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Abstract. Supply function equilibrium models are used to study electricity market auc-
tions with uncertain demand. We study the effects on the supply function equilibrium of
a tax, levied by the system operator, on the observed surplus of producers. Such a tax
provides an incentive for producers to alter their offers to avoid the tax. We consider these
incentives under both strategic and price-taking assumptions. The model is extended to a
setting in which producers are taxed on the benefits accruing to them from a transmission
line expansion (a beneficiaries-pay transmission charge). In this setting, we show how this
tax may lead to lower prices in equilibrium.

Keywords: supply function equilibrium • energy policies • auctions

1. Introduction
In electricity market auctions, producers typically sub-
mit amounts of generation that they are willing to sup-
ply at different prices. These schedules together form
a supply curve that is cleared by a system operator
to meet demand in a pool, thus yielding a system
marginal price. All generation offered at a price equal
or below this market price is dispatched. Each gener-
ator is then paid the system marginal price for all the
energy that it supplies under the optimal dispatch. This
leads to market rents accruing on inframarginal offers
(those with an offer price below the system marginal
price).
The offers of the generators can be modeled by sup-

ply functions. In the face of uncertain demand, each
agent seeks such a curve to maximize its expected
profit, leading to the concept of supply function equi-
librium (SFE) (Klemperer and Meyer 1989). SFE mod-
els have been applied to the study of electricity mar-
ket auctions by a number of authors (e.g., Green and
Newbery 1992, Holmberg and Newbery 2010). These
models deal with demand uncertainty in a natural way,
a feature that makes them increasingly useful as inter-
mittent renewable generation grows. To enable solu-
tions to be obtained analytically, SFE models typically
assume symmetric producers with identical costs and
capacities. In electricity markets, demand is inelastic
in the short term, so the market is assumed to oper-
ate with a price cap. Plant capacities are such that
demand exceeds the total supply capacity with some
small probability. When this occurs, the market clears

at the price cap, and load is shed. Details can be found
in the survey by Holmberg and Newbery (2010).

In this paper we study the effects on agent behavior
of a system tax levied on the surplus earned by infra-
marginal rents. Since the true marginal cost functions
of the agents are not public knowledge, the rents are
computed on the basis of the supply function offered.
The imposition of the tax alters the incentives of the
agents in choosing what supply functions to offer to
the auction. Their offer curves will adjust in such a
way to minimize the tax paid, while not sacrificing too
much profit. When electricity demand is determinis-
tic, the agents can anticipate the market clearing price
and their dispatch quantity. Given this dispatch point,
each agent has an incentive to increase the prices of its
inframarginal offers so as to reduce the apparent ben-
efit (while maintaining their real benefit). One might
then expect all offers to become perfectly elastic at the
clearing price up to the anticipated dispatch quantity.

Uncertainty in demand alters this outcome. Agents
offering perfectly elastic bidsmight find that if demand
is lower than anticipated that they make no money at
all. In such circumstances agents do better by offering
an increasing supply curve that trades off the amount
of tax paid against the need to earn some profit. One
might expect this curve to mark up offers to recover the
tax through higher prices; however, we show that, in
equilibrium, this strategy is only applied to the lower
end of the supply curve, and at high prices, agents may
discount their offers.
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Our study of such a tax is motivated by a pro-
posal mooted by the New Zealand Electricity Author-
ity to charge electricity market participants for trans-
mission improvements based on the benefits that are
deemed to accrue to them from these upgrades (see
New Zealand Electricity Authority 2014). Currently,
most transmission in New Zealand is funded through
a charge on load drawn during peak demand peri-
ods. Recent expansion to the transmission network has
been concentrated in certain regions, and the imbal-
ance of costs and benefits between regions from peak-
load charges has prompted a full review of the coun-
try’s transmission pricing methodology.

Although the details of the new “beneficiary-pays”
scheme are still being negotiated, the proposal is to
estimate benefits by running the software used for dis-
patching the wholesale market and computing loca-
tional marginal prices. The key calculations in the pro-
posed scheme are as follows. After the market is dis-
patched with current transmission assets in place, the
benefits of each agent are computed from the agent’s
bid and offer curves. For a generator, this benefit is
measured by the rentals earned from inframarginal
bids. Aswe have already remarked, this need not be the
true benefit if these bids are marked up above the gen-
erator’s marginal cost. The dispatch software is then
run again using the same bids and offers but with the
transmission assets derated to their preupgrade levels.
The benefits for each agent are then computed under
this counterfactual and subtracted from the previous
estimates. The agents with positive net benefits con-
tribute to the upgrade cost of the transmission system
in proportion to these net benefits. A fuller description
is provided in the New Zealand Electricity Authority’s
consultation paper (2012).

In this paper we use SFE models to study the incen-
tives faced by strategic agents under such a scheme.
As typically assumed in electricity market models, we
assume that demand is inelastic and subject to an addi-
tive shock with a known distribution. This is in con-
trast to Vives (2011), who consider an SFE model
with known elastic demand and a tax level modeled
as a random shock that is added to the intercept of
each agent’s marginal cost curve. Like many authors,
Vives (2011) also restricts attention to linear SFE
solutions. When marginal costs and demand are lin-
ear, linear SFEs are uniquely defined (Klemperer and
Meyer 1989). Our model assumes inelastic demand,
which yields nonlinear SFEs, which in general are not
unique. In this case we select the least competitive
SFE, following Newbery (1998). The least competitive
SFE is Pareto optimal, in that it yields the highest
profit for each firm, as discussed in Holmberg and
Willems (2015).

We find in the simplest case that the presence of a tax
on benefits causes strategic agents to mark up prices

at low levels of production and to mark these down as
production approaches capacity. As a comparison, we
compute a symmetric equilibrium for the same model
under a price-taking assumption. These price-taking
firms do not believe that their actions can influence the
price; however, of course, the collective actions of the
firms will define the price distribution that the firms
consider when maximizing their profits. In traditional
uniform-price auctions, this setting leads to firms offer-
ing at marginal cost. By contrast, we show that taxed
suppliers mark up prices along their supply curves to
reduce the tax that they must pay.

When strategic agents are being taxed on the
observed benefits of a transmission expansion, their
incentives to mark up prices are attenuated if the
expansion is small and leads to a low probability of lost
load. In some examples, we show that after-tax prices
in equilibrium are less than before-tax prices at all out-
put levels.

In the asymmetric case, SFE models generally
require a numerical solution that might be difficult to
compute (Anderson 2013), so our analysis is mainly
confined to SFEs for a symmetric duopoly for which
a single ordinary differential equation (ODE) can be
solved to yield an equilibrium. Even in the symmet-
ric case, the existence of a pure-strategy SFE cannot be
taken for granted, as it depends on the level of taxation
and the probability distribution of the demand shock.
If too much tax is levied, the incentive to avoid it at low
output levels outweighs the potential loss in revenue
to the extent that a pure-strategy SFE fails to exist. At
the extreme, a 100% tax corresponds to a pay-as-bid
pricing scheme for which a pure-strategy SFE exists for
only a small class of demand shocks (Anderson et al.
2013). Similarly, when the distribution of demand has
low variance, the ability to predict the optimal dispatch
point provides incentives tomark up prices on all offers
below this, and pure-strategy SFEs fail to exist.

As mentioned above, an asymmetric SFE (where
agents have different costs) can only be found numer-
ically. We conduct some numerical experiments that
indicate that the effect of different costs on the equi-
librium is small, at least in our example model. There
are currently no numerical procedures for computing
SFEs for more realistic settings of different generator
capacities, locations, and multivariate demand shocks.
This remains a tantalizing area for future research.

The rest of this paper is laid out as follows. In Sec-
tion 2, we show how a tax on producer surplus gives
rise to a best-response problem for which the objective
is a convex combination of the best-response objective
functions under uniform and pay-as-bid pricing. We
then derive a symmetric equilibrium when such a tax
is imposed on two agents at the upstream end of a
constrained transmission line. Section 3 compares the
response to the tax under an SFE with a competitive
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modelwhere all generators act as price takers. Section 4
deals with the setting when the tax is calculated based
on the difference between the actual and counterfactual
dispatch from the expansion of the transmission line.
We conduct a sensitivity analysis with respect to the
size of the line expansion, as well as asymmetric cost
functions between generators. We also show that no
pure-strategy SFE exists when the demand shock has
a small variance. The final section of the paper makes
some concluding remarks.

2. Supply Function Equilibrium
We assume an electricity pool market with locational
marginal pricing. Suppliers submit offer curves of
quantity and price to an independent system operator
who clears the market by choosing prices at each node
to minimize the cost of meeting demand (according to
the offer prices), while satisfying transmission capacity
constraints. Suppliers are then paid according to some
function (the pricing rule) of their offer curve and the
local price. Load pays the local marginal price, and any
excess revenue from the auction is captured by the sys-
tem operator.
Formally, we suppose that each supplier chooses

a piecewise differentiable curve S � {(x(t), y(t)),
t ∈ [0,T]}, whose quantity and price components x and
y are nondecreasing, to maximize a functional of the
form

Π(S)�
∫ T

0

(
f (x(t), y(t)) dx

dt
+ g(x(t), y(t))

dy
dt

)
dt . (1)

We assume initially that f and g are continuous and
piecewise differentiable functions on a compact region
Ψ ⊂ ò2

+
. Proposition 5 will extend the analysis to a

case with discontinuous (but piecewise continuously
differentiable) f and g. Without loss of generality, we
set t � 0 so that x(0) � y(0)� 0, and we set T � sup{t |
(x(t), y(t)) ∈Ψ}.

In the electricity market setting, where S represents
a supply curve of quantity and price, f (q , p) and g(q , p)
represent the contribution to marginal profit of small
increments in quantity and price offered at the point
(q , p). Thus f (q , p) and g(q , p) can model different
profit expressions arising from either price-taking or
price-setting behavior, as well as from different pric-
ing rules. For example, uniform pricing, discrimina-
tory (pay-as-bid) pricing, and taxed producer surplus
models all have different objective functionals. Thus
the expression (1) generalizes the objective function of
Klemperer and Meyer (1989), which assumes uniform
pricing and profit equal to revenue minus operating
cost.
The first-order optimality condition for a profit-

maximizing curve, given competitors’ offers, gives a
system of ordinary differential equations. In the sym-
metric case, this yields a single ordinary differential

equation that we can solve to find the equilibrium sup-
ply functions.

Following Anderson and Philpott (2002), we define

Z(q , p)�
∂g
∂q
−
∂ f
∂p
. (2)

This function is used to define the following optimality
conditions.

Theorem 1 (Necessary Optimality Conditions for In-
creasingSupplyFunctions). IfS∗ � {(x(t), y(t)), t ∈ [0,T]}
is a local maximum of Π(S) with x′(t) > and y′(t) > for all
t ∈ [0,T], then Z(x(t), y(t))� 0 for all t ∈ [0,T]. Moreover,
if Z(q , p) is differentiable at (q , p) � (x(t), y(t)), then we
have (∂Z/∂p)(x(t), y(t)) > 0, and (∂Z/∂q)(x(t), y(t)) 6 0.

Proof. As in Anderson and Philpott (2002), with an
amended definition of Z. �

Theorem 2 (Sufficient Optimality Conditions). Let S∗ �
{(x(t), y(t)), t ∈ [0,T]} be a continuous piecewise dif-
ferentiable curve. If both components ofS∗ are nondecreasing
in t, then a sufficient condition for S∗ to be a global maxi-
mum of Π(S) is that Z � 0 along S∗, and that at every t,
Z(q , y(t)) > 0 for all q < x(t) and Z(q , y(t)) 6 0 for all
q > x(t).
Proof. See the appendix. �

We apply the above theorems to both uniform-price
and discriminatory-price auctions, as well as auctions
where the market operator taxes a portion of pro-
ducer surplus. Figure 1 shows the producer surplus
and profit under a particular realization of the demand
shock. It is the shaded area above the supply curve and
below the clearing price.When demand shock ε is real-
ized, there is a specific residual demand curve RD(ε)
faced by a producer. Each producer will be dispatched
at the price and quantity where the producer’s supply
curve S intersects with its residual demand curve.
Uniform-Price Auction. In a uniform-price auction,
the payoff of a firm when it is dispatched quantity θ at
price π is

θπ−C(θ),
where C(q) is the firm’s cost to produce quantity q.
We denote the marginal cost by C′(q) and its derivative
by C′′(q). The expected payoff to a firm offering a curve
S� {(x(t), y(t)), t ∈ [0,T]}, is

ΠU(S) �
∫
S

(qp −C(q)) dψ(q , p)

�

∫ T

0

(
x(t)y(t)−C(x(t))

) (dx
dt
ψq +

dy
dt
ψp

)
dt , (3)

where ψ(q , p) is the market distribution function (see
Anderson and Philpott 2002), which gives the probabil-
ity that a supplier is not fully dispatched if it offers the
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Figure 1. Market clearing under demand realization ε.

q

p

C�

RD (�)

�

�

�

Notes. The lighter shaded area is the observed producer surplus
σ(ε), and the darker shaded area is the profit under discriminatory
pricing. These sum to P(ε), the untaxed profit under demand real-
ization ε.

quantity q at price p. The market distribution function
can be interpreted as the measure of residual demand
curves that pass below and to the left of the point (q , p).
The partial derivatives ψq and ψp give the marginal
change in dispatch probability from changing the offer
quantity and price. The integrand inΠU is clearly linear
in dx/dt and dy/dt, so we can compute the Z function
as in (2):

ZU(q , p) � ∂
∂q
((qp −C(q))ψp) −

∂
∂p
((qp −C(q))ψq)

� (p −C′(q))ψp − qψq ,

as the terms containing the second-order partial
derivative ψqp cancel. This is the same as the Z function
derived in Anderson and Philpott (2002).
Discriminatory-Price Auction. In a discriminatory-
price (pay-as-bid) auction (Anderson et al. 2013), the
payoff when a firm is dispatched θ(ε) at price π(ε)
under demand realization ε is∫ t(ε)

0
y(t) dx

dt
dt −C(θ(ε)), (4)

where t(ε) satisfies (x(t(ε)), y(t(ε)))� (θ(ε), π(ε)). This
is the dark shaded area in Figure 1. The expected payoff
is

ΠD(S)�
∫ T

0

(
y −C′(x(t))

) (
1−ψ(x(t), y(t))

) dx
dt

dt .

Again, this is linear in dx/dt and dy/dt, and Theo-
rems 1 and 2 hold with

ZD(q , p)� (p −C′(q))ψp − (1−ψ(q , p)).
Apart from a sign change, this is the same as the Z
function derived in Anderson et al. (2013).

Tax on Producer Surplus. Suppose that there is uni-
form pricing, but some fraction α ∈ [0, 1] of a genera-
tor’s observed producer surplus is paid as tax. Such a
tax is unlikely to be imposed by a real regulator, but
we will later see that it enables us to model a proposed
beneficiaries-pay transmission pricing scheme that will
be analyzed in Section 4.

The pretax producer profit under demand realiza-
tion ε is, as for uniform pricing,

P(ε)� π(ε)θ(ε) −C(θ(ε)),

shown as the entire shaded region in Figure 1. The
expected untaxed profit ΠU �åε[P(ε)].
The system operator is not revealed the producer’s

true marginal cost and observes only the surplus above
the offered supply curve. The observed surplus under
demand realization ε is

σ(ε)� π(ε)θ(ε) −
∫ t(ε)

0
y(t) dx

dt
dt . (5)

This is the lightly shaded area in Figure 1.
Under demand realization ε, the producer profit

after paying a tax at rate α is

P(ε) − ασ(ε)
� π(ε)θ(ε) −C(θ(ε)) − απ(ε)θ(ε)

+ α

∫ t(ε)

0
y(t)dx

dt
dt

� (1− α)
(
π(ε)θ(ε) −C(θ(ε))

)
+ α

(∫ t(ε)

0
y(t)dx

dt
dt −C(θ(ε))

)
.

This is a convex combination of P(ε) and the profit in
demand realization ε under pay-as-bid pricing (4).

The producer profit functional ΠA is the expecta-
tion of P(ε)− ασ(ε) over the probability distribution of
ε. This will therefore be a convex combination of the
expectation ΠU of P(ε) and the expectation ΠD from a
pay-as-bid pricing payoff:

ΠA(S)� (1− α)ΠU(S)+ αΠD(S).

This payoff rule is the supply function equivalent to
the “α-rule” for bid functions in treasury auctions
described by Armantier and Sbaï (2009) andWang and
Zender (2002).

We can apply Theorem 1 to obtain the optimal-
ity conditions for the problem faced by a generator
maximizing ΠA. These use the scalar field defined by
ZA(q , p)� (1− α) ·ZU(q , p)+ αZD(q , p). Thus,

ZA(q , p) � (1− α)
(
(p −C′(q))ψp − qψq

)
+ α

(
(p −C′(q))ψp − (1−ψ(q , p))

)
� (p −C′(q))ψp − (1− α)qψq

− α(1−ψ(q , p))� 0 (6)

along any optimal supply curve.
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2.1. Necessary Conditions for SFE
A set of supply curves forms a supply function equilib-
rium if each curve optimizes the expected payoff with
respect to the market distribution function induced
by the other producers’ offer curves, the transmission
constraints, and the demand distribution. The follow-
ing theorem provides necessary conditions for a pure-
strategy SFE.

Theorem 3 (Necessary Conditions for SFE). Suppose that
there is a market where each firm maximizes payoff func-
tional ΠA with tax rate α ∈ [0, 1]. Suppose that all firms are
located in the same node and have continuous marginal cost
curves, that demand is perfectly inelastic in price, and that
a price cap is imposed. If a set of curves is a supply func-
tion equilibrium in pure strategies, then—on every interval
where every curve has a positive probability of dispatch and
in which no firm is at the upper or lower bound of its pro-
duction quantity—there are
(1) no units offered below marginal cost,
(2) no perfectly elastic segments in the supply functions

at any price above marginal cost,
(3) no perfectly inelastic segments in the industry supply

curve, and
(4) no production capacity withheld in equilibrium.

Proof. See the appendix. �

Themain consequence of Theorem 3 is that all curves
in a pure-strategy symmetric SFE will be continu-
ously differentiable over the range of possible dispatch.
There may, however, be many sets of curves that satisfy
the necessary conditions for SFE.

Klemperer and Meyer (1989) showed that under uni-
form pricing and symmetric firms, the only SFEs that
exist in the neighborhood of zero output are symmet-
ric. For this reason, we restrict our attention to sym-
metric SFEs.

For symmetric SFE, the system of differential equa-
tions defined by Z � 0 for each producer reduces to
a first-order ODE. The general solution to this ODE
is parameterized by a single constant of integration,
which we can take to be the amount offered at the
price cap. We follow Newbery (1998) and focus on the
least competitive symmetric SFE. As we have inelastic
demand, the least competitive SFE is that in which the
total offer reaches themaximumpossible demand level
at the price cap.

2.2. Example 1
We illustrate the above theoremwith a simple example
with two symmetric agents, located at node 1 of the
two-node network shown in Figure 2. Here, there is a
price-taking, random, and price-inelastic demand ε at
node 2. The line connecting the two nodes has capacity
K, which is less than the maximum demand at node 2.
There is no demand at node 1.

Figure 2. Simple transmission network with two producers
and one demand shock.

1 2

S1(p)

S2(p) D = �

K

Note. Line has capacity K.

The example we have chosen will be used through-
out this paper to illustrate the results we obtain. It
has some specific features that enable a symmetric
equilibrium to be found. In particular, there are only
two nodes, the demand shock is located at node 2
only, and there is no strategic generation at this node.
In a more general network setting, the existence of a
pure-strategy SFE becomes problematic, as discussed
in Holmberg and Philpott (2015).

Suppose there is a proportional tax α imposed on
the observed surplus of each agent. We apply the opti-
mality conditions of the previous section to show the
existence of a symmetric SFE, S1(p)� S2(p)� S(p).
Proposition 1 (Existence of Symmetric SFE). Assume the
conditions of Theorem 3 hold. Suppose that all firms have
the same cost function and are located in node 1, and that at
node 2 there is a random demand shock with distribution F
and density f . Further suppose that f is bounded away from
zero on [0,K], that F(K) < 1, and that all n firms have a
production capacity greater than K/n. Then the solution
q � S(p) to the ODE,

(p −C′(S))(n − 1) f (nS)S′

− (1− α) f (nS)S− α(1− F(nS))� 0, (7)

subject to the boundary condition

S(p̄)� K
n
, (8)

is a symmetric SFE if and only if the second-order condition

−C′′(q)(n − 1)S′(p) − (1− α) − α
n
∂
∂q

[
1− F(nq)

f (nq)

]
q�S(p)
6 0

holds at every point along the curve.
Proof. Consider producer 1’s offer curve maximiza-
tion problem. Suppose the other producers’ offers
aggregate to a total supply function S2(p). If producer 1
offers quantity q at price p, then themarket distribution
function is the probability that either the total quantity
offered q+S2(p) exceeds the line capacity K or the com-
bined offers of the two firms q + S2(p) at price p exceed
the demand shock ε. Thus,

ψ(q , p)� Pr(q + S2(p) >min(K, ε)).
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If the demand shock has a cumulative distribution
function F and density function f , then we obtain the
following piecewise definition for firm 1’s market dis-
tribution function:

ψ(q , p)�
{

F(q + S2(p)) if q < K − S2(p),
1 if q > K − S2(p).

The partial derivatives are ψq � f (q + S2(p)) and ψp �

f (q+S2(p))S′2(p)�ψqS′2(p)when q 6K−S2(p), and both
are 0 otherwise. There is a jump in the value of ψ(q , p)
on the curve q � K − S2(p).
Substituting the market distribution function into (6)

yields

ZA(q , p) � (p −C′(q)) f (q + S2(p))S′2(p) − (1− α)
· q f (q + S2(p)) − α(1− F(q + S2(p))) (9)

for q 6 K−S2(p). At points with nonzero probability of
dispatch, we can divide (9) through by f (q + S2(p)) to
obtain

ẐA(q , p) � (p −C′(q))S′2(p) − (1− α)q

− α
1− F(q + S2(p))

f (q + S2(p))
.

By Theorem 1, the curve defined implicitly by the ODE,

ẐA(S(p), p)� 0,

is a profit-maximizing response if it is nondecreasing
and (∂/∂q)ẐA(S(p), p) 6 0 for all p; i.e.,

−C′′(q)S′2(p) − (1− α)

− α ∂
∂q

[
1− F(q + S2(p))

f (q + S2(p))

]
q�S(p)
6 0. (10)

By the assumption of a symmetric equilibrium, the
other producers’ responses are all the same as pro-
ducer 1’s. Hence we can take S2(p) � (n − 1)S(p) in (9)
and (10). �

The term G(ε)� (1− F(ε))/ f (ε) is the inverse hazard
rate of the distribution. In Holmberg’s (2009b) model
for pure pay-as-bid pricing, α � 1 and marginal costs
are constant, so it is necessary that G′ > 0 for (10) to
hold. This restricts the analysis to probability distribu-
tions that decay faster than the exponential distribu-
tion, which has G′ � 0. If the tax rate α is less than 1,
then we are less restricted in our choice of probabil-
ity distribution for the demand shock. For instance, as
shown in the example below, if α < 1

2 , then (10) holds
for a uniform distribution.
We now choose some specific problem data to com-

pute an equilibrium for the example. Suppose that the
demand shock is uniformly distributed on [0, ε̄] and
α < 1

2 . Assume that the line capacity K is infinitesimally
smaller than ε. Suppose that each agent has quadratic

cost C(q)� γq2, so marginal costs for each agent are the
same and are linear. The ODE for the symmetric SFE
(7) becomes

S′(p)� (1− 3α)S
p − 2γS

+
αε̄

p − 2γS
. (11)

If γ � 0, then (11) is a first-order linear ODE that can be
solved using an integrating factor to give, for α , 1

3 ,

SA(p)� kp1−3α − αε̄
1− 3α , (12)

where k is a constant of integration that can be cho-
sen to satisfy the endpoint condition SA(p̄) � K/2 ≈
ε̄/2. (For the solution to the special case α �

1
3 , see

the appendix.) It is straightforward to check that the
second-order condition (10) holds.

We can compute the changes in welfare of each agent
in equilibrium as the tax is applied. Suppose that K � 1
and ε̄ � 1, that there is a price cap at p̄ � 1, and that
there are constant marginal costs of γ � 0. Consider
first the case where α � 0. In a perfect competition each
generator would offer at prices equal to marginal cost,
and earn no profit. The least competitive SFE, however,
is linear with SU(p) � p/2. Since there are two firms,
the total supply is 2SU(p)� p, and as the market clears
when supply equals demand 2SU(p) � D(p , ε) � ε, we
can write the market price as a function of demand as
p(ε)� ε. The expected consumer surplus (assuming all
consumers value electricity at p̄) is

CS �

∫ ε̄

0
ε(p̄ − p(ε)) f (ε) dε

� 0.1666.

The expected producer revenue is the firm’s payoff
ΠU � 0.1666. Its expected observed surplus, however,
is 0.0833. If a tax is applied to this curve, the firms each
pay α of their observed surplus, so if α �

1
4 , then each

firm pays 0.0208 in tax, leaving a net profit of 0.1458.
Now consider the SFE under the tax with rate α �

1
4 .

As shown in Figure 3, the tax gives an incentive for
firms to change the shape of their offer curve from the
dashed to the solid curve. The new equilibrium curve
SA has is

[SA(p)� 3
2 p1/4 − 1].

It is simple to verify that this is nondecreasing and
solves ZA � 0. With two firms offering SA, the market
price as a function of demand is [p(ε)� 1

81 (ε+ 2)4].
At this new equilibrium, the expected consumer sur-

plus is 0.1737; the expected producer profit, before tax,
is 0.1632; and the producer surplus observed by the
market operator is 0.066. Each producer pays taxes of
0.0165 and so earns 0.1467 net profit.

Table 1 summarizes the expected distribution of wel-
fare with and without the tax. The first and third rows
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Figure 3. (Color online) Equilibrium industry supply curves
for no tax and a 25% tax on observed surplus.
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are for SFEs in the no tax and tax scenarios. The sec-
ond row shows the outcome if the tax is applied to the
untaxed equilibrium, without producers strategically
altering their offers to reduce their tax exposure.
The overall effect of the tax is a small transfer of

welfare from producers to consumers. Though higher
prices are charged at times of low demand, this is offset
by lower prices higher up the offer curves. Note that
social surplus (the total welfare) does not change with
the introduction of the tax; this is because demand
is inelastic. Also note that expected consumer sur-
plus actually rises once firms adjust to the tax, since
the new equilibrium SFE is more competitive for the
higher demand realizations. Equivalently, the volume-
weighted average price is lower in the taxed equilib-
rium than in the equilibrium without the tax.

In this model where all supply and demand in
node 2 is inelastic, there are no congestion rents accru-
ing to the system operator because there is never a price
differential between the nodes. All load that cannot
be satisfied through the transmission line is lost, and
when this happens, the market power of the suppliers
in node 1 lets them charge the price cap. If there were
elastic demand or supply in the downstream node,
then there would be positive congestion rent.

Table 1. Benefits and taxes under a producer surplus tax.

Tax Social Average
Scenario α Curve Consumers Producers revenue surplus price

No tax 0 SU 0.1666 0.3333 0 0.5 0.6666
With tax 0.25 SU 0.1666 0.2917 0.0416 0.5 0.6666
With tax 0.25 SA 0.1737 0.2934 0.0331 0.5 0.6137

3. Modeling All Firms as Price Takers
It is instructive to model the effects of a producer sur-
plus tax under conditions of perfect competition, i.e.,
where all generators act as price takers. This can serve
as a benchmark to measure the effects of market power
on the incentives to adjust supply curves to under the
tax.

We propose a price-taking equilibrium (PTE) model
with a small number of producers offering supply
functions. These producers believe that their offers
have no influence on the energy spot price but choose
them accounting for the tax on their observed surplus.
This is a form of bounded rationality, which will yield
a perfectly competitive equilibrium in the absence of a
tax. When producers are price takers, the only market
information to which they respond is the price. It is as
though they face horizontal residual demand curves
at fixed prices (that are perfectly elastic). Hence the
market distribution function to which the firms react
depends only on price.

LetΦ(p) be the cumulative distribution on prices ob-
served by a given producer (i.e., the market distribu-
tion function for a price-taking agent) and φ(p)�Φ′(p)
its density. Each producer has convex cost function
C(q) and seeks to maximize

ΠP
�

∫ p̄

0
(pq −C(q))φ(p) − αq(1−Φ(p)) dp.

Under the parameterization x(p)� q, y(p)� p with the
substitution p � t, we can apply Theorem 1 to obtain
the first-order condition

ZP
� (p −C′(q))φ(p) − α(1−Φ(p))� 0. (13)

The parameter α takes us from a uniform-price auc-
tion to pay-as-bid as it goes from 0 to 1. The model we
construct here generalizes that of Federico and Rah-
man (2003), who consider the extreme cases of uniform
(α � 0) and pay-as-bid (α � 1) pricing.
Since

∂
∂q

ZP
�−C′′(q)φ(p) 6 0

everywhere, all solutions to ZP(S(p), p)�0 aremaximal
curves. The distribution on prices is determined by the
system operator. Suppose that the market distribution
function arises from a one-dimensional demand shock
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ε with density f and cumulative distribution func-
tion F. With n symmetric producers, the system opera-
tor dispatches from the aggregate supply curve by set-
ting nS(p)� ε. This yields a correspondence between ε
and the clearing price, so

Φ(p)� F(ε)� F(nS(p)). (14)

The density is then obtained by the chain rule,

φ(p)�Φ′(p)� f (nS(p))nS′(p). (15)

We substitute (14) and (15) into (13) to obtain the ODE

(p −C′(S)) f (nS)nS′− α(1− F(nS))� 0. (16)

This represents a fixed point, similar to the rational
expectations equilibrium of Lucas and Prescott (1971).
The producers choose curves to maximize their profits
given the price distribution Φ(p). Simultaneously, the
system operator dispatches by choosing prices so that
supply and demand intersect in each demand realiza-
tion. In equilibrium, the forecast distribution of prices
matches the actual distribution of prices.
We can show that the total supply curve in equi-

librium is independent of the number of price-taking
producers.

Proposition 2. The industry supply curve in a symmetric
price-taking equilibrium depends only on the industry cost
function and the distribution of the demand shock.

Proof. Suppose there are n symmetric producers in
the market, each with cost function C(q). Denote the
industry cost function by

CI(nq)� nC(q).

If we make the change of variable Q � nq in the cost
function, we see that

d
dQ

CI(Q)�
dq
dQ

d
dq

nC(q)� d
dq

C(q).

When the system operator dispatches to get Q � ε, we
obtain Φ(p) � F(Q(p)) and φ(p) � f (Q(p))Q′(p). Mak-
ing all the substitutions into (13) gives the ODE

(p −C′I(Q)) f (Q)Q′− α(1− F(Q))� 0 (17)

for the industry supply curve Q(p). This ODE depends
on CI(Q) and F(ε), and not on n. �

We obtain a boundary condition for (16) by show-
ing that the price bid for the last unit must equal
its marginal cost. This is shown in the following
proposition.

Proposition 3. If the systemmarginal cost C′I(Q) is contin-
uous and there is more production capacity than the highest
demand realization, then the most expensive unit dispatched
in a price-taking equilibrium is offered at marginal cost.

Proof. Let the quantity dispatched in the highest
demand realization be Q̄, and let p∗ be the price at
which it is offered. Then all units offered at a price
above p∗ will have zero probability of dispatch. Sup-
pose, with a view to contradiction, that p∗ > C′I(Q̄).
Since C′I(Q) is continuous and there ismore production
capacity than the highest demand realization, there is
some small increment of production whose marginal
cost is less than p∗ that is offered at a price above p∗ (or
not offered to the market at all) but whose probability
of dispatch is zero. If this increment of production is
instead offered at a price between its marginal cost and
p∗, then it can obtain a positive markup and a positive
probability of dispatch. Because producers are price
takers, they behave as though the probability of dis-
patch of their other units is unaffected by this change in
offer. This deviation is improving for the owner of that
increment, and therefore, we cannot have p∗ > C′I(Q̄) in
equilibrium. �

3.1. Example 2
To give a nontrivial equilibrium, we assume quadratic
costs C(q) � γq2 for firms in a duopoly, so that the
industry cost function is CI(Q)� (γ/2)Q2.
Under our uniform demand shock distribution ε ∼

U[0, ε̄], the equilibrium condition (17) on the industry
supply function Q(p) becomes

Q′ � α
ε̄−Q

p − γQ
. (18)

The solution to this ODE corresponding to the bound-
ary condition Q(ε̄γ)� ε̄ is the PTE. It happens to be the
linear function

QP(p)� 1+ α
γ

p − αε̄. (19)

If we take the same parameters as in the strategic SFE
example from Section 2.2 (α � 0.25, K � ε̄ � 1), and
assume linear marginal costs with coefficient γ �

1
2 ,

then we can compare outcomes. Figure 4 shows the
solution to (18) alongside the industry supply curve
from the SFE, which is the solution to (11) in Section 2.
Note that under the tax, price takers mark up above
marginal cost at all quantities except the highest.

In Table 2 we summarize the effects of the tax on
welfare in the price-taking equilibrium setting. In the
absence of the tax, price-taking producers will offer at
marginal cost, QU . We see that the tax causes average
prices to rise, reducing consumer welfare. For the pro-
ducers, pretax profit increases so that the net profit
under the tax is equal to the profit earned before the tax
was imposed (0.0833). Hence the tax on producer sur-
plus has been entirely passed through to consumers.

As Federico and Rahman (2003) and Holmberg
(2009b) found for price-taking SFEs with uniform and
discriminatory pricing, we can show that the produc-
ers’ profit is invariant as α changes.
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Figure 4. (Color online) Equilibrium industry supply curves
with price-taking producers, and strategic producers com-
peting in supply functions.
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Proposition 4. If demand is uniformly distributed on
[0, ε̄], industry marginal cost is linear CI(Q) � γQ, and
there is no lost load, then producers playing price-taking
equilibriumwill expect the same profits under any tax rate α.

Proof. We invert the equilibrium industry supply
function (19) to obtain

p(q)� γ
q + αε̄
1+ α ,

and take the expectation of producer profit over all
shock outcomes. The total expected profit is∫ ε̄

0
((1− α)qp −C(q)) f (q)+ αp(1− F(q)) dq

�
1
ε̄

∫ ε̄

0
(1− α)qγ

q + αε̄
1+ α − γ

q2

2 + αγ
q + αε̄
1+ α (ε̄− q) dq

�
γε̄2

6 ,

which does not depend on α. �

A standard result in public economics (see, e.g.,
Atkinson and Stiglitz 1980) is that, given inelastic
demand, a sales tax is fully passed through to con-
sumers in the form of increased prices, whereas taxes
on profits are borne by producers. For our tax on pro-
ducer surplus, in the price-taking setting, the tax is

Table 2. Benefits and taxes under a tax producer surplus, with price-taking producers.

Tax Social Average
Scenario α Curve Consumers Producers revenue surplus price

No tax 0 QU 0.3333 0.0833 0 0.4166 0.25
With tax 0.25 QU 0.3333 0.0624 0.0209 0.4166 0.25
With tax 0.25 QP 0.3166 0.0833 0.0167 0.4166 0.30

fully passed through to the consumers (in expectation),
as Proposition 4 shows. By contrast, for strategic pro-
ducers, we see that the incentive for flatter supply func-
tions can increase competition to such an extent that
expected prices fall, as can be seen in Table 1.

4. Line Capacity Expansion
We now consider a model in which the transmission
line is expanded from capacity J to capacity K, and
a proportional tax on observed benefits is levied to
recover the costs of the line expansion. The model
is again a simple two-node network as in Figure 2,
with symmetric producers at one node and an inelastic
demand shock ε at the downstream end of the line.

The motivation for the model is a proposal for a new
transmission pricing scheme to cover large grid invest-
ments in New Zealand. The New Zealand wholesale
electricity market is dispatched according to a com-
bined energy and reserve co-optimization in real time
with bids covering half-hour trading periods (Alvey
et al. 1998). A range of transmission pricing schemes
is under consideration by the New Zealand Electricity
Authority (2012) that includes various combinations of

• locational “postage-stamp” charges,
• peak charges based on maximum historical injec-

tion or withdrawal, and
• a tax on benefits (surplus), calculated in each trad-

ing period.
The benefits-tax scheme differs from other transmis-

sion pricing methods promoted as beneficiary-pays in
that the benefits are calculated as part of the dispatch,
based on actual bids to the market. In fact, the only
cost information used by the regulator comes from the
submitted bid function. Beneficiaries-pay transmission
cost recovery schemes in New York (Hogan 2011) and
Argentina (Pollitt 2008) apply charges as locational
postage-stamp fees based on an ex ante analysis of
benefits arising from network expansion. Locational
charges, once the rate has been announced, function as
an additional cost of production, and so their effect on
the spot market is just a uniformmarkup across all lev-
els of output. We shall see that a tax on differences in
observed surpluses leads to a less simple adjustment
of equilibrium bids.

Presently, in the New Zealand wholesale market,
suppliers submit bid stacks (that we model as curves).
In the delivery period, demand and intermittent sup-
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Figure 5. Difference in producer surplus between actual (θ)
and counterfactual (θ̂) dispatch is shaded.
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ply are realized. The system operator solves the dis-
patch problem to satisfy demand at least cost, based on
the bids submitted and subject to transmission capac-
ity constraints. The solution gives price and production
levels for all generators. The beneficiaries-pay scheme,
proposed as the “SPDmethod” by the Authority (New
Zealand Electricity Authority 2014), makes an adjust-
ment to payments at dispatch by solving a counterfac-
tual dispatch problem. The dispatch is solved a second
time, with transmission lines derated to their preex-
pansion capacity. The difference in producer (or con-
sumer) surplus between the two dispatches is calcu-
lated, and market participants are charged a portion of
this difference. In our model, the portion α of observed
benefits to be charged is declared in advance. Observe
that consumers are also charged, but we assume their
bids in the spot market are inelastic, so they have no
way of strategically responding to the charge in the
short term.

4.1. Payoffs Under Beneficiaries-Pay Tax
The benefit that a producer is deemed to derive from a
network expansion is the difference between producer
surplus in dispatch with the actual configuration and
producer surplus in dispatch with the counterfactual
network configuration. In Figure 5, the dispatch point
depends on the demand realization ε and the network
configuration, so the two network configurations give
two dispatch points, an actual (θ, π) and a counter-
factual (θ̂, π̂). These in turn give rise to two distinct
realizations of producer surplus, σ(ε) and σ̂(ε), defined
by (5).
The firm pays a portion α of the difference between

the observed surplus in the actual network and
observed surplus in the counterfactual network; i.e.,
the tax is

α(σ(ε) − σ̂(ε)).

This gives a profit net of tax of

R(ε)� P(ε) − α(σ(ε) − σ̂(ε)).

The generator constructs an offer curve to maximize
this tax-adjusted profit. Since R(ε) is the linear com-
bination of three terms, we can express the expecta-
tion as a linear combination of the individual expecta-
tions. The expectations of P(ε) and σ(ε) are evaluated
against the market distribution function ψ assuming a
full line capacity, whereas σ̂(ε) is evaluated using the
counterfactual market distribution function ψ̂ assum-
ing the unexpanded capacity. The expected profit over
the entire supply curve is

ΠL(S) � å[P] − α(å[σ] −å[σ̂])

�

∫ T

0
(x y −C(x))

(
dx
dt
ψq +

dy
dt
ψp

)
dt

− α
(∫ T

0
x(1−ψ(x , y))

dy
dt

dt

−
∫ T

0
x(1− ψ̂(x , y))

dy
dt

dt
)

�

∫ T

0

(
(x y −C(x))

(
dx
dt
ψq +

dy
dt
ψp

)
− αq(ψ̂(x , y) −ψ(x , y))

dy
dt

)
dt .

Observe that this can be written in the form of (1) with

f (q , p)� (qp −C(q))ψq , and (20)
g(q , p)� (qp −C(q))ψp − αq(ψ̂(q , p) −ψ(q , p)). (21)

Applying Theorem 1, the resulting Z function is

ZL(q , p) � (p −C′(q))ψp − qψq

− α(q(ψ̂q −ψq)+ ψ̂−ψ). (22)

4.2. Conditions for SFE in Two-Node Setting
We now return to the network of Section 2. As the
demand shock occurs only in the downstream node,
(ψ̂−ψ) is nonzero only when

J < q + S2(p) 6 K,

in which case ψ̂ � 1. Hence ZL(q , p) can be thought of
as piecewise defined: equal to ZU(q , p)when ψ̂−ψ � 0
and ZA(q , p) otherwise.

We assume that marginal costs are zero for both
firms, that the price cap is 1, and that the lower bound
on the uniformly distributed demand shock is zero.

As ZL(q , p) is discontinuous along the line J − q −
S2(p) � 0, we can no longer rely on Theorems 2 and
3 directly. The following propositions give sufficient
conditions for a supply function to maximize the func-
tional ΠL(S), and they rule out equilibria with verti-
cal or horizontal segments at the counterfactual line
capacity.
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Proposition 5 (Optimal Bidding with Discontinuous Pay-
off). Suppose f and g are as in Equations (20) and (21)
with a jump discontinuity on a curve defined by q + S2(p)
� J. LetS∗ � {(x(t), y(t)), t ∈ [0,T]} be a continuous, piece-
wise differentiable, and strictly increasing curve that crosses
q + S2(p) � J exactly once, at t � T1. The following condi-
tions are sufficient for S∗ to maximize ΠL(S):

(1) ZL(x(t), y(t)) � 0 at all points along S∗, except pos-
sibly at t � T1; and
(2) at every t, ZL(q , y(t)) > 0 for all q < x(t) and

ZL(q , y(t)) 6 0 for all q > x(t).

Proof. The proof is by a simple decomposition argu-
ment. Consider the problem of choosing separate max-
imal curves for (1) over [0,T1] and [T1 ,T] with the
boundary conditions (upper and lower, respectively)
x(T1)+S2(y(T1))� J. Conditions (1) and (2) are, by The-
orem 2, sufficient for optimality in these subproblems.
To pass from separately maximizing over the two

subintervals to globally maximizing over all of [0,T],
we add the constraint that the curve be continuous at
T1. As our candidate solution satisfies the additional
constraint, it is still optimal. �

Proposition 6. A supply function S with a vertical seg-
ment at q � J/2 cannot be a symmetric equilibrium for firms
maximizing ΠL(S).

Proof. Suppose each supplier offers a curve contain-
ing the segment {((J/2), p): p1 6 p 6 p2}. All producers
face perfectly inelastic residual demand on this price
interval and hence have ψp � 0. This implies that ZL �

−qψq < 0 in the region {(q , p): 0< q < (J/2), p1 < p < p2}.
By a similar argument to that used for condition (3)
of Theorem 3, a perturbation to the left—into this
region—will yield and improvement in Π(S). Thus S
is not an SFE. �

Proposition 7. A supply function S with a horizontal seg-
ment at a price above marginal cost cannot be a symmetric
equilibrium for firms maximizing ΠL(S).

Proof. If the horizontal segment is entirely within the
ZU or the ZA region, then Theorem 3 can be applied
directly, since it is a local condition that is true for
any α ∈ [0, 1]. On the other hand, suppose the horizon-
tal segment crosses the line q � J/2; in this case, the
horizontal segment must lie on the boundary between
the ZU and ZA regions. In the counterfactual dispatch,
the line of capacity J can be either congested or not.
When the line is congested in the counterfactual, a

producer offering an infinitesimally lower price over
the horizontal segment has an additional effect on its
after-tax profit. Not only does the producer’s dispatch
probability increase by a finite amount, its dispatch
in the counterfactual also increases. This decreases
the observed benefits, thereby increasing the after-tax
profit; thus this remains a profitable deviation. How-
ever, when there is no congestion in the counterfac-
tual, there are no observed benefits and, therefore, no
additional effects from the taxation. Nevertheless, the
first-order effect of undercutting remains, and it is prof-
itable. �
Propositions 6 and 7 imply that a symmetric SFE

must have quantity as a continuous and increasing
function of price. Thus we can find an equilibrium by
solving theODE ZL(S(p), p)�0with the boundary con-
dition S(p̄)� K/2, as in Proposition 1.
The first-order condition for a symmetric SFE, anal-

ogous to (7), becomes

pS′
1
ε̄
− S

1
ε̄
� 0, for S <

J
2 , (23)

pS′
1
ε̄
− (1− α)S 1

ε̄
− α

(
1− 2S

ε̄

)
� 0, for S >

J
2 . (24)

We assume zero marginal costs, so (23) and (24) can
both be solved by the samemethod as (11) above. Equa-
tion (24) has a general solution

S(p)� k1p1−3α − αε̄
1− 3α , (25)

with k1 a constant of integration. To pass through the
price cap, we require

k1 �

(
K
2 +

αε̄
1− 3α

)
p̄3α−1.

Equation (23) is an ODE for S(p) < J/2 with general
solution

S(p)� k2p ,

where k2 is another constant of integration. For con-
tinuity of the curve, we choose k2 � J/2p∗, where p∗
solves 2S(p)� J in (25). Our equilibrium candidate is

SL(p)�



(
K
2 +

αε̄
1− 3α

) (
p
p̄

)1−3α

− αε̄
1− 3α

if p > p∗ ,

J
2

p
p∗

if p < p∗.

4.3. Example 3
Consider an equilibrium with the following choice of
parameters:

ε̄ � 1 maximum shock;
K � 0.8 expanded line capacity;
J � 0.2 original line capacity;
α �

1
4 tax rate.

(26)
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Figure 6. (Color online) Contours of ZL(q , p) when a com-
petitor is playing the α �

1
4 curve from Figure 7.
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We can plot the values of ZL, as defined in (22), to see
that condition (2) of Proposition 5 is indeed satisfied for
the equilibrium. In Figure 6, we see that Zq < 0 every-
where and that Z � 0 along the supply curve. Note
that the discontinuity in the integrand of the objective
occurs when J− q−S2(p)� 0, and that the supply curve
intersects this decreasing curve once, at the kink where
q � J/2.
The industry supply curves in supply function equi-

libria for two different choices of α are plotted in Fig-
ure 7. The degree to which the taxed equilibrium is
marked up above the untaxed equilibrium depends on
the range of the demand shock. If the range of the
demand shock is large, then there is a high probabil-
ity that the expanded line will be congested, which
increases the probability of an observed benefit. This
means that the equilibrium offers try to avoid taxa-

Figure 7. (Color online) Untaxed equilibrium industry sup-
ply curve and taxedequilibrium industry supply curveswhen
maximumdemand is 1 and α �

1
4 and α �

1
3 .
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Figure 8. (Color online) Untaxed equilibrium industry sup-
ply curve and taxed equilibrium industry supply curves
when the maximum demand is 1 and 2.
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tion by flattening the offer curves in regimes where
the unexpanded line would be congested. This can be
observed in Figure 8. As the probability of lost load
increases, small quantities are marked up more, since
their contribution to the tax paid rises relative to the
profits earned when they are at the margin.

When we look at what choice of market parameters
leads to prices being marked down at the highest out-
put levels, we find it depends only on the number of
producers and the hazard rate of the demand shock
distribution at the point where the transmission con-
straint binds. Proposition 8 demonstrates this.
Proposition 8. If K/n > (1 − F(K))/ f (K), then prices at
the highest demand outcomes will be lower under the taxed
SFE than under the untaxed SFE. Moreover, if the demand
shock is distributed so that (1 − F(ε))/ f (ε) is everywhere
nonincreasing and K/n < (1− F(K))/ f (K), then prices will
be higher at all demand outcomes under the taxed SFE.
Proof. Proof. In (7), the slope of the symmetric SFE at
the price cap is

S′α

(
p ,

K
n

)
�

1
(p̄ −C′(K/n))(n − 1)

·
(
(1− α)K

n
+ α

1− F(K)
f (K)

)
.

Without the tax, α � 0, the slope at the price cap is

S′0

(
p ,

K
n

)
�

1
(p̄ −C′(K/n))(n − 1)

K
n
.

If K/n > (1− F(K))/ f (K), then

(1− α)K
n
+
α(1− F(K))

f (K) <
K
n
,

so S′α(K/n) < S′0(K/n), yielding the first part of the
result.
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Figure 9. (Color online) Untaxed equilibrium industry sup-
ply curve and taxed equilibrium industry supply curves
when J � 0.2 and J � 0.6.
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If the demand shock is distributed so that (1 −
F(ε))/ f (ε) is everywhere nonincreasing and K/n < (1−
F(K))/ f (K), then for q 6 K/n, we have

1− F(nq)
f (nq) >

1− F(K)
f (K) >

K
n
> q.

Hence S′α(p , q) − S′0(p , q) � α(((1 − F(nq))/ f (nq)) − q)
> 0, yielding the second part of the result. �
Recall from Section 2 that (1 − F(ε))/ f (ε) is the

inverse hazard rate of the distribution. Proposition 8
states that prices will be marked up at all outputs by
strategic producers under a tax if the probability of
demand exceeding the expanded line capacity is large
enough and the inverse hazard rate is nonincreasing.
Any probability distribution with a density that decays
less quickly than the exponential distribution will have
a nonincreasing inverse hazard rate; in particular, the
uniform and normal distributions possess this prop-
erty. This condition is the opposite of the condition in
Holmberg (2009b) that is necessary for pure-strategy
SFEs in pay-as-bid auctions.
When J ≈ K, it can happen that the marking down

at the highest output levels is carried across the entire
symmetric SFE. This is due to the continuity condition
in Proposition 5. In Figure 9 are shown equilibria for
different values of J. Observe that for small increases
in line capacity (from J � 0.6 to K � 0.8) the solid curve
is under the dashed curve at every point, so prices are
(slightly) lower in every demand outcome.
We may calculate consumer and producer welfare

for different levels of tax. Taking the base-level param-
eters (26) and repeating the analysis of Section 2, we
obtain the values of Table 3. Again, the total surplus
does not change.

We see a slight decrease in consumer surplus as the
very slight discounting at the top of the offer curve

is not sufficient to offset the heavy markups around
q � J/2. For small expansions in line capacity, this effect
diminishes.

4.4. Varying the Size of the Line Expansion
We canmeasure the change in consumer surplus, prof-
its, and tax collected as the magnitude of the line
expansion varies. We will analyze the consequences
of varying the preexpansion line capacity J to illus-
trate the effects of the size of the expansion on strategic
behavior.

We keep K constant at 0.8 and vary J from 0 to K
to cover a range of scenarios, from a completely new
line to a zero increase in line capacity. In this variation
the system operator chooses J, the baseline network
capacity. The change in welfare after the tax is imposed
depends on the size of the counterfactual line J, as well
as the probability of line congestion in the actual sys-
tem 1 − K/ε̄. The plots for a low probability of line
congestion (ε̄� 1, giving 20% probability) are shown in
Figure 10. Solid curves represent welfare under equi-
libria where producers take the tax into account and
dashed curves measure the same thing for equilibria
where agents ignore the tax. Note that when J ≈K �0.8,
themarkdown effect dominates so that there is actually
a reduction in price levels in the post-tax SFE, leading
to a slight gain in consumer surplus and slight reduc-
tions in producer profits and transmission charges col-
lected, compared with the equilibrium when no tax is
charged.

4.5. Price-Taking Producers
We can apply the piecewise solution method to a
duopoly of price-taking producers. Because the market
distribution function for price takers has no quantity
component, the dispatch price is not necessarily con-
tinuous with respect to the demand shock. For outputs

Figure 10. (Color online) Distribution of welfare as J varies,
with (solid) and without (dashed) strategic reaction to tax.
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Note.The probability of line congestion is 0.2.
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Table 3. Benefits and taxes under a tax on line-expansion benefits.

Tax Social Average
Scenario α Curve Consumers Producers revenue surplus price

No tax 0 SU 0.1067 0.2133 0 0.32 0.6866
With tax 0.25 SU 0.1067 0.1722 0.0411 0.32 0.6866
With tax 0.25 SL 0.1003 0.1842 0.0340 0.32 0.6666

in node 1 less than J, there is no tax applied, and so all
units are offered at marginal cost. At J, the price jumps
up and follows a solution to (18) up to the point where
the last unit is offered at marginal cost.
Figure 11 shows the price-taking equilibrium for the

base parameters (26), with the corresponding strategic
SFE. As in Section 3, we assume marginal cost func-
tions C′i(qi) � qi for an industry marginal cost function
C′I(Q)� (1/2)Q.We see that price-taking producerswill
mark up their offers at all output levels where benefits
are observed.
Note that since the highest clearing price achieved

in node 1 is 0.4, there will be congestion rents accru-
ing to the system operator whenever demand exceeds
the expanded line capacity K � 0.8. Under the untaxed
price-taking equilibrium, when all supply is offered
at marginal cost, the volume-weighted average price
paid to producers is 0.24 and the average price paid by
load is 0.36. Under the taxed price-taking equilibrium,
these prices rise to 0.27 for producers and 0.39 for load.
The expected congestion rent is 0.12 in both cases. The
expected producer surplus falls from 0.075 to 0.692, so
the tax is only partially passed through to consumers;
thus the assumption in Proposition 4 that there is no
lost load is necessary.

4.6. Asymmetric Producers
All of the examples we have used have had symmetric
producers competing in supply functions. It is reason-

Figure 11. (Color online) Industry supply curves under
benefits-tax on line expansion, comparing strategic SFE and
price-taking equilibrium.
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able to ask whether the same outcomes occur when the
producers are not symmetric.

We compare SFE in duopoly with two pairs of linear
marginal cost functions, chosen so that industry cost
function is invariant. One is symmetric,

C′1(q1)� q1 C′2(q2)� q2 ,

and the other is asymmetric,

C′1(q1)�
3q1

4 C′2(q2)�
3q2

2 .

The demand shock and line expansion parameters are
at the base levels (26) of Example 3 above.

As in the symmetric case, there is a one-parameter
family of SFEs that are monotone and that have zero
markup at zero output (Holmberg 2009a). We use a
spline collocation method similar to Anderson and Hu
(2008) to solve the system of ODEs given by the first-
order optimality conditions for the least competitive
SFE, in which the line capacity constraint binds at the
price cap.

Figure 12 shows the industry supply curves for SFEs
under these two divisions of marginal cost. We see that
cost asymmetry makes the industry slightly less com-
petitive. This is in line with other models of oligopoly.
Furthermore, the magnitude of markup resulting from
strategic reaction to the line-benefit tax is compara-
ble. In the symmetric case, the average price rises from
0.755 to 0.775 after the tax is imposed, and in the asym-
metric case, the average price rises from 0.767 to 0.786.
Therefore the strategic effects of a line-benefit tax are
not greatly exacerbated by the asymmetry of producers
in the market.

4.7. Normally Distributed Demand Shock
Until now we have assumed the distribution of the
demand shock to be uniform. In real-world markets,
firms can have quite accurate information about likely
demand levels; this can be represented in an SFEmodel
by a concentrated distribution of the demand shock.

We can solve the ODE (6) for the network in Figure 2
when the demand shock ε is normally distributed. The
solution will satisfy the first-order optimality condi-
tion of Theorem 1. However, when the demand shock
has small variance or the line in the counterfactual is
almost certainly congested, the second-order condition
will be violated. The marginal cost functions are as in
Section 3, with the transmission line again expanding
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Figure 12. (Color online) Equilibrium with producers competing in supply functions, having symmetric or asymmetric
marginal cost functions.
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Note. The asymmetric SFE is on the left, and the industry supply curves for symmetric and asymmetric SFEs are on the right.

Figure 13. (Color online) Equilibrium solutions and zero-contour of ZL with normally distributed ε ∼N(0.3, 0.1).

Notes. All four curves are equilibria.

Figure 14. (Color online) First-order solutions and zero-contour of ZL with normally distributed ε ∼N(0.3, 0.05).

Notes.The “Taxed SF” curve is a first-order solution of ZL � 0, but it violates the second-order condition. The “Taxed PTE” is an equilibrium.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
0.

21
6.

24
.1

49
] 

on
 2

0 
Fe

br
ua

ry
 2

01
7,

 a
t 1

1:
44

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Ruddell, Philpott, and Downward: Supply Function Equilibrium with Taxed Benefits
16 Operations Research 65(1), pp. 1–18, ©2017 INFORMS

Figure 15. (Color online) First-order solutions and zero-contour of ZL with normally distributed ε ∼N(0.7, 0.1).

Notes.The “Taxed SF” curve is a first-order solution of ZL � 0, but it violates the second-order condition. The “Taxed PTE” is an equilibrium.

from J � 0.2 to K � 0.8. As the uniform-price SFE is
independent of the demand shock distribution, it is the
same in all three cases.
In Figure 13 the demand shock in node 2 has a mean

of 0.3 and a standard deviation of 0.1. When the tax is
applied, the equilibrium candidate lies along the zero-
contour of ZL and obeys the second-order condition
that Z is positive (shaded) to the left and negative to
the right; thus it is an SFE.
In Figure 14 the mean is the same but the distribu-

tion is narrower, with a standard deviation of 0.05, as
in the previous section. Now the untaxed equilibrium
candidate has ZL negative to the left and positive to the
right, at points just above the counterfactual line capac-
ity. This violates the second-order condition of Theo-
rem 1, so the candidate curve is not an SFE. Increasing
the mean of the demand shock distribution to 0.7 also
gives a first-order solution that violates this condition,
as shown in Figure 15.
When ZL is negative to the left of the candidate

solution and positive to the right, the candidate sup-
ply function is a local minimum of the profit func-
tional. The same phenomenon has been observed in
discriminatory-price SFEs by Holmberg (2009b). More-
over, Anderson et al. (2013) findmixed strategy equilib-
ria where firms mix over bids that are perfectly inelas-
tic for small quantities and have finite slope for larger
quantities.

Table 4. Benefits and taxes from SFE under a tax on line-expansion benefits.

Tax Social Average
Scenario α Curve Consumers Producers revenue surplus price

No tax 0 SU 0.0916 0.1584 0 0.250 0.6950
With tax 0.25 SU 0.0915 0.1487 0.0098 0.250 0.6950
With tax 0.25 SL 0.1019 0.1396 0.0085 0.250 0.6600

Notes. Normal shock with mean 0.3 and standard deviation 0.1.

Table 4 shows the change in welfare when the line-
benefit tax is applied to the SFE in Figure 13. We see
that the overall marking down of the offer curves is
reflected in a lower average price after the tax than
before.

5. Conclusion
This work has examined the incentives of firms to
adjust their offering strategies (in equilibrium) when a
charge is applied as a percentage of either perceived
profits (where the regulator believes that the firm offers
at marginal cost) or observed benefits of an investment
in transmission assets (e.g., a line capacity upgrade). In
a deterministic setting one may think that there would
be an incentive to conceal one’s observed benefits by
increasing the offers up to the dispatch point. However,
in a setting where the dispatch point is not known in
advance (uncertain residual demand), we have shown
that a balance must be struck between concealing the
benefits andmaximizing the (untaxed) profit. This new
balance does not always exhibit higher markups than
the untaxed regime.

In regions of quantity–price space where the tax
applies, producers optimize functionals that are a con-
vex combination of uniform and pay-as-bid profit func-
tionals. For a tax rate below a certain threshold, a strate-
gic symmetric SFE exists that compared with the equi-
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librium without the tax, has generally higher markups
at low offer quantities but possibly smaller markups
near the capacity constraint.
We discovered a counterintuitive effect of the

beneficiary-pays charge in a strategic duopoly setting
with constant marginal cost and a uniform demand
shock. When the size of the line upgrade is small—and
the probability of line congestion is low—the consumer
surplus can increase when the charge is applied, since
firms submit offer curves that are strictly lower than
the untaxed curves. Moreover, because of their compe-
tition, firms in fact receive a lower profit and actually
pay more tax than they would if they had chosen the
same supply curves that comprise the untaxed equi-
librium. A similar result has been attained for linear
marginal costs with a normally distributed demand
shock. By contrast, for the price-taking setting, some
portion of the tax is always passed through to the con-
sumers. This comes about since our price-taking firms,
although they do not believe that they can affect the
price distribution, know exactly how their supply func-
tions affect the tax that they must pay. This causes the
firms to mark up their prices above marginal cost, in
the sections of their supply functions that incur a tax.

There remain several obstacles to the use of our SFE
model as a quantitative tool. To calculate the symmetric
SFE we must solve a first-order nonlinear ODE; how-
ever, to calculate an asymmetric SFE, the ODE becomes
a system with order equal to the number of asymmet-
ric firms, which often can only be solved numerically.
In some special cases (e.g., symmetric firms in radial
networks), closed-form SFEs can be found (Holmberg
and Philpott 2015). However, in real settings (such as
the New Zealand electricity market), agents typically
offer at several locations, networks are meshed, and
the nodal demand distributions are correlated. Any of
these circumstances on their own is enough to make
the existence of SFE problematic.
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Appendix
Proof of Theorem 2. By assumption, the field Z is contin-
uous. We can apply Green’s theorem, as in Anderson and
Philpott (2002), to obtain a sufficient condition for optimal-
ity. By Green’s theorem, the integral of ( f (q , p)(dq/dt) +
g(q , p)(dp/dt)) around any simple closed curve (q(t), p(t)) in
the anticlockwise direction is equal to the integral of Z over
the area enclosed by the curve. If Z � 0 along S∗, then there
is an improving deviation to the left only if Z < 0 somewhere
in that region. Similarly, there is an improving deviation to
the right only if Z > 0 somewhere in that region. Thus the
conditions guarantee that there are no improving deviations;
therefore S∗ is maximal. �

Proof of Theorem 3. The case α � 0 was proved as a series
of propositions in Holmberg (2008). Assume henceforth that
α > 0. Using market distribution functions and Theorem 1,
we can find improving deviations wherever the conditions
are not met. Theorem 1 allows us to show the existence
of improving deviations without having to construct them
explicitly as Holmberg does. Anderson (2013) addresses the
case of a pool market with uniform pricing, where demand
has positive elasticity and the firms have maximum output
constraints that bind at the highest demand levels.

1. Suppose that at some point t0, with nonzero probabil-
ity of dispatch, some firm offers below marginal cost. This
means that y(t) < C′(x(t)) on some interval about t0. How-
ever, ψp and ψq are both nonnegative, which implies that
ZA 6 −α(1− ψ(x , y)) along some part of the curve. Thus the
curve cannot be a local maximum unless ψ(x(t), y(t)) � 1,
which contradicts the assumption of positive probability of
dispatch.

2. Suppose that some firm offers a curve with a per-
fectly elastic segment above marginal cost. Then the residual
demand curve of every other firmwill have a perfectly elastic
segment. Because we assume inelastic demand, the slope of
each firm’s residual demand curve is determined only by the
slopes of its competitors’ supply curves, i.e., ψp � ψq

∑
j,i S′j ,

for all producers i. Consider two cases:
(a) Suppose a firm offers a perfectly elastic segment at

p∗, while its competitors are offering continuous curves. The
competitors find themselves optimizing against a market dis-
tribution function with a jump at p � p∗. The price derivative
ψp has a point mass while the other market distribution func-
tion terms in ZA remain finite valued. This gives ZA a line of
positive mass along p � p∗. Hence if at least one competitor is
offering above marginal cost at this price, the competitor can
improve its payoff bymaking a small undercutting deviation.

(b) At least two producers offer perfectly elastic seg-
ments at the same price. Then, whatever the tie-break rule for
dispatching units offered at the same price, at least one pro-
ducer will do better by offering the same tranche at a slightly
lower price. This lower price offer is an improving deviation
for that firm, so the set of supply functions could not be an
equilibrium.

In both cases, some supplier can obtain a finite gain in
dispatch probability for an infinitesimal loss in revenue by
undercutting by an infinitesimal amount.

3. As Anderson and Philpott (2002) show, a vertical seg-
ment, where q(p)� q̂ for p ∈ [p1 , p2], in an SFE must necessar-
ily have∫ p2

p1

Z(q̂ , p) dp � 0 and
∫ y

p1

Z(q̂ , p) dp > 0,
for all y ∈ (p1 , p2).

Suppose that the industry supply curve is perfectly inelastic
over some range of prices. As the supply functionsmaking up
this industry supply curve are all nondecreasing, they must
all be perfectly inelastic over this interval. This implies that
ψp is zero for every producer, so at least one producer will
have Z < 0 over the whole interval (p1 , p2) and canmarginally
improve its profit by withholding a small amount.

4. Suppose some firm withholds some amount of pro-
duction from the market. This is not profit maximizing as,
given the assumption that demand will exceed the capacity
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of supply with some probability, it could always gain some
revenue from the unit by offering it at the price cap. Units
offered at the price cap do not affect the revenue earned by
other units lower down the supply schedule as they are never
inframarginal and so never affect the producer surplus. �

Solution to (11) when α �
1
3 : Observe that the term (3α −

1)S(p) vanishes when α �
1
3 . In that case the differential

equation
pS′(p)+ (3α− 1)S(p)� αε̄

becomes
S′(p)� αε̄

p
,

so the symmetric equilibrium supply functions are

S(p)� αε̄ log
p
p̄
+

K
2 .

References
Alvey T, Goodwin D, Ma X, Streiffert D, Sun D (1998) A security-

constrained bid-clearing system for the New Zealand wholesale
electricity market. IEEE Trans. Power Systems 13(2):340–346.

Anderson E (2013) On the existence of supply function equilibria.
Math. Programming 140(2):323–349.

Anderson EJ, Hu X (2008) Finding supply function equilibria with
asymmetric firms. Oper. Res. 56(3):697–711.

Anderson EJ, Philpott AB (2002) Optimal offer construction in elec-
tricity markets. Math. Oper. Res. 27(1):82–100.

Anderson E, Holmberg P, Philpott A (2013) Mixed strategies in dis-
criminatory divisible-good auctions. RAND J. Econom. 44(1):
1–32.

Armantier O, Sbaï E (2009) Comparison of alternative payment
mechanisms for French treasury auctions. Ann. Econom. Statist.
(93/94):135–160.

Atkinson A, Stiglitz J (1980) Lectures on Public Economics, Economics
Handbook Series (McGraw-Hill, New York).

Federico G, Rahman D (2003) Bidding in an electricity pay-as-bid
auction. J. Regulatory Econom. 24(2):175–211.

Green RJ, Newbery DM* (1992) Competition in the British electricity
spot market. J. Political Econom. 100(5):929–953.

Hogan WW (2011) Transmission benefits and cost allocation. Har-
vard Electricity Policy Group working paper, Harvard Univer-
sity, Cambridge, MA.

Holmberg P (2008) Unique supply function equilibrium with capac-
ity constraints. Energy Econom. 30(1):148–172.

Holmberg P (2009a) Numerical calculation of an asymmetric supply
function equilibrium with capacity constraints. Eur. J. Oper. Res.
199(1): 285–295.

Holmberg P (2009b) Supply function equilibria of pay-as-bid auc-
tions. J. Regulatory Econom. 36(2):154–177.

Holmberg P, Newbery D (2010) The supply function equilibrium and
its policy implications for wholesale electricity auctions. Utilities
Policy 18(4):209–226.

Holmberg P, Philpott A (2015) Supply function equilibria in trans-
portation networks. EPOC Working Paper, Electric Power Opti-
mization Centre, Auckland.

Holmberg P, Willems B (2015) Relaxing competition through specu-
lation: Committing to a negative supply slope. J. Econom. Theory
159(Part A):236–266.

Klemperer PD, Meyer MA (1989) Supply function equilibria in
oligopoly under uncertainty. Econometrica 57(6):1243–1277.

Lucas RE Jr, Prescott EC (1971) Investment under uncertainty. Econo-
metrica 39(5):659–681.

Newbery DM (1998) Competition, contracts, and entry in the elec-
tricity spot market. RAND J. Econom. 29(4):726–749.

New Zealand Electricity Authority (2012) Transmission pric-
ing methodology: Issues and proposal, Appendix E: Using
the SPD method to apply beneficiaries-pay. Consulta-
tion paper, New Zealand Electricity Authority, Wellington.
https://www.ea.govt.nz/dmsdocument/13801.

New Zealand Electricity Authority (2014) Transmission pric-
ing methodology review: Beneficiaries-pay options. Work-
ing paper, New Zealand Electricity Authority, Wellington.
https://www.ea.govt.nz/dmsdocument/17482.

Pollitt M (2008) Electricity reform in Argentina: Lessons for develop-
ing countries. Energy Econom. 30(4):1536–1567.

Vives X (2011) Strategic supply function competition with private
information. Econometrica 79(6):1919–1966.

Wang JJ, Zender FJ (2002) Auctioning divisible goods. Econom. Theory
19(4):673–705.

K. Ruddell is a Ph.D. candidate in the Department of Engi-
neering Science and a member of the Electric Power Opti-
mization Centre at the University of Auckland. His research
interests include competition in spot and futures markets for
electricity, and supply function equilibrium and its applica-
tion to questions in electricity market policy.

A. B. Philpott is a professor in the Department of Engi-
neering Science and codirector of the Electric Power Opti-
mization Centre at the University of Auckland. His research
interests include optimization under uncertainty and game
theory with particular application to electricity markets.

A. Downward is a lecturer in the Department of Engi-
neering Science and an academic member of the Electric
Power Optimization Centre at the University of Auckland.
His research interests include optimization of electricity sys-
tems with transmission, accounting for uncertainty and risk.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
0.

21
6.

24
.1

49
] 

on
 2

0 
Fe

br
ua

ry
 2

01
7,

 a
t 1

1:
44

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 

https://www.ea.govt.nz/dmsdocument/13801
https://www.ea.govt.nz/dmsdocument/17482

