

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New
Zealand).

This thesis may be consulted by you, provided you comply with the
provisions of the Act and the following conditions of use:

• Any use you make of these documents or images must be for
research or private study purposes only, and you may not make
them available to any other person.

• Authors control the copyright of their thesis. You will recognise the
author's right to be identified as the author of this thesis, and due
acknowledgement will be made to the author where appropriate.

• You will obtain the author's permission before publishing any
material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the
digital copy of their work to be used subject to the conditions specified on
the Library Thesis Consent Form.

http://researchspace.auckland.ac.nz/
http://researchspace.auckland.ac.nz/feedback

Department of Electrical & Computer Engineering

Software Engineering
The University of Auckland

New Zealand

A Flexible Software Process

Model

Diana Kirk
April 2007

Supervisor: Associate Professor Ewan Tempero

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE RE-

QUIREMENTS OFDOCTOR OFPHILOSOPHY IN ENGINEERING

The University of Auckland

Thesis Consent Form

This thesis may be consulted for the purpose of research or private study provided that due

acknowledgement is made where appropriate and that the author’s permission is obtained before

any material from the thesis is published.

I agree that the University of Auckland Library may make a copy of this thesis for supply to the

collection of another prescribed library on request from that Library; and This thesis may not

be photocopied other than to supply a copy for the collectionof another prescribed library.

Signed: .

Date: .

Created: 5 July 2001

Last updated: 9 August 2001

Abstract

Many different kinds of process are used to develop softwareintensive products, but there is

little agreement as to which processes give the best resultsunder which circumstances. Prac-

titioners and researchers believe that project outcomes would be improved if the development

process was constructed according to project-specific factors. In order to achieve this goal,

greater understanding of the factors that most affect outcomes is needed. To improve under-

standing, researchers build models of the process and carryout studies based on these models.

However, current models contain many ambiguities and assumptions, and so it is not clear what

the results of the studies mean. The statement of this thesisis that it is possible to create an

abstraction of the software development process that will provide a mechanism for comparing

software processes and software process models. The long term goal of the research is to pro-

vide planners with a means of tailoring the development process on a project by project basis,

with the aim of reducing risk and improving outcomes.

i

ii ABSTRACT

Contents

1 Introduction 1

1.1 Research Area Overview .. 1

1.2 Problem to be Addressed .. 2

1.3 Modelling for Understanding 4

1.4 Thesis Statement .5

1.5 Approach . 6

1.6 Overview of Contributions 7

1.7 Terminology . 8

1.8 Document Roadmap . 8

2 Software Development Processes 11

2.1 Nature of Software Development 11

2.2 Processes Overview .. 14

2.2.1 Waterfall . 14

2.2.2 Spiral . 15

2.2.3 Rational Unified Process (RUP) .. 16

2.2.4 Cleanroom . 17

2.2.5 Agile alliance . 19

2.2.6 XP . 19

2.2.7 Scrum . 20

2.2.8 Crystal . 21

2.2.9 Feature Driven Development (FDD) 21

2.3 Categorising Processes 21

3 Software Process Models 25

3.1 Predictive Modelling .. . 26

3.1.1 Cost estimation . 26

3.1.2 Fault prediction . 27

iii

iv Contents

3.1.3 Limitations . 28

3.2 Controlled Experiments 30

3.2.1 Limitations . 31

3.3 Simulation Modelling .. . 31

3.3.1 System dynamics . 33

3.3.2 Event driven . 34

3.3.3 State based . 35

3.3.4 Limitations . 35

3.4 Discussion . 37

3.4.1 Software measurement . 37

4 Related Work 39

4.1 Process Frameworks .40

4.1.1 The Spiral model . 40

4.1.2 The OPEN process . 40

4.1.3 The Rational Unified Process (RUP) 42

4.2 Process Tailoring Approaches 42

4.2.1 Basili and Rombach: Tailoring to Project Goals and Environments . . . 42

4.2.2 Boehm and Turner: Balancing Agility and Discipline 44

4.3 Process Simulation .. 44

4.3.1 Drappa and Ludewig: Interactive simulation 45

4.3.2 Lakey: Project management .46

4.3.3 Munch: Process patterns .46

4.3.4 Storrle: Process patterns .. . 47

4.4 Experimental Frameworks .. . 47

4.4.1 Kitchenham et. al.: preliminary guidelines 48

4.4.2 Basili et. al.: families of experiments 49

4.4.3 Williams et. al.: XP-EF .50

4.5 People Factors .50

4.5.1 Layered behavioural model .. 51

4.5.2 Human competencies model . 53

4.5.3 Team behaviour model . 53

5 Case for a Theoretical Model 55

5.1 Research Perspectives 55

5.1.1 Modelling basics . 55

5.1.2 Research basics . 57

Contents v

5.2 Case for a Theoretical Model 59

5.2.1 Need for a model . 59

5.2.2 Support for a model . 59

5.3 Approach . 61

5.3.1 Objectives . 61

5.3.2 Scope . 63

5.4 Evidence Strategy .. 65

6 Model Properties 67

6.1 Properties Source .. 67

6.1.1 Process characteristics .. . 67

6.1.2 Model limitations . 69

6.1.3 Real-world situations .. 69

6.2 Properties . 70

7 A Model 73

7.1 Overview . 73

7.2 KiTe Model . 79

7.2.1 Project . 80

7.2.2 Atomic types . 81

7.2.3 Product . 81

7.2.4 CapabilitySpec . 84

7.2.5 Partition . 85

7.2.6 Perspective . 87

7.2.7 GoalsBenchmark . 88

7.2.8 Engineer . 89

7.2.9 Context . 91

7.2.10 Method . 92

7.2.11 Technique . 94

7.2.12 ContextModel . 96

7.2.13 Activity . 98

7.2.14 RealisedProcess .99

8 Evidence 105

8.1 Evidence map . 106

8.2 Capture all Processes and Process Models 107

8.2.1 Study 1: Waterfall process .. 111

8.2.2 Study 2: Coding variations .. 117

vi Contents

8.2.3 Study 3: XP process . 120

8.2.4 Study 4: Collaborative programming field study 129

8.2.5 Study 5: Event-driven simulation model 133

8.2.6 Study 6: Pair programming classroom study 138

8.2.7 Study 7: State-based simulation model 140

8.2.8 Study 8: System dynamics simulation model 149

8.2.9 Study 9: Concurrent programming field study 160

8.2.10 Study 10: Variations in XP process 163

8.2.11 Study A-H: Miscellaneous process elements 166

8.3 Compare Processes and Process Models 168

8.3.1 Study 11: Developer collaboration 168

8.4 Discussion . 171

9 Identifying Process Risks 173

9.1 Overview of Risk Management .. . 173

9.2 Risks in XP Process .178

9.2.1 Single iteration . 179

9.2.2 Process . 182

9.2.3 Discussion . 184

10 Evaluation 185

10.1 Evaluation against Criteria 185

10.2 Evaluation against Related Work 189

10.2.1 Process frameworks . 189

10.2.2 Process tailoring .190

10.2.3 Process modelling . 192

10.2.4 Experimental frameworks .. 193

10.2.5 People factors . 194

10.3 Evaluation against Research Objectives 194

10.4 Evaluation of Approach 196

10.5 Discussion .197

11 Conclusions 201

11.1 Summary . 201

11.2 Contributions .. 202

11.3 Future Work . 203

11.3.1 Model foundation . 203

11.3.2 Process representation .. . 204

Contents vii

11.3.3 Process risk . 204

11.3.4 Assumptions . 205

11.3.5 Evidence . 205

11.3.6 Product model . 206

11.3.7 Process customisation .. 206

11.3.8 Predictive tool . 206

11.4 And Finally . 206

A Glossary 209

viii Contents

List of Figures

5.1 Model objectives .62

5.2 Objectives for ‘Represent’ 63

6.1 Product and process .. 70

7.1 Schematic overview of KiTe .. . 74

7.2 KiTe Product . 75

7.3 KiTe Method and Technique .. 77

7.4 KiTe model relationships 80

7.5 State machine for KiTe .. 101

7.6 Disturbing a Method .102

8.1 KiTe goal hierarchy .. 108

8.2 Goal hierarchy for ‘Capture’ 109

8.3 Goal hierarchy for ‘Miscellaneous’ 110

8.4 Simple waterfall .. 114

8.5 Waterfall with defect resolution 115

8.6 Coding in a waterfall process 118

8.7 Coding before designs completed 118

8.8 Coding and fixing designs .. 119

8.9 Coding in an XP process .119

8.10 XP process iteration 124

8.11 Collaboration results in KiTe 132

8.12 PP and TDD simulation results in KiTe 137

8.13 PP and TDD Technique relative performance 137

8.14 State-based simulation baseline 144

8.15 Concurrency Technique relative performance 162

8.16 XP process iteration 164

ix

x LIST OF FIGURES

8.17 XP - Engineers with low skill levels 165

8.18 Case study overview .. 169

List of Tables

7.1 State transition diagram for RealisedProcess 103

8.1 Waterfall Product Model .. . 112

8.2 Waterfall Context Model .. . 113

8.3 XP Activities . 121

8.4 XP Product Model . 122

8.5 XP Engineer and Context Models .. . 123

8.6 XP Practices in KiTe .128

8.7 Collaboration results (Nosek) 130

8.8 Collaboration Product Model 130

8.9 Collaboration CodeRequirements Method 131

8.10 Collaboration Engineer and Context Model 132

8.11 PP and TDD adoption results (Melis et. al.) 134

8.12 PP and TDD Product Model .135

8.13 PP and TDD DesignAndCodeAll Method 136

8.14 State-based simulation Product Model (Raffo et. al.) 142

8.15 State-based As-Is calculations 146

8.16 State-based To-Be calculations 147

8.17 State-based Activity effectiveness summary 148

8.18 System dynamics Baseline - Incr A Activities 155

8.19 System dynamics Baseline - Incr B Activities 155

8.20 System dynamics Baseline - Incr C Activities 156

8.21 System dynamics Case n1 - Increment A Activities 156

8.22 System dynamics Case n3 - Increment A Activities 157

8.23 System dynamics Case n5 - Increment A Activities 158

8.24 System dynamics Case Optimal - Increment A Activities 158

8.25 System dynamics Case n6 - Increment A Activities 159

8.26 Productivity v. concurrency level (Parrish et. al.) 160

xi

xii LIST OF TABLES

8.27 Concurrency Product Model 161

8.28 Concurrency Engineer and Context Model 163

Acknowledgements

I would like to thank Ewan Tempero, my supervior for this dissertation, for his superb support

and guidance during the time of my research. Ewan always succeeded in providing advice and

direction that were appropriate and timely and was always available for discussion. I am very

grateful for his encouragement.

During the time of this research, I attended a number of conferences and workshops to

present papers based on the research. I would like to thank Ita Richardson, Juan Ramil, Mary

Shaw, James Noble and Stephen MacDonell for taking the time to provide me with feedback

on some of these papers and Judith Segal, David Weiss and Colin Coghill for some interesting

and, from my perspective, fruitful discussions about various aspects of the research. I would

also like to thank Barbara Kitchenham for her willingness toshare with me some of her vast

knowledge relating to research techniques and evidence andthus helping me on my beginner’s

journey towards an understanding of the current state of software research.

Finally, I would like to thank the Department of Computer Science at the University of

Auckland for providing me with funding to support my research and the department staff for

providing an excellent atmosphere to work in.

xiii

xiv Acknowledgements

1
Introduction

1.1 Research Area Overview

Many researchers and practitioners are interested in exploring different ways of producing

software-intensive products. The reason is that it is generally agreed in the software indus-

try that the kind of process used in a software project is a keyfactor in determining what are the

outcomes for the project. Example outcomes are the ability of the project to deliver the software

product on-time and within budget.

At the present time, there are a number of different kinds of process in use in industry.

These are often categorised as either ‘traditional’ (commonly referred to as ‘heavyweight’) or

‘lightweight’. Traditional processes were created to helpcontrol very large software projects

spanning several years, many of which exhibited safety-critical or other ‘large loss’ aspects.

These processes are based on a manufacturing paradigm and are characterised by a phased

approach, in which, for example, design tasks are strictly separated from coding tasks. Different

phases tend to be carried out by different people, for example, ‘systems analysts’, ‘architects’,

‘coders’ and ‘testers’. As a result of the strict separation, large quantities of documentation

are required to communicate decisions among the various parties. The well-known ‘Waterfall’

model represents an example of this kind of process.

The ‘light’ processes have emerged more recently as a response to the perceived ineffec-

1

2 Introduction

tiveness of the traditional methods when applied to, for example, Web development. These

processes tend to be more responsive to change in product requirements and are characterised

by a strong people focus. Because of the close relationshipsbetween developers and customers,

the underlying development paradigm for these methodologies is presented as ‘software-as-a-

service’ and communications are generally face-to-face. ‘XP’ (eXtreme Programming) is an

example of this kind of process.

Traditional and light processes are most commonly applied to different kinds of projects.

Traditional processes are most often used in very large projects or for safety-critical products.

Light processes are most often used for small projects or products that can be produced and

changed quickly, for example, Web applications. However, there is much discussion about how

to apply individual processes to projects other than those for which they appear to be most

suited. For example, is it appropriate to use an XP process for developing a product that is

expected to undergo further change in the future i.e. is partof a product line? There is also

much discussion about the possibility of embedding elements of one process into another. For

example, would deadlines be more likely to be met if a ‘Pair Programming’ technique from XP

was used within a Waterfall process?

In this dissertation, I address the possibility of synthesising a new process from elements of

existing processes. In order to achieve this, I study the work of those researchers who model the

software process for the purpose of predicting outcomes anduncover limitations of the models

that render the models inappropriate as a basis for synthesis. I present an abstraction of the

process that supports such synthesis.

1.2 Problem to be Addressed

It is widely acknowledged in the software industry that no one process is appropriate for all

software development projects [10, 35, 38, 57]. Some believe that each kind of process is

appropriate for specific kinds of project and should be used only within such projects. This

requires an assumption that any project can be classified as one of a number of discrete types,

each with fixed boundaries. Others are adamant that their ‘favourite’ process may be applied

to any project, with only minor adaptations required. Of greater interest is the possibility of

synthesising new processes from existing ones. Many researchers and practitioners believe that

the chance of project success can be improved by selecting process elements from different

processes in order to tailor the process according to project-specific factors [13, 35, 46, 93, 115,

144, 153].

The interest in customisation comes from two directions. The first is the ‘traditional’ ver-

sus ‘light’ discussions [16, 21]. Practitioners understand that different kinds of process have

1.2 Problem to be Addressed 3

different strengths, but would like to know under which circumstances elements from one pro-

cess may be embedded in another. The kinds of questions askedinclude: “How well does XP

perform if the customer is unable to be on-site?”; “How woulddelivery schedules be affected

if developers practice Test Driven Design within a Waterfall process?”. The second source of

interest is from the study of software economics. The suggestion here is that a project should

maximise value creation [102] and should use a process that is no more costly than neces-

sary [24]. The kinds of questions that represent this kind ofinterest include: “What will be

the effect on the quality of the delivered product if we replace code inspections by automated

checking to reduce cost?”; “Can we customise a process to give best outcomes for a specific

project by combining elements from existing processes?”.

Although the industry would like to answer the kinds of questions illustrated above, this is

not possible at the present time. Before we can answer such questions, we must first be able

to represent any process element from any process in a way that facilitates composition and

prediction. It is contended here that no suitable abstraction exists.

One reason is that the problem space is not yet well-understood. Current processes have

emerged in response to perceived need and, although attempts have been made to understand

what are the key factors that affect outcomes, there is little data to support claims. Efforts have

been made to collect supporting data, but the complexity of the problem space has rendered

this difficult. In addition to the many technical challengespresented by a fast-changing in-

dustry, software process tasks are carried out by people rather than machines, and so issues of

psychology and social behaviour are relevant.

It is now generally accepted that human factors, for example, management style and devel-

oper experience and motivation, have a major impact on the success of a software development

effort [3, 24, 37, 34, 155, 157]. Curtis et. al. suggested in 1988 that process problems were

overwhelmingly caused by people-related factors and recognised at that time the need for a be-

havioural model of the software development process [36]. However, there are no such models

on which to base formal research into the effects of human factors on outcomes and current

processes either assume a tendency to the mean or make assumptions about which factors are

key. For example, the Waterfall process does not include anyconsideration of human factors.

This is perhaps because of its traditional use for very largeprojects where human effects ‘av-

erage out’ over the course of the project. XP, on the other hand, embeds assumptions about

developer performance, for example, that all developers work more efficiently and effectively

together than alone. Although this represents some consideration of human factors, there is no

mechanism for accommodating differences between developers.

In an attempt to accumulate data to increase the industry’s ability to predict process out-

comes, researchers have carried out different kinds of studies. There are a number of concerns

that relate to these studies. One such concern is the issue ofhow to measure the various factors

4 Introduction

and attributes that apply to the software process. In 1995, Kitchenham, Pfleeger and Fenton

identified a lack of integrity in the way in which software practitioners and researchers measure

software-related attributes [89]. It is important to work with validated software metrics and at

that time there was no agreed way to perform such validation.The authors made a plea for the

industry to agree on a way to bridge the gap between measurement theory and software met-

rics. Although the plea appeared to spawn some heated discussions, it seems that no consensus

has been reached, and the industry continues to work with metrics based on disputed founda-

tions [91]. A second concern is that, as software engineering is a relatively immature discipline,

researchers have not yet learned to routinely apply sound practices when conducting studies,

and so resulting data is scarce, fragmented and of varying quality [7, 14, 46, 90, 125]. Gilmore

describes four modes of research data collection and statesthat only one of these, hypothesis

testing, results in establishing causal connections. He and others agree that, in order to carry

out this kind of research, a theoretical framework is essential from which to spawn hypotheses

[38, 55, 90]. As discussed above, there is no suitable abstraction for elements of a software

process and so it is difficult to carry out hypothesis testingexperiments and establish causal

connections.

In summary, the industry at the present time has no abstraction or theoretical framework for

software development processes. This means that practitioners are unable to combine process

elements and predict outcomes and researchers find it difficult to investigate causal relation-

ships.

1.3 Modelling for Understanding

In the previous Section, I described a problem of lack of a theoretical model of the software

process. In this Section, I consider the act of model building from an historical perspective and

conclude that an appropriate model should be explanatory rather than predictive and that such

a model will be holistic rather than fragmented.

Rivett [139], when describing the status of model building in the field of operations research

in 1972, reminds us that, throughout history, man has constantly searched for pattern and gen-

eralisation. From around 700 BC, the Babylonians measured and recorded the motions of the

stars and planets, analysed these, and were successful in forecasting planetary events with great

precision. Their recordings of hundreds of years of planetary data enabled them to estimate the

value of the motion of the sun from the node with an error of only five seconds. The large quan-

tity of data collected by the Babylonians supported accurate prediction. In fact, two thousand

years later, the same estimation, based on models of planetary motion, yielded an accuracy of

only seven seconds. The observation is that large quantities of accurate data often yield more

1.3 Modelling for Understanding 5

accurate predictions than those based on models.

Although the Babylonians recorded events with care, they made no attempt to theorise. The

Greeks, on the other hand, followed a different approach, and built first mechanical and then

geometrical models of planetary motion in an attempt to understand and explain. However,

their models were made up of a number of parts and the Greeks had no success in unifying

these. When applied to the Babylonian data, the models were found to be incorrect [139]. This

illustrates that it is often difficult to achieve consistentresults when a fragmented approach is

taken i.e. a model of a part of a system may yield results that are invalid in the context of the

bigger system.

Rivett presents another example from more recent times thatillustrates that consistent and

complete results will be achieved only if a model is based on an underlying theory. Kepler

proposed three laws of planetary motion based on data that had been collected by Tycho Brahe.

He applied an elliptical model to the motion of the planets and from this model produced laws

that appeared to work. No-one knew the fundamental reason why the laws worked. I notice

that, as the laws were based on planetary data, these laws could not predict the movements of

other celestial objects, for example, comets. Newton laterbrought some understanding to bear

on celestial motion when he postulated a force that acted between all objects with mass in the

universe. From this understanding and unification of ideas from physics and astronomy, he was

able to show that orbits for celestial objects, for example comets, were not only elliptical, but

could be hyperbolic and parabolic. He was able to predict accurately for all celestial bodies,

show that Kepler’s Laws were a special case of Newton’s Laws and improve the accuracy of

Kepler’s calculations.

Rivett summarises by stating that a model may be predictive without being explanatory, but

an holistic, explanatory model is always predictive. When Iapply this idea to the software

process, it follows that previous process data may be successfully used to predict the outcomes

of future projects that are based on similar processes. I understand that, if we wish to predict

in a more general way, our predictive models must be holisticand explanatory. This means our

models must be able to represent any element of any process, including both existing elements

and those defined at some future time.

I have identified the need to represent different process elements for synthesis and predic-

tion. In order to meet these goals, I want to capture process elements in a descriptive way i.e.

capture elements as they actually happen.

6 Introduction

1.4 Thesis Statement

Before we can synthesise processes from existing and futureprocess elements, we must first be

able to capture elements of processes and process models. Before we can predict outcomes of

applying process elements, we must first be able to compare the effects on these outcomes of

different elements.

I believe that it is possible to capture software development processes and process models in

a way that allows us to compare processes and process models for the purpose of constructing

new processes.

My thesis is realised as a conceptual modelling framework,KiTe, the elements of which

are themselves models. The framework supports capture of, and facilitates comparison and

composition of, processes and process models.

1.5 Approach

I have postulated the need for a model of the software development process that allows capture

of any element from any process or process model and facilitates comparison between, and

composition of, elements. The long term goal for such a modelis the ability to predict outcomes

when process elements are combined in various ways. Rivett and others argue that a model for

prediction must be holistic and explanatory. ‘Holistic’ suggests that all relevant aspects of the

process, for example, behavioural aspects, must be included. ‘Explanatory’ suggests that the

model should be based on a theoretical abstraction rather than on specific data.

The creation of such a model is difficult. If the industry is tocreate such a model, it must

first identify what are the characteristics of existing processes that must be included in a repre-

sentation and understand what are the limitations of existing predictive models that render them

inappropriate for general process representation.

I thus examine the characteristics of existing processes and process models and create from

this examination a set of ‘desirable properties’. These properties will act as preliminary criteria

against which to judge any candidate model. This provides aninformal mechanism for evalu-

ation, in that the criteria are subjective in nature. The aimis to gain some confidence prior to

any evidence-gathering attempt that the candidate model islikely to support the objectives of

capture and comparison.

Once a candidate model is proposed and evaluated against thepreliminary criteria, some

evidence must be presented to support the thesis that the model supports capture and compar-

ison for the purpose of synthesis and prediction. As there are many different kinds of process

element, there is a rich space for investigation. Possible kinds of element include those from

traditional and agile processes, large and small projects,elements from process models, and

1.6 Overview of Contributions 7

many more. As a means of structuring the evidence that represents the model’s ability to cap-

ture and compare process elements, I have chosen an approachcalledargumentationalong with

an established notation for structuring arguments,Goal Structuring Notation (GSN). Argumen-

tation is “an approach which can be used for describing how evidencesatisfies requirements

and objectives” [160]. The use of a suitable notation such asGSNhelps researchers to easily

identify what evidence is required and helps stakeholders see at a glance what is the ‘evidence

coverage’. This approach has been used for many years in the safety critical domain and has

recently been applied in the software domain [160].

The need to capture existing models that are the basis of various studies means that I must

provide a means of representing studies that vary in integrity. One consequence of this is that it

must be possible to capture models based on different beliefs, for example, beliefs about which

contextual factors most affect outcomes. This will be necessary until the industry has progressed

to a better understanding of these factors. This suggests that I must find an abstraction that

accommodates a potentially huge variation in the statementof possible influencing factors. I

am also required to capture processes that may have different kinds of objectives, for example,

relating to cost or quality. For these kinds of reasons, the solution model will be realised as a

framework, the elements of which are models in their own right. For example, there is a model

(abstraction) for the contextual factors and one for the process objectives.

Evaluation of the framework will involve:

1. Identification of the range of processes and process models that must be successfully

represented.

2. Discussion about how the framework meets the criteria established as a result of exami-

nation of process characteristics and process model limitations.

3. Presentation of evidence to support the claim that identified processes and models can be

represented and that representation supports comparison.

4. Discussion about some limitations inherent in the approach.

1.6 Overview of Contributions

The main contribution of this thesis is the identification ofthe need for a holistic approach

to modelling the sofware development process in a descriptive way and the presentation of a

candidate modelling framework that provides a way of representing and comparing different

kinds of process elements.

A second contribution is the identification of the various research groups that model the

software development process to predict outcomes and the understanding of how these groups

8 Introduction

differ in approach and what are the limitations inherent in the work of each. The contribution

also includes a realisation that the narrow approach taken by each of the groups is a symptom

of lack of real understanding and is the basis for the case fora more holistic approach.

A third contribution is the establishment of an approach fordeveloping and evaluating mod-

els that claim to describe systems in a holistic and explanatory way. The strategy is to first

establish model objectives and identify a comprehensive range of example systems to be de-

scribed by the model. The next step is to examine the characteristics for, and problems with,

the example systems to help identify key model properties. These provide some basis for es-

tablishment of a suitable model structure and may be used as criteria against which to evaluate

candidate models in a preliminary evaluation step. Finally, the ability of the candidate model

to satisfy objectives is established by accumulating a portfolio of different kinds of evidence

relating to the example systems.

A final contribution is the understanding that the existenceof a suitable framework gives

rise to a number of unplanned research directions and the addressing of one such possibility,

that of process-specific risk profiles. Remaining directions include the use of the framework to

support research. Such directions are suggested as areas for future research.

1.7 Terminology

The issue of terminology in the field of software engineeringis problematic. Words such as

‘task’ and ‘activity’ are used by different authors to mean the same thing. ‘Process’ and ‘prod-

uct’ also tend to be undefined and many other terms are appliedwithout any definition of what

they mean.

My approach in this dissertation is to define terms used in a general way in a Glossary (see

Appendix A). Such terms areitalicisedand defined on first use and subsequently italicised only

when this helps clarify content. I also useitalicised text when emphasising a word or phrase,

even if not included in the Glossary.

For terms used by authors of a study being described, I include the term in ‘single quotes’.

For example, a process might be described by an author as comprising a number of ‘Activities’

and ‘Tasks’. In such cases, I do not try to define exactly what the term means, unless this is

necessary for the discussion.

I also use ‘single quotes’ when paraphrasing and “double quotes” when quoting phrases

from other sources.

For elements of the model that is the subject of this thesis, IuseSlanting Text.

1.8 Document Roadmap 9

1.8 Document Roadmap

This dissertation is placed in the area ofsoftware processesused byprojectsto produce software-

intensiveproducts. A project is “.. a temporary endeavour to create a unique service or product

and with a definite beginning and end” [135]. I note that this definition says nothing about the

form of the service or product delivery and, in this thesis, Iview a project as any effort that

makes a delivery of any kind to any stakeholder. For example,a project might deliver a finished

product to a customer, a prototype to the development group or a test plan to the test group.

In other words, project objectives and scope are decided by the interested parties and project

definition is constrained only by the need to have a defined start and end and agreed delivery.

A software processis “. . . the set of all activities which are carried out in the context of a con-

crete software development project” [59]. Aproductcomprises the artifacts that implement a

software-intensive system and are the deliverables from a project.

This thesis is organised as follows.

In Chapter 2, I consider some different viewpoints on what issoftware development and

note that the range of proposed paradigms indicates a lack ofreal understanding of the essential

nature of the activity. I then provide an overview of some common software development

processes. I finally discuss some ways in which processes arecategorised. I suggest that the

interest in categorising is a symptom of lack of understanding and that focus should return to the

more important task of understanding what are the key characteristics common to all software

processes.

In Chapter 3, I examine the various kinds of study carried outby researchers with the goal of

predicting software process outcomes. I learn that there are three separate communities and each

applies a different approach and builds different kinds of models of the process. I expose some

limitations inherent in the work of the different groups by showing that the kinds of models

applied by each contain ambiguities and assumptions that render impossible comparison of

results.

In Chapter 4, I examine research related to the goal of process flexibility. This related

work spans several research areas, some directly related and others more indirectly. I first

discuss processes and process frameworks for which claims of flexibility are made and suggest

limitations based on an inability to capture the different kinds of process presented in Chapter

2. I then examine process models for which claims of flexibility are made and show how each

is limited according to its underlying approach as discussed in the previous Chapter. I finally

discuss attempts to model human-related factors and note that research is progressing in this

direction but, as yet, no suitable model of the human aspectsof the process exists.

In Chapter 5, I present a justification of the need for a theoretical model of the software

development process. I first provide a general overview of the different approaches to gathering

10 Introduction

data and discover that, if the aim is to establish causal connections between factors, a theoretical

framework is required. I next present some quotes from a number of researchers stating the need

for a holistic theory and reminding us that a characteristicof studies that are not based on such

a theory is an inability to achieve consistent results. Finally, I suggest that current software

process research is achieving inconsistent results because the research is fragmented and is

not based on an underlying theory. I conclude that a formal model of the software process is

required and formalise the objectives for such a model in thecontext of this thesis.

In Chapter 6, I analyse the various processes and process models described in Chapters 2 –

5 with the aim of understanding what might be the properties of a model that is a solution to the

problem of process customisation. I also consider some ‘real-life’ scenarios from industry to

help with identification of such properties. I then list the desired properties to be used as criteria

against which to evaluate a candidate model.

In Chapter 7, I present a candidate model,KiTe. My approach to presentation is to first

provide a schematic overview as a ‘gentle’ introduction, and to then present and formalise the

abstract model.

In Chapter 8, I present some evidence to support the proposedmodel. This includes evidence

to support the claim thatKiTe may be used to capture any process or process model and that it

supports comparison of studies.

In Chapter 9, I discuss how the existence of a suitable model provides some benefits not

originally planned or realised. As illustration, I show howKiTe can be applied to the identifi-

cation of risks specific to XP (eXtreme Programming) processes.

In Chapter 10, I evaluate the candidate modelKiTe. I first discuss how wellKiTe fulfils the

criteria stated in Chapter 6. The aim of this discussion is toprovide some preliminary confidence

thatKiTe will address the various process characteristics described in Chapter 2 and overcome

the limitations of current process models described in Chapters 3 and 4. I then examine the

evidence presented in Chapter 8 and discuss the strengths and weaknesses of the evidence.

The studies that comprise this evidence represent attemptsto find inadequacies withKiTe as a

solution to the problem of capture and comparison. I find thatthe evidence is reasonably strong,

but there are some serious gaps. I finally discuss some limitations inherent in the approach

taken.

Chapter 11, I summarise the thesis and suggest some future research directions resulting

from the research.

