium bromide                       |
| C-terminus | carboxyl terminus                                     |
| CVI        | Arabidopsis thaliana ecotype Cape Verde Islands       |
| d          | day(s)                                                |
| Da, kDa    | dalton, kilodalton                                    |
| DAPI       | 4',6-diamidino-2-phenylindole                         |
| dCTP       | 2-deoxycytidine-5-triphosphate                        |
| D          | dark                                                  |
| DD         | continuous dark conditions                            |
| dex        | dexamethasone                                         |
| DMDC       | dimethyl-dicarbonate                                  |
| DMSO       | dimethyl sulfoxide                                    |
| DNA        | deoxyribonucleic acid                                 |
| DNase      | deoxyribonuclease                                     |

| dNTP          | deoxynucleotide triphosphate                                |
|---------------|-------------------------------------------------------------|
| DTT           | 1,4 - dithiothreitol                                        |
| dT            | deoxythymidine                                              |
| EDTA          | ethylene diamine tetraacetic acid                           |
| EMS           | ethyl methylsulfonate                                       |
| EST           | Expressed Sequence Tag                                      |
| EtBr          | ethidium bromide                                            |
| FR            | far-red light                                               |
| g, µg, ng, pg | grams, micrograms, nanograms, picograms                     |
| G             | guanine                                                     |
| GAL4          | Sacromyces cerivisiae GAL4 transcription factor             |
| GFP           | green fluorescent protein                                   |
| GR            | glucocorticoid receptor                                     |
| GUS           | E. coli $\beta$ -glucuronidase reporter gene                |
| h             | hour                                                        |
| HA            | Influenza A haemagglutinin protein epitope                  |
| HD            | homeodomain region                                          |
| HEPES         | N-[2-hydroxyethyl] piperazine-N'-[2-ethanesulfonic acid]    |
| IM            | infiltration media                                          |
| IPTG          | isopropylthio-B-D-thiogalactoside                           |
| kb            | kilobase(s)                                                 |
| L, mL, µL     | litre, millilitre, microlitre                               |
| LB            | left T-DNA border                                           |
| LD            | long day conditions (18 h light; 6 h dark)                  |
| Ler           | Arabidopsis thaliana ecotype Landsberg erecta               |
| leu           | leucine                                                     |
| L             | light                                                       |
| LL            | continuous light conditions                                 |
| m, cm, nm     | metre, centimetre, nanometre                                |
| MBP           | Maltose Binding Protein                                     |
| min           | minute                                                      |
| mRNA          | messenger RNA                                               |
| miRNA         | microRNA                                                    |
| M, mM, µM     | moles per litre, millimoles per litre, micromoles per litre |

| MOPS                | 3-[N-morpholino]propanesulfonic acid          |
|---------------------|-----------------------------------------------|
| MW                  | molecular weight                              |
| mya                 | million years ago                             |
| NCBI                | National Centre for Biotechnology Information |
| nptII               | neomycin phosphotransferase II gene           |
| ocs 3'              | octopine synthase 3' terminator sequence      |
| OD                  | optical density                               |
| Pa, kPa             | Pascal, kiloPascal                            |
| PBS                 | phosphate buffered saline                     |
| PEG <sub>4000</sub> | polyethylene glycol, MW 4000                  |
| pers. comm.         | personal communication                        |
| pfu                 | plaque forming unit                           |
| pnos                | nopaline synthase promoter region             |
| psi                 | pounds per square inch                        |
| QTL                 | quantitative trait loci                       |
| RB                  | right T-DNA border                            |
| Rc                  | constant red light conditions                 |
| RNA                 | ribonucleic acid                              |
| RNase               | ribonuclease                                  |
| rRNA                | ribosomal RNA                                 |
| S                   | second                                        |
| SD                  | short day conditions (8 h light; 16 h dark)   |
| SDS                 | sodium dodecyl sulfate                        |
| SEM                 | standard error of the mean                    |
| SSC                 | standard saline citrate                       |
| Т                   | thymine                                       |
| TAE                 | tris-acetate-EDTA                             |
| Taq                 | Thermus aquaticus                             |
| TBE                 | tris-borate-EDTA                              |
| TE                  | tris-EDTA                                     |
| TEMED               | N,N,N',N'-Tetramethyl-ethylendiamine          |
| Tris                | tris(hydroxymethyl)-aminomethane              |
| trp                 | tryptophan                                    |
| T-DNA               | transfer DNA                                  |

| U          | unit                       |
|------------|----------------------------|
| UTR        | untranslated region        |
| UV         | ultra violet light         |
| V          | volt(s)                    |
| v/v        | volume/volume              |
| w/v        | weight/volume              |
| $\times g$ | times the force of gravity |
| ~          | approximate                |
| #          | number                     |
| °C         | degrees Celsius            |
| 95% CI     | 95% confidence intervals   |

# TABLE OF CONTENTS

| Abstract      |                                                                    | ii    |
|---------------|--------------------------------------------------------------------|-------|
| Acknowledg    | gements                                                            | iii   |
| Abbreviatio   | ns                                                                 | iv    |
|               |                                                                    |       |
| CHAPTER 1     | INTRODUCTION                                                       | 1     |
| 11            | Overview                                                           | 1     |
| 1.1           | The transition to flowering                                        | 2     |
| 13            | The control of flowering in <i>Arabidonsis</i>                     | 2     |
| 131           | Arabidopsis as a model plant                                       | 3     |
| 1.3.2         | Environmental signals that control flowering in <i>Arabidopsis</i> | 4     |
| 1.3.2.1       | Photoperiod                                                        | 5     |
| 1.3.2.2       | Light quality and quantity                                         | 5     |
| 1.3.2.3       | Vernalisation                                                      | 5     |
| 1.3.2.4       | Growth temperature                                                 | 6     |
| 1.4 The genet | ic control of flowering time in <i>Arabidopsis</i>                 | 6     |
| 1.4.1         | The effect of light on flowering                                   | 8     |
| 1.4.2         | The light quality pathway                                          | 8     |
| 1.4.3         | The photoperiodic pathway and the circadian clock                  | 9     |
| 1.4.3.1       | The Arabidopsis circadian clock                                    | 10    |
| 1.4.3.2       | The central clock oscillator                                       | 11    |
| 1.4.3.3       | Light input and the entrainment of the clock                       | 12    |
| 1.4.3.4       | Entrainment of the clock to alternative environm                   | ental |
|               | signals                                                            | 15    |
| 1.4.3.5       | The photoperiodic pathway                                          | 16    |
| 1.4.3.6       | 'Florigen' and the photoperiodic signal                            | 19    |
| 1.4.4         | The ambient temperature pathway                                    | 20    |
| 1.4.5         | The gibberellin pathway                                            | 20    |
| 1.4.6         | Pathways that converge at FLC                                      | 21    |
| 1.4.6.1       | The autonomous pathway                                             | 22    |
| 1.4.6.2       | The vernalisation pathway                                          | 22    |

|     | 1.4.7Floral pathway integrators |               |                                                   | 22       |
|-----|---------------------------------|---------------|---------------------------------------------------|----------|
| 1.5 | 5 Th                            | e <i>GIGA</i> | NTEA gene                                         | 25       |
|     | 1.5.1                           |               | The pleiotropic effects of the gi mutation        | 25       |
|     | 1.5.2                           |               | Isolation and characterisation of GI              | 27       |
|     | 1.5.3                           |               | GI expression and the circadian clock             | 28       |
|     | 1.5.4                           |               | The GI protein                                    | 30       |
|     | 1.5.5                           |               | The characterisation of GI in other plant species | 31       |
|     | 1.5.6                           |               | Identifying GI protein interactors                | 35       |
|     |                                 | 1.5.6.1       | The yeast 2-hybrid assay                          | 35       |
|     |                                 | 1.5.6.2       | The TALE homeodomain proteins                     | 36       |
|     |                                 | 1.5.6.3       | BLH3 can be further classified as a member of     | the BELL |
|     |                                 |               | family                                            | 37       |
| 1.6 |                                 |               | Aims of this thesis                               | 40       |

| CHAPTER 2 |         | MATERIALS AND METHODS                | 41 |
|-----------|---------|--------------------------------------|----|
| 2.1       |         | General                              | 41 |
|           | 2.1.1   | Antibiotics                          | 41 |
|           | 2.1.2   | Buffers and solutions                | 42 |
|           | 2.1.3   | Plasmids                             | 43 |
|           | 2.1.4   | Oligonucleotides                     | 45 |
|           | 2.1.5   | Chemicals and laboratory consumables | 48 |
| 2.2       |         | Bacteria                             | 48 |
|           | 2.2.1   | Bacterial strains                    | 48 |
|           | 2.2.2   | Bacterial media                      | 49 |
|           | 2.2.3   | Transformation of bacteria           | 49 |
|           | 2.2.3.1 | Transformation by electroporation    | 49 |
|           | 2.2.3.2 | Transformation of Agrobacterium      | 50 |
|           | 2.2.4   | Long term storage of bacteria        | 50 |
|           | 2.2.5   | Screening a cDNA library             | 50 |
| 2.3       |         | Yeast                                | 51 |
|           | 2.3.1   | Yeast strain                         | 51 |
|           | 2.3.2   | Yeast media                          | 51 |

|     | 2.3.3   | Transformation of yeast                          | 51 |
|-----|---------|--------------------------------------------------|----|
|     | 2.3.4   | Yeast mating and yeast 2-hybrid                  | 52 |
|     | 2.3.5   | Long term storage of yeast                       | 53 |
| 2.4 |         | Arabidopsis                                      | 53 |
|     | 2.4.1   | Growth of Arabidopsis                            | 53 |
|     | 2.4.1.1 | Plant growth media                               | 53 |
|     | 2.4.1.2 | General growth conditions                        | 53 |
|     | 2.4.1.3 | Harvesting Arabidopsis seed                      | 54 |
|     | 2.4.1.4 | Growing seedlings on agar plates                 | 54 |
|     | 2.4.1.5 | Analysis of flowering time                       | 54 |
|     | 2.4.1.6 | Hypocotyl elongation assays                      | 55 |
|     | 2.4.2   | Transformation of Arabidopsis                    | 55 |
|     | 2.4.2.1 | Growth of plants for transformation              | 55 |
|     | 2.4.2.2 | Agrobacterium-mediated floral dip transformation | 55 |
|     | 2.4.3   | Cross-pollination of Arabidopsis                 | 56 |
|     | 2.4.4   | Analysis of transgenic plants                    | 57 |
|     | 2.4.4.1 | Screening for transformants                      | 57 |
|     | 2.4.4.2 | Determination of T-DNA copy number               | 57 |
|     | 2.4.5   | Transient expression of GFP using biolistics     | 58 |
|     | 2.4.6   | GUS staining and visualisation                   | 59 |
| 2.5 |         | Molecular techniques                             | 59 |
|     | 2.5.1   | Plasmid DNA isolation                            | 59 |
|     | 2.5.1.1 | Isolation of <i>E. coli</i> plasmid DNA          | 59 |
|     | 2.5.1.2 | Purification of plasmid DNA for sequencing       | 59 |
|     | 2.5.1.3 | Isolation of plasmid DNA from Agrobacterium      | 60 |
|     | 2.5.1.4 | Isolation of plasmid DNA from yeast              | 60 |
|     | 2.5.2   | Isolation of nucleic acids from Arabidopsis      | 60 |
|     | 2.5.2.1 | Small scale extraction of genomic DNA            | 60 |
|     | 2.5.2.2 | Miniprep scale extraction of genomic DNA         | 61 |
|     | 2.5.2.3 | Doyle and Doyle extraction of genomic DNA        | 61 |
|     | 2.5.2.4 | Isolation of RNA from Arabidopsis                | 62 |
|     | 2.5.2.5 | Purification of RNA                              | 63 |
|     | 2.5.3   | Manipulation and examination of nucleic acids    | 63 |
|     | 2.5.3.1 | Enzymes and Markers                              | 63 |

|     | 2.5.3.2 | Agarose gel electrophoresis                         | 63 |
|-----|---------|-----------------------------------------------------|----|
|     | 2.5.3.3 | Polyacrylamide gel electrophoresis (PAGE)           | 64 |
|     | 2.5.3.4 | Dephosphorylation of vector DNA                     | 64 |
|     | 2.5.3.5 | Ligation of DNA                                     | 64 |
|     | 2.5.3.6 | Restriction enzyme digestion                        | 64 |
|     | 2.5.3.7 | Quantification of nucleic acids                     | 64 |
|     | 2.5.3.8 | DNA sequencing                                      | 65 |
|     | 2.5.4   | Polymerase chain reaction (PCR)                     | 65 |
|     | 2.5.4.1 | PCR from DNA                                        | 65 |
|     | 2.5.4.2 | Reverse Transcriptase (RT)-PCR                      | 66 |
|     | 2.5.4.3 | Genome walking to isolate flanking DNA              | 66 |
|     | 2.5.5   | Purification of DNA                                 | 66 |
|     | 2.5.5.1 | Purification by phenol:chloroform extraction        | 66 |
|     | 2.5.5.2 | Extraction of DNA from agarose gels                 | 67 |
|     | 2.5.5.3 | Purification of PCR products                        | 67 |
|     | 2.5.6   | Hybridisation analysis                              | 67 |
|     | 2.5.6.1 | Transfer of nucleic acids                           | 67 |
|     | 2.5.6.2 | Preparation of radio-labelled DNA probes            | 68 |
|     | 2.5.6.3 | Hybridisation and quantification of gene expression | 68 |
|     | 2.5.7   | Protein work                                        | 68 |
|     | 2.5.7.1 | Protein extraction from total plant tissue          | 68 |
|     | 2.5.7.2 | SDS-polyacrylamide gel electrophoresis (SDS-PAGE)   | 69 |
|     | 2.5.7.3 | Western transfer and immunodetection                | 69 |
|     | 2.5.7.4 | Synthesis of radio-labelled protein                 | 69 |
|     | 2.5.7.5 | Purification of MBP fusion proteins                 | 70 |
|     | 2.5.7.6 | In vitro protein binding assay                      | 71 |
| 2.6 |         | Computer analysis                                   | 71 |
|     | 2.6.1   | General computing                                   | 71 |
|     | 2.6.2   | Sequence analysis                                   | 72 |
|     | 2.6.3   | Phylogenetic analyses                               | 72 |
|     | 2.6.4   | Microscopy, phosphorimages and photographs          | 72 |
| 2.7 |         | Compliance                                          | 73 |

| CHAPTER 3 |         | THE BLH3 HOMOEODOMAIN PROTEIN INTER                         | ACTS  |
|-----------|---------|-------------------------------------------------------------|-------|
|           |         | WITH GI                                                     | 75    |
| 3.1       |         | Introduction                                                | 75    |
|           | 3.1.1   | Previous work                                               | 75    |
| 3.2       |         | Testing the GI and BLH3 protein interaction                 | 76    |
|           | 3.2.1   | Identification and repair of a pAS:GI error                 | 76    |
|           | 3.2.2   | Confirmation of the GI::BLH3 protein interaction            | 78    |
|           | 3.2.3   | Investigation of the GI::BLH3 interaction by in vitro pro   | otein |
|           |         | interaction assay                                           | 79    |
|           | 3.2.3.1 | Creating MBP fusion constructs                              | 79    |
|           | 3.2.3.2 | Expression of MBP fusion proteins                           | 81    |
|           | 3.2.3.3 | Expression of radio-labelled proteins in vitro              | 82    |
|           | 3.2.3.4 | Protein interaction assays                                  | 85    |
| 3.3       |         | A study of the BELL proteins                                | 87    |
|           | 3.3.1   | Introduction                                                | 87    |
|           | 3.3.2   | Identification of BELL-like proteins                        | 87    |
|           | 3.3.3   | Analysis of BELL protein structure                          | 88    |
|           | 3.3.4   | A phylogenetic analysis of the BELL family                  | 90    |
|           | 3.3.4.1 | BLH3 and BLH10 group together                               | 93    |
|           | 3.3.5   | Genomic organisation of the BELL family                     | 93    |
| 3.4       |         | Analysis of the <i>BLH3</i> and <i>BLH10</i> genes          | 96    |
|           | 3.4.1   | Identification of the BLH3 cDNA                             | 96    |
|           | 3.4.2   | Identification of the BLH10 cDNA                            | 97    |
|           | 3.4.2.1 | Which form of the <i>BLH10</i> cDNA is expressed in plants? | 97    |
|           | 3.4.2.2 | Screening a cDNA library                                    | 99    |
|           | 3.4.2.3 | Characterising the BLH10 cDNA                               | 101   |
|           | 3.4.3   | Which ATG is the translation start site?                    | 101   |
|           | 3.4.4   | Analysis of the sequences upstream of BLH3 and BLH10        | 102   |
| 3.5       |         | Discussion                                                  | 103   |
|           | 3.5.1   | The BELL family                                             | 104   |
|           | 3.5.1.1 | The expansion of the BELL family                            | 104   |
|           | 3.5.1.2 | Function of the BELL proteins                               | 105   |
|           | 3.5.2   | Comparison of the BLH3 and BLH10 cDNAs                      | 107   |

| 3.5.2.1 | Leader introns and the 5' UTR                 | 107 |
|---------|-----------------------------------------------|-----|
| 3.5.2.2 | Alternative splicing and different cDNA forms | 108 |
| 3.5.3   | Summary                                       | 109 |

| CHAPTER 4 | ANALYSIS  | OF           | THE  | GI   | AND | BLH3 | PROTEINS | USING |
|-----------|-----------|--------------|------|------|-----|------|----------|-------|
|           | A REVERSE | <b>2-</b> н\ | BRID | SYST | ЕМ  |      |          | 111   |

| 4.1 |         | Introduction                                           | 111    |
|-----|---------|--------------------------------------------------------|--------|
|     | 4.1.1   | BELL protein interaction domains                       | 111    |
|     | 4.1.2   | Which region of GI is important for mediating pro-     | otein  |
|     |         | interactions?                                          |        |
|     |         | 112                                                    |        |
|     | 4.1.3   | Does GI interact with other BELL proteins?             | 112    |
| 4.2 |         | Creation of the BLH3 deletion constructs               | 113    |
|     | 4.2.1   | The construction of pACT:Dom1 and pACT:Dom4            | 114    |
|     | 4.2.2   | The construction of pAS:BLH3                           | 114    |
|     | 4.2.3   | Summary                                                | 115    |
| 4.3 |         | The creation of GI protein deletions                   | 116    |
|     | 4.3.1   | Analysis of the structure of GI proteins               | 116    |
|     | 4.3.2   | The GI deletion constructs                             | 118    |
|     | 4.3.2.1 | Construction of the pAS:Del5 deletion                  | 119    |
|     | 4.3.2.2 | Construction of the pAS:Del6 deletion                  | 120    |
|     | 4.3.2.3 | Construction of the pAS:Del7 deletion                  | 121    |
|     | 4.3.3   | Summary                                                | 121    |
| 4.4 |         | Analysis of the BLH3 and GI deletions                  | 122    |
|     | 4.4.1   | The BELL and homeodomain regions are involved          | in the |
|     |         | BLH3::GI interaction                                   | 122    |
|     | 4.4.2   | BLH3 homodimerises in yeast 2-hybrid                   | 124    |
|     | 4.4.3   | Deletions of GI interact with BLH3                     | 124    |
|     | 4.4.4   | Proteins expressed by the deletion constructs in yeast | 125    |
| 4.5 |         | Does GI interact with other BELL proteins?             | 125    |
|     | 4.5.1   | Generation of two BLH10 deletion constructs            | 126    |
|     | 4.5.2   | The generation of alternative BELL constructs          | 128    |

|     | 4.5.3         | Testing BELL interactions with yeast 2-hybrid1                   |      |  |  |  |  |
|-----|---------------|------------------------------------------------------------------|------|--|--|--|--|
| 4.6 |               | Discussion                                                       | 131  |  |  |  |  |
|     | 4.6.1         | The BELL and homeodomain regions are important                   | for  |  |  |  |  |
|     |               | mediating BELL::GI interactions                                  | 131  |  |  |  |  |
|     | 4.6.2         | GI interacts with BLH10 in yeast 2-hybrid                        | 132  |  |  |  |  |
|     | 4.6.3         | Two regions of GI can mediate protein interaction                | 133  |  |  |  |  |
|     | 4.6.4         | Protein interactions within the BELL family                      | 133  |  |  |  |  |
|     | 4.6.4.1       | BELL::BELL interactions are a feature of the BI                  | ELL  |  |  |  |  |
|     |               | family                                                           | 133  |  |  |  |  |
|     | 4.6.4.2       | Functions of BELL protein interactions in plants                 | 134  |  |  |  |  |
|     | 4.6.5         | Summary                                                          | 136  |  |  |  |  |
|     |               |                                                                  |      |  |  |  |  |
| Сна | PTER 5        | ANALYSIS OF BLH3 AND BLH10 EXPRESSION                            | 137  |  |  |  |  |
| 51  |               | Introduction                                                     | 137  |  |  |  |  |
| 5.1 |               | When and where are <i>BIH3</i> and <i>BIH10</i> evore            | red  |  |  |  |  |
| 0.2 |               | in nlants?                                                       | 138  |  |  |  |  |
|     | 521           | Time-course of <i>BLH3</i> and <i>BLH10</i> expression           | 139  |  |  |  |  |
|     | 522           | Developmental regulation of $BLH3$ and $BLH10$ expression        | 141  |  |  |  |  |
|     | 5 2 2 1       | <i>BLH3</i> and <i>BLH10</i> are detected by RT-PCR in           | all  |  |  |  |  |
|     | 0.2.2.1       | plant tissues tested                                             | 141  |  |  |  |  |
|     | 5222          | Optimising the Northern hybridisation protocol to detect $B_{i}$ | LH3  |  |  |  |  |
|     | 0.2.2.2       | and <i>BLH10</i>                                                 | 141  |  |  |  |  |
|     | 5.2.2.3       | Northern hybridisation analysis of <i>BLH3</i> and <i>BLH10</i>  | 142  |  |  |  |  |
|     | 5.2.3         | BLH3 and BLH10 expression during the day re-exam                 | ined |  |  |  |  |
|     |               | by Northern analysis                                             | 144  |  |  |  |  |
|     | 5.2.4         | Analysis of <i>BLH3</i> expression in circadian clock mutants    | 145  |  |  |  |  |
|     | 5.2.5         | BLH3 expression in response to red light                         | 147  |  |  |  |  |
| 5.3 |               | Localisation of BLH3 using the GFP reporter gene                 | 148  |  |  |  |  |
|     | 5.3.1         | The GFP reporter constructs                                      | 149  |  |  |  |  |
|     |               | Localizing DLU2 using transient approacies again                 | 140  |  |  |  |  |
|     | 5.3.2         | Localising BLH5 using transfent expression assays                | 149  |  |  |  |  |
|     | 5.3.2 5.3.2.1 | Optimising GFP expression assays                                 | 149  |  |  |  |  |

|     | 5.3.3   | Stable expression of GFP fusion proteins in trans     | genic |
|-----|---------|-------------------------------------------------------|-------|
|     |         | Arabidopsis                                           | 152   |
|     | 5.3.3.1 | Introduction of expression vectors into Agrobacterium | 153   |
|     | 5.3.3.2 | Transformation of Arabidopsis and the selection       | n of  |
|     |         | transformants                                         | 154   |
|     | 5.3.3.3 | Examination of GFP expression in transgenic plants    | 154   |
|     | 5.3.3.4 | Why was GFP not detected in transgenic plants?        | 155   |
| 5.4 |         | Discussion                                            | 156   |
|     | 5.4.1   | Comparison of the expression of GI, BLH3 and BLH      | 10 in |
|     |         | plants                                                | 156   |
|     | 5.4.2   | BLH3 expression in circadian clock mutants            | 158   |
|     | 5.4.3   | Summary                                               | 159   |
|     |         |                                                       |       |

CHAPTER 6 CHARACTERISATION OF *BLH3* AND *BLH10* 

161

| 6.1 |         | Introduction                                                 | 161    |
|-----|---------|--------------------------------------------------------------|--------|
| 6.2 |         | Over-expression of BLH3 and BLH10 in trans                   | sgenic |
|     |         | plants                                                       | 162    |
|     | 6.2.1   | Generation of binary vectors for use in plant transformation | 162    |
|     | 6.2.1.1 | Construction of p35S:BLH3                                    | 162    |
|     | 6.2.1.2 | Construction of p35S:BLH10-R                                 | 162    |
|     | 6.2.2   | Introduction of p35S:BLH3 and p35S:BLH10-R                   | into   |
|     |         | Arabidopsis                                                  | 163    |
|     | 6.2.2.1 | Transformation of Agrobacterium with two                     | binary |
|     |         | constructs                                                   | 163    |
|     | 6.2.2.2 | Agrobacterium-mediated transformation of Arabidopsis         | 164    |
|     | 6.2.3   | Analysis of transgenic plants containing p35S:BLH3           | 165    |
|     | 6.2.3.1 | Verifying the presence of the p35S:BLH3 insertion            | on in  |
|     |         | transgenic lines                                             | 165    |
|     | 6.2.3.2 | Assessing the phenotype of transgenic plants                 | 166    |
|     | 6.2.3.3 | Confirmation of T-DNA insertion copy number                  | 167    |
|     | 6.2.3.4 | Analysis of BLH3 expression in transgenic plants             | 168    |
| 6.3 |         | Identification of <i>blh3</i> and <i>blh10</i> mutant plants | 169    |
|     | 6.3.1   | Screening of Wisconsin lines                                 | 169    |

|     | 6.3.2   | Screening of Syngenta lines                                       | 170   |
|-----|---------|-------------------------------------------------------------------|-------|
|     | 6.3.2.1 | Back-crossing <i>blh3</i> and <i>blh10</i> mutants                | 170   |
|     | 6.3.2.2 | Characterising the T-DNA insertions in the blh3                   | and   |
|     |         | <i>blh10</i> mutants                                              | 171   |
|     | 6.3.2.3 | Confirmation of T-DNA number in the blh3 and                      | blh10 |
|     |         | mutants                                                           | 173   |
|     | 6.3.2.4 | Analysis of expression in mutant plants                           | 173   |
|     | 6.3.3   | Identification of <i>blh3</i> and <i>blh10</i> point mutants      | 174   |
|     | 6.3.4   | The generation of double and triple mutants                       | 175   |
|     | 6.3.4.1 | <i>blh3gi-2</i> double mutants                                    | 175   |
|     | 6.3.4.2 | <i>blh3blh10</i> double mutants                                   | 176   |
|     | 6.3.4.3 | <i>blh3blh10gi-2</i> and <i>blh10gi-2</i> mutants                 | 176   |
|     | 6.3.4.4 | Verifying the T-DNA number in double mutants                      | 176   |
| 6.4 |         | Analysis of mutant phenotypes                                     | 178   |
|     | 6.4.1   | Flowering time assays                                             | 178   |
|     | 6.4.1.1 | Flowering time of back-crossed <i>blh3</i> and <i>blh10</i> lines | 179   |
|     | 6.4.1.2 | Plastochron index                                                 | 181   |
|     | 6.4.1.3 | Flowering time in two SD light conditions                         | 182   |
|     | 6.4.1.4 | Flowering time of double and triple mutants                       | 182   |
|     | 6.4.2   | Light response assays                                             | 185   |
|     | 6.4.2.1 | Analysis of hypocotyl elongation in SD                            | 185   |
|     | 6.4.2.2 | Analysis of hypocotyl elongation in red light                     | 187   |
|     | 6.4.2.3 | An alternative red light hypocotyl assay                          | 190   |
|     | 6.4.2.4 | Hypocotyl elongation in plants containing point mutations         | 190   |
|     | 6.4.3   | Over-expression of GI in the blh3 mutant background               | 191   |
|     | 6.4.3.1 | Generation of 35S:GI transgenic plant lines                       | 192   |
|     | 6.4.3.2 | Analysis of flowering time in 35S:GI transgenic plants            | 192   |
|     | 6.4.3.3 | Hypocotyl elongation in 35S:GI lines                              | 193   |
|     | 6.4.4   | LHY expression in the <i>blh3</i> and <i>blh10</i> mutants        | 193   |
| 6.5 |         | Discussion                                                        | 194   |
|     | 6.5.1   | Over-expression of BLH3 in transgenic plants                      | 194   |
|     | 6.5.2   | Over-expression of BLH10-R in transgenic plants                   | 195   |
|     | 6.5.3   | What is the role of <i>BLH3</i> and <i>BLH10</i> in flowering?    | 195   |

| What   | is                               | the                                           | role                                                     | of                                                                   | BLH3                                                                        | and                                                                                          | BLH10                                                                                            | in                                                                                                         | hypocotyl                                                                                                     |
|--------|----------------------------------|-----------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| elonga | tion                             | ?                                             |                                                          |                                                                      |                                                                             |                                                                                              |                                                                                                  |                                                                                                            | 197                                                                                                           |
| Improv | ving                             | light                                         | respon                                                   | ise a                                                                | ssays                                                                       |                                                                                              |                                                                                                  |                                                                                                            | 199                                                                                                           |
| Summ   | ary                              |                                               |                                                          |                                                                      |                                                                             |                                                                                              |                                                                                                  |                                                                                                            | 200                                                                                                           |
|        | What<br>elonga<br>Improv<br>Summ | What is<br>elongation<br>Improving<br>Summary | What is the<br>elongation?<br>Improving light<br>Summary | What is the role<br>elongation?<br>Improving light respon<br>Summary | What is the role of<br>elongation?<br>Improving light response a<br>Summary | What is the role of <i>BLH3</i><br>elongation?<br>Improving light response assays<br>Summary | What is the role of <i>BLH3</i> and<br>elongation?<br>Improving light response assays<br>Summary | What is the role of <i>BLH3</i> and <i>BLH10</i> elongation?<br>Improving light response assays<br>Summary | What is the role of <i>BLH3</i> and <i>BLH10</i> in elongation?<br>Improving light response assays<br>Summary |

#### CHAPTER 7 CONCLUDING DISCUSSION

#### 203

| 7.1 |         | Introduction                                   | 203 |
|-----|---------|------------------------------------------------|-----|
| 7.2 |         | <b>Remarks on GI and BELL interactions</b>     | 204 |
|     | 7.2.1   | The BELL protein interaction network           | 204 |
|     | 7.2.2   | Protein interactions and BELL function         | 205 |
|     | 7.2.3   | GI and BELL protein interactions               | 206 |
|     | 7.2.3.1 | Protein sequences that mediate interactions    | 206 |
|     | 7.2.3.2 | What can be learnt from BELL::GI interactions? | 207 |
| 7.3 |         | Perspectives and future work                   | 208 |
|     | 7.3.1   | BLH3 and BLH10 function in plants              | 208 |
|     | 7.3.2   | A complex role for GI in plants                | 209 |
|     | 7.3.2.1 | The light response of GI                       | 209 |
|     | 7.3.2.2 | The circadian clock and GI function            | 210 |
|     | 7.3.2.3 | Identifying GI targets                         | 211 |
|     | 7.3.2.4 | Where is GI required to promote flowering?     | 211 |
|     | 7.3.3   | Application of knowledge to other plants       | 212 |
| 7.4 |         | Overview                                       | 213 |

# APPENDIX IANALYSIS OF THE BELL FAMILY PROTEINS215

| Appendix 1.1 | Pairwise comparison of amino acid sequence of pr     | redicted |
|--------------|------------------------------------------------------|----------|
|              | Arabidopsis BELL proteins                            | 215      |
| Appendix 1.2 | The sequences of the BELL family proteins us         | sed in   |
|              | phylogenetic analyses                                | 216      |
| Appendix 1.3 | Sequence alignment of the BELL family                | 224      |
| Appendix 1.4 | Analysis of the genomic structure of the Arabidopsis | BELL     |
|              | family and flanking genes                            | 237      |

| Appendix 1.5 | The BLH3 cDNA sequence and translation                      | 241        |
|--------------|-------------------------------------------------------------|------------|
| Appendix 1.6 | The assembly and translation of the <i>BLH10</i> cDNA seque | ence 243   |
| APPENDIX II  | CONSTRUCTS USED FOR YEAST 2-HYBRID ASSAYS                   | 247        |
| Appendix 2.1 | pAS:GI plasmid map                                          | 247        |
| Appendix 2.2 | Restriction enzyme maps of BLH3 deletion                    | constructs |
|              | pACT:Dom2 and pACT:Dom3                                     | 248        |
| Appendix 2.3 | Restriction enzyme maps of GI deletion                      | constructs |
|              | pAS:Del1, pAS:Del2 and pAS:Del4                             | 248        |
| APPENDIX III | SEQUENCES OF THE GI PROTEINS                                | 249        |
| Appendix IV  | GFP EXPRESSION ANALYSES                                     | 252        |
| Appendix 4.1 | Transient GFP expression in Arabidopsis leaf tissue         | 252        |
| Appendix 4.2 | GFP expression in transgenic Arabidopsis plants             | 253        |
| Appendix V   | GENERATION OF ANTIBODIES TO BLH3                            | 254        |
| Appendix VI  | SUMMARY OF BLH3 AND BLH10 MUTANTS                           | 256        |
| Appendix VII | AN INDUCIBLE GI EXPRESSION SYSTEM                           | 257        |
| Appendix 7.1 | Introduction                                                | 257        |
| Appendix 7.2 | The ethanol inducible gene expression system                | 258        |
| Appendix 7.3 | The dexamethasone inducible gene expression system          | 262        |
| Appendix 7.4 | Summary                                                     | 267        |

#### References

271