3 | LIBRARY
Te Tumu Herenga RESEARCHSPACE@AUC KLAND

THE UMIVERSITY OF AUCKLANMD

http:/Z/researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New
Zealand).

This thesis may be consulted by you, provided you comply with the
provisions of the Act and the following conditions of use:

e Any use you make of these documents or images must be for
research or private study purposes only, and you may not make
them available to any other person.

e Authors control the copyright of their thesis. You will recognise the
author's right to be identified as the author of this thesis, and due
acknowledgement will be made to the author where appropriate.

e You will obtain the author's permission before publishing any
material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the
digital copy of their work to be used subject to the conditions specified on
the Library Thesis Consent Form.

http://researchspace.auckland.ac.nz/
http://researchspace.auckland.ac.nz/feedback

Department of Electrical & Computer Engineering

Software Engineering
The University of Auckland
New Zealand

A Flexible Software Process
Model

Diana Kirk
April 2007

Supervisor: Associate Professor Ewan Tempero

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE RE
QUIREMENTS OFDOCTOR OFPHILOSOPHY IN ENGINEERING

The University of Auckland

Thesis Consent Form

This thesis may be consulted for the purpose of researchivat@rstudy provided that due
acknowledgement is made where appropriate and that ther&plermission is obtained before
any material from the thesis is published.

| agree that the University of Auckland Library may make aycopthis thesis for supply to the
collection of another prescribed library on request from thibrary; and This thesis may not
be photocopied other than to supply a copy for the colleaticemother prescribed library.

Created 5 July 2001
Last updated9 August 2001

Abstract

Many different kinds of process are used to develop softwasnsive products, but there is
little agreement as to which processes give the best rasodtsr which circumstances. Prac-
titioners and researchers believe that project outcomesdnme improved if the development
process was constructed according to project-specifiorfactin order to achieve this goal,
greater understanding of the factors that most affect ooesois needed. To improve under-
standing, researchers build models of the process and @atrstudies based on these models.
However, current models contain many ambiguities and aggans, and so it is not clear what
the results of the studies mean. The statement of this tisethat it is possible to create an
abstraction of the software development process that wollide a mechanism for comparing
software processes and software process models. The longytal of the research is to pro-
vide planners with a means of tailoring the developmentgse®n a project by project basis,
with the aim of reducing risk and improving outcomes.

ABSTRACT

1

Introduction 1
1.1 Research Area OVverview i v i it i i e e e 1
1.2 ProblemtobeAddressed 2
1.3 Modelling forUnderstanding 4
1.4 Thesis Statement 5
1.5 Approach e 6
1.6 Overview of Contributions 7
1.7 Terminology e 8
1.8 DocumentRoadmap e 8
Software Development Processes 11
2.1 Nature of Software Development 11
2.2 ProcessesOVEIVIEW v i i i i e e e e e e 14
221 Waterfall 14
2.2.2 Spiral e 15
2.2.3 Rational Unified Process (RUP) 16
2.2.4 CleanroOm e e 17
2.25 Agilealliance L 19
22.6 XP .o 19
227 SCHUM L o e e e e e 20
228 Crystal 21
2.2.9 Feature Driven Development(FDD) 21
2.3 CategorisingProcesses i e, 21
3 Software Process Models 25
3.1 Predictive Modelling e 26
3.1.1 Costestimation 26
3.1.2 Faultprediction 72

Contents

)Y Contents

3.1.3 Limitations 28

3.2 Controlled Experiments e 30
3.21 Limitations 31

3.3 SimulationModelling e 31
3.3.1 SystemdynamiCs e 33
3.3.2 Eventdriven 34
3.3.3 Statebased 35
3.3.4 Limitations 35

3.4 DISCUSSION o o i e e 73
3.4.1 Softwaremeasurement 7 3

Related Work 39

4.1 Process Frameworks 40
411 TheSpiralmodel 40
412 TheOPENProcess i it 40
4.1.3 The Rational Unified Process (RUP) 42

4.2 Process Tailoring Approaches 42
4.2.1 Basiliand Rombach: Tailoring to Project Goals andi&mmnents . . . 42
4.2.2 Boehm and Turner: Balancing Agility and Discipline 44

4.3 Process Simulation 44
4.3.1 Drappa and Ludewig: Interactive simulation. 45
4.3.2 Lakey: Project management 46
4.3.3 Munch: Processpatterns 46
4.3.4 Storrle: Process patterns e 47

4.4 Experimental Frameworks e 47
4.4.1 Kitchenham et. al.: preliminary guidelines 48
4.4.2 Basiliet. al.: families of experiments 49
443 Williamset.al.: XP-EF. 50

45 PeopleFactors. 50
4.5.1 Layered behaviouralmodel 51
4.5.2 Humancompetenciesmodel 3 5
4.5.3 Teambehaviourmodel 53

Case for a Theoretical Model 55

5.1 ResearchPerspectives. 55
5.1.1 Modellingbasics 55
5.1.2 Researchbasics e 57

Contents

5.2 Case foraTheoreticalModel 59
521 Needforamodel, 59
5.2.2 Supportforamodel o 59

5.3 Approach e 61
5.3.1 Objectives. e 61
5.3.2 SCOPE 63

54 Evidence Strategy 65

6 Model Properties 67

6.1 PropertieS SoUrce e e e 67
6.1.1 Processcharacteristics e, 67
6.1.2 Modellimitations 96
6.1.3 Real-world situations 69

6.2 Properties 07

7 A Model 73

7.1 OVEIVIEW . . . o e e e e 73

7.2 KiTeModel 79
7.21 Project e 80
7.2.2 AOMICLYPES e e 81
7.2.3 Product 81
7.2.4 CapabilitySpec 84
7.25 Partition. 85
7.2.6 Perspective e 87
7.2.7 GoalsBenchmark 88
7.2.8 ENgINeer e 89
7.2.9 Context 91
7.2.10 Method 92
7.2.11 Technique e 94
7.2.12 ContextModel 96
7.2.13 Activity e 98
7.2.14 RealisedProcess. e 99

8 Evidence 105

8.1 Evidencemap 610

8.2 Capture all Processes and Process Models 107
8.2.1 Study 1: Waterfallprocess 111

8.2.2 Study2: Codingvariations 117

Vi

Contents

8.2.3
8.2.4
8.2.5
8.2.6
8.2.7
8.2.8
8.2.9

8.2.10
8.2.11

Study 3:
Study 4:
Study 5:
Study 6:
Study 7:
Study 8:
Study 9:

XPprocess
Collaborative programming field study
Event-driven simulationmodel
Pair programming classroomstudy

State-based simulation model
System dynamics simulation model

Concurrent programming field study

Study 10: Variations in XP process

Study A-

H: Miscellaneous process elements
8.3 Compare Processes and ProcessModels,

8.3.1 Study 11: Developer collaboration
8.4 Discussion

9 Identifying Process Risks

9.1 Overview of Risk Management
9.2 Risksin XP Process
9.2.1 Single iteration
9.2.2 Process
9.2.3 Discussion

10 Evaluation
10.1 Evaluation against Criteria
10.2 Evaluation against Related Work

Process frameworks

Process tailoring

Process modelling

Experimental frameworks

People factors

10.3 Evaluation against Research Objectives

10.4 Evaluation of Approach

10.5 Discussion

10.2.1
10.2.2
10.2.3
10.2.4
10.2.5

11 Conclusions
11.1 Summary

11.2 Contributions

11.3 Future Work
11.3.1 Model foundation
11.3.2 Process representation

Contents Vil

11.3.3 Processrisk 420
11.3.4 AsSSumptions e e 205
11.3.5 Evidence 205
11.3.6 Productmodel 206
11.3.7 Processcustomisation 206
11.3.8 Predictivetool 062
11.4 AndFinally e ok

A Glossary 209

vili Contents

5.1
5.2

6.1

7.1
7.2
7.3
7.4
7.5
7.6

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16

List of Figures

Model objectives 62
Objectives for ‘Represent’ e 63
Productand process e 70
Schematic overview of KiTe 74
KiTe Product e

KiTe Method and Technique 77
KiTe model relationships 80
State machineforKiTe 101
DisturbingaMethod 102
KiTegoal hierarchy 108
Goal hierarchy for ‘Capture’ 109
Goal hierarchy for ‘Miscellaneous’ 110
Simplewaterfall 114
Waterfall with defect resolution. 115
Codinginawaterfallprocess uu.. 118
Coding before designscompleted 118
Coding and fixingdesigns 119
Codinginan XP Process v v v v i i e 119
XP processiteration 124
CollaborationresultsinKiTe 132

PP and TDD simulationresultsinKiTe 137
PP and TDD Technique relative performance 137
State-based simulation baseline L. 144
Concurrency Technique relative performance 162
XP processiteration 164

LIST OF FIGURES

8.17 XP - Engineers withlow skilllevels 165

8.18 Case study overview

7.1

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23
8.24
8.25
8.26

List of Tables

State transition diagram for RealisedProcess 103
Waterfall Product Model 112
Waterfall Context Model 113
XPACtVItiIeS e 21
XP ProductModel 212
XP Engineer and ContextModels 123
XP PracticesinKiTe e 128
Collaborationresults (Nosek) uu.... 130
Collaboration ProductModel 130
Collaboration CodeRequirements Method 131
Collaboration Engineer and ContextModel 132
PP and TDD adoption results (Meliset.al.) 134
PP and TDD Product Model 135
PP and TDD DesignAndCodeAll Method 136
State-based simulation Product Model (Raffoet.al.) 142
State-based As-Is calculations 146
State-based To-Be calculations 147
State-based Activity effectiveness summary 148
System dynamics Baseline - Incr A Activities 155
System dynamics Baseline - Incr B Activites 155
System dynamics Baseline - Incr C Activities 156
System dynamics Case nl - Increment A Activities 156
System dynamics Case n3 - Increment A Activities 157
System dynamics Case n5 - Increment A Activities 158
System dynamics Case Optimal - Increment A Activities 158
System dynamics Case n6 - Increment A Activities 159
Productivity v. concurrency level (Parrishet.al.) 160

Xi

Xii

LIST OF TABLES

8.27 Concurrency ProductModel 161
8.28 Concurrency Engineer and ContextModel 163

Acknowledgements

I would like to thank Ewan Tempero, my supervior for this éigation, for his superb support
and guidance during the time of my research. Ewan alwaysesded in providing advice and
direction that were appropriate and timely and was alwagsdlawe for discussion. | am very
grateful for his encouragement.

During the time of this research, | attended a number of cenfees and workshops to
present papers based on the research. | would like to thariki¢hardson, Juan Ramil, Mary
Shaw, James Noble and Stephen MacDonell for taking the tinpedvide me with feedback
on some of these papers and Judith Segal, David Weiss ana Cadjhill for some interesting
and, from my perspective, fruitful discussions about vasiaspects of the research. | would
also like to thank Barbara Kitchenham for her willingnesshare with me some of her vast
knowledge relating to research techniques and evidencéhasdelping me on my beginner’s
journey towards an understanding of the current state oivaoé research.

Finally, I would like to thank the Department of Computer Suaie at the University of
Auckland for providing me with funding to support my reséaend the department staff for
providing an excellent atmosphere to work in.

Xiii

Xiv Acknowledgements

Introduction

1.1 Research Area Overview

Many researchers and practitioners are interested in erglalifferent ways of producing
software-intensive products. The reason is that it is gdlyeagreed in the software indus-
try that the kind of process used in a software project is a&etpr in determining what are the
outcomes for the project. Example outcomes are the abiflityeoproject to deliver the software
product on-time and within budget.

At the present time, there are a number of different kindsrot@ss in use in industry.
These are often categorised as either ‘traditional’ (comlgneeferred to as ‘heavyweight’) or
‘lightweight’. Traditional processes were created to hadptrol very large software projects
spanning several years, many of which exhibited safeticatior other ‘large loss’ aspects.
These processes are based on a manufacturing paradigmectiaaacterised by a phased
approach, in which, for example, design tasks are striefhasated from coding tasks. Different
phases tend to be carried out by different people, for exang)stems analysts’, ‘architects’,
‘coders’ and ‘testers’. As a result of the strict separatiange quantities of documentation
are required to communicate decisions among the variodiepam he well-known ‘Waterfall’
model represents an example of this kind of process.

The ‘light’ processes have emerged more recently as a resgonthe perceived ineffec-

1

Introduction

tiveness of the traditional methods when applied to, fomgia, Web development. These
processes tend to be more responsive to change in produitter@gnts and are characterised
by a strong people focus. Because of the close relationbkipgeen developers and customers,
the underlying development paradigm for these methodetogi presented as ‘software-as-a-
service’ and communications are generally face-to-fagd?’ (eXtreme Programming) is an
example of this kind of process.

Traditional and light processes are most commonly appbedifterent kinds of projects.
Traditional processes are most often used in very largeept®pr for safety-critical products.
Light processes are most often used for small projects atymts that can be produced and
changed quickly, for example, Web applications. HoweVete is much discussion about how
to apply individual processes to projects other than thosevhich they appear to be most
suited. For example, is it appropriate to use an XP procasddeeloping a product that is
expected to undergo further change in the future i.e. is qfaat product line? There is also
much discussion about the possibility of embedding elemehbne process into another. For
example, would deadlines be more likely to be met if a ‘PairgPamming’ technique from XP
was used within a Waterfall process?

In this dissertation, | address the possibility of synthiegj a new process from elements of
existing processes. In order to achieve this, | study thé&wbthose researchers who model the
software process for the purpose of predicting outcomesiandver limitations of the models
that render the models inappropriate as a basis for systhégiresent an abstraction of the
process that supports such synthesis.

1.2 Problem to be Addressed

It is widely acknowledged in the software industry that n@ qgmocess is appropriate for all
software development projects [10, 35, 38, 57]. Some belibat each kind of process is
appropriate for specific kinds of project and should be usdy within such projects. This
requires an assumption that any project can be classifiedeasfa number of discrete types,
each with fixed boundaries. Others are adamant that thewufite’ process may be applied
to any project, with only minor adaptations required. Ofagee interest is the possibility of
synthesising new processes from existing ones. Many r@sex@rand practitioners believe that
the chance of project success can be improved by selectowe$s elements from different
processes in order to tailor the process according to grejeecific factors [13, 35, 46, 93, 115,
144, 153].
The interest in customisation comes from two directionse Titst is the ‘traditional’ ver-

sus ‘light’ discussions [16, 21]. Practitioners underdtéimat different kinds of process have

1.2 Problem to be Addressed

different strengths, but would like to know under which aimtstances elements from one pro-
cess may be embedded in another. The kinds of questions exitede: “How well does XP
perform if the customer is unable to be on-site?”; “How wodéivery schedules be affected
if developers practice Test Driven Design within a Waténfabcess?”. The second source of
interest is from the study of software economics. The suggekere is that a project should
maximise value creation [102] and should use a process shab imore costly than neces-
sary [24]. The kinds of questions that represent this kinthtdrest include: “What will be
the effect on the quality of the delivered product if we regl@ode inspections by automated
checking to reduce cost?”; “Can we customise a process lggt outcomes for a specific
project by combining elements from existing processes?”.

Although the industry would like to answer the kinds of quess illustrated above, this is
not possible at the present time. Before we can answer suestigans, we must first be able
to represent any process element from any process in a wafathiéitates composition and
prediction. It is contended here that no suitable abstra@kists.

One reason is that the problem space is not yet well-undetstGurrent processes have
emerged in response to perceived need and, although atérane been made to understand
what are the key factors that affect outcomes, there is liktta to support claims. Efforts have
been made to collect supporting data, but the complexithefgroblem space has rendered
this difficult. In addition to the many technical challengagsented by a fast-changing in-
dustry, software process tasks are carried out by peopierrtitan machines, and so issues of
psychology and social behaviour are relevant.

It is now generally accepted that human factors, for exapmpésmagement style and devel-
oper experience and motivation, have a major impact on tbeess of a software development
effort [3, 24, 37, 34, 155, 157]. Curtis et. al. suggested988.that process problems were
overwhelmingly caused by people-related factors and m@sed at that time the need for a be-
havioural model of the software development process [36jvéVer, there are no such models
on which to base formal research into the effects of humatofa®n outcomes and current
processes either assume a tendency to the mean or make #sssrmapout which factors are
key. For example, the Waterfall process does not includecangideration of human factors.
This is perhaps because of its traditional use for very larggects where human effects ‘av-
erage out’ over the course of the project. XP, on the othed hambeds assumptions about
developer performance, for example, that all developenkwwre efficiently and effectively
together than alone. Although this represents some caaside of human factors, there is no
mechanism for accommodating differences between develope

In an attempt to accumulate data to increase the industoyfisyato predict process out-
comes, researchers have carried out different kinds ofegu@here are a number of concerns
that relate to these studies. One such concern is the issivab measure the various factors

Introduction

and attributes that apply to the software process. In 19%6h&nhham, Pfleeger and Fenton
identified a lack of integrity in the way in which software ptiioners and researchers measure
software-related attributes [89]. It is important to workhwalidated software metrics and at
that time there was no agreed way to perform such validafibe.authors made a plea for the
industry to agree on a way to bridge the gap between measntéheory and software met-
rics. Although the plea appeared to spawn some heated disossit seems that no consensus
has been reached, and the industry continues to work withiaadtased on disputed founda-
tions [91]. A second concern is that, as software engingesia relatively immature discipline,
researchers have not yet learned to routinely apply souactipes when conducting studies,
and so resulting data is scarce, fragmented and of varyiatitgli7, 14, 46, 90, 125]. Gilmore
describes four modes of research data collection and steesnly one of these, hypothesis
testing, results in establishing causal connections. Hleotimers agree that, in order to carry
out this kind of research, a theoretical framework is esakinbm which to spawn hypotheses
[38, 55, 90]. As discussed above, there is no suitable aitrafor elements of a software
process and so it is difficult to carry out hypothesis tesargeriments and establish causal
connections.

In summary, the industry at the present time has no absiractitheoretical framework for
software development processes. This means that praetii@are unable to combine process
elements and predict outcomes and researchers find it diffacinvestigate causal relation-
ships.

1.3 Modelling for Understanding

In the previous Section, | described a problem of lack of atbgcal model of the software
process. In this Section, | consider the act of model bugdiiom an historical perspective and
conclude that an appropriate model should be explanattimgrsghan predictive and that such
a model will be holistic rather than fragmented.

Rivett [139], when describing the status of model buildimgfie field of operations research
in 1972, reminds us that, throughout history, man has catigtesearched for pattern and gen-
eralisation. From around 700 BC, the Babylonians measurddecorded the motions of the
stars and planets, analysed these, and were successftédasting planetary events with great
precision. Their recordings of hundreds of years of playedata enabled them to estimate the
value of the motion of the sun from the node with an error of/dive seconds. The large quan-
tity of data collected by the Babylonians supported aceupat¢diction. In fact, two thousand
years later, the same estimation, based on models of pigmatdion, yielded an accuracy of
only seven seconds. The observation is that large quantifiaccurate data often yield more

1.3 Modelling for Understanding

accurate predictions than those based on models.

Although the Babylonians recorded events with care, theyenm attempt to theorise. The
Greeks, on the other hand, followed a different approact,taurilt first mechanical and then
geometrical models of planetary motion in an attempt to wstdad and explain. However,
their models were made up of a number of parts and the Greekadauccess in unifying
these. When applied to the Babylonian data, the models werelfto be incorrect [139]. This
illustrates that it is often difficult to achieve consisteesults when a fragmented approach is
taken i.e. a model of a part of a system may vyield results tleair@alid in the context of the
bigger system.

Rivett presents another example from more recent timeslthstrates that consistent and
complete results will be achieved only if a model is based mmderlying theory. Kepler
proposed three laws of planetary motion based on data thdiden collected by Tycho Brahe.
He applied an elliptical model to the motion of the planetd &inm this model produced laws
that appeared to work. No-one knew the fundamental reasgnthenlaws worked. | notice
that, as the laws were based on planetary data, these lawsramipredict the movements of
other celestial objects, for example, comets. Newton lateaght some understanding to bear
on celestial motion when he postulated a force that acteddsst all objects with mass in the
universe. From this understanding and unification of ideas fohysics and astronomy, he was
able to show that orbits for celestial objects, for exampleets, were not only elliptical, but
could be hyperbolic and parabolic. He was able to predictirately for all celestial bodies,
show that Kepler's Laws were a special case of Newton’s Lavasiaprove the accuracy of
Kepler's calculations.

Rivett summarises by stating that a model may be predictitieowt being explanatory, but
an holistic, explanatory model is always predictive. Wheapply this idea to the software
process, it follows that previous process data may be ssitdlysused to predict the outcomes
of future projects that are based on similar processes. énstahd that, if we wish to predict
in a more general way, our predictive models must be holistittexplanatory. This means our
models must be able to represent any element of any prooessling both existing elements
and those defined at some future time.

I have identified the need to represent different processeaiés for synthesis and predic-
tion. In order to meet these goals, | want to capture prodessents in a descriptive way i.e.
capture elements as they actually happen.

Introduction

1.4 Thesis Statement

Before we can synthesise processes from existing and fptapess elements, we must first be
able to capture elements of processes and process modébse Be can predict outcomes of
applying process elements, we must first be able to comparefticts on these outcomes of
different elements.

| believe that it is possible to capture software developrpercesses and process models in
a way that allows us to compare processes and process mod#ig fourpose of constructing
new processes.

My thesis is realised as a conceptual modelling framew&iKe, the elements of which
are themselves models. The framework supports capturendffailitates comparison and
composition of, processes and process models.

1.5 Approach

| have postulated the need for a model of the software dewsdopprocess that allows capture
of any element from any process or process model and faediteomparison between, and
composition of, elements. The long term goal for such a migdhk ability to predict outcomes
when process elements are combined in various ways. Rivetbthers argue that a model for
prediction must be holistic and explanatory. ‘Holisticggests that all relevant aspects of the
process, for example, behavioural aspects, must be irtlu@planatory’ suggests that the
model should be based on a theoretical abstraction ratherdah specific data.

The creation of such a model is difficult. If the industry iscreate such a model, it must
first identify what are the characteristics of existing @sses that must be included in a repre-
sentation and understand what are the limitations of exjgiredictive models that render them
inappropriate for general process representation.

| thus examine the characteristics of existing processepeotess models and create from
this examination a set of ‘desirable properties’. Thes@eries will act as preliminary criteria
against which to judge any candidate model. This providesfanmal mechanism for evalu-
ation, in that the criteria are subjective in nature. The &irto gain some confidence prior to
any evidence-gathering attempt that the candidate modi&kiy to support the objectives of
capture and comparison.

Once a candidate model is proposed and evaluated againgtelminary criteria, some
evidence must be presented to support the thesis that thel swggports capture and compar-
ison for the purpose of synthesis and prediction. As thezenaany different kinds of process
element, there is a rich space for investigation. Possitoléskof element include those from
traditional and agile processes, large and small projetésnents from process models, and

1.6 Overview of Contributions

many more. As a means of structuring the evidence that repteshe model’s ability to cap-
ture and compare process elements, | have chosen an appadi@cargumentatioralong with
an established notation for structuring argume@isal Structuring Notation (GSNArgumen-
tation is “an approach which can be used for describing how evideatsfies requirements
and objectives” [160]. The use of a suitable notation sucG8blhelps researchers to easily
identify what evidence is required and helps stakeholdsgsas a glance what is the ‘evidence
coverage’. This approach has been used for many years iratbty ritical domain and has
recently been applied in the software domain [160].

The need to capture existing models that are the basis afusstudies means that | must
provide a means of representing studies that vary in irtieddne consequence of this is that it
must be possible to capture models based on different bel@fexample, beliefs about which
contextual factors most affect outcomes. This will be nsagsuntil the industry has progressed
to a better understanding of these factors. This suggestd thust find an abstraction that
accommodates a potentially huge variation in the statemwfepbssible influencing factors. |
am also required to capture processes that may have difidrets of objectives, for example,
relating to cost or quality. For these kinds of reasons, theti®n model will be realised as a
framework, the elements of which are models in their owntriglor example, there is a model
(abstraction) for the contextual factors and one for the@ss objectives.

Evaluation of the framework will involve:

1. Identification of the range of processes and process madat must be successfully
represented.

2. Discussion about how the framework meets the criteriabdished as a result of exami-
nation of process characteristics and process model tionis

3. Presentation of evidence to support the claim that itledtprocesses and models can be
represented and that representation supports comparison.

4. Discussion about some limitations inherent in the apgroa

1.6 Overview of Contributions

The main contribution of this thesis is the identificationtbé need for a holistic approach
to modelling the sofware development process in a desegiptay and the presentation of a
candidate modelling framework that provides a way of regméag and comparing different
kinds of process elements.

A second contribution is the identification of the variousaa&ch groups that model the
software development process to predict outcomes and therstanding of how these groups

Introduction

differ in approach and what are the limitations inherentia work of each. The contribution
also includes a realisation that the narrow approach takexabh of the groups is a symptom
of lack of real understanding and is the basis for the casa foore holistic approach.

A third contribution is the establishment of an approactd@reloping and evaluating mod-
els that claim to describe systems in a holistic and exptapatiay. The strategy is to first
establish model objectives and identify a comprehensingeaf example systems to be de-
scribed by the model. The next step is to examine the chaistate for, and problems with,
the example systems to help identify key model propertidsees€ provide some basis for es-
tablishment of a suitable model structure and may be usedtasa against which to evaluate
candidate models in a preliminary evaluation step. Findllg ability of the candidate model
to satisfy objectives is established by accumulating afplastof different kinds of evidence
relating to the example systems.

A final contribution is the understanding that the existeota suitable framework gives
rise to a number of unplanned research directions and thes&ldg of one such possibility,
that of process-specific risk profiles. Remaining direcimtlude the use of the framework to
support research. Such directions are suggested as ardatife research.

1.7 Terminology

The issue of terminology in the field of software engineeigmgroblematic. Words such as
‘task’ and ‘activity’ are used by different authors to mehe same thing. ‘Process’ and ‘prod-
uct’ also tend to be undefined and many other terms are appitadut any definition of what
they mean.

My approach in this dissertation is to define terms used imaigeg way in a Glossary (see
Appendix A). Such terms atitalicisedand defined on first use and subsequently italicised only
when this helps clarify content. | also usalicised text when emphasising a word or phrase,
even if not included in the Glossary.

For terms used by authors of a study being described, | iedlue term in ‘single quotes’.
For example, a process might be described by an author asisomg number of ‘Activities’
and ‘Tasks’. In such cases, | do not try to define exactly whatterm means, unless this is
necessary for the discussion.

| also use ‘single quotes’ when paraphrasing and “doubléegiovhen quoting phrases
from other sources.

For elements of the model that is the subject of this thesise5lanting Text

1.8 Document Roadmap 9

1.8 Document Roadmap

This dissertation is placed in the areaoftware processessed byprojectsto produce software-
intensiveproducts A projectis “.. a temporary endeavour to create a unique service augto
and with a definite beginning and end” [135]. | note that the§idtion says nothing about the
form of the service or product delivery and, in this thesigsiel a project as any effort that
makes a delivery of any kind to any stakeholder. For exanagbeoject might deliver a finished
product to a customer, a prototype to the development growptest plan to the test group.
In other words, project objectives and scope are decidedhéynterested parties and project
definition is constrained only by the need to have a definad @ta end and agreed delivery.
A software process “...the set of all activities which are carried out in trentext of a con-
crete software development project” [59]. phoductcomprises the artifacts that implement a
software-intensive system and are the deliverables fronojeq.

This thesis is organised as follows.

In Chapter 2, | consider some different viewpoints on whataiware development and
note that the range of proposed paradigms indicates a laglabfinderstanding of the essential
nature of the activity. | then provide an overview of some omon software development
processes. | finally discuss some ways in which processesatggorised. | suggest that the
interest in categorising is a symptom of lack of understagdnd that focus should return to the
more important task of understanding what are the key ctaratics common to all software
processes.

In Chapter 3, | examine the various kinds of study carriecoguesearchers with the goal of
predicting software process outcomes. | learn that therthaee separate communities and each
applies a different approach and builds different kinds ofleis of the process. | expose some
limitations inherent in the work of the different groups dyosving that the kinds of models
applied by each contain ambiguities and assumptions timatereimpossible comparison of
results.

In Chapter 4, | examine research related to the goal of psoftesibility. This related
work spans several research areas, some directly relattdthers more indirectly. | first
discuss processes and process frameworks for which cldiftexibility are made and suggest
limitations based on an inability to capture the differemids of process presented in Chapter
2. | then examine process models for which claims of flexjpdre made and show how each
is limited according to its underlying approach as discdssehe previous Chapter. | finally
discuss attempts to model human-related factors and natedbkearch is progressing in this
direction but, as yet, no suitable model of the human asétte process exists.

In Chapter 5, | present a justification of the need for a thimakmodel of the software
development process. | first provide a general overvieweflifferent approaches to gathering

10

Introduction

data and discover that, if the aim is to establish causaledions between factors, a theoretical
framework is required. | next present some quotes from a euwitresearchers stating the need
for a holistic theory and reminding us that a characterististudies that are not based on such
a theory is an inability to achieve consistent results. Iyin&suggest that current software
process research is achieving inconsistent results bedhesresearch is fragmented and is
not based on an underlying theory. | conclude that a formalehof the software process is
required and formalise the objectives for such a model irctmgext of this thesis.

In Chapter 6, | analyse the various processes and processisyaascribed in Chapters 2 —
5 with the aim of understanding what might be the propertiesraodel that is a solution to the
problem of process customisation. | also consider somélifeascenarios from industry to
help with identification of such properties. | then list thesded properties to be used as criteria
against which to evaluate a candidate model.

In Chapter 7, | present a candidate modéiTe. My approach to presentation is to first
provide a schematic overview as a ‘gentle’ introductiord smthen present and formalise the
abstract model.

In Chapter 8, | present some evidence to support the proposddl. This includes evidence
to support the claim th&iTe may be used to capture any process or process model and that it
supports comparison of studies.

In Chapter 9, | discuss how the existence of a suitable maaeiges some benefits not
originally planned or realised. As illustration, | show h&@Te can be applied to the identifi-
cation of risks specific to XP (eXtreme Programming) proesss

In Chapter 10, | evaluate the candidate magdle. | first discuss how welKiTe fulfils the
criteria stated in Chapter 6. The aim of this discussion gtwide some preliminary confidence
thatKiTe will address the various process characteristics destiib€hapter 2 and overcome
the limitations of current process models described in @raB and 4. | then examine the
evidence presented in Chapter 8 and discuss the strengih&eaknesses of the evidence.
The studies that comprise this evidence represent attdmfital inadequacies witKiTe as a
solution to the problem of capture and comparison. | findtiaevidence is reasonably strong,
but there are some serious gaps. | finally discuss some tioriminherent in the approach
taken.

Chapter 11, | summarise the thesis and suggest some futearch directions resulting
from the research.

