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SUMMARY 

Aims: Thrombocytopenia is among the most important adverse effects of linezolid treatment. 

Linezolid-induced thrombocytopenia incidence varies considerably but has been associated 

with impaired renal function. We investigated the pharmacodynamic mechanism 

(myelosuppression or enhanced platelet destruction) and the role of impaired renal function in 

the development of thrombocytopenia. 

Methods: The pharmacokinetics of linezolid were described with a two-compartment 

distribution model with first-order absorption and elimination. Renal function (RF) was 

calculated using the expected creatinine clearance. The decrease of platelets by linezolid 

exposure was assumed to occur with one of two mechanisms in each patient. These 

mechanisms are inhibition of formation of platelets (PDI) or stimulation of the elimination 

(PDS) of platelets. 

Results: About 50% of elimination is explained by renal CL (normal RF). The population 

mean estimated plasma protein binding of linezolid was 18% (95% CI 16%-20%) and 

independent of observed concentrations. The estimated mixture model fraction of patients 

with platelet count decreased due to PDI was 0.97 (95% CI 0.87-1.00) thus the fraction due to 

PDS was 0.03. RF had no influence on linezolid pharmacodynamics.
 

Conclusion: We have described the influence of weight, renal function, age and plasma 

protein binding on the pharmacokinetics of linezolid. This combined pharmacokinetic, 

pharmacodynamic and turnover model has identified that the most common mechanism of 

thrombocytopenia associated with linezolid is inhibition of platelet formation. Impaired RF 

increases thrombocytopenia by a pharmacokinetic mechanism. Linezolid dose should be 

reduced in RF.  
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WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT; less than 50 words 

 Linezolid treatment is associated with thrombocytopenia and is more common with 

renal function impairment. 

 

WHAT THIS STUDY ADDS 

 Weight, renal function and age explain variability in linezolid pharmacokinetics. 

 Linezolid thrombocytopenia is most commonly due to myelosuppression rather than 

platelet destruction. 

 Renal impairment increases linezolid exposure. Dose adjustment should reduce 

thrombocytopenia.  
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INTRODUCTION  

Linezolid is a member of the oxazolidinone class of synthetic antimicrobial agent 

with a unique mechanism action compared with other existing agents [1]. Linezolid has been 

used for critical infections including pneumonia, sepsis, wound, skin and soft tissue 

infections [2-6]. Linezolid has strong antibacterial activity against aerobic Gram-positive 

cocci (GCP), methicillin-resistant coagulase-negative staphylococci, vancomycin-resistant 

enterococci and methicillin-resistant Staphylococcus aureus (MRSA) [7, 8], and has been 

approved for use in more than 60 countries. MRSA represents a predominant pathogen 

associated with serious infections which have become a major therapeutic problem because 

of high rates of morbidity, mortality, and hospital length of stay [9, 10]. Recent prospective 

randomized, double-blind trials have compared the use of linezolid compared with 

vancomycin in for the treatment of adult patients with hospital-acquired or 

healthcare–associated MRSA pneumonia [11], Gram-positive nosocomial pneumonia [12, 

13], and Gram-positive ventilator associated pneumonia [14]. For the treatment of these 

infections, clinical response was significantly higher with linezolid than vancomycin. On the 

other hand, three meta analyses have compared linezolid with glycopeptides (including 

vancomycin) for the treatment of nosocomial MRSA pneumonia [15-17]. The conclusions of 

all these meta analyses were consistent, showing the clinical cure and survival rates were 

similar for linezolid and vancomycin. Thus, linezolid is now considered most important for 

treatment of GCP and MRSA infections. 

Linezolid is predominantly metabolized through oxidation of its morpholine ring to 

an inactive form by non-enzymatic oxidative reactions [1]. Dosing adjustment is considered 

unnecessary for patients at any stage of renal dysfunction including hemodialysis even 

though clearance increased by 50% during hemodialysis [18]. However, linezolid 

concentration are significantly higher in patients with renal function impairment than in those 

without [19-25]. In general, linezolid is administered at a dose of 600 mg twice daily via oral 
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and/or intravenous infusion. After the initiation of linezolid treatment, the linezolid trough 

concentration is assumed to be maintained between 2 to 7 μg/mL [22]. Nukui et al. 

demonstrated that development of thrombocytopenia occurred more frequently in patients 

with a linezolid trough concentration of >7.5 μg/mL [26]. It has been recommended that dose 

should be adjusted based on linezolid concentrations [6, 27]. 

Thrombocytopenia and anemia are among the most important adverse effects of 

linezolid treatment. Linezolid-induced thrombocytopenia and anemia incidence varies 

considerably. Thrombocytopenia has been observed in 7.4% [28] and 11.8 % [29] of linezolid 

treated patients. Anemia was observed in 4.1% and 38.1% of the same groups. The 

probability of linezolid-induced thrombocytopenia and anemia of incidence is raised after 

long-term administration of linezolid [30]. Niwa et al, reported that the incidence of 

linezolid-induced thrombocytopenia was 17% and that high dose (≥22 mg/kg) was a risk 

factor [31]. In the previous studies, thrombocytopenia was observed in 32% of patients who 

received linezolid for more than 10 days [32] which in 32.8% duration of linezolid treatment 

for more than 14 days [33]. In addition, some group described that linezolid-induced 

thrombocytopenia and anemia associate in patients with renal function impairment [19, 21, 

25, 34] and persistently high linezolid concentrations [23, 35]. 

The mechanism responsible for linezolid-induced thrombocytopenia have not been 

clearly delineated.  Green et al. [36], reported reversible myelosuppression similar to that 

seen with chloramphenicol. Bone marrow findings in one patient included abundant 

megakaryocytes, megaloblastoid white cell maturation and erythroid aplasia. Two studies 

have reported the use of linezolid exposure to predict thrombocytopenia using a turnover 

model assuming decreased platelet formation [34, 37]. The turnover model was based on a 

myelosuppression model formulated by Friberg et al. for chemotherapy induced neutropenia 

[38].  Sasaki et al. reported using a proliferation cell model that the predicted probability of 

thrombocytopenia during 14 days of treatment (1,200 mg/day) in patients with creatinine 
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clearance 10 to 30 mL/min was 32.6 to 51.0% [34]. Boak et al. reported using the stem cell 

model that linezolid concentration of 8 µg/mL inhibited the synthesis of platelet precursor 

cells by 50% [37]. Two studies noted that the platelet count reached a nadir at day 15 to 20 

post linezolid treatment [34, 37]. A mechanism involving a change in platelet formation 

would be slow because platelet lifespan is around 8 to 10 days [39]. 

In contrast, several case reports propose a mechanism involving increased elimination of 

platelets by a drug-induced immune-mediated destruction [40-42]. This mechanism is based 

on observations of increased megakaryocytes in bone marrow or drug-related anti platelet 

antibodies with a rapid onset of platelet decline around 3 to 7 days following initiation of 

linezolid therapy [40, 42]. 

In light of this controversy about the mechanism of linezolid induced 

thrombocytopenia we have investigated the possibility that either myelosuppression or 

enhanced platelet destruction may be important in an individual patient. 

 

 

PATIENTS AND METHODS 

Ethics 

This study was performed in conformity with the Helsinki Declaration after approval 

by the Ethical Review Board of University of Toyama (approval number: clinical 24-118) and 

Sasebo Chuo Hospital (approval number: 2012-15). Patient privacy and personal information 

was handled such that patients could not be identified. 

 

Patients and data Sources 

A summary of the data for these patients is presented in Error! Reference source not 

found.. All patients received linezolid film coated tablet and/or injection (Zyvox®, Pfizer Inc. 

Tokyo, Japan) for the treatment of GCP or MRSA infections from November 2008 to August 
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2015 at Sasebo Chuo Hospital, Nagasaki and Toyama University Hospital, Toyama, Japan. 

The usual dose of linezolid was 10 mg/kg three times a day (pediatric) or 300 mg once a daily 

to 600 mg twice daily (adult) orally and/or by intravenous drip infusion for 1 to 2 h. Other 

dosage adjustments of linezolid were performed by physicians’ decisions. 

 

Determination of linezolid concentrations 

The bulk powder of linezolid for the high-performance liquid chromatography 

(HPLC) was provided by Pfizer Inc.,. All other reagents were analytical grade and were 

commercially available. Pharmacokinetic the blood samples of serum and plasma were stored 

at −80◦C until analysis. Serum and plasma deproteinized with an equivalent volume of 

acetonitrile and the supernatant after centrifugation was measured by HPLC using the 

absolute calibration method. The unbound linezolid was obtained by centrifugation of 250 µL 

of the serum or plasma specimens with a Centrifree ® Ultrafiltration device (Merck Millipore 

Ltd, Cork, IRELAND) for 30 min at 2000 × g. Total and unbound linezolid concentrations in 

serum or plasma were determined by an HPLC method with ultraviolet (UV) detection. The 

HPLC system (Shimadzu Corporation, Kyoto, Japan) consisted of a LC-2010 pump, an 

LC-2010 autosampler, a LC-2010 UV detector and a LC-2010 column oven. Data were 

collected and analysed using LC solution. Separation was carried out on an octadecyl silane 

(ODS) hypersil column (Cadenza 5CD-C18, 150 mm × 4.6 mm, 5 µm; Imtakt Co., Kyoto, 

Japan). As the mobile phase, a solution of 1% orthophosphoric acid, 30% methanol, and 2 g/l 

heptane sulfonic acid (1:30:69) and pH was adjusted to 5 by the addition of 10 M sodium 

hydroxide. The pump flow rate was of 1.0 mL/min. The column temperature was maintained 

at 40◦C. The wavelength of optimum UV detection was set at 254 nm. Calibration curves 

were linear over a concentration range of 0.1 to 50 µg/mL for total and unbound linezolid. 

The intra/inter-day coefficient of variation (CV) was below 5.0%, and the lower limit of 
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quantification ((LLOQ) was 0.1 μg/mL for both total and unbound of linezolid 

concentrations. 

 

Population Pharmacokinetics and pharmacodynamics of linezolid 

 Population pharmacokinetics and pharmacodynamics analysis performed the PPP & 

D method [43, 44] using the nonlinear mixed effect modeling software NONMEM
® 

version 

7.3.0 (ICON Development Solutions, Maryland, USA) with the first-order conditional 

estimation method with interaction (FOCE-I). The entire procedure of executing model runs, 

bootstrapping, visual predictive check (VPC) and results management was performed in 

Wings for NONMEM, and graphical analysis was performed by R (version 2.8.0). 

 

Population Pharmacokinetics 

The pharmacokinetics of linezolid assumed a two-compartment distribution model 

with first-order absorption and elimination (ADVAN13, TOL=9). Pharmacokinetic 

parameters were clearance (CL), volume of the central and peripheral compartment (VC and 

VP), inter-compartment clearance (Q), absorption half-life (TABS) and absolute 

bioavailability (F). The absorption rate constant (Ka) was calculated natural logarithm of 2 

divided by TABS. 

 Between subject variability in pharmacokinetic parameters were modeled with 

log-normal distribution in the following Equation 1. Pi is the pharmacokinetic parameter for 

ith individual, PPOP is the population mean value of the parameters, and ηi is a normally 

distributed random variable with mean zero and variance ω
2
. 

             Equation 1 

The residual unidentified variability was modeled with combined proportional and 

additive errors of total and protein unbound concentrations in the following Equation 2. Yij is 

the jth measured concentration in the ith subject, YPREDij is the predicted concentration based 
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on the model. εCV and εSD are the combined proportional and additive error model 

components, respectively, with mean zero and variance σ
2
 for concentration. The fraction of 

unbound plasma protein binding was estimated from the relationship between total 

concentrations and unbound concentrations. 

                        Equation 2 

The fraction unbound (fu) was estimated by predicting total plasma concentration 

from predicted unbound concentrations in plasma. In five samples where the data below the 

LLOQ of concentrations of linezolid the value was treated as missing. 

 

Covariate model 

FSIZE was applied to standardize the pharmacokinetic parameters with an assumption 

of a standard body weight (TBW) of 70kg (Equation 3) [45, 46]. The allometric exponent 

(PWR) of FSIZE was fixed to 0.75 for CL and Q, 1 for VC and VP. 

 S     
   

  
 
   

 
Equation 3 

Differences associated with age were described on the basis of the fractional change 

in a pharmacokinetic parameter. FAGE of CL was defined (Equation 4) and centered around 

the patient’s median age (year). KAGECL is the age parameter for CL. FAGE was fixed to 1 for 

the model of Q, VC and VP. 

                                  Equation 4 

Creatinine clearance (CLcr) was calculated by the Cockcroft-Gault formula [47] 

standardised to a total body weight of 70 kg. Renal function (RF) was normalised to standard 

CLcr (CLcrSTD) of 6 L/h/70 kg (100 mL/min/70 kg) by Equation 5 [48, 49]. 

   
    

       
 Equation 5 

There were 4 younger patients (age 1, 5, 8 and 13 y). RF was assumed to be 0.5 in 

these sick hospitalized patients. RF was included in the model using a linear independent 
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combination of renal and non-renal clearance parameters by Equation 6. CLOVERALL is the 

overall population value of parameter. CLnon-renal was non-renal clearance and CLrenal is renal 

clearance. 

                                          Equation 6 

The covariate factors was combined to predict linezolid clearance (CLGRP). Group 

clearance includes covariates used to characterize that specific group’s pharmacokinetic 

parameters (Equation 7). 

                      Equation 7 

Pharmacokinetic parameter estimates are for the disposition of unbound linezolid 

concentration. 

 

Mixture model 

The decrease of platelets by linezolid exposure was assumed to occur with one of 

two mechanisms in each patient. These mechanisms are inhibition of formation of platelets 

(PDI) or stimulation of the elimination (PDS) of platelets (Error! Reference source not 

found.). 

A mixture model was used to identify the fraction (F) of patients in the study 

population who were best described by a linezolid inhibitory effect on platelet formation 

(Equation 8). 

                                                                

                                                                       

Equation 8 

 

Population pharmacokinetic pharmacodynamic modeling 

The time course of linezolid induced reduction of platelets count is based on a 

semi-mechanistic model for myelosuppression [38]. The model is composed of a 

compartment representing pro-genitor cells in the bone marrow, a compartment of systemic 
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circulating platelets, and a link between them through three transit compartments reflecting 

platelet maturation (Equation 9). The inter-compartment transit rate constant (Ktr) was 

estimated from the mean transit time (MTT) so that Ktr=(1+Ntr)/MTT where Ntr is the 

number of transit compartments. Circulating platelets (PLTCIRC) were eliminated by a 

first-order process with half-life (PLTHALF). PLTHALF was estimated and the 

corresponding rate constant Kcirc was calculated from the natural logarithm of 2 divided by 

PLTHALF. The initial platelet count in the PLTFORM, Transit 1, Transit 2 and Transit 3 

compartments was calculated from PLTCIRC0 x Kcirc/Ktr and in the PLTCIRC compartment 

it  was set to PLTZERO, where PLTZERO is the platelet count in blood before starting 

linezolid. 

        

  
                               

          

  
                           

          

  
                             

          

  
                             

        

  
                                  

Equation 9 

The rate of formation of platelets (RFORM) in the platelet formation compartment 

(PTFORM) was assumed to be driven either by proliferation of cells in the formation 

compartment or from a constant stem cell precursor (Equation 10).  

                            ; proliferation 

                            ; stem cell 

Equation 10 

An empirical feedback model (FBACK) was used to describe the effect of 

endogenous growth factors with change the formation rate when the platelet count changes 

relative to the baseline platelet count (PLTZERO) (Equation 11). 
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Equation 11 

The effect of linezolid was implemented either by an inhibitory (PDI) effect on 

formation of platelets (RFORM) or a stimulatory (PDS) effect on platelet elimination (Kcirc) 

(Equation 12).  

            ; Inhibition 

            ; Stimulation 

Equation 12 

The pharmacodynamic model for linezolid (Edrug) was either a linear or an Emax 

model (Equation 13). 

                   ; linear 

      
             

          
 ; Emax 

Equation 13 

The model was implemented as a system of differential equations. All compartments 

were initialized to PLTZERO. 

 

Model evaluation and validation 

To test the significance of various factors that influenced the pharmacokinetic - 

pharmacodynamics parameters, the value of the objective function (OFV) determined in the 

NONMEM
®
 fitting routine was used. The difference in O V (ΔO V) obtained by comparing 

each model was asymptotically distributed according to the chi-squared test with the degree 

of freedom being equal to the difference in the number of parameters between the two models. 

The significance level was set to p <0.05 (ΔO V: 3.84).  

Non-parametric bootstrap was used to estimate uncertainty [50]. The final model 

was fit repeatedly to 100 additional bootstrap datasets. The average, standard deviation (SD), 

relative standard error (%RSE), and 95% confidence intervals (CIs) were calculated from the 

empirical bootstrap distribution and compared estimates from the original dataset. A 

prediction-corrected VPC (pcVPC) was used to check the distribution of observed and 
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predicted percentiles [51]. The VPC was evaluated by comparing the observed concentrations 

with 90% percentile intervals (PIs) and 95% CIs simulated from the final parameters. 

 

 

RESULTS 

Population Pharmacokinetics of Linezolid 

A total of 493 blood linezolid total concentrations and 380 unbound linezolid 

concentrations from 81 patients were available to develop the population pharmacokinetic 

model. There was no improvement in the fit (ΔO V -3.73, df=2, P=0.15) with a previously 

described model [52] involving a time related effect of linezolid exposure to reduce 

elimination clearance. The final model contained nine estimated pharmacokinetic parameters. 

Plasma protein binding was linearly related to linezolid unbound concentration. 

There was no improvement in the fit when a saturable binding model was used (ΔO V 

-0.522, df=2, P=0.77). The population estimated protein binding percentage was 18%. There 

was no detectable population parameter variability for the unbound fraction. The 

pharmacokinetic parameter estimates from the original data and the bootstrap distribution are 

presented in Error! Reference source not found..  

The pharmacokinetic model parameters are shown in Equation 14. 

                                            
   

  
 
    

 

             
   

  
  

             
   

  
  

              
   

  
 
    

 

Equation 14 

The pharmacokinetic model described the observed data well. The model validation 

using pcVPC also confirmed an acceptable agreement between the observed data and 
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model-based simulated values (Error! Reference source not found. and Error! Reference 

source not found.). The median of the observed values was within the 95% confidence 

interval of the predictions but tended to be higher than the median prediction. 

 

Mixture model 

A total of 575 platelet counts from 80 patients were available to develop the turnover 

and pharmacodynamic model. The estimated mixture model fraction of patients with platelet 

count decreased due to inhibition of formation was 0.97 (FPOPinhib) thus the fraction due to 

stimulation of loss (FPOPstim) was 0.03 Based on assignment of patients to each mechanism 78 

patients had platelet formation inhibited with linezolid and 2 patients had platelet loss 

stimulated with linezolid treatment. 

 

Population pharmacokinetic pharmacodynamic modeling 

A model with 3 transit compartments adequately described the time course of 

thrombocytopenia. A more complex model with 30 compartments for platelet formation and 

elimination [37] did not improve the fit. 

A linear pharmacodynamic model was chosen to describe PDI and an Emax model 

for PDS. Renal function (RF) was investigated to see if it affected the linezolid slope of PDI. 

R  had no significant effect on slope (ΔO V -0.704, df=1, P=0.4). Modeling platelet 

turnover using proliferation of cells in the formation compartment significantly improved the 

fit when compared with a constant stem cell precursor (ΔO V -80.772, df=0). The fit was not 

worsened by assuming Kcirc was the same as Ktr so we assume Kcirc=Ktr. Removing the 

feedback component of the model worsened the fit considerably (ΔO V 169.8, df=1, 

P<1e-38). 

The final model contained eight estimated parameters including a mixture parameter. 

The results of pharmacodynamic parameter estimates of the final model and bootstrap 
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parameter average and 95% empirical bootstrap percentiles from 100 bootstraps are presented 

in Error! Reference source not found.. The RSE were small (< 30%) for most 

pharmacokinetic-pharmacodynamic (PKPD) and turnover parameters. Even though the fit 

was better with an  max model than a linear model (ΔO V: 21.080, df=2, P=2.6e-5) the 

bootstrap RSE of SMAX and SC50 were large (43%, 339% respectively) indicating that the 

SC50 estimate was particularly uncertain. The model evaluation using pcVPC confirmed an 

acceptable agreement between the observed data and model-based simulated values (Error! 

Reference source not found.). The median of the observed values was within the 95% 

confidence interval of the predictions. 

A simulation was performed model to demonstrate linezolid-induced 

thrombocytopenia in patients using parameter estimates from the combined PKPD and 

turnover model. Simulations of predicted platelet count of PDI and PDS models were 

performed with linezolid 600 mg every 12 h for at least two weeks as shown in Error! 

Reference source not found.. 

When inhibition of platelet formation is assumed then the predicted nadir of platelet 

count is at 14 days after linezolid administration. On the other hand, when stimulation of loss 

is assumed then the platelet count drops sharply to reach the predicted nadir after 2 days.   

The platelet count and linezolid concentration profiles for representative patients 

having different dosage and linezolid administration periods are also shown in Error! 

Reference source not found.. Three representative patients with PDI (ID 1, 58 and 64) and 

the 2 patients with PDS (ID 37 and 55) are shown. The profiles of individual predicted value 

and observed value for both PDI model and PDS model are close to each other.  

 

 

DISCUSSION 
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The mechanism of linezolid induced thrombocytopenia had not yet been elucidated. 

This study has tried to identify patterns of platelet count associated with two fundamental 

types of mechanism for thrombocytopenia. A population pharmacokinetic-pharmacodynamic 

modeling approach was applied to predict linezolid associated effects on platelet turnover 

either due to myelosuppression or enhanced platelet destruction after oral and/or intravenous 

infusion of linezolid administered to patients with MRSA infections. By identifying different 

time courses of thrombocytopenia we hope to help clinicians recognize linezolid induced 

thrombocytopenia and understand how to manage linezolid dosing in patients with MRSA. 

The population pharmacokinetics of linezolid have been previously described using 

non-compartmental and compartmental models [20, 24, 34, 37, 52-60]. The pharmacokinetic 

analysis of the present study was performed using a two-compartment model with first-order 

absorption and first-order elimination. 

Both the unbound and total plasma concentrations of linezolid were modelled 

simultaneously. It is generally accepted that only unbound concentrations are responsible for 

pharmacological beneficial activity and side effects [61-65]. Most previous reports have been 

limited to the use of total concentrations [20, 24, 34, 37, 52-60]. The estimated protein 

binding of linezolid in blood was 18%. There was no detectable between subject variability in 

fu nor variation of fu with observed concentrations. This result is in agreement with a 

previous study on linezolid pharmacokinetics [66, 67], and with the findings of Yagi et al. 

[68]. 

We have used total body weight and theory based allometry to identify the relationship 

between body size and pharmacokinetic parameters. Brier et al. reported that the CL of 

linezolid did not change with renal function [18]. Other reports did not investigate if renal 

function influenced CL of linezolid [52-60].  

Taubert et al. [60] have described that fibrinogen and antithrombin concentrations, lower 

concentrations of lactate, and the presence of acute respiratory distress syndrome are 
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significant covariates for CL. However, they were unable to identify that renal function 

influenced CL of linezolid which may be due to their empirical approach with only 52 

critically ill patients. Other reports have clearly identifed that impaired renal function is 

associated with lower CL [20, 24, 34, 37].  

We used a size independent measure of renal function to account for renal impairment and 

estimate both renal and non-renal components of clearance. This clearly demonstrated the 

important role of renal elimination of linezolid. After accounting for the effects of size, renal 

function and plasma protein binding we found there was a small decrease in non-renal 

clearance with increasing age (2%/y).  

A comparison of our estimates of PK parameters with those reported in the literature 

is shown in Error! Reference source not found.. CL was somewhat lower than reported by 

others although it is difficult to compare estimates when the original values were not reported 

in a standardized fashion. This was particularly challenging when renal function was not 

included in the reported model. Studies including healthy subjects might be expected to have 

higher CL but there was no evidence for this. 

The pc-VPC of linezolid unbound concentrations (Error! Reference source not 

found.) shows that predictions match observed concentrations initially but from day 3 to day 

14 the observed values are under predicted. This would be consistent with the proposal by 

Plock et al. [52] that linezolid inhibits its own metabolism although the magnitude of the 

effect observed here is much smaller (10%) than that predicted (75%). Implementation of this 

model did not improve the fit. It is unlikely that changes in plasma protein binding would 

cause this effect because linezolid is bound to albumen and albumen is reduced in sick 

patients [69, 70].  

The estimated parameters describing platelet turnover were similar to those of 

previous studies [34, 37]. The results of our data analysis indicated that the population mean 

of MTT, γ with absolute value and PLTZERO on the pharmacodynamics were 113 h, 0.187, 
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206000 /μL, respectively. A comparison of the parameters with those in this study is shown in 

Error! Reference source not found.. The estimate platelet turnover time (MTT) and feedback 

parameter γ and linezolid potency (SLOPE) in the current study were similar to that reported 

by Sasaki et al. [34]. Boak et al. reported a MTT about 50% longer and a γ 5 times larger with 

a SLOPE 10 times larger [37]. 

Previous reports regarding linezolid-induce thrombocytopenia proposed two 

mechanisms involving increased elimination of platelets either by non-immune mediated 

thrombocytopenia caused by suppressing bone marrow [34, 36, 37, 71], or by 

linezolid-induced platelet destruction [40, 42]. Loo AS et al. suggested that both of these 

mechanisms of linezolid-induced thrombocytopenia may involve immune related pathways 

[72].  

The mechanism-based turnover model we have described for linezolid-induced 

thrombocytopenia involving either inhibition of platelet formation or stimulation of platelet 

elimination. The platelet turnover models described in previous studies of linezolid explain 

the decrease of platelets by an inhibitory mechanism without exploring the possibility of 

stimulated elimination [34, 37]. Sasaki et al. reported linezolid inhibition of platelet 

proliferation [34]. On the other hand, Boak et al. reported linezolid inhibition of platelet stem 

cells [37]. We tested both of these platelet inhibition models and found a better fit based on 

inhibition of platelet proliferation. We are not aware of a specific mechanism explaining how 

linezolid impairs platelet proliferation.  

Based on a mixture model for the distribution of patient responses it appears that 

linezolid-induced stimulation of platelet elimination occurred in only 3% of patients 

compared with 97% for linezolid-induced inhibition of platelet formation. It is not possible to 

directly distinguish if the stimulation of elimination mechanism is immune mediated or no 

[72, 73]. However, the low value for SC50 (0.33 mg/L total plasma concentration compared 

to observed concentrations greater than 1 mg/L) is consistent with an immune related 
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mechanism initiated by very low levels of exposure. Caution is required in this interpretation 

because of the large RSE and wide bootstrap confidence interval (0.00004 to 1.405 mg/L) for 

SC50. 

Impaired renal function and use of linezolid is associated with a decrease of platelet 

count [19, 21, 23, 25, 26, 34]. This could be due to an effect of renal impairment on platelets 

as well as an increased inhibition of platelet proliferation associated with increased linezolid 

concentrations. Or it could be just due to increased inhibition of platelet proliferation because 

of increased linezolid concentrations. We could detect no additional effect of renal function 

(RF) on linezolid induced inhibition. This indicates that linezolid induced thrombocytopenia 

is due only to linezolid and it is not made worse by renal impairment independently of 

linezolid concentration. 

When the mechanism appears to be inhibition of proliferation the onset of platelet 

count decrease is delayed and reaches a nadir around 2 weeks (Error! Reference source not 

found.). In contrast, when the mechanism appears to be stimulation of elimination the nadir 

is reached around 2 days (Error! Reference source not found.). 

We used our model to predict the time course of linezolid concentration and platelets 

before and after a period of linezolid treatment in some individual patients to illustrate the 

typical behavior according to the 2 mechanisms we describe for thrombocytopenia (Error! 

Reference source not found.). We also show the predictions for one patient who appeared to 

be in the stimulation of elimination group but this was falsely identified because the patient 

already had thrombocytopenia before starting treatment with linezolid. We removed this 

patient from the final analysis dataset. 

These results are in good agreement with the timing of platelet count nadir described 

as non-immune mediated thrombocytopenia (inhibition of proliferation) [34, 36, 37, 71, 72] 

and immune mediated thrombocytopenia (stimulation of elimination) [40, 42, 72]. In view of 
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these results, we recommend platelet count monitoring should be considered for all patients 

immediately before the start of linezolid treatment then on day 2 and 4 and week 1, 2 and 3. 

A Bayesian dosing method has been developed using the linezolid model described 

here. It is part of the web based NextDose tool which is implemented for use in a clinical 

environment. Instructions for access to NextDose are available at www.nextdose.org. 

Several limitations of this study warrant mention. First, bone marrow samples were 

not available. These would allow the differentiation process from hematopoietic cells to 

megakaryocytes or megakaryocytic differentiation to be studied. It would then be possible to 

have a clearer understanding of the mechanism of linezolid-induced thrombocytopenia. 

Second, we cannot be sure that other diseases and/or other drugs had an effect on platelet 

count. Third, we have very few patients with rapid loss of platelets. However, 2 patients (ID 

37 and 55) appeared to have this mechanism as shown by the (Error! Reference source not 

found.). Finally, because heights of patients were not recorded we could not predict normal 

fat mass [74] and understand better how body composition influences the size relationship for 

linezolid pharmacokinetic parameters. 

We have described the influence of weight, renal function, age and plasma protein 

binding on the pharmacokinetics of linezolid. This pharmacokinetic model has allowed us to 

determine that the most common mechanism of thrombocytopenia associated with linezolid 

is inhibition of platelet proliferation. Increased exposure with renal impairment is predictable 

and thrombocytopenia avoidable by dose reduction. Target concentration intervention to 

optimize linezolid exposure is expected to reduce the risk of thrombocytopenia.  
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Table 1 

Demographic and clinical data for the study population of patients receiving linezolid. 

   
Observation Interval 

 
Number Median Lower 2.5% Upper 97.5% 

Total patients 81 
   

Male 51 
   

Female 30 
   

Administration route 
    

i.v 54 
   

p.o. 13 
   

both 14 
   

Observed total concentration (mg/L) 493 11.2  2.0  50.7  

Observed unbound concentration (mg/L) 380 1.9  0.3  8.8  

Protein binding ratio (%) 
 

17.0  7.6  33.3  

Observed platelet count (10
3
/µL)  575 160 22 463 

Observed hemoglobin level (g/dL) 595 8.6  6.1  15.0  

Age (year) 
 

69  8  85  

Total body weight (kg) 
 

53.2  21.0  99.5  

Diagnosis infections 
    

Sepsis 26 

 
  

Wound, Skin and soft tissue  25 

 
  

Pneumonia 14 

 
  

Abscess 8 

 
  

Osteomyelitis  6 

 
  

Undetermined 2 

 
  

AST(IU/L) 
 

22  10  163  
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ALT (IU/L) 
 

20  4  190  

Serum creatinine (mg/dL) 
 

0.80  0.20  7.49  

CLcr (mL/min) 
 

59.6  5.6  188.4  

PI, percentile interval; AST, aspartate aminotransferase; ALT, alanine aminotransferase; CLcr, 

creatinine clearance.  
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Table 2 

Comparison of population pharmacokinetic-pharmacodynamic parameters estimates for final model with estimates from 100 bootstrap sample 

Parameter Description Units 
Final model 

estimate 

Bootstrap sample estimates 

Average 
95% PI 

RSE% 
Lower 2.5% Upper 97.5% 

Population mean        

Pharmacokinetics        

CLnon-renal  Non-renal clearance L/h 1.86 1.76 1.29 2.17 14% 

CLrenal  Renal clearance L/h 1.44 1.42 0.83 2.20 25% 

VC Volume of the central compartment  L 22.9 19.3 8.1 29.4 29% 

VP Volume of the peripheral compartment  L 24.7 24.4 16.7 34.2 18% 

Q Inter-compartment clearance  L/h 10.9 10.5 2.3 23.5 90% 

TABS Absorption half-life  h 3.61 5.07 2.13 19.26 70% 

F Absolute bioavailability  0.922 0.895 0.747 0.999 8% 

KAGECL Age parameter for CL  -0.021 -0.021 -0.030 -0.009 -25% 

FU  Fraction of unbound protein binding   0.823 0.823 0.809 0.836 1% 

Pharmacodynamics        
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Finhibit Fraction of patients with inhibit synthesis of platelets  0.969 0.949 0.867 1 3% 

MTT Mean transit time h 113.0 103.5 65.4 130.0 15% 

γ Feedback parameter  -0.187 -0.164 -0.258 -0.061 -29% 

PLTZERO Baseline platelet count /μL 206000 204451 174000 234100 8% 

SLOPE Slope of inhibition effect (total plasma concentration) 1/(mg/L) 0.00566 0.00507 0.00248 0.00725 23% 

SMAX Maximal extent of stimulation effect  2.55 2.31 0.03 4.06 43% 

SC50 Linezolid total plasma concentration producing 50% 

of the maximum stimulation effect 

mg/L 0.00364 0.324 0.00004 1.405 339% 

Between-subject variability (BSV
1
)      

CL   0.369 0.366 0.267 0.464 14% 

VC   1.421 1.518 1.065 2.348 22% 

VP   0.050 0.206 0.024 0.629 78% 

Q   1.822 1.624 0.585 2.447 31% 

TABS   0 FIXED     

F   0 FIXED     

MTT   0.239 0.205 0.002 0.444 66% 

γ   0.307 0.225 0.003 0.521 82% 
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PLTZERO   0.570 0.567 0.437 0.669 10% 

SLOPE   0.473 0.482 0.176 0.759 33% 

SMAX   0 FIXED     

SC50   0 FIXED     

Residual unidentified variability (RUV
2
)      

RUVPROP_TOTAL Proportional residual unidentified variability of total 

concentration 

 0.318 0.311 0.258 0.356 7% 

RUVADD_TOTAL   Additive residual unidentified variability of total 

concentration 

mg/L 0.251 0.301 0.003 0.806 77% 

RUVPROP_UNBOUND Proportional residual unidentified variability of 

protein unbound concentration 

 0.319 0.313 0.256 0.357 8% 

RUVADD_UNBOUND Additive residual unidentified variability of protein 

unbound concentration 

mg/L 0.034 0.061 0.000 0.729 284% 

RUVPROP_PLT Proportional residual unidentified variability of 

protein unbound concentration 

 0.234 0.242 0.204 0.273 8% 

1=BSV calculated from sqrt (NONMEM OMEGA); 2=RUV estimated using THETA 

PI, percentile interval; RSE, relative standard error; 
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Table 3 

Comparison of pharmacokinetic and parameters (average, BSV%) of linezolid estimated in this study with those in the literature 

 Type of 

subject 

CL (L/h/70 kg)  VC (L/70 kg)  VP (L/70 kg)  Q (L/h/70 kg)  Ka (h
-1

)  TABS (h)  F  T half (h)  

This study: Patient 3.3 (36.9) 22.9 (142) 24.7 (5.0) 10.9 (182) 0.19 3.61 0.92 10.0 

Literature studies:          

 Matsumoto et al. [20] Patient 4.61 (30.5) # 27.6 #      4.1 

 Sasaki et al. [34] Patient 3.87 (35.2) 40.6 (30.8)      7.3 

 Boak et al. [37] Patient 6.72 (48.9) 47.7 (3.6)   4.04 0.17 (14.7)  4.7 

 Abe et al. [53] Patient 5.34 (46.6) 47.3 (25.9)   0.58 (327) 1.19  6.1 

 Adembri et al. [54] Patient 13.0 # 55.7      3.0 

 Beringer et al. [55] Patient 8.82 # 60.2   0.75 0.92 0.88 4.7 

 Keel et al. [56] Patient 9.54 (36.3) # 26.8 # 17.3 (85.8) 104 1.91 0.36 0.85 (23.0) 3.2 

 Meagher et al. [57] Patient 7.38 (50.3) 42.7 (22.7) 28.2 9.09 5.73 0.12  6.7 

 Plock et al. [52] Healthy 

and 

2.67 $ (41.7) # 20.0 (40.1) 28.9 (34.8) 75.0 1.81 (72.4) 0.38  3.1 
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Patient 

 Welshman et al. [58] Healthy 8.76 # 62.6     1.03 5.0 

 Whitehouse et al. [59] Patient 3.41 (48.1) # 44.4 (22.4) 240 (146) 7.48    57.8 

 Taubert et al. [60] Patient 7.92 (58.0) # 13.5 (37.0) 26.6   1.72 0.40  3.5 

Literature estimate of parameters were standardized based on TBW of 70 kg and CLcr of 6 L/h/70 kg when possible (#=not standardized); 

Between-subject variability (BSV%) was calculated from 100 x sqrt (NONMEM OMEGA); CL, clearance; VC, volume of the central 

compartment; VP, volume of the peripheral compartment; Q, inter-compartment clearance; Ka, absorption rate constant; TABS, absorption 

half-life; F, absolute bioavailability, T half, elimination half-life 

Ka was calculated as natural logarithm of 2 (Ln (2)) divided by TABS or TABS as Ln (2)/Ka; T half was calculated as Ln (2)*(VC+VP)/CL. 

$=calculated at 10 mg/L total concentration. 
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Table 4 

Comparison of pharmacodynamic parameters (average, BSV%) of linezolid estimated in this 

study with two literature 

Authors Type of 

subject 

MTT 

(h) 

γ PLTZERO 

(/μL) 

SLOPE 

1/(mg/L) 

SMAX SC50 

(mg/L) 

This study: Patient 113  

(23.9) 

-0.187  

(30.7) 

206000  

(57.0) 

0.00566 

 (47.3) 

2.55 0.00364 

Literature 

studies: 

       

 Sasaki et 

al. [34] 

Patient 110 

(33.9) 

-0.203 253000  

(45.9) 

0.00416  

(93.8) 

  

 Boak et al. 

[37] 

Patient 163 

(20.3) 

-1.02 252000  

(65.1) 

0.055  

(at 10 

mg/L) 

  

Between-subject variability (BSV%) was calculated from 100 x sqrt (NONMEM OMEGA); 

MTT, mean transit time; γ, feedback parameter; PLT  RO, baseline platelet count; SLOP , 

slope of inhibition effect; SMAX, maximal extent of stimulation effect; SC50, linezolid total 

plasma concentration producing 50% of the maximum stimulation effect. 
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Figure 1 

Schematic representation of the structural pharmacokinetic model for linezolid and 

pharmacodynamic model for platelet time course. 

PDI, inhibition effect; PDS, stimulation effect; PLTFORM, initial rate of formation of 

platelets; Ktr, inter-compartment transit rate constant; MTT, mean transit time; PLTCIRC, 

circulating platelets; Kcirc, rate constant of PLTCIRC; PLTZERO, baseline platelet count; 

FBACK, empirical feedback model; CL, clearance; VC and VP, volume of the central and 

peripheral compartment; Q, inter-compartment clearance; Ka, absorption rate constant. The 

final model uses Ktr=Kcirc. 
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Figure 2 

Model qualification using prediction-corrected visual predictive checks (pc-VPC) for total 

linezolid concentration. 

The left hand plots are a scatterplot of the measurements with 5,50 and 95%iles. 

pc-VPC showing the 5th, 50th and 95th percentiles for observed and predicted values. 

TOTAL, total linezolid concentration; red circles, observed linezolid concentration; red solid 

line, median observed concentration; red dashed lines, 5th and 95th percentiles the observed 

linezolid concentrations; black solid line, median predicted linezolid concentration in 100 

simulated subsets of total dataset; black dashed lines, 5th to 95th percentiles of the predicted 

linezolid concentrations; Grey-shaded areas represent 95% confidence intervals of the 

prediction percentiles 
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Figure 3 

Model qualification using prediction-corrected visual predictive checks (pc-VPC) for 

unbound plasma linezolid concentration. 

The left hand plots are a scatterplot of the measurements with 5,50 and 95%iles. 

pc-VPC showing the 5th, 50th and 95th percentiles for observed and predicted values. 

UNBOUND, unbound linezolid concentration; red circles, observed linezolid concentration; 

red solid line, median observed concentration; red dashed lines, 5th and 95th percentiles the 

observed linezolid concentrations; black solid line, median predicted linezolid concentration 

in 100 simulated subsets of total dataset; black dashed lines, 5th to 95th percentiles of the 

predicted linezolid concentrations; Grey-shaded areas represent 95% confidence intervals of 

the prediction percentiles 
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Figure 4 

Model qualification using prediction-corrected visual predictive checks (pc-VPC) for 

platelets count (mixture group 1 - inhibition of proliferation). 

The left hand plots are a scatterplot of the measurements with 5,50 and 95%iles. 

pc-VPC showing the 5th, 50th and 95th percentiles for observed and predicted values. 

PLT, platelets count (mixture group 1); red circles, observed platelets count; red solid line, 

median observed platelets count; red dashed lines, 5th and 95th percentiles the observed 

platelets count; black solid line, median predicted platelets count in 100 simulated subsets of 

total dataset; black dashed lines, 5th to 95th percentiles of the predicted platelets count; 

Grey-shaded areas represent 95% confidence intervals of the prediction percentiles 
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Figure 5  

Predicted time course total linezolid plasma concentration and platelet count with inhibition of 

proliferation (PDS) or stimulation of destruction (PDS) produced by linezolid 1200 mg/day p.o. 

Simulation using mean parameter based on final model (total body weight of 70 kg, CLcr of 6 L/h/70 

kg, age 69, linezolid oral dosage 600 mg q12h) 

PDI, platelets count of patient with inhibit synthesis of platelets; PDS, platelets count of patient with 

stimulate the elimination of platelets; TOTAL, total linezolid concentration; 
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Figure 6 

Time course of platelet count and unbound plasma linezolid concentration in representative 

patients having different dosage and linezolid administration duration. 
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Patient ID 1, 58 and 64 are patients that are best described by inhibition of synthesis of 

platelets. 

Patient ID 37 and 55 are patients that are best described by stimulation of elimination of 

platelets. 

Boxed areas shows linezolid duration and dosage per day. 

PLT, platelets count; UNBOUND, unbound plasma linezolid concentration; closed circle and 

solid line, observed unbound plasma linezolid concentration; dashed line, predicted unbound 

plasma linezolid concentration using final model; closed square and long-dashed line, 

observed platelet count; dotted line, predicted platelet count. 


