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Abstract. Let q be a power of a prime p and let G be a completely reducible subgroup
of GL(d, q). We prove that the number of composition factors of G that have prime
order p is at most (εqd− 1)/(p− 1), where εq is a function of q satisfying 1 6 εq 6 3/2.
For every q, we give examples showing this bound is sharp infinitely often.

1. Introduction

All groups considered in this paper are finite. Given a group G and a prime p, let
cp(G) denote the number of composition factors of G of order p. Our main theorem is the
following.

Theorem 1. Let q be a power of a prime p, say q = pf . If G is a completely reducible

subgroup of GL(d, q) with r irreducible components, then

(1) cp(G) 6
εqd− r

p− 1
, where εq =





4
3

if p = 2 and f is even,
p
p−1

if p is a Fermat prime,

1 otherwise.

Recall that a Fermat prime is a prime of the form 22
n

+ 1 for some n > 0, and that
a subgroup G of GL(V ) is called completely reducible if V is a direct sum of irreducible
G-modules.

Our motivation for Theorem 1 arose from studying transitive permutation groups
admitting paired orbitals with non-isomorphic subconstituents. In the case when both
subconstituents are quasiprimitive, Knapp proved that one must be an epimorphic image
of the other [13, Theorem 3.3]. This naturally led us to investigate the question of when
a quasiprimitive group can be a non-trivial epimorphic image of another quasiprimitive
group of the same degree. In an upcoming paper [7], we show that this is very rare. Our
proof relies on Theorem 1 in the case when both quasiprimitive groups are of affine type.

Let G be a group and let a(G) be the product of the orders of the abelian composition
factors of G. Note that cp(G) 6 logp(a(G)) so upper bounds on a(G) yield upper bounds
on cp(G). It is proved in [6, Theorem 6.5] that, if G is a completely reducible subgroup
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of GL(d, pf ), then a(G) 6 β−1(pfd)γ where β = 241/3 and γ = log9(48β), and thus
cp(G) 6 γdf − logp β < γdf . Our bound improves on this because it is independent of f ,
it involves the denominator p − 1, and εq < γ ≈ 2.244. Similarly, if G is a primitive
group of degree n and p | n, then it follows from [6, Corollary 6.7] that a(G) 6 β−1nγ+1

and hence cp(G) 6 (γ + 1) logp(n), whereas our result implies cp(G) 6 d + εpd−1

p−1
if G is

primitive of affine type and degree n = pd.
After some preliminary results in Section 2, we exhibit some examples in Section 3

which show that, for every prime power q, Theorem 1 is sharp infinitely often. In partic-
ular, εq is best possible. The bound in Theorem 1 can be sharpened (if q is not an odd

power of 2) to εp(G) 6
εqd−s

p−1
where s is the number of absolutely irreducible components

of G since G remains completely reducible over the algebraic closure of Fq by [10, §VII.2].
The proof of Theorem 1 is given in Section 4. The main idea is to use induction

on d and then split into cases, according to Aschbacher’s classification of the subgroups
of GL(d, pf ). The hardest case is when G is a projectively almost simple absolutely
irreducible ‘C9 group’ with a ‘non-geometric’ linear action. We conclude with Corollary 9,
which bounds cp(G/Op(G)) for G an arbitrary subgroup of GL(d, pf ).

2. Preliminaries

Throughout the paper, p will always denote a prime. Given a positive integer n,
let np denote the highest power of p that divides n and let Cn denote a cyclic group of
order n. By Clifford’s theorem [4], a normal subgroup of a completely reducible group is
also completely reducible. This fact will be used repeatedly. The following lemmas will
also be used repeatedly, sometimes without comment.

Lemma 2. If r is a positive integer, then logp rp 6 logp(r!)p 6 (r − 1)/(p− 1).

Proof. The first inequality is obvious. Consider the p-adic expansion r =
∑

k>0 dkp
k

of r, with ‘digits’ dk ∈ {0, 1, . . . , p− 1} for each k > 0. Legendre proved that logp(r!)p =∑
k>1⌊r/pk⌋ = (r − sp(r))/(p− 1), where sp(r) =

∑
k>0 dk. The second inequality follows

since sp(r) > 1. �

Lemma 3. Let G be a group.

(a) If 1 = Gm P Gm−1 P · · · P G0 = G is a subnormal series for G, then cp(G) =∑m
i=1 cp(Gi−1/Gi).

(b) cp(G) 6 logp |G|p. If G is p-soluble, then cp(G) = logp |G|p.
(c) If G is a subgroup of a group Γ, then cp(G) 6 logp |Γ|p. In particular, if G 6 Sym(r),

then cp(G) 6 (r − 1)/(p− 1).
(d) If G is a subgroup of a direct product H1×· · ·×Hr where the projection maps πi : G→

Hi are surjective for 1 6 i 6 r, then cp(G) 6 cp(H1) + · · ·+ cp(Hr).
(e) If G is a subgroup of a central product H1 ◦· · ·◦Hr where the projection maps G→ Hi

are surjective for 1 6 i 6 r, then cp(G) 6 cp(H1) + · · ·+ cp(Hr).
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Proof. We prove these in order.
(a) The given subnormal series for G can be refined to a composition series for G. The

result now follows from the definition of cp(G).
(b) The first claim is obvious. If G is p-soluble, then, by definition, each composition

factor has order p, or coprime to p. The result now follows from the definition of cp(G).
(c) Since |G|p 6 |Γ|p, we have cp(G) 6 logp |Γ|p. The second sentence follows from

Lemma 2.
(d) Let G0 = G. For 1 6 i 6 r, let πi : G→ Hi be the projection map, let Ki = ker(πi)

and let Gi = G ∩ K1 ∩ · · · ∩ Ki. Note that Gr = 1. Hence cp(G) =
∑r

i=1 cp(Gi−1/Gi)
by (a). However,

Gi−1

Gi

=
Gi−1

Gi−1 ∩Ki

∼= Gi−1Ki

Ki

P
G

Ki

∼= Hi.

Thus cp(Gi−1/Gi) 6 cp(Hi) by (a), and hence cp(G) 6 cp(H1) + · · ·+ cp(Hr).
(e) Let H = H1 × · · · ×Hr and let N be a normal subgroup of H such that H/N =

H1 ◦ · · · ◦ Hr. Let Γ be the preimage of G in H. The projection maps Γ → Hi are
surjective, hence cp(Γ) 6

∑r
i=1 cp(Hi) by (d). The result follows since cp(G) 6 cp(Γ). �

3. Examples

Lemma 4. Let p be a prime, let r > 1, let q be a prime-power and let Γ1 be an

irreducible subgroup of GL(r, q). For every n > 2, let Γn = Γn−1 ≀ Cp. Then, for every

n > 2, Γn is an imprimitive subgroup of GL(dn, q) where dn = rpn−1. Furthermore,

cp(Γn) =
εdn − 1

p− 1
where ε =

cp(Γ1)(p− 1) + 1

r
.

Proof. We first prove by induction that Γn is an irreducible subgroup of GL(dn, q).
This is true for n = 1. Assume now that n > 2 and Γn−1 is an irreducible subgroup of
GL(dn−1, q). Let V = (Fq)

dn be the natural Γn-module. Restricting to the base group
N = (Γn−1)

p of Γn, V is a direct sum V1 ⊕ · · · ⊕ Vp of pairwise nonisomorphic irreducible
N -modules each of dimension dn−1. Hence Γn is an irreducible subgroup of GL(dn, q)
by Clifford’s Theorem [4]. In particular, Γn is imprimitive for n > 2. The formula for
cp(Γn) is true when n = 1 as d1 = r and cp(Γ1) = (εr − 1)/(p − 1). By Lemma 3(a),
cp(Γn) = pcp(Γn−1) + 1. Hence the the formula for cp(Γn) also follows by induction. �

Using Lemma 4, we now give three families of examples that show that the bound in
Theorem 1 is best possible.

Example 5. Let q be a power of a prime p and let Γ1 = ΓL(1, pp) ∼= GL(1, pp)⋊ Cp.
Note that Γ1 is an absolutely irreducible subgroup of GL(p, p). Consequently, Γ1 is an
irreducible subgroup of GL(p, q). Note also that cp(Γ1) = 1. Applying Lemma 4 with
r = p yields, for every n > 1, an irreducible subgroup Γn of GL(dn, q) with cp(Γn) =
(dn − 1)/(p− 1), where dn = pn.
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Example 6. Let q be an even power of 2 and let Γ1 = GU(3, 2) ∼= 31+2 ⋊ SL(2, 3).
Note that Γ1 is an absolutely irreducible subgroup of GL(3, 22). Thus, Γ1 is an irreducible
subgroup of GL(3, q). Note also that c2(Γ1) = 3. Applying Lemma 4 with (p, r) = (2, 3)
yields, for every n > 1, an irreducible subgroup Γn of GL(dn, q) with c2(Γn) = (4/3)dn−1,
where dn = 3 · 2n−1.

Example 7. Let p = 2m + 1 be a Fermat prime, let q be a power of p, let E denote
an extraspecial group of order 21+2m and type −, let P be a Sylow p-subgroup of the
orthogonal group GO−(2m, 2), and let Γ1 = E ⋊ P . Note that Γ1 is an absolutely
irreducible subgroup of GL(2m, p) = GL(p − 1, p). Consequently, Γ1 is an irreducible
subgroup of GL(p − 1, q). Note also that |P | = p and cp(Γ1) = 1. Applying Lemma 4
with r = p − 1 yields, for every n > 1, an irreducible subgroup Γn of GL(dn, q) with
cp(Γn) = (εdn − 1)/(p− 1), where ε = p/(p− 1) and dn = (p− 1)pn−1.

The three examples above together show that, for every prime power q, Theorem 1
is sharp infinitely often. In Theorem 1 and these examples, the prime p divides the field
size. If p does not divide q, then cp(G) cannot be bounded by a function of only d and p,
as the following example shows.

Example 8. Let p 6= 2 and r be primes such that r ≡ 1 (mod p), let f be a positive
power of p, let q = rf and let G = GL(d, q). Note that G/SL(d, q) is cyclic of order q − 1
hence cp(G) > (rf − 1)p = (r − 1)pfp = (r − 1)pf .

4. Proof of Theorem 1

Let p be a prime, let f be a positive integer and let q = pf . Let V = (Fq)
d, viewed as a

vector space over Fq, and let G be a completely reducible subgroup of GL(V ) ∼= GL(d, q).
It is also useful to note that εq > 1.

Our proof now proceeds by induction on pairs (d, f) where we use the lexicographic
ordering (d1, f1) < (d2, f2) if d1 < d2, or d1 = d2 and f1 < f2. The base case when
d = f = 1 is trivial.

Since GL(d, q)/SL(d, q) has order q−1 and thus coprime to p, it follows by Lemma 3(a)
that cp(G) = cp(G ∩ SL(d, q)). We henceforth assume that G 6 SL(d, q). Let Z =
Z(SL(d, q)). Note that Z has order gcd(d, q − 1) which is coprime to p hence cp(G) =
cp(GZ). We thus assume henceforth that Z 6 G.

In fact, cp(SL(d, q)) = 0 unless d = 2 and q ∈ {2, 3}, in which case cp(SL(d, q)) = 1.
In both cases, (1) holds hence we assume G < SL(d, q).

Our proof relies heavily on Aschbacher’s Theorem characterising the subgroups of
GL(d, q) that do not contain SL(d, q), which asserts that G lies in at least one of the
following nine classes [2].

C1 (reducible subgroups): In this case, G fixes some proper nonzero subspace
of V .
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C2 (imprimitive subgroups): In this case, G fixes some decomposition V = V1 ⊕
· · · ⊕ Vr, where r > 2 and each Vi has dimension d/r. In particular, G 6

GL(d/r, q) ≀ Sym(r).
C3 (extension field subgroups): In this case, G preserves the structure of V as

a (d/r)-dimensional vector space over Fqr for some r > 2. In this case, G 6

GL(d/r, qr)⋊ Cr.
C4 (tensor product subgroups): In this case, G preserves a tensor product de-

composition V = U ⊗W with d = dim(U) dim(W ) and dim(U) 6= dim(W ). In
particular, G 6 GL(U) ◦GL(W ).

C5 (subfield subgroups): In this case, q = qr0 for some r > 2 and G 6 GL(d, q0) ·
Z(GL(d, q)).

C6 (symplectic type r-groups): In this case, there is a prime r such that d = rm

and an absolutely irreducible normal r-subgroup R of G such that R/Z(R) is
elementary abelian of rank 2m.

C7 (tensor-imprimitive subgroups): In this case, G preserves the tensor product
decomposition V = V1 ⊗ · · · ⊗ Vr, where each Vi has dimension n and d = nr. In
particular, G 6 (GL(n, q) ◦ · · · ◦GL(n, q))⋊ Sym(r).

C8 (classical groups): In this case, G preserves a nondegenerate alternating, her-
mitian or quadratic form on V . Moreover, G contains one of Sp(d, q)′, SU(d,

√
q)

or Ωε(d, q), where ε ∈ {±, ◦}. For more details, see §§4.7.
C9 (nearly simple groups): In this case, G/Z is an almost simple group with

socle N/Z such that Z 6 N and N is absolutely irreducible.

We now consider these classes one by one.

4.1. G ∈ C1. As G ∈ C1 is completely reducible, G preserves a direct sum decompo-
sition V = V1 ⊕ · · · ⊕ Vr with r > 2 where the restriction Gi of G to Vi is irreducible. By
induction, we have cp(Gi) 6

εqdi−1

p−1
where di = dim(Vi) for each i. Since G 6 G1×· · ·×Gr

and G projects onto each Gi, Lemma 3(d) implies

cp(G) 6 cp(
r∏

i=1

Gi) =
r∑

i=1

cp(Gi) 6
r∑

i=1

εqdi − 1

p− 1
=
εq(

∑r
i=1 di)− r

p− 1
=
εqd− r

p− 1
.

4.2. G ∈ C2. In this case G is irreducible and preserves a direct sum decomposition
V = V1 ⊕ · · · ⊕ Vr with r > 2. Thus G acts transitively on the set Ω = {V1, . . . , Vr}. Let
N be the kernel of the action of G on Ω, and let Ni denote the restriction of N to Vi. The
stabiliser Gi in G of the subspace Vi is irreducible on Vi. Thus cp(Gi) 6

εqdi−1

p−1
by induction

where di = dim(Vi) = d/r for each i. By definition, the projection maps N → Ni are
surjective for all i and, moreover, N 6 N1 × · · · × Nr. It follows by Lemma 3(d) that
cp(N) 6

∑r
i=1 cp(Ni), and Ni P Gi implies cp(Ni) 6 cp(Gi). On the other hand, G/N is

isomorphic to a subgroup of Sym(r) hence cp(G/N) 6 (r − 1)/(p − 1) by Lemma 3(c).
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By Lemma 3(a), we have

cp(G) = cp(G/N) + cp(N) 6 cp(G/N) +
r∑

i=1

cp(Ni) 6 cp(G/N) +
r∑

i=1

cp(Gi)

6
r − 1

p− 1
+

r∑

i=1

εqdi − 1

p− 1
=
r − 1

p− 1
+
εqd− r

p− 1
=
εqd− 1

p− 1
,

as desired. From now on, we assume that G is irreducible and primitive. Therefore every
normal subgroup N of G acts completely reducibly, indeed homogeneously.

4.3. G ∈ C3. In this case, there exists r > 2 such that G 6 GL(d/r, qr) ⋊ Cr. Let

N = G ∩ GL(d/r, qr). By the inductive hypothesis, we have cp(N) 6
εqr(d/r)− 1

p− 1
.

Furthermore, by Lemma 2,

cp(G/N) 6 cp(Cr) = logp rp 6
r − 1

p− 1
.

If d = r, then N 6 GL(1, qd) and hence |N | is coprime to p and cp(N) = 0. By
Lemma 3(a), we have

cp(G) = cp(G/N) 6
r − 1

p− 1
=
d− 1

p− 1
6
εqd− 1

p− 1
.

We may thus assume that d > 2r. Note that

cp(G) = cp(N) + cp(G/N) 6
εqr(d/r)− 1

p− 1
+
r − 1

p− 1
=
εqr(d/r) + r − 2

p− 1
.

It thus suffices to show

(2) εqr(d/r) + r − 1 6 εqd.

Suppose now that εqr 6 εq. In this case, it suffices to show εqd/r + r − 1 6 εqd which is
equivalent to r − 1 6 εqd(r − 1)/r, and hence equivalent to r 6 εqd. Since εq > 1, the
latter holds and so we may thus assume that εq < εqr . From the definition of ε, it follows
that εq = 1 and εqr = 4/3. Therefore, (2) becomes

4d

3r
+ r − 1 6 d.

This is equivalent to r2 − r 6 d(r − 4/3) which holds since d > 2r and r > 2.

4.4. G ∈ C4 or C7. In this case, G preserves a non-trivial decomposition of V as a
tensor product, say V = V1 ⊗ · · · ⊗ Vr where r > 2. If G ∈ C4, then r = 2 and G fixes
V1 and V2, otherwise G permutes the factors V1, . . . , Vr. Note that d =

∏r
i=1 di, where

di = dim(Vi) > 2. Let N be the kernel of the action of G on the set {V1, . . . , Vr} and
let Ni denote the restriction of N to Vi. By definition, the projection maps N → Ni are
surjective for all i and, moreover, N 6 N1◦· · ·◦Nr. It follows by Lemma 3(e) that cp(N) 6∑r

i=1 cp(Ni). By Clifford’s Theorem, a subnormal subgroup of a completely reducible
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group is completely reducible. Since Ni P N P G, Ni is completely reducible on V and
on Vi. Hence, by the inductive hypothesis, we have cp(Ni) 6 (εqdi − 1)/(p − 1). On the
other hand, G/N is isomorphic to a subgroup of Sym(r) hence cp(G/N) 6 (r− 1)/(p− 1)
by Lemma 3(c). By Lemma 3(a), we have

cp(G) = cp(G/N) + cp(N) 6 cp(G/N) +
r∑

i=1

cp(Ni) 6
r − 1

p− 1
+

r∑

i=1

εqdi − 1

p− 1

=
εq(

∑r
i=1 di)− 1

p− 1
6
εq(

∏r
i=1 di)− 1

p− 1
=
εqd− 1

p− 1
,

where the last inequality follows from the fact that di > 2 for all i. This completes the
proof of this case.

4.5. G ∈ C5. In this case, G 6 GL(d, q0)Z(GL(d, q)) where q = qr0 for some divisor
r of f with r > 2. Let G0 = G ∩ GL(d, q0). Note that cp(Z(GL(d, q))) = 0 hence
cp(G) = cp(G0). Since q0 = pf/r and (d, f/r) < (d, f) in our lexicographic ordering, the
inductive hypothesis yields cp(G0) 6 (εq0d− 1)/(p− 1). Since q is a power of q0, it follows
from the definition of ε that εq0 6 εq and the result follows.

4.6. G ∈ C6. In this case, d = rm for some prime r with r | (q− 1), and G normalises
an absolutely irreducible r-subgroup R where R/Z(R) is elementary abelian of rank 2m.
By [12, Proposition 4.6.5], the normaliser of R in SL(d, q) is

Z(SL(d, q)) ◦ (R · Sp(2m, r)) .
Since r | (q − 1), we have r 6= p and thus cp(Z(SL(d, q))) = cp(R) = 0. It follows by
Lemma 3 that

cp(G) 6 logp |Sp(2m, r)|p = logp

m∏

i=1

(r2i − 1)p.

It thus suffices to show that

(3) logp

m∏

i=1

(r2i − 1)p 6
εqr

m − 1

p− 1
.

Let ∆ =
∏m

i=1(r
2i − 1). Suppose first that p = 2 and thus r > 3. Note that

log2 ∆2 = log2

m∏

i=1

(r2i − 1)2 < log2

m∏

i=1

r2i = (m2 +m) log2 r.

If (m2 + m) log2 r 6 rm − 1, then, clearly, (3) holds. We may thus assume that (m2 +
m) log2 r > rm − 1 and it is not hard to see that this implies that (m, r) is one of (1, 3),
(1, 5) or (2, 3). If (m, r) = (1, 5), then log2 ∆2 = 3 and (3) follows by noting that εq > 1.
Finally, if r = 3 then q must be an even power of 2 and thus εq = 4/3 and again (3) can
be verified directly for m ∈ {1, 2}.



8 M. GIUDICI, S. P. GLASBY, C. H. LI, G. VERRET

From now on, we assume that p > 3. Let ℓ be the order of r2 modulo p, that is, the
smallest integer ℓ > 1 for which (r2)ℓ ≡ 1 (mod p). The key observation which follows
from [1, Lemma 2.2(i)] is that

(r2i − 1)p =

{
1 if ℓ ∤ i,

(r2ℓ − 1)p
(
i
ℓ

)
p

if ℓ | i.

Let (r2ℓ − 1)p = pe and note that e > 1. Hence

∆p =
m∏

i=1

(r2i − 1)p =

⌊m/ℓ⌋∏

j=1

(r2jℓ − 1)p =

⌊m/ℓ⌋∏

j=1

(r2ℓ − 1)pjp = p⌊m/ℓ⌋e
(⌊m

ℓ

⌋
!
)

p
.

Thus, by Lemma 2, logp∆p 6 ⌊m/ℓ⌋e+(⌊m/ℓ⌋−1)/(p− 1). To prove (3), it thus suffices
to prove

⌊m/ℓ⌋e+ ⌊m/ℓ⌋ − 1

p− 1
6
εqr

m − 1

p− 1
.

For this, it is sufficient to show that

(4) ⌊m/ℓ⌋ep 6 εqr
m.

Suppose first that p = 2n + 1 is a Fermat prime and r = 2. In this case ℓ = n, e = 1
and εq = p

p−1
. Hence (4) becomes ⌊m/n⌋ 6 2m−n. Writing α = m/n, this inequality

becomes ⌊α⌋ 6 2n(α−1), which holds for all values of α since n > 1.
We now assume that p > 3 is not a Fermat prime or r > 3, and hence that εq = 1.

Since pe | (r2ℓ− 1), we see that pe | (rℓ± 1) and hence pe 6 rℓ + 1. Suppose that equality
holds. Since p > 3, we have r = 2 hence pe − 1 is a power of 2 and thus so is p − 1. In
other words, p is a Fermat prime, contradicting our assumption. We may thus assume
that pe 6 rℓ and hence e 6 ℓ logp r. Using (4), it suffices to prove mp logp r 6 rm.

We first consider the subcase when p 6 rm/2. Under this hypothesis, it suffices to
prove m logp r 6 rm/2 and, since p > 3, even m log3 r 6 rm/2 is sufficient. It is not hard
to show that this always holds.

We now assume that p > rm/2 + 1 and hence ℓ > m/2. If ℓ = m/2, then p = rm/2 + 1
and hence r = 2 and p is a Fermat prime, contrary to our hypothesis. Thus ℓ > m/2.
If ℓ > m, then (4) clearly holds. We may thus assume that m/2 < ℓ 6 m and hence
∆p = (r2ℓ − 1)p.

Suppose that p2 | (r2ℓ − 1). Since p > 3, this implies that p2 | rℓ ± 1 and thus
p2 6 rℓ + 1. If p2 = rℓ + 1, then r = 2 and p = 3. We may thus assume that p2 6 rℓ and
hence p 6 rℓ/2 6 rm/2, contrary to our hypothesis. Therefore p2 ∤ (r2ℓ − 1), and it follows
that ∆p = p. In particular, (3) holds since p 6 rm. This concludes the proof of this case.

4.7. G ∈ C8. In this case G has a normal subgroup N such that N = Ωε(d, q) for d
even or dq odd, Sp(d, q)′ for d even, or SU(d,

√
q) for q a square. Moreover, G is contained

in GOε(d, q), GSp(d, q) or GU(d,
√
q)Z, where GOε(d, q) and GSp(d, q) denote the groups
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of all similarities of the quadratic or alternating form respectively, while GU(d,
√
q) de-

notes the group of all isometries of the hermitian form. By excluding previous cases, we
may also assume that N/(N ∩Z) is nonabelian and simple [15, §VI.1–2]. Thus cp(N) = 0
and hence cp(G) = cp(G/N).

Now, |GU(d,
√
q)Z : SU(d,

√
q)| = q − 1 which is coprime to p hence cp(G) = 0 when

N = SU(d,
√
q).

Similarly, |GSp(d, q) : Sp(d, q)| = q−1, while Sp(d, q)′ = Sp(d, q) unless (d, q) = (4, 2).
Thus, if N = Sp(d, q)′, then cp(G) = 0 unless (d, q) = (4, 2), in which case cp(G) = 1. In
both cases, (1) holds.

Finally, |GOε(d, q) : Ωε(d, q)| = 2(q − 1) gcd(2, d, q − 1) which is coprime to p unless
p = 2. Thus, if N = Ωε(d, q), then cp(G) = 0 unless p = 2, in which case cp(G) = 1.
Again, (1) holds in both cases.

4.8. G ∈ C9. In this case, G has a normal series G Q N ⊲Z Q 1 where G/Z is almost
simple with socle N/Z and, moreover, N is absolutely irreducible. Let T = N/Z. Note
that cp(Z) = cp(T ) = 0 and thus cp(G) = cp(G/N). Note also that G/N is isomorphic to
a subgroup of Out(T ). It follows by Lemma 3 that cp(G/N) 6 logp |Out(T )|p.

If |Out(T )|p 6 2, then cp(G) = cp(G/N) 6 cp(Out(T )) 6 1 with equality if and only
if p = 2. Certainly (1) is satisfied if p > 2, and it is satisfied when p = 2 provided
1 6 ε2d−1. This is true as d > 2 and ε2 = 4/3. We may thus assume that |Out(T )|p > 3.
This already rules out the case when T is a sporadic group or an alternating group Alt(n),
with n 6= 6. In view of the exceptional isomorphism Alt(6) ∼= PSL(2, 9), we will therefore
assume that T is a nonabelian simple group of Lie type. We rule out the Tits group 2F4(2)

′

as we view it as a sporadic group.
Suppose that T is defined over a field F ′ of characteristic p′ and order (p′)f

′

. Let
q′ = |F ′| = (p′)f

′

if T is an untwisted group of Lie type, and (q′)k = |F ′| = (p′)f
′

if T is
twisted with respect to a graph symmetry of order k.

It is well known that |Out(T )| = δf ′γ where δ and γ are the number of “diagonal”
and “graph” outer automorphisms, respectively (see [5, p. (xv)] and [5, p.(xvi) Table 5]).
It follows that cp(G) 6 logp(δf

′γ)p. We now split into two cases, according to whether or
not p = p′.

4.8.1. p = p′. By [5, Table 5], δ is coprime to p and thus δp = 1. We first suppose that
p 6 3 and γp = 1. Recall that the field automorphisms yield a cyclic subgroup of Out(T )
of order f ′, while a Sylow p-subgroup of GL(d, pf ) has exponent p⌈logp d⌉(see [11, §16.5],
for example). It follows that logp f

′
p 6 ⌈logp d⌉ hence

(5) cp(G) 6 logp f
′
p 6 ⌈logp d⌉.

When p = 2, we have εq > 1 and ⌈log2 d⌉ 6 d − 1 always holds. When p = 3, we have
εq = 3/2 and ⌈log3 d⌉ 6 (εqd− 1)/2 always holds. Thus (1) is true in this case.

We may now assume that either p > 5 or γp 6= 1. In particular, T is neither a Suzuki
group nor a Ree group (these have p 6 3 and γ = 1). By [5, p. (xv)], Out(T ) has the
form (OD ⋊ OF ) ⋊ OG where OD, OF , OG denote groups of diagonal, field, and graph
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outer automorphisms, respectively. Conjugation induces on N/Z ∼= T a homomorphism
: G → Out(T ), with kernel containing N . We must bound cp(G) = cp(G). Since

δp = 1, OD is a p′-group. Write |G ∩ (OD ⋊ OF )|p = pℓ. Then cp(G) 6 ℓ + logp γp where
log γp 6 1 for p 6 3, and log γp = 0 otherwise. We digress from bounding cp(G) (for three
paragraphs) to show that G contains an element of order pℓ+1. This is trivially true if
ℓ = 0 so assume that ℓ > 1.

Choose H 6 G such that N 6 H, H 6 OD⋊OF , and |H : N | = pℓ. Since OF is cyclic
and |OD|p = δp = 1, Sylow’s Theorem implies that H/Z is unique up to isomorphism.
Thus we may assume that H = 〈N,ϕ〉, where the automorphism ϕ̃ ∈ Aut(T ) induced by
ϕ on T = N/Z is a standard field automorphism of order pℓ.

Suppose first that T is an untwisted group of Lie type. Since ϕ̃ is a standard field
automorphism there is a root system Φ for T such that T is generated by the set of all root
elements xr(λ) for r ∈ Φ and λ ∈ F ′, and there is an automorphism ψ of the field F ′ of
order pℓ such that ϕ̃ ∈ Aut(T ) maps each xr(λ) to xr(λ

ψ) (see [3]). Let (F ′)ψ be the fixed

subfield of ψ and let Tr : F ′ → (F ′)ψ be the (surjective) trace map Tr(λ) =
∑pℓ−1

i=0 λψ
i

.
Calculating in Aut(T ), with T identified with Inn(T ), we have

(ϕ̃xr(λ))
pℓ = (xr(λ))

ψpℓ−1

(xr(λ))
ψpℓ−2 · · · (xr(λ))ψxr(λ)

= xr(λ
ψpℓ−1

)xr(λ
ψpℓ−2

) · · · xr(λψ)xr(λ)

= xr(λ
ψpℓ−1

+ λψ
pℓ−2

+ · · ·+ λψ + λ) = xr(Tr(λ)).

Choosing λ ∈ F ′ such that Tr(λ) 6= 0 yields an element ϕ̃xr(λ) of order pℓ+1. Thus H,
and hence G, has an element of order pℓ+1, as desired.

Suppose now that T is a twisted group of Lie type arising from an untwisted group L
with root system Φ. Since T is twisted, γ = 1 hence p > 5 and all roots in a fundamental
system for Φ have the same length. Moreover, there is a graph automorphism ρ of order k
arising from a symmetry of the Dynkin diagram of L and a field automorphism σ of order
k such that T is the centraliser in L of the automorphism ρσ. By [3, Proposition 13.6.3],
if k = 2 and T 6= PSU(3, q′), then there is a root r with image r under the symmetry of
the Dynkin diagram such that, for all λ ∈ F ′, the element xS(λ) := xr(λ)xr(λ

σ) lies in T .
Similarly, if k = 3, then there is a root r with images r and r such that, for all λ ∈ F ′, the
element xS(λ) = xr(λ)xr(λ

σ)xr(λ
σ2

) lies in T . In both cases, a calculation similar to the

earlier one shows that (ϕ̃xS(λ))
pℓ = xS(Tr(λ)) and hence, by choosing λ appropriately, we

ensure that ϕ̃xS(λ) has order p
ℓ+1. Finally, if T = PSU(3, q′), then, for a simple root r,

we have r+ r ∈ Φ and hence T contains elements xr+r(λ) for all λ in the index 2 subfield
of F ′ fixed by the field automorphism of order 2. Since p is odd, such a subfield contains
elements with nonzero trace and we again find an element ϕ̃xr+r(λ) of order p

ℓ+1.
We have shown that, in all cases, G contains an element of order pℓ+1. Recall that a

Sylow p-subgroup of GL(d, pf ) has exponent pm where pm−1 < d 6 pm. Thus ℓ + 1 6 m
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and

ℓ 6 m− 1 6
pm−1 − 1

p− 1
<
d− 1

p− 1
.

In particular, (1) holds if cp(G) = ℓ. We may thus assume that cp(G) > ℓ which implies
that γp 6= 1 and p 6 3. By [5, Table 5], γ divides 6 hence logp γp = 1. It follows that

cp(G) = ℓ+ 1 6 m = ⌈logp d⌉
but, as we saw earlier in the sentences following (5), this implies (1) when p 6 3.

4.8.2. p 6= p′. In this case, we have an absolutely irreducible cross-characteristic rep-
resentation N → GL(d, q). This gives rise to a projective representation T → PGL(d, q)
and Landazuri and Seitz [14, Theorem] give lower bounds on d with respect to q′. Fur-
thermore, possibilities for quasisimple groups N and small dimensions d are listed in [8,9].

We first assume that d 6 5. Suppose that T ∼= PSL(2, q′). By [8, Table 2], we have
d ∈ {q′, q′± 1, (q′± 1)/2}. Since d 6 5, this implies that q′ 6 11 and q′ 6= 8 and, as |F ′| =
q′ = (p′)f

′

, we see that f ′ 6 2. Since |Out(T )| divides 2f ′ and |Out(T )|p > 3, it follows
that p = f ′ = 2. As p′ 6= p, this implies that q′ = 9 and thus d > (9− 1)/2 = 4 hence (1)
holds. Suppose now that T is a group of Lie type other than PSL(2, q′). By [9, Table 2],
the possible choices for T with d 6 5 are PSL(3, 4) and PSU(4, 2) with |Out(T )| being
12 and 2, respectively. As p 6= p′ and |Out(T )|p > 3, we have |Out(T )|p = p = 3 and
cp(G) 6 1 hence (1) holds. We henceforth assume that d > 6.

Suppose first that δ > 5. This implies that T = PSL(n, q′) or PSU(n, q′) and n > 4.
It follows by [14, Theorem] that

(6) d >
q′((q′)4 − 1)

q′ + 1
= q′(q′ − 1)((q′)2 + 1).

(Note that the exceptions for PSL(n, q′) and PSU(n, q′) in [14, Theorem] do not arise
because n > 4.) Since T = PSL(n, q′) or PSU(n, q′), it follows by [5, Table 5] that
δ = gcd(n+ 1, q′ ± 1) 6 q′ + 1 and thus

(7) d > q′(q′ − 1)((q′)2 + 1) > (δ − 1)(δ − 2)δ > 12δ.

Similarly, (6) implies d > (q′)3. As (p′)f
′

= (q′)k for some k 6 2, we have

(8) f ′ = k logp′ q
′
6 2 logp′ q

′
6 2 log2 q

′
6 2 log2 d

1/3
6 2(d− 1)/3.

Combining (7) and (8) gives δ + f ′ 6 d− 1 and thus

cp(G) 6 logp γp + logp δp + logp f
′
p 6

(p− 1) logp γp

p− 1
+
δ − 1

p− 1
+
f ′ − 1

p− 1

6
(p− 1) logp γp + d− 3

p− 1
.

If p > 5, then γp = 1 and thus (1) holds. If p 6 3, then logp γp 6 1 and p − 1 6 2 and
again (1) holds.
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We may thus assume that δ 6 4. We will show that f ′ 6 logp′(d+ 1)2. First, suppose
that k = 1. It follows by [14, Theorem] that d > (q′ − 1)/2. (As d > 6, we can assume
that q′ > 13, which rules out the exceptional cases in [14, Theorem].) This implies that

f ′ = logp′ q
′
6 logp′(2d+ 1) < logp′(d+ 1)2.

Next, if k = 2, then [14, Theorem] implies that d > q′ − 1. This implies that

f ′ = 2 logp′ q
′
6 2 logp′(d+ 1) = logp′(d+ 1)2.

Finally, if k = 3, then d > (q′)3 by [14, Theorem] and

f ′ = 3 logp′ q
′
6 3 logp′ d

1/3 < logp′(d+ 1)2.

This completes our proof that f ′ 6 logp′(d+ 1)2.
Suppose first that p > 5. By [5, Table 5], we have γp = 1 and δ 6 4 implies that

δp = 1. As d > 6, we have f ′ 6 logp′(d+ 1)2 6 log2(d+ 1)2 6 d. It follows that

cp(G) 6 logp f
′
p 6

f ′ − 1

p− 1
6
d− 1

p− 1
6
εqd− 1

p− 1
,

as desired. For p = 3, we have

cp(G) 6 log3 γ3 + log3 δ3 + log3 f
′
6 1 + 1 + log3 log2(d+ 1)2.

It is not hard to see that 2 + log3 log2(d + 1)2 6
(3/2)d−1

2
= ε3d−1

3−1
when d > 6. This

completes the case p = 3. Finally, suppose that p = 2 and thus p′ > 3. It follows that

cp(G) 6 log2 γ2 + log2 δ2 + log2 f
′
6 1 + 2 + log2 log3(d+ 1)2.

Again, it is not hard to see that 3+ log2 log3(d+1)2 6 d− 1 when d > 6, establishing the
case p = 2. This completes the induction and thus the proof. �

Corollary 9. Let V = (Fq)
d be the natural module for G 6 GL(d, q) where q = pf .

If V has a composition series with r simple factors, and εq is defined by (1), then

cp(G/Op(G)) 6
εqd− r

p− 1
.

Proof. Fix a composition series V > V1 > · · · > Vr = {0} for V and consider the
homomorphism φ : G →

∏r
i=1 GL(Wi) where Wi := Vi−1/Vi for 1 6 i 6 r. Let Gi be the

subgroup of GL(Wi) induced by G. Then Gi acts irreducibly on Wi. Hence the largest
normal p-subgroup Op(Gi) of Gi is trivial. (Note that [Op(Gi),Wi] is Gi-invariant and
[Op(Gi),Wi] < Wi, so [Op(Gi),Wi] = {0}.) It follows that ker(φ) = Op(G).

We have d = d1 + · · ·+ dr where di = dim(Wi). Applying Theorem 1 gives

cp(G/Op(G)) = cp(G/ ker(φ)) = cp(im(φ)) 6
r∑

i=1

cp(Gi) 6
r∑

i=1

εqdi − 1

p− 1
=
εqd− r

p− 1
. �



composition factors of order p 13

Acknowledgements. We would like to thank Pablo Spiga for some of the ideas in
Section 4.8.1. We thank the referee for a number of helpful suggestions including the
above corollary.

References

[1] M. I. AlAli, C. Hering, and A. Neumann, A number theoretic approach to Sylow r-subgroups of
classical groups, Rev. Mat. Complut. 18 (2005), no. 2, 329–338. ↑8

[2] M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math. 76 (1984),
no. 3, 469–514. ↑4

[3] R. W. Carter, Simple groups of Lie type, Wiley Classics Library, John Wiley & Sons, Inc., New York,
1989. Reprint of the 1972 original, A Wiley-Interscience Publication. ↑10

[4] A. H. Clifford, Representations induced in an invariant subgroup, Ann. of Math. (2) 38 (1937), no. 3,
533–550. ↑2, 3

[5] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups,
Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple
groups; With computational assistance from J. G. Thackray. ↑9, 11, 12
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