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Abstract — As well documented in the literature, urban form 

plays an essential role in determining transit ridership. However, 

among these studies, the majority of empirical work has not 

considered space as a relevant factor. Instead, most of the 

findings are based on a strong assumption that there is no spatial 

effect across the research area. This general negligence of spatial 

effects will, in turn, produce biased estimators if substantial 

geographical patterns exist. Given the observational 

heterogeneous distribution of transit patterns in the Auckland 

region, it is exceedingly doubtful whether the assumption of no 

spatial interdependence is valid. Based on cross-sectional data, 

mainly extracted from the New Zealand (NZ) 2006 census with 

additional geographical information compiled by ArcMap for the 

Auckland region, this paper contributes to the existing literature 

by offering insight into the spatial structure of the current public 

transport sector. The use of a spatial Durbin model provides a 

better understanding of the urban form factors that influence bus 

mode share by decomposing the total effect of one explanatory 

variable into direct and indirect effects. The results show that the 

total effects are comprised mostly of spatial spillover impacts. In 

addition to urban form variables, several other dimensions of 

potential bus mode share predictors are considered, including 

transit supply quality, accessibility to other modes of public 

transport, plus variables that describes household characteristics.   

Keywords- Spatial dependence; spatial Durbin model; spillover 

effect; urban form; transit behavior 

I.  INTRODUCTION  

A. Background Information 

Throughout the world, as people’s incomes rise, many 

shift to faster, more comfortable and more individually 

flexible means of transportation [1]. Not surprisingly, like 

most modern cities, the recent commuting pattern in 

Auckland, where one-third of NZ’s population lives, is 

dominated by the automobile, with almost 88% of the share 

for the morning journey to work (JTW) attributed to private 

motor vehicles, while public transport accounted for only 

around 8% of the journeys [2]. In comparison to other 

competitor cities, data [3] from Auckland Regional Transport 

Agency (ARTA) confirm Auckland’s position in terms of 

public transport use, with only 41 public transport trips made 

per capita per annum, while Wellington generated almost 

twice this number at 91 and Sydney had almost threefold (as 

shown in Fig. 1). 1  Auckland is thus characterized by an 

elevated level of car-dependence and a low public transport 

patronage. Low public transport use may imply a relatively 

less developed public transport system, which could limit 

Auckland's potential to become more internationally 

competitive, attracting more international investment, events, 

and tourism. 

With the aim of reducing automobile dependence and 

inducing non-automobile commuting, transport planners 

around the world are attempting to tackle the travel growth in 

travel demand by implementing transport planning projects 

that can promote forms of sustainable urban development [4]-

[5].  In the case of Auckland, transport authorities have 

implemented several projects to facilitate the development of 

public transport, from small-scale projects such as expanding 

bus priority lanes to large-scale development such as bus and 

rail infrastructure initiatives. Therefore, from the perspective 

of local government and urban planners, it is crucial to have a 

solid understanding of how well the design and layout of 

urban areas do in terms of contributing to a reduction in 

automobile use and public transport travel promotion. In other 

words, what will be the likely impact of urban form on 

people’s travel behavior? 

Figure 1 Public Transport Trips and GDP per capita (2007/08, US$) 

B. Objective, Motivation and Scope 

ARTA reports that in Auckland, the total number of 

(unlinked) trips traveled by the public transport system in 

2007 was 52.4 million, with buses, trains and ferries 

1 Auckland Regional Transport Agency, or ARTA, was replaced by Auckland 

Transport as part of the re-organization of local government on 1st November 

2010. This paper still refers to ARTA since all of the data used here were 

compiled when ARTA was in existence. 
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contributed to 82%, 10%, and 8%, respectively [6]. Given its 

current dominant position in public transport usage, the 

analysis undertaken here focuses on the bus only.2 

The motivation behind this paper is that to properly 

understand the relationship between urban form and transit 

ridership, it is necessary to consider the associated spatial 

structures more specifically. Some studies have attempted to 

identify the impact of urban form on different travel behaviors 

such as mode choices, travel demand, and travel patterns, over 

the past few decades [7]-[10]. A key problem with the above 

literature is the possibility that coefficient estimates of the 

impact of urban form might be attenuated by spatial 

dependence. Specifically, these analyses assume that 

observations are independent of one another in a geographical 

context. However, in reality, it seems unlikely that region i’s 

transport network regarding vehicles and public transport 

infrastructure is independent of that of its neighboring region 

j. Furthermore, from the econometric point of view, ignoring 

spatial characteristics between observations could, in turn, 

produce biased and inconsistent estimators [11]. 

This general limitation from past literature gives rise to the 

need for spatial estimation method, such as the spatial Durbin 

model (SDM) that had the advantage of separating the total 

effect of a particular variable on the transit ridership into own-

region and neighborhood effects. To the best of our 

knowledge, [12] produced the only published paper which 

specifically takes spatial effects into account when analyzing 

the determinants of work trip bus ridership in the context of 

NZ, using the spatial error model (SEM) model. Their paper is 

also most relevant to this study. The authors use cross-

sectional data involving 318 area units for the Auckland 

region in 2006. Once positive spatial autocorrelation is 

confirmed by a statistically significant Moran’s I value, an 

SEM model is chosen because in the case of the spatial error 

test, its robust Lagrange Multiplier (LM) statistic is more 

significant than the alternative, spatial autoregressive (SAR) 

model. Regarding the choice of the spatial weights matrix, a 

Rook contiguity of order 2, including the lower order of 1, is 

applied based on the fact that it provides the best fit. The 

estimation method employed in their study is ML. After 

adjusting for spatial dependency, the SEM model provided 

more accurate parameter estimates and improving the overall 

predictive power of the empirical model. 

However, there remains a potential weakness in interpreting 

[12]’s results. In addition to the spatial lag of the dependent 

variable included on the right-hand-side of the regression 

equation, it seems plausible that neighboring area unit’s 

characteristics, for instance, population density and rush hour 

frequency could also play a significant role in explaining 

variations in a given area unit’s bus ridership. This implies 

that further investigations of the impact of lagged explanatory 

variables on transit ridership are required. This study applies 

the SDM model, which has the ability to capture the 

characteristics of neighboring regions to account for any 

influence they may exert on their neighbor’s transit ridership 

patterns. 

2 NZ census data such as ferry usage by commuters in Auckland do not exist. 

The remainder of the paper is organized as follows: section 

two provides a review of spatial regression models, section 

three describes the dataset, outlines the variables used, and 

specifies the regression models employed. Section 4 presents 

some preliminary results from spatial econometric tests. 

Section 5 delivers the empirical results of the non-spatial 

ordinary least squares (OLS) model and the spatial models. 

The final section provides a conclusion by summarizing key 

findings, outlining limitation and suggesting future works of 

this study. 

II. REVIEW OF SPATIAL REGRESSION MODELS 

A. Spatial Lag Model 

To address the issue of spatial autocorrelation mentioned 
above, prior spatial studies are mainly concerned with models 
that contain only one type of spatial interaction effect viz. the 
spatial lag model and the spatial error model. The former 
incorporates a spatially lagged dependent variable on the right-
hand-side of a regression whereas the latter contains a spatial 
autoregressive process in the disturbance [13].  Following [14], 
the point of departure is a simple SAR model: 

y = ρWy + Xβ + u                 (1) 

                                      u ~ N(0, Inσ2) 

where y is an n × 1 vector of observations on the dependent 
variable; X is an n × k matrix of observations on independent 
variables; and ρ is a spatial autocorrelation or spatial 
dependence parameter [15]. Additionally, ρ represents the 
intensity of the spatial dependence between neighboring 
locations, W is an n × n exogenous spatial weights matrix that 
specifies the assumed spatial structure and also describes the 
spatial arrangement of the spatial units in the sample. The 
element wij of W measures the nearness of area units i and j. 
Wy is thus the spatially lagged dependent variable which has 
the ability to account for various spatially related dependencies. 
Finally, β represents k × 1 vector of estimators to be estimated, 
and u is an n × 1 vector of independently and identically 
distributed (i.i.d) random error terms. Equation (1) can be 
solved for y, and the reduced form is shown in (2): 

y = (In – ρW)-1Xβ + (In – ρW)-1u     (2) 

Moreover, [16] points out that in the SAR model, each 
observation yi is a function of the spatial lag term Wy which 
represents an explanatory variable denoting the weighted 
average of spatially neighboring values, e.g., y2 = ρ(w12y1 + 
w13y3). Additionally, [17] notes that intuitively, the spatial lag 
term Wy, is correlated with the random error terms u, even 
when the latter are i.i.d. Consequently, it must be treated as an 
endogenous variable and the proper estimation technique such 
as Maximum Likelihood (ML), Spatial Two Stage Least 
Squares (S2SLS) and/or Generalised Method of Moments 
(GMM) should apply to account for this endogeneity problem, 
because OLS estimates for β are biased and inconsistent. 

B. Spatial Error Model 

If spatial dependence exists in disturbances, a SEM is 
usually applied in order to improve the precision of the 
estimated parameter because this kind of regression involves a 
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non-spherical error term. A general representation of the SEM 
model can be written as follows [17]: 

y = Xβ + ε                           (3) 

and   

         ε = θWε + u                                    (4) 

Substituting (4) into (3) gives: 

 y = Xβ + (In - θW)-1u                      (5) 

where θ is known as the spatial autoregressive parameter, 
which needs to be estimated jointly with the regression 
coefficients; W is the spatial weight matrix; and ε is a vector of 
i.i.d random error terms, which is assumed to be uncorrelated 
to u. 

What is notable about the SEM model is that the spatial 
weights matrix W now relates to shocks in the unobserved 
variables (i.e. the error term ε) but not to the independent 
variables of the SEM model (i.e. variable X). In other words, 
(5) shows that the value of the dependent variable for each 
geographical location is influenced by the stochastic error 
terms at all other locations through the spatial multiplier (In - 
θW)-1.   

Consequently, in the context of public transport, the bus 
mode share at any spatial area is not only a function of the local 
characteristics but also of the unobserved variables at adjacent 
locations. In the case of spatially correlated disturbances, one 
should notice that even though OLS estimated-results are still 
unbiased, they are no longer efficient. In addition, according to 
[18], the classical estimators for standard errors are biased. 

C. Spatial Durbin Model 

In practice, one should realize that spatial dependence can 
have effects on both dependent and explanatory variables. 
Hence, according to [19], a “mixed” SDM introduced by [20], 
offers a more flexible alternative and might be more 
appropriate to apply by including the “inherent spatial 
autocorrelation” and the “induced spatial dependence” 
simultaneously. The SDM is specified as follows: 
 

y = ρWy +Xβ + WXγ+ u              (6) 
 

This model can be reduced to either (1) if γ = 0 or (3) if γ = 
- ρβ. 

 
The reduced form of (6) is: 

 
y = (In–ρW)-1Xβ+(In–ρW)-1WXγ+(In–ρW)-1u          (7) 

 
Based on the above equations, an additional term WXγ 

must be included in the model to capture the k × 1 
autoregression coefficient vector γ of the spatially lagged 
explanatory variables WX, which measures the marginal 
impact of the independent variables from adjacent observations 
on the dependent variable y [21]. 

Furthermore, [19] argues that this SDM could be developed 
from either an SEM [22] or from an SAR [23], and this 
“mixed” model can be viewed as an unrestricted model of 
either SEM or SAR. In other words, the SDM further nests the 
SAR and the SEM by involving spatial dependence in the error 

term as well as in the dependent variable. Fig. 2 illustrates the 
theoretical relationship between SDM, SAR and SEM in a 
cross-sectional case. 

 
Figure 2 Relationship between SDM, SAR and SEM 

 
According to [24], SDM is the only model that will produce 

unbiased estimates regardless of the true data-generation 
process (i.e. whether it is a spatial lag or a spatial error model). 
This is why the SDM is often viewed as the dominant spatial 
model among others. Although most transport data are 
geographically linked, past transport studies incorporating 
spatial effects are relatively scarce compared to their rich 
applications in other fields, such as agricultural and resource 
economics, housing and real estate. This empirical gap thus 
leads us to consider the use of spatial econometric models in 
the field of transport analysis.   
    

III. DATA AND EMPIRICAL MODELS 

A. Data 

The major source of data for this study was the NZ Census, 
collected and complied by the Statistics NZ on the census day, 
6th March 2006. Additional data, such as distance to 
Auckland’s CBD, distance to the nearest rail or ferry terminals, 
and census area unit land areas, were calculated using ArcMap. 
Rush hour frequency, which combined the total number of 
buses passing through and stopping within each area unit, 
during both morning and afternoon peak periods, was compiled 
using the programs of ArcMap and Microsoft Excel. The data 
were geocoded at the centroid of each area unit. 

The census area unit is the second smallest geographical 
unit defined by Statistics NZ. Area units are aggregations of 
meshblocks and they are non–administrative areas that are in 
between meshblocks and territorial authorities in size [25]. All 
data used in this study were compiled at this geographical 
level.  In line with [26], smaller units such as the meshblocks 
would render too much variation, and consequently, increase 
analytical instability, while larger units such as territory 
authorities would aggregate data too much and are thus 
incapable of providing useful results.3    

B. Variables 

The selection of variables is mainly inspired by previous 
bus patronage studies. The dependent variable Busi is the 
percentage of workers in area unit i who take bus as their main 

3 There are more than ten thousand mesh blocks and only seven territorial 

authorities in the Auckland region. 
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transport to work, self-reported on the census day. It was 
obtained by dividing the total number of bus passengers by the 
total number of JTW commuters in the ith area unit. The 
percent mode share to bus offers an overall measure of the 
prominence of bus transport in the Auckland region. 

Fig. 3 presents the spatial distribution of bus mode share in 
the Auckland region based on 2006 census data. From this 
figure, it is evident that the bus mode share is not evenly 
distributed across area units. More specifically, the 
observations do not seem to be randomly distributed over 
space. Area units which have a high level of bus mode share, 
represented by the darker color zones, tend to be closely 
concentrated in the center, while the area units which have a 
relatively low bus ridership, shown in the lighter color parts, 
are scattered around the boundaries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Spatial distribution of bus mode share in the Auckland region 
 

 

Small clusterings of high values are also detected on the 
northeast and southeast corners of the map, which further 
indicates the spatially heterogeneous nature of the distribution 
of bus mode share. Therefore, spatial autocorrelation is 
apparently observed, because undoubtedly the probability of a 
specific value of the bus mode share variable in one specific 
location (area unit) depends on its value in neighboring 
locations. 

Potential bus mode share predictors are divided into three 
categories: urban form, transit service, and household 
characteristics. The final dataset includes eight independent 
variables, where: 

1. Urban form variables: 

• Population Densityi:  gross population density in the ith 

area unit in the Auckland region, measured by the total number 

of inhabitants per square kilometer; 

• Employment Densityi: employment density, measured by 

the total number of full-time and part-time employees per 

capita in the ith area unit in the Auckland region; 

• Dwellingi: total number of private owner occupied 

dwellings in the ith area unit in the Auckland region; used as an 

indicator of land use patterns;   

• CBDi: distance to CBD from the centroid of the ith area 

unit in the Auckland region, in kilometers; 

2. Transit service variables: 

• Stationi: distance to the nearest public transport 

terminal/stop other than bus (either train or ferry) from the 

centroid of the ith area unit in the Auckland region, measured in 

kilometres; 

• Frequencyi: frequency of bus service within the ith area 

unit in the Auckland region; 

3. Household characteristic variables: 

• Incomei: median household income measured in 

thousands of NZ Dollars (NZD) within the ith area unit in the 

Auckland region; 

• Cari: mean number of motor vehicles per household 

within the ith area unit in the Auckland region; 

Reference [27] pointed out that several urban form 

variables such as road network type and neighborhood type, 

also have some influence on the demand for public transport. 

In addition, according to [28], a few transit service variables 

which describe the quality of transit service, such as the in-

vehicle time and an indicator of the waiting environment, will 

have some effects on the demand for public transport as well. 

Unfortunately, these data are not available. A summary of key 

descriptive statistics of the variables used in this analysis are 

presented in Table I. As can be seen from this table, the bus 

share for JTW trips in the Auckland region is fairly low; the 

average figure for all 317 area units is only 5.65%, ranging 

from a low of 0.13% to a high of 17.43%. 

TABLE I.  AREA UNIT LEVEL DESCRIPTIVE STATISTICS OF VARIABLES 

FOR AUCKLAND REGION 

C. Empirical Bus Mode Share Models  

A logarithmic transformation is applied to both dependent 

and explanatory variables with the intention of capturing the a 

priori belief that ceteris paribus, the impact of each 

explanatory variable on bus mode share is diminishing [29]-

[30]. 

Therefore, firstly, the non-spatial bus mode share model in 

log-log form is specified as below: 

Variables Mean Std. Dev. Min Max 

Dependent variable         

Bus (%) 5.65 3.44 0.13 17.43 

Urban Form variables         

Population Density (per 

km2) 

833.98 405.64 1.47 1726.74 

Employment Density (per 

capita) 

0.48 0.08 0.27 0.66 

Dwelling 1241.25 503.51 114 3270 

CBD (km2) 16.68 8.36 2.23 43.29 

Transit Service variables     

Station (km2) 3.67 4.17 0.14 35.53 

Frequency 130.03 94.48 2 476 

Household characteristic 

variables 

        

Income (in 000 of NZD) 27.11 6.32 14.4 48.4 

Car 1.71 0.2 1.18 2.32 
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                   lnBus = XβOLS + εOLS                          (8)              

Equation (8) posits that the variation in the natural 

logarithm of the bus mode share (lnBus) in area unit i is 

explained by the variables in matrix X, which comprises a 

constant term, the natural logarithm of urban form, transit 

service, and the household characteristic variables. Since (8) is 

estimated by ordinary least squares, it is labelled as the OLS 

model and hence the estimated results from this model serve 

as a benchmark against the following spatial model 

estimations. 

Secondly, the following SAR model is: 

lnBus = ρWlnBus + XβSAR + uSAR  (9) 

Similarly, the SEM is: 

       lnBus = XβSEM + ε   (10) 

                                   where ε = θWε + uSEM 

Lastly, the SDM is given as: 

lnBus = ρWlnBus + Xβ + WXγ + uSDM (11) 

IV. PRELIMINARY TESTS 

A. Spatial Weights Matrix 

In empirical spatial econometric models, the selection of a 
spatial weights matrix, normally denoted as W, plays an 
important role. As [31] outlined that there are many possible 
means to quantify the structure of spatial dependence between 
observations. Typical approaches include distance decay [32], 
structure of a social network [33], economic distance [34] and k 
nearest neighbors [35]. However, as [36] illustrated, one major 
challenge facing spatial econometric models is that the spatial 
weights matrix W cannot be directly estimated and needs to be 
explicitly specified a prior. Current economic theory provides 
no formal guidance for this. Although a wide range of 
literature, echoed by [37], proposed several approaches to 
create the spatial weights matrix; there barely exists a formal 
guidance on how to select the “optimal” spatial weights as 
existing specifications all seem somewhat arbitrary.  

Practically, in spite of their lesser theoretical appeal, 
geographically derived weights are among the most widely 
applied specification in the spatial econometric analysis [18]. 
In addition, as [38] argued, popularity of geographically 
derived weights is due to the fact that the structure of W is 
constrained so that the weights are truly exogenous to the 
model, thus avoiding identification problems. There are two 
types of geographically derived weights based on proximities, 
namely, a binary measure of continuity (when two areas share 
common borders) and a continuous measure of distance. 
Following a majority of empirical studies [39]-[42], we use a 
two-dimensional Cartesian coordinate system with the ordered 
pair (x, y) coordinates to create a spatial weights matrix W, 
given the distance decay specification and its eigenvalues 
matrix E.  

By convention, the weights matrix W has been row-

standardized such that every row of the matrix sums to one 
(i.e. ). Each element of W is therefore defined as: 

 if i = j 

 if dij ≤ d* and; 

 if dij > d* if observation i ≠ j 

where dij is the spherical distance between the centroids of 

area units i and j, and d* is the critical cut-off distance. This 

inverse Euclidean distance, dij, contains a maximum threshold 

band of 24.14 kilometers to guarantee connections between all 

area units, that is, each spatial unit must have at least one 

neighbor. 4 This indicates that two area units are considered 

neighbors when the distance between their centroids is less 

than 24.14 kilometers and not neighbors if their centroids lie 

24.14 or more kilometers apart.  

B. Moran’s I Test 

A univariate Moran’s I test for residuals is the most 

commonly employed first-step specification test for spatial 

autocorrelation [43]. The test does not specify an explicit 

alternative spatial model (i.e. either SAR or SEM models) but 

has power against both [44]. 

The Moran’s I test for residuals in matrix notation is 

captured by: 

I = (N / S0)(e’We / e’e) 

where e denotes a vector of OLS residuals, and 

, a standardization factor that refers to the 

sum of the weights for the non-zero cross products [45]. 

According to [46], the interpretation of Moran’s I should 

be parallel to a correlation coefficient; however the major 

distinction is that its value is not bounded by the closed, (-1, 

+1) interval. A positive value signals positive spatial 

autocorrelation, measuring the occurrence of similar levels of 

a variable being found over contiguous or nearby spaces. By 

contrast, a negative value signals negative spatial 

autocorrelation, measuring the joint occurrence of high and 

low attribute values in adjoining locations.  

The Moran’s I statistic shows a positive value of 18.733 

with a p-value that is less than 0.0001. As expected, this result 

indicates that the null hypothesis of no spatial dependence 

should be rejected. Furthermore, the test statistic indicates that 

positive spatial autocorrelation exists, and in order to obtain 

unbiased and consistent estimators, spatial models should be 

adapted instead of the non-spatial OLS estimations. 

C. The Lagrange Multiplier Test 

By applying the Lagrange Multiplier (LM) test, we select 
between a spatial lag and a spatial error alternative. Basically 

there are two major forms of the LM test. The statistic 

tests the null hypothesis of no spatial autocorrelation in the 

dependent variable; the  statistic, on the other hand, 

tests the null hypothesis of no significant spatial 
autocorrelation in the error terms. 

The LM test against a spatial lag alternative ( ) is 

demonstrated in [20] and took the following form: 

4 The default unit for cut-off length is in miles in Stata 11, by conversion, 15 

miles are approximately equal to 24.14 kilometers. 
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= [e’Wy / (e’e/N)]2/ D 

where D = [(WX β)’(In – X(X’X)-(WX β)/σ2)] + tr(W2 + 
W’W).5 

By contrast, the LM test against a spatial error alternative 

( ) which is initially outlined in [47], takes the form 

of: 

 = [e’We / (e’e/N)]2/ [tr(W2 + W’W)] 

Aside from a scaling factor, this statistic corresponds to the 
squared value of Moran’s I. 

If both hypotheses can be rejected, one should consider 
constructing robust forms of these LM tests which have the 
ability to correct for the presence of local misspecification of 

the other form [48]-[49]. The test procedures of and 

 are identical to the one described above.6 Both the 

classic and the robust LM tests are based on the residuals of the 
OLS model and are asymptotically distributed as χ2 (1). 

Table II presents the diagnostics for spatial dependence. 
Under the classic LM test, both hypotheses of no spatially 
lagged dependent variable and of no spatially autocorrelated 
disturbances can be rejected at a 1% significance level. Robust 
LM tests consistently show the same results, with rejection of 
both hypotheses at a 1% significance level. This implies that 
OLS is rejected for both SAR and SEM models. 

TABLE II.  OLS DIAGNOSTICS FOR SPATIAL DEPENDENCE 

Measure Statistic Significance 

SEM   

 
123.601 *** 

   30.395 *** 

SAR   

 128.174 *** 

 34.968 *** 

 
Unlike what holds for the SAR’s counterpart, the 

Autoregressive (AR) model in time series analysis, the OLS 
estimation in the presence of spatial dependence will be 
inconsistent, simply because of the endogeneity issue discussed 
before. Therefore, in this study, the SAR and SEM models are 
estimated using ML estimation [50]. 

 

V. ESTIMATION RESULTS 

A. Non-spatial and Spatial Models 

The results from the non-spatial OLS is reported in Table III, 

alongside with the estimated results under the SDM. Several 

distinctions are evident. Firstly, the estimated coefficients of 

the urban form variables are significant and of expected signs. 

However, against expectations, the variable ln(Dwelling) is not 

significant. Additionally, compared with the SDM, most 

estimated coefficients from the OLS are larger in magnitude, 

5 “tr” denotes the trace of the matrix W. 
6 The subscript “r” denotes “robust”. 

implying that without the inclusion of potential spatial 

autocorrelation between dependent, independent variables and 

the error terms, the OLS results simply ignore this spatial 

variation and produce biased estimates. 

TABLE III.  NON-SPATIAL OLS, SPATIAL AUTOREGRESSIVE MODEL AND 

SPATIAL DURBIN MODEL (DEPENDENT VARIABLE: LNBUS 

 

 

The value of R-squared (R2) is 0.730, indicating a reasonable 

model fit.7   However, as the results from the Moran’s I statistic 

and model diagnostic tests in Table 3.2 show, estimates using 

the OLS method suffers from a major problem: there is 

evidence of a positive spatial autocorrelation, and the LM test 

statistic suggests the lag specification as the appropriate 

alternative. Thus, the above OLS estimates should be 

interpreted with caution.  

Therefore, we should concentrate on the estimated results 

from the SDM. First of all, upward bias is found in most of the 

least-squares estimates, suggesting over-estimation of the 

sensitivity of bus mode share to the urban form, transit supply, 

and socio-economic and demographic characteristics when 

spatial dependence is disregarded. Secondly, the spatial lags 

on ln(Population Density), ln(CBD) and ln(Station) are all 

significant in the SDM, implying possible omitted variable 

issue if we do not include them in the non-spatial OLS model. 

Thirdly, by taking the spatial lag into account, the fit of the 

model has improved dramatically. The R2 statistic for the 

SDM model is 0.852, which has higher value compared to the 

7 Adjusted R-squared for OLS estimation is 0.725. 

Explanatory Variable OLS Estimates SDM Estimates 

Intercept 2.749 *** 3.522   

ln(Population Density) 0.138 *** 0.141 *** 

ln(Employment Density) 1.646 *** -0.285   

ln(Dwelling) -0.218   -0.166 * 

ln(CBD) -0.97 *** -0.511 *** 

ln(Station) 0.26 *** 0.12 *** 

ln(Frequency) 0.158 *** 0.143 *** 

ln(Income) -1.053 *** -0.579 *** 

ln(Car) -0.865 *** -0.732 *** 

Lag ln(Population Density)     -0.379 ** 

Lag ln(Employment Density)     3.528   

Lag ln(Dwelling)     -0.066   

Lag ln(CBD)     0.48  ** 

Lag ln(Station)     0.098  * 

Lag ln(Frequency)     0.281   

Lag ln(Income)     0.41   

Lag ln(Car)     -3.613 *** 

ρ     0.823 *** 

Squared Correlation 0.73   0.852   

Variance Ratio     0.779   

Log likelihood     -59.929   
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one in OLS.  Therefore, after adjusting for spatial dependence, 

the overall fitness of the model has been improved. 

B. Choosing between Alternative Spatial Dependence 

Models 

As [13] described, if the OLS model is rejected in favor of 

both SAR and SEM models, then the SDM should be 

estimated. Therefore, a likelihood ratio (LR) test, also known 

as the score test, can subsequently be used to test two separate 

hypotheses that H0: γ = 0 and H0: ρβ + γ = 0. 

Recall that the SDM model is reduced to the SAR model if 

γ = 0. Reference [19] proposed that when there is evidence of 

maintaining the SAR or SEM model, the SDM model 

specified by (4) and the following log-likelihood tests may be 

useful regarding determining the “true” spatial process. Thus, 

for the SAR model, one can determine the dominant model by 

testing the null hypothesis γ = 0. Rejecting the null hypothesis 

implies rejecting the SAR. Similarly, a common factor 

constraint: γ = -ρβ should be tested to determine the best 

model between the SDM and its SEM. Likewise, if the null is 

rejected, this indicates statistical evidence for the SDM. With 

the aid of the LR test, one can decide the better model between 

the SDM and its restricted versions.  

The likelihood ratio (λ) is defined as: 

λ = 2[ln (LU) – ln (LR)] ~ χ2 (m) 

where LU is the likelihood function of the unrestricted 

model (i.e. LU = LSDM) whereas LR is the likelihood function of 

the restricted model (i.e. LR = LSAR or LSEM), and m is the 

number of restrictions imposed. The idea is that if the 

restrictions are valid, the log-likelihood functions should 

appear to be similar in values, and accordingly, λ should equal 

zero. 

The following results are obtained: LSDM = -59.929, LSAR = 

-86.097 and LSEM = -75.867. 

With 8 degrees of freedom, the critical values at 1%, 5% 

and 10% significance are 1.646, 2.733 and 3.490, respectively. 

The test statistics exceed the critical values for all cases, 

therefore we can reject the null hypothesis that the underlying 

spatial process is SAR or SEM at a 1% significance level. In 

other words, the restriction on parameter γ associated WX and 

the common factor constraint are invalid. As a result, the 

unrestricted SDM should be employed to represent the data-

generation process of the spatial dependence. This result 

further implies that the spatial lags of both the dependent and 

explanatory variables should be included in the model. In fact, 

the inclusion of the spatial lags of independent variables 

makes reasonable sense as area units located near each other 

should have some degree of similarity regarding urban form, 

transit supply and household characteristics variables, because 

economic activities tend to interact largely across space.  

The estimation results for the SDM model are summarized 

in Table III, alongside the OLS estimates. Overall, the SDM 

explains over 85% of the variation in the bus mode share. 

C. Decomposing Total Effect into Direct and Indirect Effects 

Interpretation of the SDM model differs from that of its 

non-spatial regression counterpart, the ordinary least squares, 

as the kth parameter vector β is no longer a partial derivative of 

y with respect to change in the kth independent variable from 

the n × k matrix of X [51]. Essentially, the spatial dependence 

components in the SDM expand the spatial information set to 

include additional information from neighboring area units. To 

see the impact of this additional spatial information, consider 

the partial derivative of the SDM in (5) with respect to a 

particular explanatory variable xk: 

                  (12) 

 

                   n × n          n × n                n × n           

The partial derivative results in an n × n matrix M 

representing marginal effects, which is shown in (12). The 

impact on the dependent variable from a change in a 

coefficient can be decomposed into three ways, namely, direct, 

indirect and total effects. The direct effect is defined as the 

average of the diagonal elements of matrix M by [24], it 

provides a summary measure that represents an average of the 

impacts on bus mode share arising from own-region changes 

in variable xk. The indirect effect is defined as the average of 

the off-diagonal elements of matrix M; this effect is also 

known as the spatial spillover effect as it measures the impact 

on bus mode share in area unit i arising from changes in 

variable xk from all other area units. The total effect is 

calculated as the average row sums of matrix M; it includes 

both direct plus indirect effects. The total effect measures the 

average cumulative impact on each observation from changing 

the kth explanatory variable by one unit across all observations.  

Average direct, indirect and total effects estimated are 

reported in Table IV, along with inferential statistics (i.e. the 

figures in parenthesis are bootstrapped standard errors) 

calculated using a bootstrap method with 1,000 draws. 

Because all of the variables are expressed in natural logs, the 

coefficient estimates can also be interpreted as elasticities. 

For the total effects, all estimated parameter values have 

the expected signs, with one exception for ln(Population 

Density). The total effects of ln(Station) and ln(Frequency) on 

transit ridership are all positive and significant; while the total 

effects of ln(Dwelling), ln(CBD), ln(Income) and ln(Car) and 

ln(Population Density) are negative and significant. 

Separating the total effect of a regressor into direct and 

indirect effects yields further insights. 

For the two transit service variables, first of all, the total 

effect, which comprises the direct and indirect effects of 

ln(Station), is positive and significant, implying that across the 

Auckland region, as the distance to train station and/or ferry 

terminal increases, commuters will prefer to choose buses as 

their transport mode. Next, both the direct and indirect effects 

of rush hour frequency show a significant positive effect on 

the bus mode share in a given area. This result provides 

insights to transport planning viz. that by increasing the 

number of buses during morning and peak hours, the effect 

will not only be reflected in a rise in the percentage of 

commuters who choose to take bus to work in their own 

district, but also an additional spillover benefit which can be 

reflected in nearby areas. The elasticity of total effect of this 
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variable is about 2.4, which indicates that increasing the transit 

frequency in area unit i by one percent, the average bus mode 

share across all area units will rise by 2.4%, holding other 

variables constant.  

TABLE IV.  DIRECT, INDIRECT AND TOTAL EFFECTS OF THE SPATIAL 

DURBIN MODEL 

Variables Direct Effect     Indirect Effect     Total Effect 

ln(Population 

    Density) 
0.136 *** -1.48 *** -1.345 *** 

  -4.70E-05   -4.70E-05   -5.80E-08   

ln(Dwelling) -0.17 *** -1.141 *** -1.311 *** 

  -3.50E-05   -3.50E-05   -3.50E-08   

ln(CBD) -0.51 *** 0.335 *** -0.175 *** 

  -1.00E-05   -1.00E-05   -1.30E-08   

ln(Station) 0.124 *** 1.108 *** 1.232 *** 

  -3.40E-05   -3.30E-05   -5.10E-08   

ln(Frequency) 0.151 *** 2.245 *** 2.395 *** 

  -7.00E-05   -7.10E-05   -1.20E-07   

ln(Income) -0.58 *** -0.374 *** -0.955 *** 

  -1.10E-05   -1.20E-05   -7.00E-09   

ln(Car) -0.816 *** -23.732 *** -24.548 *** 

  -0.00075   -0.00069   -8.40E-07   

 

Secondly, for the group of variables that have negative 

impact to bus mode shares, the parameter estimate on one of 

the urban form variables, ln(Dwelling), indicates that the 

larger the share of private owner occupied dwellings within an 

area unit, the lower the share of commuters who take bus to 

work, which seems intuitively plausible. The estimated 

coefficient on the total effect of another urban form variable, 

ln(CBD), is negative and significant, suggesting that the 

propensity to take a bus decreases as the area unit is farther 

away from the CBD in the Auckland region.  

For the two household characteristic variables, both the 

direct and indirect effects of income level exert a significant 

negative impact on the bus mode share, reflecting the idea that 

bus transport is an inferior good: as the commuters become 

wealthier, they will make fewer bus patronages for their JTW 

trips. Moreover, the direct effect of ln(Car) show that there is 

an inverse relationship between the number of cars owned per 

household and the bus usage rate, which is in line with the 

findings on car ownership variable found in [52] and [53]. The 

indirect effect of cars exhibits the same tendency, suggesting 

that with a one percent rise in the number of cars owned in 

adjacent area unit j, the average bus mode share in any given 

area unit i tends to decline by approximately 23.7%. A 

possible explanation for this phenomenon is that increasing 

car use and access in neighboring areas results in feedback 

forces and a “follow the neighbor” philosophy.  

Thirdly, the estimated coefficient on the total effect of 

ln(Population Density) is negative and significant at the 1% 

level. This implies that the population density from all 

observed area units affects the percentage of workers who take 

bus as their main transport to work negatively, which runs 

counter to our original hypothesis that high population density 

leads to high transit ridership.  

As discussed earlier, total effect can be unraveled into 

direct (own-region) and indirect (spatial spillover) effect. 

Some notable findings were revealed by our results: two urban 

form variables: ln(Population Density) and ln(CBD) have 

opposite signs for direct and indirect effect parameters; while 

the rest stays consistent. The estimated coefficient on the 

direct effect of ln(Population Density) is positive and 

significant at the 1% level. The result is consistent with the 

assumptions made by previous studies without consideration 

of spatial effects [54]-[55], where people living in high-

density sectors prefer to use more public transport or walk 

more frequently, but will make fewer and shorter trips by 

private vehicles. However, the indirect effect is negative and 

also significant, suggesting that once the population density in 

nearby regions increases, the bus mode share in area unit i will 

decline. This outcome may be because commuters in area unit 

i interpret the rise in population density in their neighboring 

regions as a sign of potential congestion issues and 

dissatisfaction of the transit service, since buses might not be 

running on time, in such cases, taking private vehicles will be 

a better alternative than using public transport. Because the 

indirect effect is larger in magnitude, the total effect of 

ln(Population Density) is negative.  

For the next urban form variable ln(CBD), the direct effect 

is negative and significant at the 1% level, suggesting that 

commuters are less willing to take the bus to work if they live 

farther away from Auckland city center. While the spatial 

spillover effect is positive and significant, suggesting that the 

bus mode share in region i will tend to rise if commuters in 

nearby regions live further away from the CBD. The 

parameter estimated for the direct effect of distance to CBD is 

negative and this may reflect the less attractiveness of using 

public transit for commuters who live far away from the city 

center, due to the fact there may be less public transport 

options available in their region. On the other hand, the 

positive indirect impact indicates that as a result of the 

spillover effect, local commuters may find riding buses is a 

better option for longer trips, especially when the workplace is 

far from the commuter’s residential address. Moreover, the 

variable ln(CBD) may also serve as a proxy for the cost of 

public transport, therefore, those living further away may find 

it more cost effective to use their private vehicles to go to 

work. The sign of the total effect of this variable is negative 

because the magnitude of the negative direct effect outweighs 

the positive indirect effect. 

Another significant finding from the SDM is that except 

for ln(CBD) and ln(Income), the total effects are comprised 

mostly of the spatial spillover impacts, while only a relatively 

small portion is attributed to the direct effects on bus mode 

share that arose from own-region changes in variable xk. For 

instance, the indirect effect of ln(Car) constitutes nearly 97% 

of the total impact of number of cars on bus mode share. 

Therefore, for the case of spatial dependence considered in the 

SDM model, least-squares regressions that ignore this spatial 

spillover effect and only produce the coefficients that 
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represent the summary impact measures, result in biased and 

inconsistent estimates. The result also reveals that spatial 

spillovers dominate in transit behavior analysis and greater 

attention should be paid from transport and urban planners to 

both own-region effect and the impact from neighborhood 

when evaluating new projects, or making transport investment 

decisions. 

VI. CONCLUSION, LIMITATION AND FUTURE RESEARCH  

This paper estimated how urban form variables are related 

to bus mode share and how these effects vary across the 

Auckland region. Overall, based on area unit level data, the 

analysis highlighted the complexity and importance of spatial 

structure in determining the factors that influence bus mode 

share. 

OLS as used in many previous transport-related studies 

assumes that the observations/regions are independent of one 

another in a geographical context. OLS thus looks for 

similarities in different spatial areas and provides an ‘average’ 

figure to cover the whole space. However, this is not plausible 

when using spatially-defined data because they are likely to 

exhibit positive spatial autocorrelation. That is, correlation of 

a variable with itself through space. Ignoring the spatial 

characteristics between observations/regions can, in turn, 

produce biased and inconsistent estimators.  

By conducting an in-depth case study using Auckland data, 

urban form, coupled with other factors that affect the bus 

mode share are explored and these, in turn, are related to a 

spatial context. Moran’s I test shows that there is statistically 

significant evidence of the presence of positive spatial 

autocorrelation. Therefore, by taking spatial dependence into 

account, spatial regression models are selected over the non-

spatial OLS model to obtain unbiased and consistent 

estimators. The empirical results show that bus mode share in 

one area unit exhibits a positive relationship with the share in 

neighboring area units.  

However, the interpretation of these findings based on SAR 

and SEM models is confounded by the strong spatial 

autocorrelation of the urban form and other transit 

characteristics such as transit supply, and 

socioeconomic/demographic differences across area units. By 

applying the likelihood ratio tests, this paper confirms the 

existence of spatial dependency in the lags of both dependent 

and independent variables. This dominating spatial issue has 

been addressed by the use of the spatial Durbin model. 

Estimated results from SDM show that the total effects 

comprised mostly of spatial spillover impacts, and only a 

relatively small percentage is attributed to the direct effects on 

bus mode share that arose from own-region changes in any 

given explanatory variable. For planners and developers, the 

SDM model is not only technically superior, but also 

preferable for evaluating new projects and making investment 

decisions [56]. As unlike traditionally estimated coefficient 

interpretations, one can easily unravel total effect into own-

region and spatial spillover effect. The results presented in this 

paper indicate that knowledge of a specific spatial lag may 

provide clues about the importance of future land use patterns 

on transit ridership. 

One limitation is that there is commonly an endogeneity 

issue with service frequency as an explanatory variable in a 

regression model with patronage as the dependent variable.  

Public transport providers often base the frequency they 

provide on patronage within an area unit; therefore, frequency 

may depend on patronage, since public transport providers 

gear service levels according to patronage. The variable 

Frequency in this SDM is thus suspected to be an endogenous 

variable to the bus mode share. One possible way to 

investigate the potential endogeneity issue here is to apply the 

Durbin-Wu-Hausman (DWH) endogeneity test [57]. The 

DWH endogeneity test requires the use of a valid instrumental 

variable (IV) to Frequency. Ideally, this IV is assumed to be 

correlated with Frequency but uncorrelated with εOLS. But, 

within this dataset, a valid IV variable is impossible to obtain. 

Another limitation is the lack of enough data to include other 

public transport modes (rail and ferry) in this study, 

unfortunately current dataset (NZ Census 2006) is not 

comprehensive enough to take consideration of alternative 

transport modes other than buses, and our results might be 

sensitive to such inclusions. 

This empirical analysis suggests several directions for 

future empirical research. First of all, this cross-sectional 

approach will not be sufficient to show the impact of variables 

that do not vary across area units. With the presence of panel 

data, which has the ability to capture time trends, it would be 

necessary to investigate explicitly the dynamics of these other 

variables such as the fuel prices.8 Secondly, current models 

would benefit from a more comprehensive dataset which 

comprises more transport supply side variables such as seat 

capacity and labor/capital cost. Lastly, regarding model 

methodology, another approach, Bayesian estimation, which 

has the advantage of allowing comparison of various weight 

matrices based on Bayesian posterior model probability, could 

be applied in future research and compared with the maximum 

likelihood estimation. 
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