3 | LIBRARY
Te Tumu Herenga RESEARCHSPACE@AUC KLAND

THE UMIVERSITY OF AUCKLANMD

http:/Z/researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New
Zealand).

This thesis may be consulted by you, provided you comply with the
provisions of the Act and the following conditions of use:

e Any use you make of these documents or images must be for
research or private study purposes only, and you may not make
them available to any other person.

e Authors control the copyright of their thesis. You will recognise the
author's right to be identified as the author of this thesis, and due
acknowledgement will be made to the author where appropriate.

e You will obtain the author's permission before publishing any
material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the
digital copy of their work to be used subject to the conditions specified on
the Library Thesis Consent Form.


http://researchspace.auckland.ac.nz/
http://researchspace.auckland.ac.nz/feedback

Department of Electrical & Computer Engineering

Software Engineering
The University of Auckland
New Zealand

A Flexible Software Process
Model

Diana Kirk
April 2007

Supervisor: Associate Professor Ewan Tempero

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE RE
QUIREMENTS OFDOCTOR OFPHILOSOPHY IN ENGINEERING







The University of Auckland

Thesis Consent Form

This thesis may be consulted for the purpose of researchivat@rstudy provided that due
acknowledgement is made where appropriate and that ther&plermission is obtained before
any material from the thesis is published.

| agree that the University of Auckland Library may make aycopthis thesis for supply to the
collection of another prescribed library on request from thibrary; and This thesis may not
be photocopied other than to supply a copy for the colleaticemother prescribed library.

Created 5 July 2001
Last updated9 August 2001






Abstract

Many different kinds of process are used to develop softwasnsive products, but there is
little agreement as to which processes give the best rasodtsr which circumstances. Prac-
titioners and researchers believe that project outcomesdnme improved if the development
process was constructed according to project-specifiorfactin order to achieve this goal,
greater understanding of the factors that most affect ooesois needed. To improve under-
standing, researchers build models of the process and @atrstudies based on these models.
However, current models contain many ambiguities and aggans, and so it is not clear what
the results of the studies mean. The statement of this tisethat it is possible to create an
abstraction of the software development process that wollide a mechanism for comparing
software processes and software process models. The longytal of the research is to pro-
vide planners with a means of tailoring the developmentgse®n a project by project basis,
with the aim of reducing risk and improving outcomes.
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Introduction

1.1 Research Area Overview

Many researchers and practitioners are interested in erglalifferent ways of producing
software-intensive products. The reason is that it is gdlyeagreed in the software indus-
try that the kind of process used in a software project is a&etpr in determining what are the
outcomes for the project. Example outcomes are the abiflityeoproject to deliver the software
product on-time and within budget.

At the present time, there are a number of different kindsrot@ss in use in industry.
These are often categorised as either ‘traditional’ (comlgneeferred to as ‘heavyweight’) or
‘lightweight’. Traditional processes were created to hadptrol very large software projects
spanning several years, many of which exhibited safeticatior other ‘large loss’ aspects.
These processes are based on a manufacturing paradigmectiaaacterised by a phased
approach, in which, for example, design tasks are striefhasated from coding tasks. Different
phases tend to be carried out by different people, for exang)stems analysts’, ‘architects’,
‘coders’ and ‘testers’. As a result of the strict separatiange quantities of documentation
are required to communicate decisions among the variodiepam he well-known ‘Waterfall’
model represents an example of this kind of process.

The ‘light’ processes have emerged more recently as a resgonthe perceived ineffec-

1



Introduction

tiveness of the traditional methods when applied to, fomgia, Web development. These
processes tend to be more responsive to change in produitter@gnts and are characterised
by a strong people focus. Because of the close relationbkipgeen developers and customers,
the underlying development paradigm for these methodetogi presented as ‘software-as-a-
service’ and communications are generally face-to-fagd?’ (eXtreme Programming) is an
example of this kind of process.

Traditional and light processes are most commonly appbedifterent kinds of projects.
Traditional processes are most often used in very largeept®pr for safety-critical products.
Light processes are most often used for small projects atymts that can be produced and
changed quickly, for example, Web applications. HoweVete is much discussion about how
to apply individual processes to projects other than thosevhich they appear to be most
suited. For example, is it appropriate to use an XP procasddeeloping a product that is
expected to undergo further change in the future i.e. is qfaat product line? There is also
much discussion about the possibility of embedding elemehbne process into another. For
example, would deadlines be more likely to be met if a ‘PairgPamming’ technique from XP
was used within a Waterfall process?

In this dissertation, | address the possibility of synthiegj a new process from elements of
existing processes. In order to achieve this, | study thé&wbthose researchers who model the
software process for the purpose of predicting outcomesiandver limitations of the models
that render the models inappropriate as a basis for systhégiresent an abstraction of the
process that supports such synthesis.

1.2 Problem to be Addressed

It is widely acknowledged in the software industry that n@ qgmocess is appropriate for all
software development projects [10, 35, 38, 57]. Some belibat each kind of process is
appropriate for specific kinds of project and should be usdy within such projects. This
requires an assumption that any project can be classifiedeasfa number of discrete types,
each with fixed boundaries. Others are adamant that thewufite’ process may be applied
to any project, with only minor adaptations required. Ofagee interest is the possibility of
synthesising new processes from existing ones. Many r@sex@rand practitioners believe that
the chance of project success can be improved by selectowe$s elements from different
processes in order to tailor the process according to grejeecific factors [13, 35, 46, 93, 115,
144, 153].
The interest in customisation comes from two directionse Titst is the ‘traditional’ ver-

sus ‘light’ discussions [16, 21]. Practitioners underdtéimat different kinds of process have
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different strengths, but would like to know under which aimtstances elements from one pro-
cess may be embedded in another. The kinds of questions exitede: “How well does XP
perform if the customer is unable to be on-site?”; “How wodéivery schedules be affected
if developers practice Test Driven Design within a Waténfabcess?”. The second source of
interest is from the study of software economics. The suggekere is that a project should
maximise value creation [102] and should use a process shab imore costly than neces-
sary [24]. The kinds of questions that represent this kinthtdrest include: “What will be
the effect on the quality of the delivered product if we regl@ode inspections by automated
checking to reduce cost?”; “Can we customise a process lggt outcomes for a specific
project by combining elements from existing processes?”.

Although the industry would like to answer the kinds of quess illustrated above, this is
not possible at the present time. Before we can answer suestigans, we must first be able
to represent any process element from any process in a wafathiéitates composition and
prediction. It is contended here that no suitable abstra@kists.

One reason is that the problem space is not yet well-undetstGurrent processes have
emerged in response to perceived need and, although atérane been made to understand
what are the key factors that affect outcomes, there is liktta to support claims. Efforts have
been made to collect supporting data, but the complexithefgroblem space has rendered
this difficult. In addition to the many technical challengagsented by a fast-changing in-
dustry, software process tasks are carried out by peopierrtitan machines, and so issues of
psychology and social behaviour are relevant.

It is now generally accepted that human factors, for exapmpésmagement style and devel-
oper experience and motivation, have a major impact on tbeess of a software development
effort [3, 24, 37, 34, 155, 157]. Curtis et. al. suggested988.that process problems were
overwhelmingly caused by people-related factors and m@sed at that time the need for a be-
havioural model of the software development process [36jvéVer, there are no such models
on which to base formal research into the effects of humatofa®n outcomes and current
processes either assume a tendency to the mean or make #sssrmapout which factors are
key. For example, the Waterfall process does not includecangideration of human factors.
This is perhaps because of its traditional use for very larggects where human effects ‘av-
erage out’ over the course of the project. XP, on the othed hambeds assumptions about
developer performance, for example, that all developenkwwre efficiently and effectively
together than alone. Although this represents some caaside of human factors, there is no
mechanism for accommodating differences between develope

In an attempt to accumulate data to increase the industoyfisyato predict process out-
comes, researchers have carried out different kinds ofegu@here are a number of concerns
that relate to these studies. One such concern is the issivab measure the various factors
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and attributes that apply to the software process. In 19%6h&nhham, Pfleeger and Fenton
identified a lack of integrity in the way in which software ptiioners and researchers measure
software-related attributes [89]. It is important to workhwalidated software metrics and at
that time there was no agreed way to perform such validafibe.authors made a plea for the
industry to agree on a way to bridge the gap between measntéheory and software met-
rics. Although the plea appeared to spawn some heated disossit seems that no consensus
has been reached, and the industry continues to work withiaadtased on disputed founda-
tions [91]. A second concern is that, as software engingesia relatively immature discipline,
researchers have not yet learned to routinely apply souactipes when conducting studies,
and so resulting data is scarce, fragmented and of varyiatitgli7, 14, 46, 90, 125]. Gilmore
describes four modes of research data collection and steesnly one of these, hypothesis
testing, results in establishing causal connections. Hleotimers agree that, in order to carry
out this kind of research, a theoretical framework is esakinbm which to spawn hypotheses
[38, 55, 90]. As discussed above, there is no suitable aitrafor elements of a software
process and so it is difficult to carry out hypothesis tesargeriments and establish causal
connections.

In summary, the industry at the present time has no absiractitheoretical framework for
software development processes. This means that praetii@are unable to combine process
elements and predict outcomes and researchers find it diffacinvestigate causal relation-
ships.

1.3 Modelling for Understanding

In the previous Section, | described a problem of lack of atbgcal model of the software
process. In this Section, | consider the act of model bugdiiom an historical perspective and
conclude that an appropriate model should be explanattimgrsghan predictive and that such
a model will be holistic rather than fragmented.

Rivett [139], when describing the status of model buildimgfie field of operations research
in 1972, reminds us that, throughout history, man has catigtesearched for pattern and gen-
eralisation. From around 700 BC, the Babylonians measurddecorded the motions of the
stars and planets, analysed these, and were successftédasting planetary events with great
precision. Their recordings of hundreds of years of playedata enabled them to estimate the
value of the motion of the sun from the node with an error of/dive seconds. The large quan-
tity of data collected by the Babylonians supported aceupat¢diction. In fact, two thousand
years later, the same estimation, based on models of pigmatdion, yielded an accuracy of
only seven seconds. The observation is that large quantifiaccurate data often yield more
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accurate predictions than those based on models.

Although the Babylonians recorded events with care, theyenm attempt to theorise. The
Greeks, on the other hand, followed a different approact,taurilt first mechanical and then
geometrical models of planetary motion in an attempt to wstdad and explain. However,
their models were made up of a number of parts and the Greekadauccess in unifying
these. When applied to the Babylonian data, the models werelfto be incorrect [139]. This
illustrates that it is often difficult to achieve consisteesults when a fragmented approach is
taken i.e. a model of a part of a system may vyield results tleair@alid in the context of the
bigger system.

Rivett presents another example from more recent timeslthstrates that consistent and
complete results will be achieved only if a model is based mmderlying theory. Kepler
proposed three laws of planetary motion based on data thdiden collected by Tycho Brahe.
He applied an elliptical model to the motion of the planetd &inm this model produced laws
that appeared to work. No-one knew the fundamental reasgnthenlaws worked. | notice
that, as the laws were based on planetary data, these lawsramipredict the movements of
other celestial objects, for example, comets. Newton lateaght some understanding to bear
on celestial motion when he postulated a force that acteddsst all objects with mass in the
universe. From this understanding and unification of ideas fohysics and astronomy, he was
able to show that orbits for celestial objects, for exampleets, were not only elliptical, but
could be hyperbolic and parabolic. He was able to predictirately for all celestial bodies,
show that Kepler's Laws were a special case of Newton’s Lavasiaprove the accuracy of
Kepler's calculations.

Rivett summarises by stating that a model may be predictitieowt being explanatory, but
an holistic, explanatory model is always predictive. Wheapply this idea to the software
process, it follows that previous process data may be ssitdlysused to predict the outcomes
of future projects that are based on similar processes. énstahd that, if we wish to predict
in a more general way, our predictive models must be holistittexplanatory. This means our
models must be able to represent any element of any prooessling both existing elements
and those defined at some future time.

I have identified the need to represent different processeaiés for synthesis and predic-
tion. In order to meet these goals, | want to capture prodessents in a descriptive way i.e.
capture elements as they actually happen.
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1.4 Thesis Statement

Before we can synthesise processes from existing and fptapess elements, we must first be
able to capture elements of processes and process modébse Be can predict outcomes of
applying process elements, we must first be able to comparefticts on these outcomes of
different elements.

| believe that it is possible to capture software developrpercesses and process models in
a way that allows us to compare processes and process mod#ig fourpose of constructing
new processes.

My thesis is realised as a conceptual modelling framew&iKe, the elements of which
are themselves models. The framework supports capturendffailitates comparison and
composition of, processes and process models.

1.5 Approach

| have postulated the need for a model of the software dewsdopprocess that allows capture
of any element from any process or process model and faediteomparison between, and
composition of, elements. The long term goal for such a migdhk ability to predict outcomes
when process elements are combined in various ways. Rivetbthers argue that a model for
prediction must be holistic and explanatory. ‘Holisticggests that all relevant aspects of the
process, for example, behavioural aspects, must be irtlu@planatory’ suggests that the
model should be based on a theoretical abstraction ratherdah specific data.

The creation of such a model is difficult. If the industry iscreate such a model, it must
first identify what are the characteristics of existing @sses that must be included in a repre-
sentation and understand what are the limitations of exjgiredictive models that render them
inappropriate for general process representation.

| thus examine the characteristics of existing processepeotess models and create from
this examination a set of ‘desirable properties’. Thes@eries will act as preliminary criteria
against which to judge any candidate model. This providesfanmal mechanism for evalu-
ation, in that the criteria are subjective in nature. The &irto gain some confidence prior to
any evidence-gathering attempt that the candidate modi&kiy to support the objectives of
capture and comparison.

Once a candidate model is proposed and evaluated againgtelminary criteria, some
evidence must be presented to support the thesis that thel swggports capture and compar-
ison for the purpose of synthesis and prediction. As thezenaany different kinds of process
element, there is a rich space for investigation. Possitoléskof element include those from
traditional and agile processes, large and small projetésnents from process models, and
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many more. As a means of structuring the evidence that repteshe model’s ability to cap-
ture and compare process elements, | have chosen an appadi@cargumentatioralong with
an established notation for structuring argume@isal Structuring Notation (GSNArgumen-
tation is “an approach which can be used for describing how evideatsfies requirements
and objectives” [160]. The use of a suitable notation sucG8blhelps researchers to easily
identify what evidence is required and helps stakeholdsgsas a glance what is the ‘evidence
coverage’. This approach has been used for many years iratbty ritical domain and has
recently been applied in the software domain [160].

The need to capture existing models that are the basis afusstudies means that | must
provide a means of representing studies that vary in irtieddne consequence of this is that it
must be possible to capture models based on different bel@fexample, beliefs about which
contextual factors most affect outcomes. This will be nsagsuntil the industry has progressed
to a better understanding of these factors. This suggestd thust find an abstraction that
accommodates a potentially huge variation in the statemwfepbssible influencing factors. |
am also required to capture processes that may have difidrets of objectives, for example,
relating to cost or quality. For these kinds of reasons, theti®n model will be realised as a
framework, the elements of which are models in their owntriglor example, there is a model
(abstraction) for the contextual factors and one for the@ss objectives.

Evaluation of the framework will involve:

1. Identification of the range of processes and process madat must be successfully
represented.

2. Discussion about how the framework meets the criteriabdished as a result of exami-
nation of process characteristics and process model tionis

3. Presentation of evidence to support the claim that itledtprocesses and models can be
represented and that representation supports comparison.

4. Discussion about some limitations inherent in the apgroa

1.6 Overview of Contributions

The main contribution of this thesis is the identificationtbé need for a holistic approach
to modelling the sofware development process in a desegiptay and the presentation of a
candidate modelling framework that provides a way of regméag and comparing different
kinds of process elements.

A second contribution is the identification of the variousaa&ch groups that model the
software development process to predict outcomes and therstanding of how these groups
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differ in approach and what are the limitations inherentia work of each. The contribution
also includes a realisation that the narrow approach takexabh of the groups is a symptom
of lack of real understanding and is the basis for the casa foore holistic approach.

A third contribution is the establishment of an approactd@reloping and evaluating mod-
els that claim to describe systems in a holistic and exptapatiay. The strategy is to first
establish model objectives and identify a comprehensingeaf example systems to be de-
scribed by the model. The next step is to examine the chaistate for, and problems with,
the example systems to help identify key model propertidsees€ provide some basis for es-
tablishment of a suitable model structure and may be usedtasa against which to evaluate
candidate models in a preliminary evaluation step. Findllg ability of the candidate model
to satisfy objectives is established by accumulating afplastof different kinds of evidence
relating to the example systems.

A final contribution is the understanding that the existeota suitable framework gives
rise to a number of unplanned research directions and thes&ldg of one such possibility,
that of process-specific risk profiles. Remaining direcimtlude the use of the framework to
support research. Such directions are suggested as ardatife research.

1.7 Terminology

The issue of terminology in the field of software engineeigmgroblematic. Words such as
‘task’ and ‘activity’ are used by different authors to mehe same thing. ‘Process’ and ‘prod-
uct’ also tend to be undefined and many other terms are appitadut any definition of what
they mean.

My approach in this dissertation is to define terms used imaigeg way in a Glossary (see
Appendix A). Such terms atitalicisedand defined on first use and subsequently italicised only
when this helps clarify content. | also usalicised text when emphasising a word or phrase,
even if not included in the Glossary.

For terms used by authors of a study being described, | iedlue term in ‘single quotes’.
For example, a process might be described by an author asisomg number of ‘Activities’
and ‘Tasks’. In such cases, | do not try to define exactly whatterm means, unless this is
necessary for the discussion.

| also use ‘single quotes’ when paraphrasing and “doubléegiovhen quoting phrases
from other sources.

For elements of the model that is the subject of this thesise5lanting Text
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1.8 Document Roadmap

This dissertation is placed in the areaoftware processessed byprojectsto produce software-
intensiveproducts A projectis “.. a temporary endeavour to create a unique service augto
and with a definite beginning and end” [135]. | note that the§idtion says nothing about the
form of the service or product delivery and, in this thesigsiel a project as any effort that
makes a delivery of any kind to any stakeholder. For exanagbeoject might deliver a finished
product to a customer, a prototype to the development growptest plan to the test group.
In other words, project objectives and scope are decidedhéynterested parties and project
definition is constrained only by the need to have a definad @ta end and agreed delivery.
A software process “...the set of all activities which are carried out in trentext of a con-
crete software development project” [59]. phoductcomprises the artifacts that implement a
software-intensive system and are the deliverables fronojeq.

This thesis is organised as follows.

In Chapter 2, | consider some different viewpoints on whataiware development and
note that the range of proposed paradigms indicates a laglabfinderstanding of the essential
nature of the activity. | then provide an overview of some omon software development
processes. | finally discuss some ways in which processesatggorised. | suggest that the
interest in categorising is a symptom of lack of understagdnd that focus should return to the
more important task of understanding what are the key ctaratics common to all software
processes.

In Chapter 3, | examine the various kinds of study carriecoguesearchers with the goal of
predicting software process outcomes. | learn that therthaee separate communities and each
applies a different approach and builds different kinds ofleis of the process. | expose some
limitations inherent in the work of the different groups dyosving that the kinds of models
applied by each contain ambiguities and assumptions timatereimpossible comparison of
results.

In Chapter 4, | examine research related to the goal of psoftesibility. This related
work spans several research areas, some directly relattdthers more indirectly. | first
discuss processes and process frameworks for which cldiftexibility are made and suggest
limitations based on an inability to capture the differemids of process presented in Chapter
2. | then examine process models for which claims of flexjpdre made and show how each
is limited according to its underlying approach as discdssehe previous Chapter. | finally
discuss attempts to model human-related factors and natedbkearch is progressing in this
direction but, as yet, no suitable model of the human asétte process exists.

In Chapter 5, | present a justification of the need for a thimakmodel of the software
development process. | first provide a general overvieweflifferent approaches to gathering
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data and discover that, if the aim is to establish causaledions between factors, a theoretical
framework is required. | next present some quotes from a euwitresearchers stating the need
for a holistic theory and reminding us that a characterististudies that are not based on such
a theory is an inability to achieve consistent results. Iyin&suggest that current software
process research is achieving inconsistent results bedhesresearch is fragmented and is
not based on an underlying theory. | conclude that a formalehof the software process is
required and formalise the objectives for such a model irctmgext of this thesis.

In Chapter 6, | analyse the various processes and processisyaascribed in Chapters 2 —
5 with the aim of understanding what might be the propertiesraodel that is a solution to the
problem of process customisation. | also consider somélifeascenarios from industry to
help with identification of such properties. | then list thesded properties to be used as criteria
against which to evaluate a candidate model.

In Chapter 7, | present a candidate modéiTe. My approach to presentation is to first
provide a schematic overview as a ‘gentle’ introductiord smthen present and formalise the
abstract model.

In Chapter 8, | present some evidence to support the proposddl. This includes evidence
to support the claim th&iTe may be used to capture any process or process model and that it
supports comparison of studies.

In Chapter 9, | discuss how the existence of a suitable maaeiges some benefits not
originally planned or realised. As illustration, | show h&@Te can be applied to the identifi-
cation of risks specific to XP (eXtreme Programming) proesss

In Chapter 10, | evaluate the candidate magdle. | first discuss how welKiTe fulfils the
criteria stated in Chapter 6. The aim of this discussion gtwide some preliminary confidence
thatKiTe will address the various process characteristics destiib€hapter 2 and overcome
the limitations of current process models described in @raB and 4. | then examine the
evidence presented in Chapter 8 and discuss the strengih&eaknesses of the evidence.
The studies that comprise this evidence represent attdmfital inadequacies witKiTe as a
solution to the problem of capture and comparison. | findtiaevidence is reasonably strong,
but there are some serious gaps. | finally discuss some tioriminherent in the approach
taken.

Chapter 11, | summarise the thesis and suggest some futearch directions resulting
from the research.
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In Section 2.1, | present some different ideas about whakisiature of software development
and suggest that the diversity of ideas is an indicationttiesoftware community lacks under-

standing of the essential nature of the software procesSedtion 2.2, | overview a sample of

software development processes, selected for their diftags. In Section 2.3, | discuss some
ways in which processes are categorised. | suggest thattérest in categorising is a symp-

tom of the lack of understanding and represents an attengaive problems the industry does

not understand. | also suggest that discussions and rédeased on polarisation do not help
the industry to progress towards understanding what arkeyeharacteristics common to all

software processes and that focus should return to unddistathese characteristics.

2.1 Nature of Software Development

In the 1960s, programming was largely seen aarand most practitioners had received no
formal training in the field [156]. As software systems beedarger and more complex, this
perception of the practice became less appropriate androdeas began to be concerned about
the lack of a sound theoretical basis. As a result, they begapply an approach based on
manufacturing processes i.e. a process involving a simgllysis, design and production stage.
One of the key events in the history of Software Engineeriag whe conference organ-

11
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ised in 1968 by th&lATO Science Committée discuss issues relating to “software manufac-
ture” [118]. The term “Software Engineering” was coinedhas ttonference with the deliberate
intention of implying the need for the discipline to be motergjly based on theoretical and
engineering principles. It is interesting to note that heall of the issues believed to be of rel-
evance today were brought up at this conference. For exaaipdedees discussed the need to
iterate and obtain feedback from the customer, reuse of casrs in preference to continually
‘reinventing the wheel’, the lack of clarity about what ‘pitaction’ means in a software project,
measuring the production process, the risks involved iiveleéhg software implemented us-
ing new and unproven techniques and the importance of finaisgitable abstraction for the
software product. However, despite such discussionsg tygpears to have been little attempt
to reframe the creation of software-intensive systems gthang other than ananufacturing
process, with stages of analysis, design and productiois. pEiradigm was compliant with the
then-populawaterfall process model, in which each stage must be completed aydifut-
mented and verified before the next one commences. One oéslét use of this paradigm has
been the application gfrocess controprinciples to manage quality outcomes.

There has been much evidence in the form of failed projectspport the idea that a single
passmanufacturingapproach is not generally an appropriate one for softwastenys, and one
result of this was the updating in 1987 of the US DepartmemefenseDoD standarddoD-
Std-2167to replace the waterfall model with an iterative approddb}-Std-2167A Despite
evidence and change in standard, the industry has contimigdecently to exhibit a “waterfall
mentality” [95].

During the 1980s and early 1990s, various groups around trkl wecognised the need
to deal with change and uncertainty relating to softwargeggtodeliverables and, becoming
frustrated with the unsuitability of the waterfall modet &uch projects, came up with method-
ologies of their own. These methodologies were sedighsveightand were oriented towards
frequent deliveries and feedback from the customer. Thisageh represents a paradigm of
software as a servigand in 2001, representatives of these processes formagilaralliance
to promote the approach. Representative methodologigsanedagile, and include, for ex-
ample, XP, Scrum, Dynamic Systems Development and Feature Drigeal@ment

Cockburn describes software development esaperative gamewith the aim of the game
being to make “ideas concrete in an economic context” anéidited resources. He appears
to view ‘process’ as being a number of pre-defined sets atlinsbns aimed at removing depen-
dence on key individuals but which actually overconstrautividuals. He advocates an agile
approach [29] and specifically uses tteoperative gamparadigm in hiCrystalmethodology.

A number of other paradigms have been proposed for softveaed@pment although, to my
knowledge, none of these has spawned representative nodtlgees. Ricardo Peculis also be-
lieves that a rigid engineering approach using processadaethniques constrains developers
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and reduces creativity and that people are the key. Hisisalig to regard software develop-
ment as aomplex adaptive systeamd claims that software management should be based on
chaos theory along with leadership to orient the system ioese expected results. No spe-
cific solution is presented other than a need to use “altsmathaotic models” [127]. Lehman
revisits the problem of uncertainty about what ‘productiomeans in a software project, and
declares software development to beesignactivity [96]. Researchers from the discipline of
psychology view programming as a “complex cognitive andadesk ... involving several
kinds of specialized knowledge” [128]. Armour believestaaire processes are about finding
out what we do not know [6] and Curtis et. al. also have the \iest software is grob-
lem solvingprocess and thus is at least partially abontertainty and learning37]. Several
authors perceive software development gsababilisticprocess, and this paradigm has been
applied in efforts to model the process (see Chapter 3).

In recent years, there has been a revival of interest in the ad software development as
craftmanship According to Pete McBreen, very large projects are gelyehalrdware-driven
and are reallysystems engineeringrojects, but most software projects require fast delivery
and low cost, and theraftmanshipparadigm is more suitable. In this paradigm, people are
more important and “Software craftmanship stands for aebfiit kind of relationship between
developers and users” [108]. DeGrace also mentavafmanshig42] but believes that this
viewpoint has in fact led practitioners to become almosgi@lis in their attitudes, and we are
“pulled this way and that by those who have the knowledge @& Right Way and The True
Faith”. DeGrace also mentions theroparadigm for software development and includes in his
book quotes from several individuals who have single-hdlyderoduced successful software,
for example, Bill Gates and Andy Hertzfeld. Dawson et.alggast that the large variation in
project circumstances mean that “guiding principles ard tmestablish” and this has led to the
belief that software development is an art or craft. Theltestindividuals forming their own
ideas for working practice based on a mixture of their ownegdgmces, hearsay from others
and general folklore and myths” [38].

Kitchenham and Carn, after consideration of what is thetmmof software engineering,
conclude that “the software production process is an eeging discipline like any other en-
gineering discipline” [88]. As support for this claim, | gent three definitions a&ngineering
The American Heritage Dictionary of the English Languagénés it as “The application of
scientific and mathematical principles to practical endshsas the design, manufacture, and
operation of efficient and economical structures, machipegesses, and systems” [63]. From
Wikipedia, “Engineering applies scientific and technicabwledge to solve human problems.
Engineers use imagination, judgment, reasoning and expezito apply science, technology,
mathematics, and practical experience. The result is tBguleproduction, and operation
of useful objects or processes” [163]. Hansen believesnerging is “...the systematic ap-



14

Software Development Processes

plication of scientific knowledge in creating and buildingst-effective solutions to practical
problems” [43]. It would appear that the engineering pagadis an appropriate one for the
problem of software development. However, itis clear fromdiscussions above that this term
is viewed by some as relating to only large systems, and Higmsiats out that the concept of
applying ‘Engineering’ to software still arouses debat®[4#erhaps this also is a consequence
of the original usage of the term at the NATO Conference basgpciated with ideas of large,
critical systems and a manufacturing mindset.

One interesting point that arises from the above discussgthat most authors equaim-
cesswith document-driven, manufacturing procebtowever, gorocessamay be defined simply
as “The sequence of activities, people, and systems ingatvearrying out some business or
achieving some desired result” [69], and | would argue thatlets that represent all of the
above paradigms can be represented @®eessaccording to this definition.

In the above discussion, | presented many different ideastabhat is software develop-
ment. The lack of consensus within the industry is, in my vig@wlear indication that the space
is not yet well understood. The processes presented in ttteSeetion are each founded on
a particular idea and represent the industry’s solutiorentanstated and vaguely understood
problem. This view is supported by Fuggetta, who believes ‘ttihe approach of most Soft-
ware Engineering researchers is oriented to inventing tiangs’ rather than pursuing a deeper
understanding of the problem we want to solve ... " [54].

2.2 Processes Overview

The processes overviewed in this Section are selected fatiem in characteristics. Some
common processes excluded adaptive Software Development (ASDynamic Systems De-
velopment (DSDMandLean Software Development

2.2.1 Waterfall

A waterfallprocess involves a number of sequential phases, for exai@glder requirements’,
‘Design’, ‘Implement’ and ‘Test’. Each phase includes afition step, and the phase should
be completed and fully documented before the next begingn Asnanufacturing process, it
is most likely that each phase will involve different peqiier example, analysts, designers,
coders and testers, and so communication is based on lag@ésrof documentation. Feed-
back between phases is permitted, but this is very conttalfel no phases are omitted. For
example, if problems in requirements are discovered duesg all of requirements, designs,
code and test artifacts should be updated to reflect the ehang
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In a ‘pure’ waterfall process, a single delivery is made t® tlistomer i.e. there is no op-
portunity for refining of requirements from customer feetlbdn a real software development
project, this approach is impractical [142]. Seldom is thd eustomer sure at the start of the
project exactly what he or she wants and so a constant streanange requests must be man-
aged. Maintaining consistent documentation is difficuiemtime pressure and documentation
tends to become inconsistent between phases. There isentynidr developers to start work
on subsequent phases before earlier ones are completdotthsful that many projects have in
fact implemented a ‘pure’ waterfall process [95] and theeeraany reports indicating a more
iterative approach in practice.

Winston Royce is often quoted as creating the waterfall rhod&970 [141]. However,
according to Boehm, the waterfall model is a refinement ofagestise model introduced in
1956 to address problems of inadequate architecture aficuittito-read code resulting from
the ‘code-and-fix’ approach practiced in the earlier yedqgrogramming [23]. In fact, Royce
has been somewhat misinterpreted, perhaps as a result‘afdhafacturing mindset’ existing
at the time, as he includes in his documented process the &tept twice” i.e. deliver the
second version as final version to the customer and “invdigectistomer” i.e. solicit feedback
from the customer throughout the process [141].

The industry has spent much effort in debating the usefaloés waterfall approach to
software development and it might be argued that the mgjofisubsequent processes have
been created in reponse to the inadequacies of the wateddkl. Some claim that the waterfall
approach “pushes risk forward in time so it is costly to undstakes from earlier phases” [92].
It has also been noted that the waterfall represents an g@ittermanagethe development of
software and as such is not based on an understanding ofdbegses involved and so does
not reflect the real activities that take place [88]. This nsethat it does not capture cause-and-
effect relationships and so cannot be used as the basis fodalfior describing different kinds
of process.

2.2.2 Spiral

TheSpiralmodel of software development was created in 1988 by BarghBoas aisk-driven
approach to the software development process [23]. The Im@dea response to the belief that
the then popular waterfall approach was “discouraging nedfiective approaches to software
development such as prototyping and software reuse”. Tdsorefor this is that the waterfall
defines a strict order for process phases and so, for exadg#s,not account for situations in
which the coding of a prototype is appropriate before rexjungnts are consolidated.

The model comprises a number of cycles, the required nunfbiiese varying with the
project. Each cycle commences by determining cycle olmestiwhat the cycle must achieve),
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alternatives (possible ways to achieve objectives, formpta, reuse) and constraints on the
alternatives (for example, cost, module interfaces). Téhe step in a cycle involves performing
a risk analysis on the possible alternatives to meet theebbgs. The third step is to create and
test the deliverables required to meet the cycle objecaweisthe fourth to plan a subsequent
cycle, if required. For some projects, objectives for eaglgles might be high level in nature
and involve, for example, feasibility studies or prototy@es deliverables. The cycles would
then begin to address more specific issues, for exampleireagents and designs. Smaller,
more well-defined projects might commence with a ‘formalsiegments’ cycle. A key pointis
the inclusion of a risk identification and management phasig every cycle.

The spiral model provides much flexibility, as what is to b&iaeeed during each cycle
is defined by those using the model. This means that the modehgpasses other models,
for example, waterfall and it also means that other modeisbeacombined within the spiral
framework. For example, if cycle objectives are defined tadresistent with those of the wa-
terfall phases, the spiral becomes a waterfall model. Imalai way, a project with high risk
of creating the wrong user interface and with low budget nsght implement many ‘require-
ments/design/code’ cycles, and risk considerations mgdd to a decision not to document
specifications. The spiral thus becomes equivalent tevatutionaryapproach in which con-
tent is allowed to evolve as the project progresses.

Boehm acknowledged a number of difficulties in applying thedel. These include the
need for greater process determination when software a@valnt is contracted out, the need
for risk-assessment expertise and the need for furtheordtibn of steps [23]. | note that the
approach is a response to the inability of waterfall to aco@atate situations in which different
phasing is appropriate.

2.2.3 Rational Unified Process (RUP)

The RationalUnified Process, (RURjas developed bRRational Softwareand integrated with
its suite of software development tools [92]. Its base is@ihgectory process created in 1987
by Ivar Jacobson, a process centred on the concept of usamdsibject oriented design and
obtained on merger of Rational wi@bjectory ABin 1995. The addition of thBooch Method
an iterative approach to OO analysis and design, requirermeanagement (frorRequisite,
Inc.) and a test process (froBQA, Inc) resulted in theRational Objectory ProcessRUP re-
sulted from further mergers, resulting in acquisition ofimess modelling, project management
and configuration management capability. | observe thametes included originally related
specifically to software development activity, and haveesed over time to include software
development support and project management.

The process applies to development efforts that us®laject Oriented (OORpproach.
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Processes (‘workflows’ in RUP) are included for project ngeemaent, business modelling, re-
quirements, analysis and design, implementation, tesfigrration management, environment
and deployment. These span a number of ‘phases’ and itesati@ encouraged within each
‘pPhase’.

RUP is an artifact-driven process and ‘workflows’ are caxiad by the tools supported in
the product. It is possible to configure the process by mauifgteps and adding guidelines
and checkpoints, but within the provided structure of pied ‘phases’, ‘iterations’ and ‘work-
flows’. Key ideas include the need to manage risk and to astahlcore architecture during
early iterations [95].

RUP does not define a singbeocess rather it is aprocess frameworkThe claim is that
the RUP framework represents an attempt to bring togeth@wkrbest practices for software
development and project management. The idea is that usRt$Rcreate processes based on
the included ‘best practices’. However, the claim of sugipgr'best practices’ is tenuous and
Rational fails to justify such claims by reference to avalgeevidence. Indeed, a ‘best practice’
appears to be defined as one currently supported by RUP. Borpde, RUP documentation
references th8oftware Program Managers Network (SPMR5] as the source of project man-
agement best practices. However, the interpretation aktpeactices in RUP is loose. Two of
the six RUP best practices are ‘Develop Software Iteratiaeld ‘Visually Model Software’ but
these practices are not included in those suggested by SPMNSPMN practices of ‘Adopt
Continuous Risk Management’ and ‘Use Metrics to Managenatancluded in the RUP list,
but rather are catered for as specific aspects of the ‘Privianagement Workflow’.

2.2.4 Cleanroom

The Cleanroomapproach to developing software was developed by Harlals lild was ini-
tially practiced in 1987 at IBM [150]. The traditional, ctdfased approach of the time viewed
the introduction ofdefectsnto the software and the related costs of detection and vahas
inevitable [100, 150]. Management focus was on moving iniecation quickly in order to
commence debugging. The introduction of a phased, watagplroach represented an attempt
to control software quality by applying a manufacturingséa process. In a manufacturing sit-
uation, items found to be defective at the end of the proaesdiacarded. The aim is to reduce
the number of defective items by improving the process. Hewdor software-intensive prod-
ucts, the concept of discarding defective items does ndyafther defects are repaired prior
to delivery. For a manufacturing-based process such asfaigtéhe cost of repair for defects
discovered at the end of the process is high because of tpe darantities of documentation
involved.

Mills recognised that defect removal at the execution siagan inefficient activity and
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the key idea of the Cleanroom approach is one of defect ptieven“Cleanroom software
engineering is a set of principles and practices for sofwaanagement, specification, design
and testing that have been proven effective in improvingwsaoe development quality while
at the same time improving productivity and reducing co4t][ The name ‘Cleanroom’ was
taken from the electronics industry, and represents thervisf zero defect injection. Studies
report that the numbers of defects found in code as measuad@initial unit test activity is
greatly reduced by the application of a Cleanroom approadtitee kinds of defects discovered
are generally “...simple mistakes easily found and fixed. . ..

The approach represents a move “from traditional, crasedasoftware development prac-
tices to rigorous, engineering-based practices”. Ther#tmal foundations of Cleanroom are
formal specification and design, mathematically basedectmess verification and statistical
testing. The process involves small teams developing anifyoeg software increments, with
a hierarchical arrangement of teams for large projectste8ysntegration is continuous and
developers maintain intellectual control [100]. Develepéo not execute and test their code,
rather independent teams carry out all verification andnggtom first execution. The aim
is to quickly deliver an initial product of high quality andein incorporate new requirements.
Cleanroom prototypes are used to elicit feedback when rexpaints are unclear.

Specifications are generally developed by development aridication teams working to-
gether with the customer. Functional and usage scenarodedined and include both correct
and incorrect examples. The functional specification fotlnesbasis for development and the
usage specification for the generation of test cases. Sgmfis are used for increment plan-
ning. Developers carry out design and correctness verditatfor each increment using the
concept of ‘box structures’. When an increment is completie integrated and delivered
to the test team who execute test cases. Testing is viewedstdisgtical experiment i.e. a
“...representative subset of all possible uses of the soétws generated, and performance of
the subset is used as a basis for conclusions about generaltiopal performance. In other
words, a ‘'sample’ is used to draw conclusions about a ‘pajuuld’ [150] If quality standards
are not met, testing ceases and developers return to trgmdseage.

Claimed benefits of the approach include significant impnosets in correctness, reliability
and understandability. These are supported in a 1987 erabsiudy by Selby, Basili and
Baker, who found that Cleanroom teams met deliveries maguintly than non-Cleanroom
teams and produced code that contained fewer defects andfvaggher quality. Eighty-one
percent of the Cleanroom developers said they would usepitv@ach again [147].

Limitations of the Cleanroom approach include the requeenfor training — managers
must have a “sound understanding of Cleanroom imperatiaed’developers must be suffi-
ciently skilled to “adapt the process to the local environth§l50]. It is also believed to be in-
effective to use Cleanroom to effect small changes to soéwaveloped using non-Cleanroom
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technologies. Other limitations for some projects incltitedifficulty of defining a “represen-
tative subset” of uses for testing, the high cost of impletaton and the need for independent
teams.

2.2.5 Agile alliance

In the 1990s, several individuals who were unhappy aboutisieeof traditional methods used
for creating software independently evolved processeashibieved to be more appropriate for
‘real’ software projects. From Europe emerde@gnamic Systems Development Methodology
(DSDM), from AustraliaFeature-Driven Developmemind from the USAExtreme Program-
ming (XP) Crystal, Adaptive Software DevelopmeamdScrum[168]. Despite the fact that the
methodologies appeared to have little in common, reprateas from each met in 2001 in an
attempt to find common ground and the ‘Agile Manifesto’ wasrfed. The common ground
was that participants were “sympathetic to the need for mradtive to documentation driven,
heavyweight software development processes” [61]. Thaltee® manifesto represents an at-
tempt to redress a perceived process-heavy imbalance indbstry by adopting the philoso-
phy that people play the key role in software developmentmodess must play a secondary
role [32]. | overview some of the agile methodologies anduks further in the next Section.

226 XP

XP (eXtreme Programmings a “light-weight methodology for small-to-medium-sizeeams
developing software” and was proposed by Kent Beck as a nsgpto the need to manage
“vague or rapidly changing requirements” [15]. Beck intnods fourValues’ and a number
of basic ‘Principles’ that realise the ‘Values'. His prosesolution comprises the development
‘Practices’ that comply with the ‘Principles’.

The Practices cited by Beck are [15]:

The Planning Game Quickly determine the scope of the next release by combiburginess
priorities and technical estimates. As reality overtakesgian, update the plan.

Small ReleasesPut a simple system into production quickly, then release versions on a
very short cycle.

Metaphor Guide all development with a simple shared story of how theleskystem works.

Simple Design The system should be designed as simply as possible at aeg giement.
Extra complexity is removed as soon as it is discovered.

Testing Programmers continually write unit tests, which must ruwliéssly for development
to continue. Customers write tests demonstrating thatifeatare finished.
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Refactoring Programmers restructure the system without changing itawber to remove du-
plication, improve communication, simplify, or add flexity.

Pair Programming All production code is written with two programmers at onecimae.

Collective Ownership Anyone can change any code anywhere in the system at any time.

Continuous Integration Integrate and build the system many times a day, every tiraslai$
completed.

40-Hour Week Work no more than 40 hours a week as a rule. Never work ovediserond
week in a row.

On-Site Customer Include a real, live user on the team, available full-timeabtswer ques-
tions.

Coding Standards Programmers write all code in accordance with rules emplmgscommu-
nication through the code.

In this paradigm, working software is delivered every ceupl weeks and the above Prac-
tices carried out for each cycle. Rather than defining theyrbup-front, the approach is to
allow it to grow in an evolutionary way, as customers beconseenclear about what is wanted
as a result of feedback. Beck suggests that the XP Practipg®d each other and that process
efficacy will be compromised if any are missing.

2.2.7 Scrum

Scrum was developed by Ken Schwaber in 1996 and is based omwtios that software de-
velopment is inherently unpredictable. The mitigatiomtgies for the ‘unpredictability’ risk
factor include 30-day work intervals and a daily status mgebf developers, customers and
managers. Developers work from a prioritised list of feasuiKey principles are [30]:

e Small working teams that maximize communication, mininozerhead, and maximize
sharing of tacit, informal knowledge.

e Adaptability to technical or marketplace (user/custoncbgnges to ensure the best pos-
sible product is produced.

e Frequent ‘builds’, or construction of executables, that lba inspected, adjusted, tested,
documented, and built on.

e Partitioning of work and team assignments into clean, lowpting partitions, or packets.

e Constant testing and documentation of a product as it i$. buil

¢ Ability to declare a product ‘done’ whenever required.

No guidelines are given on how to create the product. | sugtes this methodology
represents a management approach to risk mitigation.
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2.2.8 Crystal

This is a family of methods created by Alistair Cockburn tali@ss the problem of poor com-
munication in software projects. All methods have a coregé&bles’, ‘work products’, ‘tech-
niques’ and ‘notations’ and the set expands as the team sazes@r priorities change. Priori-
ties are project dependent, for example, ‘productivityy,stem criticality’, ‘legal liability’ [30].
Practices from both agile and plan-driven methods are impiged and techniques from psy-
chology and organizational development research incatpdrf21]. All crystal methods have
three ‘Priorities’. These are ‘project outcome’, ‘efficaf and ‘habitability’. Shared ‘Proper-
ties’ include ‘Frequent Delivery’, ‘Reflective Improveméeand ‘Close Communication’ [53].

2.2.9 Feature Driven Development (FDD)

FDD was developed by Jeff DeLuca and Peter Coad as the résultaitempt to save a failing
project [30]. This is an architecturally based process at #n overall object architecture is
established up front along with a features list [21]. Fesguare “small items useful in the
eyes of the client” [30]. They are captured in a language tstdedable by all parties and
each is expected to take no more than 10 days to develop. TeheffGhief Architect and Chief
Programmer are maintained and OO design methodolgiesathphdaptation is achieved by 2-
week iterations. FDD does not mandate daily involvemenhefdient and a central repository
is used to capture all important project information, foamwple, minutes, knowledge, decisions
and issues.

2.3 Categorising Processes

Many practitioners and researchers spend much time inrduditional versus agile’ debate [16,
21, 30]. Terms such as ‘plan-driven’ are used to to descramiitional processes, with the in-
ference that agile methods are weak as regards planning (télrs believe agile processes
exhibit strong planning, as the setting of customer expiectsiis supported by short cycles and
estimation and monitoring are inherent aspects of agilege®es. Articles state that agile soft-
ware development “is about feedback and change” [168],ymglthat traditional methods are
unsuited to projects displaying these characteristicsmba and Basili point out that iterative
and incremental practices to specifically address probtdrisange have been carried out from
at least 1968 [95].

There is general agreement that the actual practices ingpied in agile methodologies
are not new. Although many authors have attempted to claisetagile methodologies [5,
16, 21, 30, 168], confusion reigns as to what exactly are istinduishing characteristics. In
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the overviews presented above we see a range of combinatigmactices with ‘traditional’
and ‘agile’ practices interspersed. For example, dailyamsr contact is a recognised ‘agile’
practice but is not implemented in FDD; up-front featurefsndigon is a recognised ‘traditional’
practice but is practised in Scrum. Fowler believes theze'swme fundamental principles that
unite these methodologies [53]”. He believes that the agfgoach of minimal documentation
is a symptom of two deeper characteristics and these areied lmethe adaptive rather than
predictive nature of software development and an oriesridbwards people as key to success.
As support for the former, he cites Cockburn who points oat ginocess predictability requires
linear components but people are not linear. The latter sx¢faat the role of a process is
to support the development team [53]. Both characterigtioposed by Fowler confirm the
people-centric nature of software development.

Although processes are commonly categorised as ‘tradifion ‘agile’, | notice that other
kinds of categorisation might be applied. If | categorisecading to ‘what is software devel-
opment?’, | find Waterfall and Cleanroom are categorisedrenufacturing’, Spiral as ‘risk
management’, XP as ‘service’, Crystal as ‘cooperative gaara so on. | also notice that
some paradigms have no representative process. For exabystes’'s plea for a behavioural
model of the process has not been actioned and no reprageptaicess exists.

A third possible categorisation involves determining tlegre of definition of a process.
| notice that XP is very tightly defined. Iteration length igefd, rules for how to design and
code are very explicit (as it is expected that techniquel agpair programmingandcommon
code basewill be implemented) and communication strategies are ragtd Spiral, on the
other hand, provides complete flexibility in how to create pgnoduct and mandates only that
the management practices of planning and risk identifinati® carried out in a specific way.
Decisions about the use of prototypes, how to design andaodlerthen and how to inspect are
left to the user of the process. Waterfall also leaves maaigias to the process user. Although
based on a manufacturing, and thus tightly defined, prooggmrtunities for flexibility result
from the facts that people perform the process tasks anddgfatts are generally resolved
rather than thrown away. Decisions about, for example,rgptikchniques and inspection and
rework policies are left to the process user and it is theipgamly that is defined for Waterfall.

The problem space is a rich one and processes can be catelgarseveral ways. However,
| suggest that such categorisation only succeeds in confulke issue by polarising processes
in a way that makes it difficult to understand the common factd-or example, any of the
available techniques that ‘characterise’ agile procedse®xample, documentation, up-front
requirements, test-first design, status meetings, iteratand customer collaboration, can be,
and have been, applied in both agile and traditional sitnati Situations that appear on the
surface very different may be viewed as different solutittnthe one problem. For example,
managing product definition may be achieved by exhaustiviam capture of requirements
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with a single delivery of the product, up-front capture wilcremental delivery allowing for
some feedback from the customer or minimal initial produefirdtion and many prototypical
deliveries aimed at growing the product in an evolutionaaywThe first is believed to be
appropriate for products such as compilers and the lastréayzts with low understanding of
user interface requirements [23]. A similar discussioruacbhow product knowledge is held
leads to the identification of ‘suitable’ and ‘risk’ situaiis. If knowledge is held in documents,
it is believed that developers have a view of only part of thepct, with little understanding
of the rationale for the product or the characteristics efdhplication area. If knowledge is in
peoples’ heads, there is a risk of knowledge being unavailédr example, if developers leave
or are unable to share knowledge for any reason. The poimkisfor a given project, the ‘best’
strategy will depend upon a consideration of specific sofusitrategies in the context of the
project. There is no need to be ‘agile’ or ‘agile with a litttaditional’ or, maybe, ‘traditional
with a little agile’.

In summary, | suggest that, if the goal of customisation isganet, discussions that cate-
gorise processes in a polarising way are unhelpful and foeads to be on understanding what
are the characteristics of the software process and how tkeéste to specific project contexts.
| provide some support for this viewpoint in Section 10.3.
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Software Process Models

In an attempt to better understand the issues involved arglf#itilitate prediction capability,
researchers use various techniques to model the developreamess. There are three main
groups involved in modelling for understanding and predicteach with a different kind of
goal. Researchers in the first group apply statistical mdaijpns on existing datasets with a
view to predicting outcomes on future data sets. Modelsdasestatistical prediction tech-
niques are overviewed in Section 3.1. Researchers in tlmdegroup are involved in formal
experimental research with the aim of providing sound nesedata for use in further studies.
Some research based on this approach is overviewed in 860 Researchers in the third
group model and simulate the development process, oftértietaim of perturbing the process
to study what effect this has on specific outcomes, for exanplality. Some of these models
are overviewed in Section 3.3.

One characteristic all groups have in common is that the ¢hekvailable, sound data con-
strains efforts in some way with the result that models oftemtain ambiguities and are based
on unstated assumptions. This means that we do not realrstathd what is the meaning of
results achieved. For each of the groups, | identify the «imidimitations characteristic of the
kinds of models created.

25
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3.1 Predictive Modelling

3.1.1 Costestimation

In the 1960s and 1970s, researchers and practitioners bestamerned that software-intensive
projects were plagued by problems not present in other naatwing projects. These prob-
lems resulted in failure to meet delivery expectations graivéed a number of models aimed
at supporting predictions of project cost and duration [103he models in general represent
a pragmatic approach aimed at improving estimation acguetber than an attempt to under-
stand underlying causes. To this end, models apply, for plgmatatistical methods to predict
based on existing data.

Early predictive models aimed to facilitate the predictafrcosts and durations for a given
project [19, 103]. These cost estimation models are equatioking costs to the size of the
software product to be delivered and a number of other fadielieved to influence costs, for
example, staff size. The form of the model equation is ief@from a statistical manipulation
on a number of datasets collected from real projects. Ctish&son activity has continued to
the present time and different kinds of techniques applied.

Possibly the earliest known model is that of Farr and Zagpmsktcoduced in 1965. The
model has thirteen predictors and estimates manpowerreghfitom delivery of complete re-
guirements to release for integration i.e. for design, cawl@ debug [103]. The Wolverton
model from TRW Systems (1974) assumed manpower is direoblygstional to size and uses
historical data, a phased approach and a ‘difficulty’ scafteofd or new software. The Doty
model (1977) is a set of recommendations for estimating aayl lme applied to command and
control, scientific and business systems. Size is used t@utEna cost, which is refined us-
ing seventeen environmental predictors [103]. SLIM wasettgyed in the late 1970s by Larry
Putnam. This model uses Source Lines of Code (SLOC) for girejee and then modifies this
through the use of a Rayleigh curve model to produce effamnases. Two key parameters
influence the shape of the curve — the ‘manpower buildup ingiexial slope) and ‘productiv-
ity factor’ [25]. The COnstructive COst MOdel (COCOMO) waasveloped by Barry Boehm
of TRW and is based on an analysis of 63 software developmejeqts. The model predicts
effort and duration based on size measured in KDSI (thoussaidklivered source instructions)
and a number of ‘cost drivers’. There are three alternativesnodel equations for different
kinds of project.

More recent studies consider a range of data-intensive mggléechniques such as ordi-
nary least-squares regression (OLS), Analysis of Variappoach for unbalanced data sets
(ANOVA), classification and regression trees (CART), agstbased approaches [7, 25] and
data pruning approaches [28].
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Practitioners and researchers continue to express coabeut their inability to accurately
estimate costs based on the above models [77, 82]. A 198 fieaigvaluation of four popular
models, SLIM, ESTIMACS, Function Points and COCOMO revddleat when models were
applied in an environment different from that in which thedabhad been developed, average
error rates ((estimated effort - actual effort) / actuabdjf ranged from 85 to 772 percent.
After calibration to the local environment, SLIM showed a® [@ercent correlation between
estimates and actuals, with other models performing ledls Wiost models appeared to be
adding extraneous information [82]. A 1999 study by Briahd &. examined a number of
data-intensive modelling techniques using a large dagadidsusiness applications. Techniques
included the four modelling techniques introduced earhethis paragraph. Results showed
that outputs from all of the models was “from a practical perdive, far from satisfactory for
cost estimation purposes” [25]. Researchers continuevestigate techniques for improving
predictions. For example, Auer and Biffl propose an extangican analogy-based approach
i.e. one in which estimates are derived from historical dstdinding projects with similar
features. The extension takes into account the fact thegreift project features “are known
to have varying impact on actual project similarity” [7]. @hpropose a scheme for weighting
features based on relative impact. Chen et. al. observedakivorld data sets “often contain
noisy, irrelevant, or redundant variables”. They claimgbumprovements” if data for similar
projects only is included and if most of the columns (i.e.unparameters in the data set) are
pruned away [28]. These research efforts indicate thatpajh many agree that predictive
models are useful under certain circumstances, care muakbe when selecting source data
for predictions and models may not be applied in a general way

3.1.2 Fault prediction

A second example of the use of statistical modelling tealescpn large datasets concerns the
various research efforts aimed at identifying what are #wtdirs that affect the incidence of
softwarefaults[12, 18, 50, 58, 60, 83, 94, 112, 116, 123, 124,172, 173]. idssarch is driven
by the high cost of finding and fixing faults just prior to a puctls release. The strategy is
to identify fault-prone modules earlier in the developmeyitle, for example, after design or
just prior to testing, and thus enable development anchiggsfforts to focus on these high-risk
modules.

This research has spanned twenty years. Inputs to thetisatraodels generally include a
number of product metrics, for example, size measuredrassiof code’ or ‘Halstead program
length’, control flow structure measured as ‘McCabe cyclicnr@omplexity’ and design cou-
pling measured as ‘fanin’ and ‘fanout’ [94]. Models aim ttheir predict expected module fault
density [12, 60, 58, 123] or to classify modules as ‘faultr@'oor ‘not fault prone’ [83, 94].
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A number of statistical techniques has been applied to tbbl@m. Early models applied
multiple regression techniques but this approach was\szgli¢co be problematic because of
the non-normal nature of the fault data (for example, maltypically exhibit no, or few,
faults at later stages in the software cycle) [116]. Khostago et. al. in 1996 applied a non-
parametric discriminant analysis technique to classifygpams as ‘low-fault’ or ‘high-fault’.
Eleven complexity metrics were developed as independamdblas, including ‘code lines’,
‘character count’, ‘Halstead’s program length’ and ‘Mc@abcyclomatic complexity’. The
problem of multicollinearity in the independent variabless addressed by applying principal
component analysis, resulting in only two orthogonal (urelated) complexity domains. Cor-
relations between these two domains and program faultsavaslfto be high [116]. Lanubile
and Visaggio used techniques of principal component aiglgscriminant analysis and logis-
tic regression to classify modules. They believe logistgression is preferrable to discriminant
methods because the technique is not based on normalitsnptisas [94]. Fenton and Ohls-
son remind us that data are measured on different scalesaistical analysis techniques must
take this into account [50]. Graves et. al. apply ‘geneedliinear models’ to determine fault
rates as these are appropriate for non-Normal distribsitibant comment that the “choice of
parametric family ...led to some complications” [58]. Q@sid et. al. developed a negative
binomial regression model to sort files in descending orélpredicted fault density and report
accurate predictions [18, 124].

3.1.3 Limitations

Cost estimation models have proved disappointing for estilg outcomes for real projects.
One possible reason is that models are based on an assumlptionwhat are the factors, in
addition to size, that most influence productivity. COCOM®@asures size in ‘Lines of Code’
(LOC) and includes, for example, ‘personnel experiengaérsonnel continuity’, ‘database
size’, ‘required reusability’, ‘virtual machine volatyi' and ‘requirements volatility’. Briand
et. al. measure size in ‘Experience Function Points’ (@erifrom the Albrecht Function Point
measure) and include ‘organization type’, ‘applicatiopdy ‘customer participation’, ‘require-
ments volatility’ and ‘team skills of staff’. The implicatn is that the relevant factors are not yet
properly understood. This creates a problem that is congexiby the difficulty of collecting
data on these factors-of-interest. This idea is supportetidBriand study where comparisons
between the use of company-specific data and multi-orgaorsdata failed to show a signif-
icant difference when company-specific data was used. Thmusuggest that “the main
source of heterogeneity may come from the project chaiatiter themselves rather than the
organizations where they take place” [25].

In the case of fault density prediction, there is some lackgreement about results. An
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example is the use of statistical techniques to predictetaionship between module size and
fault density. Are small, medium or large modules most fputine? Several researchers have
found that, contrary to popular belief and the notions afdtrred and modular programming,
fault density has been found to increase in smaller moduldsemain constant for increasing
size [12, 112, 123]. Explanations given relate to the ineeda interfaces for smaller modules.
Hatton, however, makes the case for a U-shaped result aaglazithors in addition to himself
who have found that fault density increases as modules beconaller or larger than some
minimum value[60]. His explanation involves the idea thatfans hold a predefined number
of pieces of information in short term memory — this corrasg®to the ‘dip’ in the curve —
and when this is exceeded i.e. the module is too big, long teemory mechanisms come into
play. More recently, Fenton found no relation to module sizd this was backed up in a later
paper by Ostrand and Weyuker[124]. Lanubile et. al. compaveral modelling techniques for
predicting software quality by building models based onwgafe product measures and using
the models to classify components as high- or low-risk. Tegples included principal com-
ponent analysis, discriminant analysis and logistic regjom. They conclude that “no model
was able to effectively discriminate between components faults and components without
faults”. They warn that, although past research has inelicatrrelation between product mea-
sures and fault densities, “the underlying phenomena roatto be poorly understood” and
researchers are working with assumptions [94].

In all of the above examples, researchers use statistdahigues on existing datasets with
a view to identifying influential factors for use in predictimodels. Basic statistical wisdom
tells us that, in this modelling paradigm, results are ngliapble to situations other than those
existing during data collection [31]. Statistical methads show correlation but without un-
derstanding how factors in different situations might iege the rules’, there is no possibility
of applying results to other circumstances. One symptorhisfi$ that researchers find it diffi-
cult to obtain consistent experimental results, and thisifareflected in the above discussion.
The problem is acknowledged by a number of researchers ifiefldeof software engineering.
Lanubile et. al. believe that “Predictive models are vetyaative to build, but they can be a
waste of time if we rely on false assumptions ... ” [94]. Thedhéor a deeper investigation into
the underlying processes is reiterated by Zhang et. al. vefieve that a failure to consider
other factors that might contribute to software reliapihas “become somewhat a limitation of
the existing software reliability models” [173]. Fenton ei. remind us that statistical mod-
els do not capture causal relationships and “recommend owrplete models” that include
explanatory factors [50].
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3.2 Controlled Experiments

In 1976, NASAs Goddard Space Flight Center (NASA/GSFChted a partnership with the
University of Maryland (UM) and Computer Sciences Corpora{CSC) “for the purpose of
understanding and improving the overall software procedgpaoducts that were being created
within the GSFC Flight Dynamics Division” [117]. This group the Software Engineering
Laboratory (SEL) The strategies applied by this group involved measuremuahexperimen-
tation. This application of controlled experimentatiogheiques to increase understanding
reflected the desire of some researchers to increase tigeiiyitaf empirical research in the in-
dustry. However, perhaps because of the complexity of thievame development environment,
the approach has been adopted by only a small group of résgarc

It is, however, generally agreed by researchers that, ifn@ga@progress as a professional
discipline, it is now time to move away from the ‘analyticdvacacy research’ [49] with which
the industry is familiar and towards a more formal approackexperimentation. A recent
(2005) literature survey examining controlled experirsantsoftware engineering uncovered
the fact that “the majority of published articles in compugeience and software engineering
provide little or no empirical validation and the proportiof controlled experiments is partic-
ularly low” [149]. Basili et. al. believe that “...in softwa engineering, the balance between
evaluation of results and development of new models issit#ived in favor of unverified pro-
posals” [14].

The industry is now withessing an increased interest in da@ampirical research. The stan-
dard techniques for empirical research include obsemvatistudies, for example, case studies,
and controlled experiments [44, 90]. The former are gehecalried out when the aim is one
of exploration or comparison i.e. the researcher wishesdrerfully understand some aspect
of the system under study, perhaps as a preliminary steprdsviaeory-building. Controlled
experiments aim to examine causal relationships betwesougafactors and study a problem
stated as a hypothesis based on some theory or model [55]asfmcts of this paradigm in-
clude an operationalisation that states what are the redtventities that will be measured
to represent the hypothesis, the soundness of the expeahtesign, control of any variables
that might affect results, the use of random data and thacapipin of appropriate statistical
techniques for rejection of the null hypothesis.

Research into the software process can be categorised mséxgthe inter-relationships
between process, product and people. For example, “Whgpection technique is better?”,
“Did the technique yield better results if the developersenexperienced?”. Some controlled
experiments that have been carried out include studiesiakagmvarious reading techniques for
inspections and object-oriented designs and code [2, Ir$tudies on regression testing [80].
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3.2.1 Limitations

Formal empirical research tends to be careful about defintmag is being measured and tested,
but the problems with interpreting results is acknowledgg@ number of researchers. Carver
et al. [27] point out that there is a problem with understagdvhat are the common assump-
tions arising in current empirical research efforts. Itiicllt for researchers to be sure that
all possible explanations for results have been identiffetithat effects are, in fact, due to the
cause under investigation. This is a problemrérnal validity. For example, in experiments
involving process and product, are we certain the humaoifagtere held constant? According
to Kitchenham et. al., “... controls are difficult to definechase software engineering tasks
depend upon human skills” [90] and an existing ontology dafteat “identifies a very large
number of factors but does not offer any advice as to whictofaare most important” [90].
We remember to take account of experience and skills, buhare any other factors that might
confound results, for example, motivation and ease of comcations? Carver et. al. com-
ment that “the variation among the subjects can outweighrfhigence of the real variable of
interest” [27]. The “potentially large number of contextiadles” [14] also causes problems of
external validityand “we cannot a priori assume that the results of any stugly ajutside the
specfic environment in which it was run” [14]. Sjoberg et. exhind us that “there is no gen-
erally accepted set of background variables for guiding datlection . .. because the software
engineering community does not know what are the importaes §149].

3.3 Simulation Modelling

A third set of researchers originally addressed the problexhibited by software projects by
attempting to enforce greater control of the process. Thdaisocreated by this group were
prescriptivein nature i.e. defined what steps were to be carried out and ISmweh models
tended towards automation of the process environment [BI], IThis trend was highlighted
by a well-quoted and much acclaimed keynote speech at the lh&&national Conference on
Software Engineering (ICSE9), where Leon Osterweil dedahat “software processes are
software too” [122]. Others disagreed with this view andihet same conference, Lehman
delivered a ‘response’ paper claiming that “the existerfce programming language sets up
constraints as to how a problem may be solved, severelyslimiman creativity” and that it
“...is the problem domains .. .that become well understowbfarmally modelled, not the the
process for program development in general [97]". He beliethat process programs “do not
... appear to provide a fundamental contribution to thehiertlevelopment of a software engi-
neering discipline” and suggested that the challenge ofutue was to improve clarification
and understanding of the general process. He and many ¢ténegdaken up this challenge by
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creating executable models of the software process spabifizimed at understanding what
are the key influencing factors [19, 81, 103, 130, 134, 137].

One of the early models in this direction was that of Abdeltthand Madnick, based on
a system dynamics paradigm (see Section 3.3.1). This mdde¢sses the managerial aspects
of software devlopment [1] and represents a response taldaetihat there was too much focus
on modelling the technological aspects only of the proc8sthstantial attention is now given
to modelling in a descriptive, rather than prescriptiveywad the ternsimulation modelling
has been coined. An annual Workshop, the Workshop for Psddeslelling and Simulation
(PROSIM), is held in conjunction with the International Gemrence for Software Engineering
(ICSE) and the Journal of Systems and Software has producethber of issues dedicated to
this subject.

Model simulations have used techniques from various disep and the scope of work has
varied from small portions of the product lifecycle to lomgrh organisational matters. The dis-
cipline is “increasingly being used to address a varietgsifies from the strategic management
of software development, to supporting process improvésyemsoftware project management
training” [81]. The main paradigms currently applied to glation modelling are system dy-
namics [1, 51, 99, 105, 119, 138, 162], discrete event sitimunastate based [67, 137], and rule
based [46, 143, 153]. More recently, researchers have cmudlparadigms in an attempt to
overcome limitations inherent in individual paradigms,[33, 107, 106, 136].

Modellers tend to approach a problem from the viewpoint efgaradigm selected. Lehman,
Ramil and others have studied long term product evolutiomgessystem dynamics approach [99,
138, 162] based on Jay Forrester’s work on the study of segsems [52]. Abdel-Hamid and
Madnick have applied the system dynamics method to studyoveer and quality-related is-
sues [1]. A number of researchers have based their work gn fiiahl and Lebsanft have
used an extended model to study planning and control at thjegbrlevel; several papers at
Prosim 2003 applied a system dynamics approach to studyeatsrof the lifecycle [51, 119];
Madachy explored an inspection-based process [105]; Lh&syalso used a hybrid model for
project management [93]. Raffo et al. have applied a stasedbapproach from systems anal-
ysis and design to the evaluation of possible process ckdhgé], and embed a discrete event
model in a continuous framework to understand the consegsenf omitting unit tests when
developers are experienced [107]. Donzelli and lazeoba@se a two-tier approach, with a dis-
crete event queuing network at the higher level and a mix alygéical and continuous methods
at the lower [45]. Scacchi [143], Drappa and Ludewig [46] &taolrrle [153] have implemented
a rule-based approach.

I now overview the common paradigms applied in this reseafohg with limitations as
perceived by fellow researchers.
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3.3.1 System dynamics

System dynamics is an approach originally applied by JageStar in 1961 to systems analysis.
It was soon applied to a number of social systems, and therfttease developmentin 1991 [1].
The main idea is that, for systems exhibiting feedback lpapsxpected results may occur as
a result of feedback interactions. System variables ofaésteare represented as ‘levels’ and
feedback loops create ‘flows’ that cause the levels to rigefalh Feedback from individual
flows is linear, and the total result for a level may be exptiaéimcrease, exponential decrease
or oscillations depending upon the multiplication factfansthe various flows.

The application to software development is based on the ipeethat software develop-
ment processes “form multi-loop, non-linear feedbackeayst’ [134] (citing Abdel-Hamid and
Madnick). One such loop common in large-scale softwareggtsjis the defect injection and
resolution cycle, where defects are injected at a rate aperupon, for example, developer
experience, discovered later in the process by testingreerd'tycled back’ for resolution. The
cycle re-commences as further defects are injected duesgjution activity. Other elements
of such a loop may be, for example, ‘schedule pressure’ araltgtivity’ as rework causes
slippage [93].

A typical modelling effort in this paradigm involves idefying a problem, developing
“a dynamic hypothesis explaining the cause of the problémilding a computer simulation
model of the system and testing the model to ensure it repesdeal-world behaviours [154].
One claimed benefit of such an approach is that outputs aendept upon all relevant factors
in a ‘global way’. Lehman warns of the danger of ‘local’ prese@mprovements and declares
that “Local fine tuning cannot be expected to make a majoritmriion to global effectiveness”
because “It is a well-known property of complex systems lihel optimisation usually causes
global sub-optimisation” [98]. Th&ystem Dynamics Sociegminds us that “Only the study
of the whole system as a feedback system will lead to coresctlts” [154].

The system dynamics approach to modelling social systesmdden criticised by several
researchers. Starr comments that such modelling is a fomoreexperimental research and the
model effectively represents a theory about the operafiarsgstem. As hypothesis generation
and testing are absent, the model is not reflective of trusatamechanisms and can not be used
for predicting. He believes there is a danger of slipping iptescribe’ mode when using such
models [151]. Legasto and Maciariello believe models aom@rto methodological problems,
for example, disagreement about whether to model unmehsar@ables and the suitability of
the loop-cause-effect format for individual problems. @thriticisms are the lack of an em-
pirical base and the intended use of the paradigm for long-licy-making, both of which
render the approach inappropriate for short term predid®8y. More recent criticisms from
the field of software engineering include the inability tgptae attributes in system dynamics
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models. For example, a model ‘level’ for a ‘code’ entity mégerand fall in size, representing,
for example ‘amount of completed code’, but there is no wagdapture other attributes, for
example, ‘code complexity’ [L07]. Because system dynamigsks at a system level, limita-
tions also include the inability to model, for example, afstoding’ task while preventing, for
example, ‘start design’ from commencing as soon as the ‘Qedel became non-zero [106].

My contributions to the list of criticisms include the usetbe term ‘causal loop’ when
such a loop actually represents a belief about how we thiftkvace development works and
the embedding of process decisions in the model, generaiynion-transparent way. The first
means that there is a confusion between ‘belief’ and ‘causaind beliefs become unavailable
for altering or fine-tuning. It also means it is not possibletodel random factors (for example,
an engineer is unhappy because his dog just died). The seriictsm means we tightly-
couple process and policy and so remove the possibility ofsae-making during process
execution. For example, in the feedback loop cited aboweretlis a loop linking ‘defects
generated’, ‘schedule and effort’ and ‘staffing profile’ ]9Fhe embedded assumption is that
an increase in rework required results in increased staffiing ‘fixing’ of the process in this
way equates to a fixing of a policy i.e. that staff numbersalincreased to handle an increased
need for rework. Such a policy might be applied and then cbdmgcording to circumstances
but is now embedded as an integral part of the process. Batraal. also comment on the
mingling of facts and assumptions and suggest a stratedfetd separation [39]. | also notice
that the concept of ‘feedback’ in engineering systems gdlyatoes not involve a consideration
of time — it is assumed that feedback manifests quickly asdlte, for example, steady state,
are achieved within a short time interval. When applied wasystems, the aim is generally
one of understanding and again time frames are not of keyestteHowever, time frames are
crucial in software development projects. It is importankmow if the results predicted by the
causal loops in the process model, for example, fewer defeah be expected to occur within
the life-time of the process! The warnings in the early atare against using the method for
short term predictions [9] seem relevant to software ptejeDespite all of this, the claims in
the literature are that good results have been achieved wimeadel is callibrated with data
from specific organisation.

3.3.2 Eventdriven

In a discrete event simulation, discrete entities (‘unftsraffic’) move (‘flow’) from point to
point in the system while competing for scarce resourcediti&ninstigate and respond to
events (things that happen and change the state of the 9ystdma system state changes at
only a discrete, and possible random, set of simulated tiong&g[145]. When this paradigm
is applied to software development, the ‘product artifactfities flow through process blocks.
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Each process accepts unique inputitems and creates unitpué products [93]. The ‘complete
activity’ event is the event that causes system change. STiareeach activity are embedded in
the model and sourced from a target organisation.

This approach has proven suitable for the software domsaisptiware processes are gener-
ally defined in discrete terms, for example, ‘design’ [93ffoEs and durations may be based on
statistical distributions, allowing the uncertainty tbaturs in real software projects to be mod-
elled [158]. In this paradigm, delays may also be captur@dexample, when test equipment
IS unavailable.

The limitations of this paradigm relate to the fact that tiom@anges only at event comple-
tion. This means it is difficult to model smoothly varying iadoles (e.g. productivity, schedule
pressure) as some process blocks have a long time span. wdde@undation is that the approach
“restricts the software development process to a predefiaqdence of activities” [46]. A di-
rect application of this paradigm would present difficidtiewe want to change the process in
a non predetermined way. For example, if we want to add arestgm step, or omit the design
step and move straight to coding with pair programming astifiest design, we would have to
change the model structure.

3.3.3 State based

As described earlier in this Section, several researchars hpplied a state-based approach
to modelling the software development process, an appriatisuggested by Humphrey and
Kellner [67]. State transitions are triggered by eventatmed to task commencement or com-
pletion. States describe task status, for example, ‘Ingesr ‘Tested’. Parallelism can be
represented, for example, ‘design’ task completion miglise the system to be in a state that
represents both ‘InCode’ and ‘InTestPreparation’ [158]akéland points out that feedback
loops cannot easily be represented because state change onty with events and long time
frames may exist between events.

The state-based approach as described here has statesetdaseribed in terms of task
status. This has limitations for flexibility, for example palicy to ‘commence coding when
designs are 80 percent complete’ is not easily captured.

3.3.4 Limitations

Simulation models are generally created for a specific coyppeocess and tend to use metrics
data from the target company for model formulation. Thew@aador this are that the software

development process is complex with many factors influepomtcomes and there is a con-
sequent lack of sound, comprehensive industry data on wbitlase models [46]. Research
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aimed at an improved understanding of the keys factors tfedtaoftware project outcomes
is thus difficult, and researchers focus on understandinlinvspecific environments. This
situation means that many current simulation models aengésdly productsrather than repre-
sentations of a theory about how software projects work.

One consequence of this is that results from modelling studre applicable only in the
same environment. Studies generally aim at aiding speafigpanies to predict the results of
process changes based on previous projects.

In addition to the above ‘scope-of-application’ limitat&® simulation models tend to con-
tain many assumptions relating to project contexts. Somede assumptions manifest as
integral parts of the model architecture. For example, whledel-Hamid and Madnick first
applied a system dynamics approach to the modelling of tfieae process, they postulated
that developer motivation decreases over long projectdi¢ form of the ‘causal’ relationship
is characterised in the model equations. This relationsagappeared as an unstated assump-
tion in almost all subsequent system dynamics models. @ggrmptions are often ‘*hidden’ in
the metrics used to populate a model. For example, a comgparstrics database may contain
a measure of ‘typical productivity’ or ‘average number ofet#s injected or found’, and these
metrics in fact ‘hide’ the fact that real people are coding aértain rate and with a certain level
of proficiency. If we don’t know what were the human factorpkay when the metrics were
collected, we have no idea whether or not we may apply the saetgcs in another project. In
simulation experiments, the definition of what is being nueed is generally clear, as the target
process is generally that of a specific company. Assumptmrthis approach tend to relate to
contexts, as these are often either buried in the modeltaothire or assumed in the target data.

An interesting discussion that occurs in the simulation etiotg literature relates to the
capture of continuous variables. System dynamics moddked to claim that some variables,
for example developer motivation during long projects,ibilieedback, i.e. change throughout
the process in a continuous way, and this is best represbytite system dynamics paradigm.
Other modellers emply a discrete mechanism to capture swige. For example, Raffo and
Harrison manage such variables by means of some persisteags that captures changing
values as the project progresses [136]. Martin and Raffegmtea model in which values for
continuous elements are obtained by calculating modeltemsaat regular time intervals [106].
The use of discrete intervals to model continuously chapgadues is addressed in the early
modelling literature [140].

Although several simulation modelling researchers haweméxed the theme of software
process flexibility [13, 35, 46, 93, 115, 144, 153], a modett tfacilitates comparison of pro-
cesses across modelling paradigms has not yet been sugjgeste
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3.4 Discussion

In the Sections above, | overviewed three kinds of empimeatiels used to help researchers
understand the software development process with a vievetbgiing outcomes. To my knowl-
edge, these represent current such research. | arguedattrebethe three model types (pre-
dictive models, models used for controlled experimentaéind simulation models) are char-
acterised by assumptions and these assumptions imposations on conclusions that may be
drawn from studies based on the models. One consequencis & that some studies appear
to give inconsistent results. For example, in an examinatifostudies involving pairs of de-
velopers creating code [84], two studies [120, 169] presesuilts that indicate that developers
working collaboratively produce better quality code witry little loss in productivity, and a
third study shows that collaboration is about one quartgeraductive as solo programming
and concludes that it is pair programming’s role-basedoopaitthat is the cause of the good
results [126]. However, the second study [120] producesigesults forcollaboration(not
pair programming) and this is in direct contrast with resoltthe last study.

The lack of consistency in experimental results is an ackedged problem when empirical
research is not based on an underlying theoretical model3&590]. | take this up again in
Chapter 5.

3.4.1 Software measurement

| conclude this Chapter with a discussion on the problem fifvewe measurement. According
to Kitchenham, Pfleeger and Fenton, there is a problem wélintiegrity with which software
practitioners and researchers measure software-relttéaites [89]. It is important to work
with validated software metrics and at the current timedghgemno agreed way to perform such
validation. Several researchers have addressed the isgabdation. For example, Weyuker
proposes a set of properties that measures must be showmilbit. etddowever this set is believed
by Zuse to be inconsistent. The result is that “.. . new messare being justified according to
disputed criteria, and some commonly-used measures magfaot be valid according to any
widely accepted criteria” [89]. This situation has not yeeh resolved [91] and is problematic
because “the major rationale for using metrics is to imprinesoftware engineering decision
making process from a managerial and technical persp&¢di8g

Kitchenham et. al. discuss the structure of measuremenpasgnt a framework for val-
idating measures along with a plea to the software commuhéy discussion is needed for
agreement to be reached. They believe that “. .. softwarsunement must be consistent with
measurement in other disciplines” [89] and remind us thati@asured value cannot be inter-
preted unless we know to what entity it applies, what attalimeasures and in what unit” [89].
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They also remind us that, according to measurement thémycalefor a measurement is gen-
erally one ofnominal ordinal, interval andratio, and each of these obeys specific rules for
manipulation. For example, fault categories with valuesjdf’, ‘Minor’, and ‘Negligable’
might be captured using amdinal scale This means it is not appropriate to perform arithmetic
manipulation on the values. A common mistake occurs whercdlbegories are represented
numerically, for example, ‘0", ‘1’ and ‘-1’, and then comlgid in some way to obtain a ‘rep-
resentative’ value. The problem lies in the fact that theelalare entirely arbitrary and so
arithmetic manipulation is meaningless. Consideratiosarimon software measures in the
light of such errors show that many common software measaareeflawed and that “a range
of simple measures are valid within well-defined contextis diso shows that certain measures
cannot be deemed to be valid according to any reasonablgificiaotion” [89]. The authors
specifically discuss function points in this context andckénham expands the discussion in
[86].

There is disagreement about some of the details of the peddosmework. For example,
Kitchenham et. al. believe that the unit that describes hewneasure an attribute defines the
scale, for example, ‘Fahrenheit’ is amterval scaleunit of temperature, whereas ‘Kelvin’ is a
ratio scaleunit of temperature. Attributes are thus independent ofuthiés used to measure
them and “any property of an attribute that is asserted to genaralproperty but implies a
specific measurement scale must also be invalid” [89]. Mmras. al. believe such a model
will present problems when there are well-understood iitias, and cite the example of an
intuitive understanding about the concept of object siee Wwhen two objects are put together,
the size of the compound object is not less than the sizeluéretonstituent [113].

The fact that there is disagreement between researcheushatisbasic level supports the
belief of Kitchenham et. al. that the industry is working lwviisputed criteria and that the
foundations of software metrics are very shaky. Issues afsmement are highly relevant to
the problem of comparing processes because, if we cannaumegave have no sound basis
on which to base comparisons. However, for reasons of pragimal regard problems of
measurement as out-of-scope for this dissertation andlgiwgrk with the measures that are
commonly applied by practitioners and researchers.
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This dissertation addresses the need to synthesise pesassording to project environments
in order to predict outcomes. In Section 1.4, | noted thafipigewe can synthesise, we must
be able to represent elements of processes and processsiriaasb noted that, before we can
predict outcomes of applying process elements, we musbrable to compare the effects on
these outcomes of different elements.

In this Section, | overview a number of research areas tleatedevant to the problems of
representing, comparing and combining processes. Inddedtil, | overview some existing
process frameworks that provide support for project-gpesppecialisation, in Section 4.2, | de-
scribe some researchers’ approaches to tailoring the adtprocess to project environments
and, in Section 4.3, | describe some simulation models ihat@support flexible representa-
tion of processes. In all cases, | describe what has beervachand discuss limitations. In
Sections 4.4 and 4.5, | overview some related areas of @sead comment on why these
are relevant to this thesis. In Section 4.4, | overview soraméworks aimed at aiding exper-
imentation. In Section 4.5, | overview some efforts at pdow) a suitable abstraction for the
human-related factors in a software process.

39
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4.1 Process Frameworks

Some process models presented in Section 2.2 are in facevrarks that allow specialisa-
tion. In this Section, | discuss these frameworks and thé&dimons that restrict their ability to
represent any development process in a flexible way.

4.1.1 The Spiral model

The Spiral model was presented in Section 2.2 as a risk-driven modél R@ral effectively
supports flexibility in the ordering of the phases, for exéanpoding a prototype may take
place before specifications are complete. The ‘best’ plwagetion in each cycle is determined
by risk assessment of objectives, alternatives and contstrads the model is completely flex-
ible in what are the objectives for each cycle, it is, in factprocess framework that allows
specialisation.

The model requires up-front management activity (planysogpe-setting, constraints iden-
tification and risk assessment) at the start of each cycles,dithough there is flexibility in the
technical aspect of the model, i.e. there are no constramtghat is implemented during the
cycle, the management aspect is mandated. In this sensecwde is like a mini-project, in
that planning, scope definition and risk management argraiteAlthough the need for plan-
ning is acknowledged by the software industry, | observetti@planning activities included in
the Spiral model represent only a subset of the activitiggaested in the project management
literature [135] and these activities are mandated fordadtixsare projects, regardless of size or
criticality. | suggest that this represents a limitatiotie model’'s use as a general framework,
as flexibility in the planning function is removed. | take upetissue of planning in Section
5.3.2.

| also note that, although the model has a step for identifgionstraints imposed by the
environment, human factors do not appear to form part ofetleesstraints. Although one
could identify, for example, ‘project manager does not camivate well’ as a constraint that
spawns a risk, it would seem that this is pushing the boundseoéxpected use of the model.
This lack of inclusion of a ‘human factors’ aspect in factates an inherent risk in model
usage. The assumption of risk management expertise isatdehged by Boehm as a difficulty
in applying the model, but | would also add the risks of lacllainning expertise and a lack of
acknowledgement of the effects of the human-related factor

4.1.2 The OPEN process

OPENIs an object-oriented methodology, created by@REN Consortiunthat provides sup-
port for the software development process. It is based onnabeu of methodologies, for
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exampleMOSES SOMA Firesmithand has an associated modelling langud@&L (Object
Modeling Language Openis described as ‘Third Generation’ because it addressestib&e
process lifecycle, rather than the development lifecyell,cand provides a mechanism for
tailoring of processes to suit project contexts [57].

OPEN provides a number of ‘Activities’, some relating to tectalidevelopment, some to
the project lifecycle and some to program planning. Examate ‘Project initiation’, ‘Analysis
and model refinement’ and ‘Project planning’. Each ‘Acivis realised by application of a
number of ‘Tasks’ and each ‘Task’ is implemented using omaaire ‘Techniques’. ‘Activities’
have pre-conditions and post-conditions, the latter tegufrom the mandatory inclusion of a
‘testing Task’. OPEN is often referred to as a ‘contract eniVifecycle’ because an ‘Activity’
may not commence unless all pre-conditions are satisfigtioagh ‘Activities’ are fixed, flexi-
bility is achieved by selecting ‘Tasks’ and ‘Techniquesittbest fit the project environment i.e.
by applying a suitable ‘process pattern’ from a number of c@m process patterns appropriate
to different domains.

As a framework to support process flexibility, OPEN has a nemobsevere limitations. The
most obvious is that the framework supports OO technolody: diis limitation applies tall
lifecycle ‘Activities’, including those concerned withgeirements and planning. Although the
authors make a case for the need for a seamless environmeamt,software practitioners dis-
agree that OO techniques are automatically best for alvso& architectures [148]. In addition,
the expectation that the client will always be comfortabi@king in terms of objects is quite
inconsistent with the idea that analysts should speak tmmess in their own language [121].
Another set of limitations relate to the failure of OPEN toyide comprehensive support tasks.
For example, ‘Project Planning’ is included but some keypiag tasks are omitted and some
represented only superficially. For example, quality plagms key for many projects but there
are no relevant ‘Tasks’ available in OPEN. The practic€6M (Software Configuration Man-
agement)s also key to many projects and involves several differspeats, for example, item
identification and auditing, but ‘Establish change manag@nstrategy’ is the only aspect of
SCM represented [72]. As further examples, there is no rmerdf ‘Project monitoring and
control’, a serious omission for projects of any size [126ld some subtasks do not obviously
map to ‘parent’ ‘Activities’. For example, some subtasks ‘Resource allocation planning’
appear to bear no relation to resource planning. A furtineitdition occurs in the pre-definition
of ‘Activities’ and post-conditions. The latter means tleaery ‘Activity’ has an associated
‘testing’ or ‘evaluation’ ‘Task’ i.e. is constrained in s@mway and advancement is not possible
until the precondition is met. The former means the processnstrained to comprise specific,
predefined ‘Activities’. Although the authors suggest theEN process is suitable for small
teams [57], it would appear that some agile processes asuppbrted. This represents a limi-
tation when considering OPEN as a suitable framework foeg@mepresentation of processes.
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In summary, the OPEN framework permits selection of ‘Tasdesed on project contexts
but the list of ‘Tasks’ from which to select is incomplete. €Fé is no guidance on how to
select tasks. The idea is, | think, that a number of ‘procedems’ will be developed for
different contexts, presumably based on expert opiniorerdis no mechanism for capturing
context-related information and human aspects do not appé® addressed.

4.1.3 The Rational Unified Process (RUP)

In Section 2.2 | described tHeational Unified Process (RUPThis process is also a process
framework, in that the supported process can be “adapte@xedded to suit the needs of an
adopting organization” [92].

RUP has four ‘Phases’, and each is implemented by a number oatites’. Nine ‘Work-
flows’ are defined (for example, project management, remergs) and are active concurrently
throughout all ‘Phases’ and ‘Iterations’. This providesghtdegree of flexibility in process def-
inition and both agile and traditional projects have begrtw@®d inRUP. The iterative nature
of each ‘Phase’ also allows the possibility of risk managetnaetivity thoughout the process.

As an implementation frameworRUP limitations include support fodOtechnology only,

a lack of guidance as to what is an appropriate process fovem giroject and the lack of a
mechanism for capturing contexts.

4.2 Process Tailoring Approaches

| now overview some approaches taken by researchers totedlateng the software process for
specific project environments. | exclude approaches basedoaelling, as these are described
in the next Section.

4.2.1 Basiliand Rombach: Tailoring to Project Goals and Enwvonments

In 1987, Basiliand Rombach presented a methodology for favipg the software process by
tailoring it to the specific project goals and environmed3], The methodology was aimed at
improving the process within a given environment. The regeavolved aNASA/SElcollab-
oration. The vision presented in the Basili-Rombach pagerasents one similar to that which
is the subject of this thesis — a mechanism for supportingtdkom data accumulation and
long term process selection and tailoring.
The key idea is that improvement may be attained by identfy productivity or quality

goal for improvement, by applying t@QM (Goal/Question/Metric) paradigm [11] to quantify
the goal, and by finally identifying the effects of selecteethods and tools on the quantified
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goal. The authors describe an application of this methagoiio which the goal involves min-
imising defects érrors, faultsandfailures). The goal is quantified as the number and types of
defects imposed by environmental factors and methods ahslace categorised by the number
and type of defects related to their use. They suggest that epproaches to goal selection
and quantification are possible, for example, involving eaneasure of customer satisfaction.

The authors point out that, rather than measuring the emviemt directly, they are “ac-
tually measuring the impact of the environment on the qualitthe software process and its
resulting products”. They claim that this indirect chaegiztation has the advantage of objec-
tivity, although this claim is supported by neither explio nor evidence. They also point
out that, for improvement to be effective, knowledge abbet impact of methods and tools
on defect profiles is necessary and “we do not have enoughledge yet’. They suggest
that each application of the improvement methodology vesiult in increased knowledge and
some substitution of actual analysis results for hypothe&a application of the approach to a
‘characteristic’ project in th&lASA/SElenvironment is presented. The process applied was a
well-established one, with continuity of experienced nggment. The improvement method-
ology proved to be feasible and beneficial.

The vision for the research was to enable software developemwironments to include, in
addition to the standard construction tools, flexibilitgelecting a process model and the ability
to tailor it to specificprojectgoals and environments. The authors acknowledged thairebef
this vision could be achieved, much data had to be accuniulateey saw the methodology as
being a step towards supporting such accumulation. Althdlig approach has been extended
by the same group [110], it would appear that uptake by otrermgs has been minimal. Several
limitations in the described approach are apparent angibvgsible that these limitations have
contributed towards the failure of industry to participaiéhe effort. | overview the limitations
below.

The improvement exercise described is an experiment intwdoene factors (methods and
tools) are perturbed to ascertain results on a quantificati@ goal. The aim is that the effects
of the perturbation on the goal will be better understoodyigling data towards supporting
tailoring. However, as a tailoring mechanism, there is & laicholism that compromises the
usefulness of the approach. For example, the goals of a a@ftdevelopment effort gener-
ally involve more than one factor and several authors waainat) the danger of focussing
on a single factor [90, 93]. A more realistic expectation Imilge that both a certain level of
functionality and an agreed defect level are achieved aesmgreed cost. A second limitation
relates to the identification of possible confounding fextoThe authors categorise these as
‘problem factors’ (for example, the type of problem, newsé&s the state of the art, suscep-
tibility to change), the ‘people factors’ (for example, nioen of people, their expertise), the
‘product factors’ (for example, size, deliverables, reillidy and portability requirements), ‘re-
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source factors’ (for example, machine availability, budiged ‘process and tool factors’ (for
example, available tools, training, code analysers). Sofrikese factors really form part of
the goal definition for a software development effort. Foaraple, ‘reliability requirements’
are an expectation on the delivered product i.e. the progust have, in addition to certain
functionality and cost, an agreed reliability performanééhough this list may be viewed as
confounding factors for an experiment in which a single ge@&xamined, | believe this list is
too unstructured to provide appropriate support for tapr Although the approach has proven
useful for improvement within a given (and assumed constmironment, it does not provide
support for the general case.

4.2.2 Boehm and Turner: Balancing Agility and Discipline

Boehm and Turner examine the issues relating to ‘agile gdraditional’ process selection and
believe that it is necessary to “have a repository of ‘plogapatible’ process assets that can be
quickly adopted, arranged, and put in place to support 8pgmiojects” [21]. They believe
this can be achieved by a risk driven approach. They exarhahbme grounds’ for the agile
and traditional approaches i.e. the environments in whiehapproaches are believed to be
most successful. They then specify five critical projetatexl factors based on these as orthog-
onal dimensions. Dimensions are ‘criticality’, ‘size’,ulture’, ‘dynamism’ and ‘personnel’.
Projects are charted according to their values along thelfimensions. Projects closer to the
centre of the chart are ‘more agile’ and those closer to tige ede ‘more traditional’. Standard
risk management processes are then applied to selectegsteatcording to the perceived risks
along each of the dimensions [22].

The authors state that the five project factors identifiedr@laoe ‘critical’ and ‘orthogonal’,
but these statements are unsupported and not discussedpdssible that some correlation
exists between, for example, ‘culture’ and ‘dynamism’. Thain limitation of this approach
is that its principal purpose is to identify the kind of riskkeat categorise the project. Risk
management techniques are required to actually choosemgie strategies and processes. A
second limitation is that it is based upon beliefs about tiwerie’ areas for the different process
types. As pointed out in Section 2.3, the issue of what cosepriraditional and agile processes
is not clear cut and any categorisation is inherently apprate.

4.3 Process Simulation

In Chapter 3, | presented three research groups interestetbdelling the software process
in order to better understand and predict process outcommethis Section, | discuss some
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models from one of the groups, the simulation modellers. Mibeels discussed all in some
way support flexibility in process selection.

4.3.1 Drappa and Ludewig: Interactive simulation

Drappa and Ludewig [46] describe a simulation system thetvaltrainee project managers to
manage a simulated project interactively and view the tesfildecisions made on project effort
and defects. A rule-based modelling language is implendesmel a time-discrete mechanism
used for simulation. The model is initialised with a spegifocess and calibrated with data
from the literature, augmented with expert opinion.

In this system, a modelling language, SESAM, allows softwabjects to be described by
a collection of rules, each of which produces a certain effache state of the project. Rules
exist for various process granularities and are hieraatlgicnanaged, providing flexibility in
the level at which users may interact with the system. Ugers a number of time steps and
may issue commands to the system, for example, to assigifispbevelopers to a task. As
all rules act on a global data structure, the system may tlemédgtl by adding rules that cover
different aspects of the process. Model assumptions aceisied and include, for example,
decrease in developer productivity when team size incseasd improved productivity and
guality when developers are experienced and capable. Eloday be adapted for different
environments by expressing model parameters as consédhés than embedding in rules, as
constant values can be easily changed.

This model allows much flexibility within certain limits. Bhauthors report that the model
is “...restricted to a certain class of software projecssit@roved too difficult to “. . . develop a
universal model that fits any particular software project.. This decision is possibly based on
a potential ‘rule explosion’ (the authors report severaidred rules for a realistic model) and
effectively constricts the activities provided by the mbdghis means that it is not possible to
represent, for example, to start coding when designs are@@pt complete. A second possible
limitation is a potential mismatch between the use of ‘tgpilmdustry data and the scoping of
the model to “. .. small to medium size software projects, as’available data tends to be from
large-scale projects. Other limitations relate to the nhadsumptions, for example, the effects
of team size and developer experience on productivity aaditgu

| note that abstracting the process as a number of rules mee qgaoblems as the system
grows in size. Each possible factor that affects outconmsexample, ‘experience’, must be
included in every rule that predicts outcomes and everyiplessombination with other factors.
As the number of factors grows, the number of possible coatiains will become prohibitive
and so the abstraction is not scalable. In addition, theilpiigs of adding conflicting rules
will increase. | also note that model assumptions, alth@aiimowledged, are buried within the
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model rules.

4.3.2 Lakey: Project management

Lakey [93] introduces a hybrid model to support softwarggmbestimation and management.
The model is intended as a theoretical framework. It coregres number of building block
activities along with equations for each that calculate tiwel required values (for exam-
ple, ‘number of defects generated’). Calculation inputdude values for a number of project
factors that are believed to affect the results, for exangie, skill level, tool support. The in-
ternals for each block are captured as a system dynamicsl moaeich relationships between
schedule pressure, defects, etc. are embedded.

In this system, project-specific process models are buitirbgiting an appropriate number
of building blocks and callibrating the equations for eacdthwlata from the project to be mod-
elled. Four building blocks are available — these are ‘pnglary design’, ‘detailed design’,
‘code and unit test’ and ‘subsystem integration and testlu®s for project, process and product
factors are input to customise the blocks. Examples of ptégetors included in the model are
‘communication overhead’, ‘tool support’ and ‘skill legal Examples of process factors are
‘defects injected’ and ‘estimated calendar weeks’. Prothctors include ‘size’ and ‘quality’.

A strength of this model is the inclusion of all of the costisdule and quality performance
parameters in a holistic system as “the primary softwargept@erformance parameters of
cost, schedule and quality are not independent, and theyotae tracked and managed inde-
pendently”. However, customisation is achieved by copyind renaming building blocks to
achieve the correct process structure and then providengetevant input values. | observe that
this means that only basic building blocks as provided aaélae and there is no possibility of
representing any tasks that do not comply with one of thesekbl | suggest that customisation
thus refers to changing input values rather than changieg@tbcess. Another limitation is in
the pre-definition of the factors that are believed to aftettomes. The beliefs are effectively
model assumptions.

4.3.3 Munch: Process patterns

Munch applies a patterns approach to the development afroutgtilored process models [114,
115]. He believes that “The development of high-qualitywafe or software-intensive systems
requires custom-tailored process models that fit the orgéional and project goals as well as
the independent contexts”. In Munch’s solution, a procegtem is a reusable fragment of a
process model that represents an activity. Patterns caarbbiced to represent combinations
of process models. Each pattern is described along with sofoemation. This includes a
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‘characterization vector’ that contains attributes sushSAW maintenance is false’, ‘Maximal

effort is 2000’ and ‘Requirements is false’ along with a gtiet describes a restriction on
these attributes, for example, ‘Maximal effort is less tl2@00’. Required information also

includes a description of how attributes are transformedmithe pattern is applied, for exam-
ple, causing a change to ‘reliability’ [115]. A goal also magorporate a ‘quality pattern’, for

example, a prediction model for test effort based on designptexity, that effectively defines

the transformation function.

In this model, the required goals are restrictions on ptaécibutes. It appears that these
attributes include only those over which the project hagrobn Transformations change at-
tribute values, and goals are restrictions on those vallieis means that the model does not
include factors over which the project has no control, faraple, developer characteristics or
company culture, and the human element is not modelled.

Another limitation is that the transformation model impkemts a number of rules that apply
actions (transformations) according to the value of a attarsation vector attribute [114]. For
the reasons discussed in Section 4.3.1, | suggest that ldrdased nature of the abstraction
will cause problems of scalability when applied to the maoggible characterisation vector at-
tributes. Munch reminds us that patterns have been appligoftware design and believes that,
as a reuse mechanism, their use is appropriate for the seftle@elopment process. However,
| suggest that the human-intensive nature of the softwaregss renders definition of patterns
prey to the same problems as definition of processes i.eatfpe humber of contexts that affect
developer efficacy must be captured in some way. The descritmelel appears to have no
abstraction for these ‘human-related’ factors.

4.3.4 Storrle: Process patterns

Storrle [153] presents a new adaptive paradigm for softwevseesses based on agile develop-
ment ideas and suggest the use of process patterns forngggitware processes. A process
pattern describes a piece of a process and is describedimsuay that composition of patterns
according to pre- and post-conditions is possible. Seleatf patterns is subjective, however,
and there is no mechanism in the model for evaluation of altieguprocess against some
predefined objectives.

4.4 Experimental Frameworks

In Chapter 3, | identified three groups of researchers whia lmodels of the software devel-
opment process for the purpose of greater understanding.o€the groups carries out formal
experiments, and | noted that this group, although growirsiae, comprises only a small num-
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ber of researchers. In an effort to increase the quality isfrdseach and empirical research in
general, several authors have proposed frameworks foinlgalpsearchers plan and implement
software engineering studies. Kitchenham et al. preseet afgjuidelines “intended to assist
researchers, reviewers, and meta-analysts in designamglucting, and evaluating empirical
studies” [90]. Basili et. al. [14] address the planning gbesiments by using the GQM frame-
work [11] to articulate the purpose of the study and extegdms to facilitate categorising of
studies. Williams et. al. [170] propose a framework, XP{6F¢collecting data in XP case stud-
ies. | discuss these below and identify the contributiorgs lanitations of each in the context
of the goal of process flexibility.

4.4.1 Kitchenham et. al.: preliminary guidelines

Kitchenham et. al. state in 2002 that “In our view, the stadd# empirical software engi-
neering research is poor” [90]. The authors admit there athaodological difficulties applying
standard statistical procedures to software experimbuatghat the main problem is due to re-
searchers with insufficient understanding of statistieahhiques. The authors propose some
guidelines to help improve the quality of future researdbrés. They suggest that such guide-
lines will also increase the likelihood of combining resuwf related studies in meta-studies.

The guidelines suggested relate to all of ‘experimentalexdh ‘experimental design’, ‘con-
duct of experiment and data collection’, ‘analysis’, ‘@atation of results’ and ‘interpretation
of results’. They thus provide a means of achieving soundigrapresults that will serve to
contribute to a wider body of knowledge. Such a body of knogkwould, of course, mitigate
many of the problems identified in Section 3.

The authors remind us that one goal of the guidelines forédrpental context’ is “to
ensure that the description of the research provides endatgl for other researchers and
for practitioners” and that researchers need to “identiy particular factors that might affect
the generality and utility of the conclusions”. However #ngthors, although clearly stating
the importance of recording contextual information andvitimg guidelines for the kinds of
information to include, do acknowledge that “Unlike oth&saiplines, software engineering has
no well-defined standards for determining what contextafarmation” is relevant [90]. The
guidelines suggest including the target industry (for eglenbanking, telecommunications),
the kind of development organisation, developer skills erperiences, supporting software
tools used (for example, compilers, design tools) and thievace processes used (for example,
guality assurance and configuration management procesBes) list does not include some
potentially important factors, for example, ‘developecertainty’ or ‘motivation’ (see Section
4.5). The identification of relevant contexts remains peaitic, and the authors acknowledge
this and suggest research into an appropriate ontologyriéxb
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4.4.2 Basili et. al.: families of experiments

Basili et. al. remind us that “experimentation in softwargi@eering is necessary but diffi-
cult” [14]. As discussed previously, one problem is the éangimber of context variables. The
authors suggest that researchers need a way to work togethtain a cohesive understanding
of experimental results. They suggest the use of a framethartkfacilitates replication with
and without some context changes and thus deals with ‘fasndf studies’. Such an approach
will eventually lead to “a body of evidence” that will suppgroject management decision-
making. The authors use a set of experiments with softwaxéimg techniques to illustrate
their approach.

The framework proposed by the authors involves first apglyire ‘Goal/Question/Metric’
(GQM) template to help categorise the experiment. The GQMaaxh is to identify the ob-
ject of study (for example, a process or product), the pwemdthe experiment (for example,
evaluation, prediction, etc.), the focus i.e. the aspeattefest of the object of study (for ex-
ample, product reliability, process effectiveness), thespective (for example, researcher or
developer) and the context in which the measurement takee pIhe authors comment on the
large number of context variables that may influence thdtsestiapplying a technique. In or-
der to support capture of the experiment, the authors stiggesifying the object of study. For
example, ‘processes’ are classified first by scope and théimefucategorised. The examples
given are ‘Life Cycle Model’ with sub-classifications ‘Wata!’, ‘Spiral’, etc., ‘Method’ with
sub-classifications ‘Inspection’, ‘Walkthrough’, etc. dafTechnique’ with sub-classifications
‘Reading’, ‘Testing’ etc. Experimental results are cléissliin a similar way. For example, ‘Ef-
fectiveness’ measures are categorised as ‘Analysis’ withctassifications ‘Defect Detection’,
‘Usability’, etc. or ‘Construction’ with sub-classificatms ‘Reuse’, ‘Maintenance’, etc.

As for the Guidelines described in the previous Sectiors ttamework is aimed at sup-
porting researchers carrying out experiments, rather gramiding a means of representing
software development processes. However, the classiiiagirovided by the authors describe
abstractions for process and product. As described abpuegéess’ is categorised into ‘Life
Cycle Model’, ‘Method’ and ‘Technique’, with sub-class#iton in the ‘Method’ category re-
lating to the kind oftask being carried out, for example, ‘Inspection’ or ‘Walkthgiu. The
authors remind us that “there are many ways of classifyinggsses”. However, it would ap-
pear that the underlying abstraction for ‘process’ is basethe idea of a task i.e. some piece
of work carried out, and there is some assumption that theerthat identifies the sub-category,
for example, ‘Inspection’, is well-defined.

For some efforts, this may be true, for example, if expliegitructions are available. How-
ever, | suggest that such as abstraction is fraught withelaag mis-communication as to what
exactly is done is rife within the software world. For examgl present later in this thesis a
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consideration of some ‘PairProgramming’ research andodescthat from three studies com-
monly referenced as studies about Pair Programming, twarafact, about collaboration and
concurrency (see Section 8.2). Unless the abstractiowsllis to be very specific about what
is being done, assumptions will be introduced. At first gigribis appears to be a problem
of software development terminology i.e. is a consequenéailong to clearly define what is
meant by, for example, ‘Inspection’. However, | suggest gra-defining a set of tasks, even if
carefully specified, represents a belief about how softwaxelopment should be carried out.
If we are to address the issue of flexibility, we require artralotion that allows the introduction
of new kinds of task that change the product in different waysuggest that the framework
proposed by Basili et. al. is too limiting to support the gogdlexibility.

4.4.3 Williams et. al.: XP-EF

Williams et. al. present XP-EF, “a high-level view of a me@snent framework that has
been used with multiple agile software development indgaistase studies” [170]. The authors
propose that the framework be used as a first pass at a g@delirKP case studies. The
framework allows capture of the extent to which an orgarosabas adopted or modified XP
Practices. One component of the framework relates to cofaetors, for example, ‘team size’
and ‘geographical dispersion’. Possible factors are asganaccording to categories defined
by Jones [79]. Projects are first evaluated according to vee dritical’ factors suggested by
Boehm and Turner and plotted on a polar chart (see SectiaB)4.2Anomalies are further
investigated by digging “deeper into the context inforroati
Limitations of the framework include application to a sgiegprocess (XP) and a ‘fixing’ of

contexts for capture before the industry really knows whightexts are important and which
may be ignored. The danger of such a reductionist approdbhatisve may regard the selected
attributes as ‘truth’ rather than ‘hypothesis’ and so placee faith in results that is appropriate.

4.5 People Factors

As discussed in Section 1.2, many researchers and praetiicexpress the importance of
the influence of human factors on productivity and qualityhie software development pro-
cess [3, 14, 24, 37, 34, 54, 144, 155, 157]. Early attemptsettebunderstand these in-
fluences included consideration of both individual progrsen and team. In the 1970's and
1980's, there was an interest in the psychology of progrargraind techniques from psychol-
ogy were applied in the examination of individual cognitlvehaviour [76]. It was observed
that “programmers rarely complete one subtask before hewirthe next”, but rather repeat-
edly alternate between understanding the problem, desmpge and revision [128]. Rather
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than working in a top-down way, developers work at differenels of abstraction simultane-
ously, alternating between levels as needed. The problenenfal models of the problem was
also studied with observations that “requirements docusnand client’s statement of goals
are never complete”, this resulting in the “criticality admain knowledge for interpreting re-
quirements” [128]. Around the same time, researchers exaainow team structure affected
outcomes, with specific interest in the centralisbdf programmestructure of Mills and Baker
and the decentralisesgjoless tearstructure of Weinberg [161]. Shaw concluded that the dif-
ferent team structures were most suited to different candt[33].

Despite this early interest in evidence based on theor@n fhe social sciences and the
acknowledged importance of human factors, to my knowletiggge have been few attempts
to create theoretical models appropriate for the softwavegss. Traditional software process
models, for examplevaterfall, treat the process as a technological one only. Proponétiie o
more recent agile methodologies declare the need to valogl@ever process, and include
process elements that claim to support the developerstyatuilwork well. These elements are
based on the beliefs of the founders of the methodology andmesent hypotheses derived
from some unstated theory of human performance. As sucladite models provide little in
the way of understanding and this contributes to the fat¢tghastions about, for example, their
effectiveness in large or distributed projects can be aresvenly by further exploratory studies
rather than by forming hypotheses based on an underlyirayythe

The field of software engineering is not alone in being sloviotk to other disciplines
for knowledge that might improve performance. Douglas &tewforms us that the field of
operations management asks “why, when there are so manytopjpies, have we paid so little
attention to psychology in our research?” [152]. He suggtsit the reason might be that the
field has historically studied manufacturing processeshicivhuman inputs are minimal. He
also suggests that the human aspect is now more importau$ebuman-centric processes are
now being studied, and the role of humans has been elevateariy manufacturing operations.

There is little disagreement that the human element is kethi software process. Many
would agree with John Finan, recent winner of the Motoroldufe vision’ scholarship com-
petition, who believes “A great technology is one that useshituman brain as a core compo-
nent” [78]. | overview three research efforts that involveating models of the human element.
The first study presents suggestions for a model based orvakise and the second two based
on theory from other disciplines.

4.5.1 Layered behavioural model

Curtis, Krasner, Shen and Iscoe, in 1987 and 1988, repdreerksults of a field study of large
software development projects [37]. The authors remindhag if a model of the software
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development process is to help increase productivity aadltgLit must accurately reflect what
happens i.e. must “represent the processes that contiartjest share of the variability in soft-
ware development”. They believe that models such aw#terfallmodel reflect ananagement
orientation and provide no insight into the actual develeptprocesses. They also submit that
Osterweil’s proposal that software engineering proceskesld be viewed as software prod-
ucts [122] is flawed because of the variability of the proeedeing specified. This is a result
of skill differences in the developers, degree of exposni@istomers and other factors.

The purpose of the field study was to determine what are thelbigerage factors through
empirical research and to describe how these factors exeirtinfluence during the design
process. The authors believe that for larger projects ketpifa are more likely to relate to
project-and organisational-level factors, as these wilidtto swamp the effects of cognitive
and motivational effects of developers. They use a layeredeifor organising observations.
The innermost layer represents timelividual developer, the next layer, theam the third
represents thprojectand then theompanyandbusiness milieuThey suggest that when they
“overlay these behavioral processes” on the traditionairielogical ones, they gain insights
into inefficiencies in the process.

The field study involved nineteen projects ranging in sippliaation domain and key sys-
tem characteristics, for example, real-time, embedded, Bte authors expected, and found,
that, for small projects, individual factors would exeregtest influence on outcomes and, for
very large projects, organisational factors would havetmasght. Many interesting observa-
tions were made. There was a tendency for coalitions to foemwhere a “small subset of
the design team with superior application domain knowleaaftgn exerts a large impact on the
design”. There was also a tendency for developers to spend sabstantial time ‘rediscover-
ing’ existing knowledge. For example, customers might gateeoperational scenarios while
determining requirements, but these were not recordedelDpers then tended to be unable to
envisage problematic conditions.

The three main problems exposed by Curtis et. al. [36] arghimespread of application
domain knowledge, fluctuating and conflicting requiremeamts communication and coordina-
tion breakdown. The conclusions from the study are thatéting large software systems
must be treated, at least in part, as a learning, commuaicatid negotiation process” [34] and
that developer uncertainty resulting from the above proilelays a key role. The implication
is that any descriptive model of the software developmentgss must abstract the factors that
represent these problems and overlay the abstraction dadheological one.
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4.5.2 Human competencies model

Acuna and Juristo reference research in human resourcegyeraent and psychology and pro-
pose a mechanism for assigning people to software develupwies according to behavioural
competencies [3]. Their solution is based on the Logic ofeCGdompetencies, a logic that is
“practiced in many organisations for different purposeshsas personnel selection and recruit-
ment...”. They see their model as a first attempt to develepagic of core competencies for
the software process.

A key element in the model is the ‘capability’ or ‘behavioutampetency’. These include
intrapersonal skills, such as ‘Independence’ and ‘Tega@tganisational skills, such as ‘En-
vironmental orientation’ and ‘Discipline’, interpersdrskills, such as ‘Empathy’ and ‘Socia-
bility’ and management skills, such as ‘Group leadershif &lanning’. Capabilites are then
tabled with personality factors from a standard psychaoimgst to obtain a ‘capability-person’
relationship and with software deviopment processes taiolat ‘capability-role’ relationship.
For example, a personality factor ‘Dominance’ is mappedapabilities ‘Independence’ and
‘Group leadership’ and the role ‘Designer’ to a number ofatafities, including ‘Analysis’ and
‘Decision making’. Capabilities of people and roles arenthetched to achieve a ‘best’ assign-
ment of people to roles. For example, a developer with a peliy profile that suggests a high
‘Empathy’ capability may be preferred over a ‘low empathglleague for a customer-related
role where ‘empathy’ is included in the capability-role fie

This work is important as it is an attempt to abstract humatofa in a way that is based on
theory, rather than on ad-hoc and undefined values, suckxperience’. It also represents an
early attempt to ‘match’ people with tasks based on a thealehodel.

45.3 Team behaviour model

Acuna, Gomez and Juristo reference research in social pyghto propose a model for team
performance in the software domain [4]. They then apply toeehto agile and heavy-weight
development strategies with a view to finding heuristicsfitective team forming. The model
includes people-specific, task-related and team behavmuponents. People-specific compo-
nents include aspects of personality (for example, ‘Exdrsion’), knowledge, skills and abil-
ities and preferences (for example, ‘Innovative’ or ‘Cansaéive’). Task components include
factors such as ‘Routine’ or ‘Creative’. Aspects of teamawbur include, for example, ‘Team
vision’.

This work also represents an attempt to use models foundééidtive in other disciplines
to abstract people and tasks and match people and tasks ipeopaate way.
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Case for a Theoretical Model

In this Chapter, | discuss some perspectives on modellidghaw that, if we are to predictin a
general way, models must be based on an underlying theoext loverview some perspectives
on research and note that, if we are to establish causeffead+elationships, research must be
based on a theoretical framework.

| then apply these ideas to current software process résdaranclude that research models
are not based on theory and so cannot be used to establiskaadieffect relationships or
predict in a general way. | propose the need for a theoryebammlel of software development
and provide quotes from a number of researchers to suppsnpithposition. | establish some
objectives for such a model and present a discussion on ao@pie scope for a candidate
model. 1 finally present my approach to the presentation afemce to support a candidate
model’s ability to meet the stated objectives.

5.1 Research Perspectives

5.1.1 Modelling basics

In Chapter 3, | showed that existing models of the softwacegss contain many assumptions.
In order to clarify what is the basis of these assumptionsw discuss why researchers build
models and provide a general overview of the charactesisfidifferent kinds of models.

55
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According to Seidewitz, models may be created to specifystesy to be built or to describe
an existing system [146]. An example of a model for specificeis aUML (Unified Modelling
Language)model that describes how an OO software system will be coctetd. Models that
describe existing systems include, for example, Newtowdehdescribing celestial motion and
the models presented in Chapter 3 that describe the soffwacess.

Models that describe existing systems capture relatipgdhétween various system com-
ponents. It is possible to describe relationships withowdenstanding why the relationship
exists. An example supplied by Kitchenham et. al. concdmesdbcumenting of a relation-
ship between ‘cyclomatic complexity numbe€CN) and ‘number of faults’ [90]. Although
some correlation is observed, the reasons for the cowalatie unknown. Another example
is given by Kepler’s three laws of planetary motion. As déssat in Section 1.3, these were
based on existing planetary data and, although they apptaseiccessfully predict the motions
of the planets, no-one knew why the laws worked. The lawsrdescorrelations rather than
cause-and-effect relationships.

Models that describe correlations should be based on datiaservations. One main char-
acteristic of such models is that they can be used to predlgtio circumstances that exactly
match those in which the observations were made or datactedleKeppler’s laws do not ap-
ply to other celestial bodies or planetary systems. Relahips between cyclomatic complexity
and numbers of defects are not guaranteed to be the samdféoenli pieces of code produced
in different circumstances. The main reason is that, foretations, we do not know what is
the real cause of the relationship and so have no way of kigpivihe causal factors remain the
same in the new circumstances. If a model that describesa@aton is used in a circumstance
other than the one in which the observation was made or dd&xtam, it embodies an implicit
assumption that other factors do not matter i.e. an assamitat the model represents a causal
rather than correlative relationship.

For a model to be used to predict in a general way, the modd Ipeusased on cause-and-
effect relationships i.e. on an understanding of what a@ecttusal factors. Newton’s Laws are
an example of a causal model. As described in Section 1.3{depostulated a force between
all objects with mass in the universe and this understanelivadpled him to predict accurately
for all celestial bodies. The key characteristic of such ateds that they are based on some
theory or theoretical framework. Should such a model fadredict accurately, it is understood
that the underlying theory is incorrect. An example of tkighie discovery that Newton’s Laws
explain universal forces for bodies moving at speeds mumhesi than the speed of light, but
break down for high-speed patrticles such as are found imgaieic nuclei. Although Newton’s
Laws do not correctly explaiall motion, they continue to describe a causal relationshipiwit
a well-understood domain i.e. that of constant space aral tim

One way to distinguish between correlative and causalioelsthips is to establish if the
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relationship describes an alteration over space and timreeXample, a mark on a ball moving
through the air will change as the ball moves [165]. A modaldobon cause-and-effect rela-
tionships describestaeory. Such a model may be used in a predictive way and may be proven
incorrect should predictions prove false.

In summary, models that describe systems are based omrslhijps that may be correlative
or cause-and-effect. Only cause-and-effect relatiorssbypport general prediction. Models
based on such relationships represent theories.

5.1.2 Research basics

In Section 1.2, | commented on the scarcity, fragmentatioh \zarying quality of existing
software process data and suggested that this is in partsegoence of the immaturity of the
field and its approach to research. In an attempt to placamasefforts in perspective, | now
present a brief overview from the field of psychology of theimas modes of research data
collection. | show that the only way to establish cause-effielct relationships is to create and
test hypotheses based on theoretical models.

In 1990, Gilmore described four modes of research dataatmle These arélypothesis
testing ComparisonsEvaluationsandExplorationg[55].

The aim of hypothesis-testing is to determine a causalioalship between two factors of
interest. In this paradigm, a single factor (the indepenfderor) is manipulated for the purpose
of discovering if the manipulation causes change to thersk@dependent) factor. Everything
in the experimental situation other than the essential pudaiion is held constant. An example
given concerns a theory that claims that code “comprehensiattained through an initial
analysis of syntactic structure and, therefore that theafisedentation to indicate syntactic
structure will lead to improvements in all aspects of prog@mprehension” [55]. A simple
hypothesis-testing experiment might involve supplyinigjeats with indented or non-indented
programs and asking them to perform tasks that may, or mayewptire comprehension of the
syntactic structure. Gilmore reminds us, however, th&t Winapping, for example, may render
the experiment impure as now any observed effect may betedfdny indentation or line-
wrapping. The researcher must now introduce ‘unrealisbeiditions, for example comparing
with and without line wrap, in order that the hypothesisddafmight be properly observed.

According to Gilmore, a theoretical framework is vital téstkind of research [55]. Kitchen-
ham et. al. also believe that hypotheses must be based ordanying theory. They provide
an example relating to a relationship between CCN and ‘numifaults’ and suggest that bet-
ter understanding would be achieved if cognition and prokd®lving theories were applied to
establish the causal nature of the relationship [90].

Because the aim of this kind of research is to establish tansa notice that researchers
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must be sure that the observed effect is due to the hypottesasise i.e. that the experiment has
internal validity. | also notice that, as a result of the causal nature of thergbd relationships,
issues okxternal validityare not relevant.

Comparisonsare similar to hypothesis testing but are intended to oleseather than ex-
plain any effect. Here, the researcher attempts to disoshieah of a number of alternatives
is ‘better’ according to some metric. In this paradigm, teablishment of relationships often
gives rise to questions or ideas about possible causahig.approach is “excellent at stimulat-
ing hypotheses and theoretical frameworks” [55]. In thengxi@ above, the research question
might be whether indentation provides a more useable reptaison of a computer program.
Line wrap is now not an issue, as it is a necessary featureeahtlentation of real programs.
Although results of such comparisons are traditionallyet$or statistical significance, a more
useful measure would be ttedfect siza.e. the size of the difference between the two con-
ditions [55]. The CCN example above may be viewed as a Cosgas the investigation
concerns an observation that high code complexity is ofteretated with high fault numbers.

I note that, in this kind of research, issuesafernal validityare key as the lack of consid-
eration of confounding factors generally renders resalpplicable in other circumstances.

Evaluationsare similar to comparisons but tend to occur when we are gskiguestion,
for example, “Can people use flowcharts?”, rather than “Asevéharts better than structure
diagrams?”. The intent may be to improve some weakness istaray In this paradigm, many
measures may be used, for example, subjective, human gmetess may be as important as
performance. Decisions about which measures are most usajube made post-hoc [55].

Explorationinvolves collecting data to answer a question of the kind &\eppens if ...?”".
This approach is most often used when new paradigms are batidged i.e. when there is
insufficient data for other kinds of data collection. Thisadean be very difficult to collect and
record and is usually not well-defined. Analysis can be tooesuming [55]. Such studies
are often used as a first step and the aim is often to betterstadd what might be important
factors in a system by capturing what is observed in a ragtimrestricted way. Results from
such studies often form the basis for further evaluativeyarative or causal investigation.

In summary, research data is collected for a number of @iffiereasons. The most general is
exploration. Results from explorations often form the basievaluations and comparisons. Re-
sults from all may provide insights into possible causatiehships and these are investigated
via hypothesis testing. This paradigm must be based on dosoeytor theoretical framework.
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5.2 Case for a Theoretical Model

5.2.1 Need for a model

Above, | provided examples from fields other than softwaigmeering to show that, if we are
to predict in a general way, we must create models based @alcalationships and, if we are
to establish causal relationships, we must have theoretiodels.

The above discussion, when applied to the models describ€tdapter 3, exposes the fact
that these models are not based on theory and are thus twg@lenature. Simulation models
are based on observation, usually within a specific circant&. Predictive models are based
on data from previous projects. Controlled experimentshased on hypotheses, but these
are not theory based. One definition of the term ‘hypothesi®A hypothesis is a suggested
explanation of a phenomenon or reasoned proposal suggespossible correlation between
multiple phenomena” [166]. No causation is implied in thefidition. However, according
to Gilmore and Kitchenham, causation is key if general mtaahs are to be supported. An
alternative, more appropriate, definition of ‘hypothe$ss’A tentative explanation for an ob-
servation, phenomenon, or scientific problem that can ieddsy further investigation” [65].

The above observations suggest the current situation fwva@ process modelling is anal-
ogous to the situations from history presented by Rivet®]18ee Section 1.3). Research into
the software process is generally carried out without ezfee to a theoretical framework and
is, by Gilmore’s definition, comparative, evaluative or kxgtive in nature. Predictive models
are based on either observations or data and are corrdlatnature and so incomplete. Rivett
believes that, for true predictive ability, a model must bédtic and based on understanding of
the system being modelled. The correlative nature of egsibftware process models means
that the models cannot be used for predicting in a general way

5.2.2 Support for a model

In the previous Section, | proposed that current researeh dot support exposure of cause-and-
effect relationships and that current model-building bkkicharacteristics of lack of holism
and prediction without understanding. | complete this ®acby presenting comments from
a number of researchers who also propose the need for a ticabfeamework to support
prediction and research.

When discussing context for formal experiments, Kitchenle. al. state the need to be
wary of oversimplification, as in the real world, techniqaes carried out within rich industrial
settings [90]. An example given is a study that shows theifaibf inspection meetings to
decrease defects. The authors believe such a study is tptistimbecause other possible ben-
efits of inspection meetings may be missed, for example, ptiom of teamwork, technology
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transfer, identification of root cause detection and ineedaconformance to standards. One
possible result of such oversimplification is that a positigsult might be taken as represent-
ing the situation and used as a basis for change, when irtyréladi result represents a ‘local
maximum’ only. For example, a technique that is shown to oupithe identification of defects
(local maximum) might be implemented despite the fact ttelso results in higher cost, higher
risk and increase in developer frustration. The advantaggsnot outweigh the disadvantages,
and the implementation thus represents a sub-optimisafitme whole system. | suggest that
problems of oversimplification and sub-optimisation araraal result of studying parts of a
system in isolation without understanding of causal retethips.

Gilmore reminds us that hypothesis-testing is the only gigra suitable for uncovering
causality and that “Hypothesis-testing research is nasipteswithout a theoretical framework
... [55].

Basili et. al., when proposing a framework for experimeotgtdeclare that what is required
is “...aset of unifying principles that allows results todmmbined . . .” and that “The ultimate
objective is to build up a unifying theory ...” [14].

Fughetta believes the field lacks foundations “...related better understanding of the
activities that constitute the software development pgsce.” [54]. He also believes we must
“increase the emphasis on problem analysis” and “pursugienm research goals” [54].

In Section 2.1, | state that Kitchenham and Carn view thexso# process as an engineering
discipline, albeit an immature one. They state that “. .obe&oftware engineering can mature
as an engineering discipline, practitioners need a bettgenstanding of the process by which
software is created” and of the risks associated with theqe®[88].

As mentioned in the last Section, Kitchenham et. al. belibat a problem occurs when
researchers state hypotheses that are not based on anlyungdireory. For example, docu-
menting a relationship between ‘cyclomatic number’ andmiber of faults’ does little to ex-
pand industry knowledge as no causal mechanism is known. aWebetter understand the
relationship in question if cognition and problem-solvihgories were applied. “Without any
underlying theories, we cannot understand the reason wipyrieal studies are inconsistent”
and “Without the link from theory to hypothesis, empiricasults cannot contribute to a wider
body of knowledge” [90].

Dawson et. al. believe that the discipline of software eegimg “needs to move towards
being a rigorous discipline” and that “. . .theories and higpses have to be formed...” and
“...new ideas must be advanced...” [38].

In Section 1.3, Rivett states that a model may be predictitieont being explanatory, but
an holistic, explanatory model is always predictive.

Scacchi believes that “contemporary models of softwareld@ment must account for the
interrelationships between software products and proalugrrocesses, as well as for the roles



5.3 Approach 61

played by tools, people and their workplaces” [144].

Basili et. al. remind us that, when carrying out controllgderiments, “.. . it's hard to know
how to abstract important knowledge without a frameworkré&ating the studies” [14].

A theory is a model or framework for understanding. Buildthgoretical models repre-
sents an accepted approach to predicting and generatirajhieges for better understanding
cause-and-effect relationships. My thesis is realisedthsa@retical model of the software de-
velopment process. This represents a step towards ebiajlisause-and-effect relationships
and predicting process outcomes.

5.3 Approach

| have made a case for a model of the software developmenegsdbat provides a theoret-
ical framework for prediction and research. As discussetiegathe conventional scientific
approach is to spawn hypotheses based on the theory or nfdd&rest and carry out formal
experiments that aim to disprove the theory.

At this time, it is not clear what will be the form of a theorsti model for the software
development process. In order to progress down the pathfofinte a candidate model, |
consider what such a model must be capable of i.e. what alaritle of things we should be
able to do with the model. This approach is equivalent togdhdesigning a system according to
a number of objectives. If | can create a model that descthmsoftware development process
in a way that satisfies the stated objectives, | can propasertbdel as a representation of a
theory of the software development process. At this poi&,rhodel is available for testing in
the usual way, by carrying out formal experiments based emtbdel.

5.3.1 Objectives

My thesis is that it is possible to represent software dguakent processes and process models
in a way that allows us to compare processes and processsriodtie purpose of constructing
new processes. | propose that model objectives are théyabili

e Capture any software process or process model.
e Compare processes and process models.

e Create a new process by combining elements from differerggsses.

My approach is to aim to create a solution that satisfies tliwebbjectives. The three
objectives stated are very broad. For example, there arg aspects of processes, including
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granularity and formality. The objectives must now be exjghto be more specific. In Figure
5.1, I show the three top level objectives of ‘Capture’, ‘Guare’ and ‘Combine’ and have
expanded the ‘Compare’ objective to include some diffefentls of required comparisons.
This Figure represents a top-level specification for a bletenodel.

1. Capture any software process or process model
2. Compare results of modelling experiments across research groups
Compare:

2.1 Traditional and agile processes

2.2 Process variations

2.3 Models using the same modelling paradigm
2.4 Models using different modelling paradigms

3. Combine elements from different processes

Figure 5.1: Model objectives

In a similar way, | expand the ‘capture any software procegsrocess model’ objective
in Figure 5.2. The first level expansion includes clause&evelopment processes’, ‘support
processes’, ‘product-line processes’ and ‘miscellangwasesses’. There are many different
aspects of ‘development processes’, all of which must beesddd by a suitable solution.
The next level expansion thus includes aspects of gratylarocess participants (students or
professionals), project size, maturity levels, etc.

The form of the objectives is similar to that of a specificatior a software system. Thisis a
useful model for stating objectives in a complete and ungomois way. The specification pre-
sented in Figures 5.1 and 5.2 does not obey the rules for segndements specifications [74].
For example, it is incomplete and the meanings of some terensa defined. Some terms are
relative, for example, ‘Very large’, and there is potentiegrlap between objectives. An ‘Other’
category is probably required in each group. However, lgvelit forms a useful starting point
for model creation and the meaning of its clauses is suffiljietear for the purpose of model
definition.
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1. Capture any software process or process model

Capture:
1.1 Software support processes and process models

1.2.1 Process paradigms
1.2.1.1 Traditional
1.2.1.2 Agile
1.2.1.3 Open source
1.2.1.4 Open
1.2.2 Research studies
1.2.2.1 Simulation models
1.2.2.2 Predictive models
1.2.2.3 Controlled experiments
1.2.2.4 Quantitative studies
1.2.2.5 Qualitative studies
1.2.3 Process granularity
1.2.3.1 Large-grained
1.2.3.2 Medium-grained
1.2.3.3 Small-grained
1.2.4 Process variations
1.2.5 Kinds of participants
1.2.5.1 Industry
1.2.5.2 Students
1.2.6 Project size
1.2.6.1 Very large
1.2.6.2 Large
1.2.6.3 Medium
1.2.6.4 Small
1.2.6.5 Tiny
1.2.7 CMM levels
1.2.7.1 CMM level 1
1.2.7.2 CMM level 2 or 3
1.2.7.3 CMM level 4 or 5

1.2 Software development processes and process models

1. Capture any software process or process model

1.2.8 Organisational paradigms
1.2.8.1 Outsourcing
1.2.8.2 Co-located projects
1.2.8.3 Distributed projects
1.2.9 Product stage
1.2.9.1 New development project
1.2.9.2 Upgrade project
1.2.9.3 Maintenance
1.2.10 Project objectives
1.2.10.1 Standard (cost, quality, content)

1.2.10.2 Non-standard goals (e.g. business value)

1.2.10.3 Developer-oriented
1.2.11 Product types

1.2.11.1 Data-intensive

1.2.11.2 Web

1.2.11.3 Real-time

1.2.11.4 Embedded

1.3 Product-line processes and process models
1.4 Miscellaneous processes
1.4.1 Developers have a discussion
1.4.2 Coding standards
1.4.3 Add developers late to a project
1.4.4 Developers get more enjoyment doing XP
1.4.5 Parallel tasks
1.4.6 Open source milestone release
1.4.7 Project retrospective
1.4.8 Technology transfer

Figure 5.2: Obijectives for ‘Represent’

5.3.2 Scope

Before continuing, | discuss what constitutes a ‘softwaepss’. For some time now, | have
been concerned about the tendency within the disciplineoftivare engineering to tightly-
couple different aspects of software product creation. éxample, there is a trend towards
‘integrated’ solutions that provide support for both deyghent and project management ac-
tivities, as exhibited by the Spiral and RUP models and th&KPBrocess. There is also a
tendency to create an entire process solution tied to a ptadeation technology. For exam-
ple, the OPEN process mandates an OO approach for all pracdgsoject activities.

| believe that software product creation and software ptoj@nagement are different kinds
of functions that should be represented by different prees | provide support for this be-
lief by discussing content from tHeroject Management Body of Knowledge (PMBQK35].
PMBOK is produced by th&roject Management Institutend describes the knowledge and
practices that are generally accepted by project manageraessionals.

According to thePMBOK Guide the key project management activities are partitionea int
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theKnowledge areasf Project Integration, Scope, Time, Cost, Quality, HumandrRese, Com-
munications, RiskandProcurement Managementhe intent is thagll projects require appli-
cation of these processes i.e. these are the accepted antbobyrpractised project processes.
It does not matter what kind of product or service is beingtaé by the project. Different
application areas may add some new processes that arespetitit area. For example, in the
construction area, there are special practices relatipgacurement and in bioscience to regu-
latory requirements. The suggestion is that these specditust-related processes may be in-
cludedin addition tothe core processes (and sobstituted foany of the core processes) [135].
The PMBOK Guide thus suggests that life cycle processesfepercthe kind of product be-
ing produced, in this case, software processes, shoulddaanly those activities not already
represented in the core management processes. The issoe @& ce-inventing the project
management wheel.

| suggest that the tendency for existing process modelsctade aspects of project man-
agement processes is counter to the recommendations m&i4BOK. | also suggest that a
lack of understanding of what are project management psesdsas been the source of some
disagreements between process advocates.

A first example concerns the misunderstanding of the rolsafpe management’. Scope
management is a project management process for controhiaigges to project scope. Project
scope involves capturing justification for the project ntiying the intended deliverables, for
example “...the major deliverables for a software develepinproject might include working
computer code, a user manual, and an interactive tutorigland controlling scope changes,
for example, a request to omit the interactive tutorial fritna set of deliverables. Scope man-
agement thus includes the identification of all the delibsito project stakeholders. This has
nothing to do with requirements management, which is a prbrkiated activity and concerns
describing what the product will do. A project delivers towamber of different stakeholders.
In addition to delivering a product to some end customer, ayrbe required to deliver, for
example, progress reports to managers or designs andgesbrine sponsoring organisation.
For a software project, the ‘organisation stakeholder’ meayire delivery of requirements, de-
signs and test beds. | submit that the decision whether otonateate design artifacts is not
a technical one but is rather a scope planning one. This dewmarries well with the need
to consider product-line planning, where a single projsegust one step in a potentially long
chain, and technical members of the project team have inmiffivisibility to be able to make
appropriate decisions about what documentation shoule:eeded.

A second example involves risk management processes. Riskgement is concerned
with identifying situations tht might cause a project tol fimi meet its objectives, defining
strategies to minimise the occurrence and impact of sudiatgihs and then monitoring for
situations and effecting strategies as appropriate. Eises two points for clarification with
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respect to software development processes. The first ighteatientification and monitoring
processes continue throughout the project. It is projeatagament’s job to select suitable
point of visibility into the development process and, atsth@oints, check for the occurrence
of any risk situations, react accordingly and repeat thatiieation and strategy definition in
the context of the current situation. This is standard righagement practice. There is no
need to include risk practices in software processes. Ttmnslepoint for clarification is that,
for software development, a particular process might beeatdd as a result of such identifica-
tion. For example, a mitigation strategy for requirememtsantainty might be ‘have a customer
representative on site’ and one for product criticality itige ‘complete formal reviews for all
components’. Different process solutions will be appraterifor different risk situations. The
point here is that it makes no sense to claim of a processttlzatdresses risk at all levels of the
development process” [15]. Any process will be an effectiiégation strategy for some risk
situations but such mitigation is required only if the sitoa eventuates. If everyone knows
what is the product to be created, there is no need for antertisstomer. The key idea is that
such situations will be identified by the project managenfigmdtion.

For the above reasons, my intended model will be scoped tprdductrelated software
process and will not aim to include any project managemerdgsses. This means the require-
ment to ‘capture any software process or process modelfaifito be met for those processes
and process models that comprise both kinds of process. [gammre Boehm'’s spiral model, in
which a risk management step is mandated in each cycle, af@REN process, which includes
some project management activities. My solution will aimrtdude only the product-related
processes for these examples. | would argue that, in a ‘bjggtire’ model, the software pro-
cess would be expected to neatly ‘slot into’ the project ngan@ent ones in the same way as a
‘construction process’ would. The spiral and OPEN modelaldail to do so and violate the
‘add-not-replace’ expectation stated in the Guide [135].

5.4 Evidence Strategy

In order to judge a candidate solution model, | must showttfetnodel satisfies the objectives
recorded in Figures 5.1 and 5.2.

Sources for an appropriate approach are the fields of psyghaind social science, and the
subset of the software engineering community interesteddtters of evidence [38, 87, 160].
These sources suggest that, for people-intensive systamagppropriate approach is to accu-
mulate an ‘evidence portfolio’ i.e. a varied accumulatidreadence that helps to support the
target theory or model. Such evidence might be gathered laypsef formal experimentation,
case studies, expert evidence and other techniques. Theoraiderations are that the breadth
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of evidence and the degree to which we may trust the evidaedeamsparent.

My strategy will be to accumulate such a portfolio for thetastimodel objectives. In this
thesis, | take a pragmatic, risk-based approach to evidaowemulation and aim for breadth
and coverage rather than depth in the first instance. Themaaghat the attempt to create an
appropriate abstraction of the software process is exjogran nature i.e. it is not clear that
such an abstraction is possible. The approach is thus to tig¢umulate evidence to support
different kinds of objectives and to include objectives yapear the most difficult to satisfy.



Model Properties

In the previous Chapter, | presented a case for a theoretiodél of the software development
process and captured a set of objectives that should b&esditiy any candidate model.

As a prelude to constructing a candidate model that meetdjleetives presented in Section
5.3.1, | consider what might be some of the model properfié® aim is to establish a set of
criteria against which a candidate model might be judgedrpga formal evaluation in order
that some confidence be gained that the candidate is likebetsuccessful in meeting the
stated objectives.

In order to establish properties, | first identify what arengaf the characteristics of existing
processes that must be represented. | then identify whétt@fienitations of existing predictive
models that render them inappropriate for general proegsgsentation. | then consider some
situations from real life projects and identify some chgeggstics that need to be addressed.
Finally, | extract a number of properties required for a ¢date model.

6.1 Properties Source

6.1.1 Process characteristics
From the discusion in Section 2.2, | observe the following:

67
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1. Ataskis defined informally as “A piece of work carried out by one commengineers”

(see Appendix A). In many cases a single task name is usedtoible tasks that differ in
their effects on the product. For example, the term ‘desgnsed to mean many things,
including ‘create formal designs from formal requireméritseate formal designs from
discussions with the customer’, ‘create formal designserethe results and correct any
defects’, ‘create code using informal design strategietg’, This means it is difficult to
know when we can compare tasks.

. There is great variation in the kinds of tasks that ardeduwut. For example, how do we

capture the effects of ‘discuss requirements with the ecastbor ‘team meeting’? These
tasks do not change the product but many authors agree tkieyahamportant effect on
project outcomes.

. The term ‘process’ is used to cover anything from a conepliécycle, for example,

‘waterfall’, to a single, small task, for example, ‘reviewsigns’. Processes are described
at different levels of granularity and this means it is diffitco know how to compare and
construct processes.

. Many processes are characterised by tasks being cawmieith parallel, for example,

designs and test plan production. When the same area of thieigiris affected, for
example, developers working on the same piece of code, Hrer@otential problems
with defining what is the correct version.

. There is inconsistency in what aspects of the product &@&sared and no mechanism

for categorising or comparing measurements. For examalewe compare tasks if one
results in change to ‘Lines of code’, another to ‘Number afuieements implemented’
and a third to ‘Number of stories implemented’?

. There is interest in representing different kinds of picierelated objectives, for example,

those relating to economic value. For example, some autiei®ve that it is necessary
to capture the business value of a product and this must bettlooughout the project to
reflect value-related attributes at each stage in the psoces

. Processes include different assumptions about how hdmetors affect outcomes. For

example, traditional processes assume issues of teamrsitieeaonly relevant ones but
some authors believe many other factors affect outcomes.

. Some processes claim that the developers involved clemgeesult of participation. For

example, it is claimed that developers become more confatehtire more satisfied as a
result of participation in an XP project.
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9. Some process descriptions mandate a particular teadwydtr example, OO. Such de-
scriptions can not be used to represent processes in a Heagra

10. Many believe itis not possible to represent processasgl@ierministic way. For example,
modellers often handle what is regarded as inherent uncrtay taking inputs from
statistical distributions and presenting study resultmaans and standard deviations.

6.1.2 Model limitations

In Chapter 3, | identified the following limitations in cumeresearch models:

1. Research models tend to report only some objectives afail $o give the whole picture
as regards model efficacy. For example, many studies reptatah numbers of defects
but do not provide associated cost data. The disadvantdgéssovere discussed in
Section 5.2.2.

2. Models embed different beliefs about how human chanatites affect outcomes. For ex-
ample, many system dynamics models include ‘developemataiin’ and the assumption
that this decreases over long projects.

3. Many measures are applied without a clear statement of tihbae measures mean and
manipulations on these measures is often inappropriagéeSgetion 3.4.1).

6.1.3 Real-world situations

I now consider some real-world situations that should beested by a candidate model. First
| discuss product lines. In Section 5.3.2, | pointed out thatdeliverables from many projects
comprise part of a product line. In this situation, a singl@aeptual product exists separate
from an individual project. | illustrate this situation indere 6.1. Product ‘MyWebApp’ is
transformed by three different processes, ‘A, ‘B’ and ‘Tivo of these occur in parallel i.e.
‘MyWebApp’ is in two different states at the same time.

This diagram also illustrates another ‘real-life’ scenarilt is possible that an industry
project is required to deliver its product in more than omestFor example, a project tasked to
deliver version 1.0 of a new application might be expectedl$o make a pre-release delivery
to an ‘early-adopter’ customer.

In Section 5.3.2, | noted that the organisation that sp@agsroject is a stakeholder and
may require that the project delivers documentation tortgkample, architectures and designs.
This is likely in the case of product line projects but canlgpp any project. This means that
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Figure 6.1: Product and process

all artifacts delivered to all stakeholders should be adergd as being part of the delivered
product.

In Section 5.3.2, | also discussed the existence oPtiogect Management Body of Knowl-
edge (PMBOK])135] and stated the need for a clean interface between tieegses used to
create the product (thsoftwareprocesses) and those used to manage the projecproiect
managemerprocesses). The result of the discussion is a decision ttatdidate model should
represent software processes only.

Finally, | address the issue of ‘readiness for deliverybj@cts commonly deliver according
to some agreed ‘quality attributes’. For example, it mayehagen agreed in a Quality Plan that
delivery may take place when the only known defects remgiaifter testing are unlikely to
cause incorrect product functioning.

6.2 Properties

From the above, | extract the following properties.

P1 Only processes that directly affect the software produetrapresented (described in this
dissertation asoftware development procesgel particular, project management pro-
cesses as defined RMBOK are not included.

P2 Product represents all descriptions of all artifacts thaielivered to all stakeholders. This
includes problem descriptions, for example, requiremeartd solution descriptions, for
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example, designs.

P3 Product may be represented by a number of different meadtwesxample, representation
might be ‘lines of code’ or ‘number of requirements’.

P4 Product may be represented by more than one measure. Foplexaepresentation might
include all of ‘number of requirements’, ‘number of defeasd ‘number of person
hours’. This allows representation of, for example, botlaliy and cost-related at-
tributes.

P5 Product representation should be extensible in that neilaks can be included.

P6 Processes may be represented at any level of granularityex@mple, ‘create product’ or
‘carry out code inspection’.

P7 Task definition is unambiguous. For example, for a task glgsit is clear what the task
changes and how it performs the change.

P8 A task may result in change to the humans carrying out thedagksome tasks result in
change to humans only. For example, developers become ratiséesl as a result of
participation in an XP project and design discussions dahahge the product.

P9 Different beliefs about how human factors affect projedtomes may be represented.
P10 Some notion of ‘readiness for delivery’ is represented andse optional.

P11 The model should account for product line processes, whenegée conceptual product
is changed by several projects and projects often delivendugt in more than one state.

P12 Task parallelism should be supported.
P13 The model should be technology-independent.

P14 The model should represent the uncertain nature of the gsdmeproviding some way of
capturing output ranges.

The above properties should be displayed by any model thahslto be a candidate rep-
resentation of the required abstraction. They represdatnral criteria against which such a
model might be judged prior to formal evidence accumulatiBroperty P7 implies the need
for some formality in any candidate model.
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A Model

In this Chapter | present a candidate modéTe.
In the rest of this document, elements that Kie components are presentedsanting
text

7.1 Overview

Figure 7.1 shows a schematic overviewKife. The purpose is to introduce some terms and
provide an introduction to some of the model components.

The first point to note is that | represenRealisedProces3 he term ‘process’ is generally
used to describe the technical aspects of software developonly and is often used in a
prescriptive way. Aprescriptive processan be defined as “A description of a process that takes
into account only technical aspects and implicitly makesuagptions that human factors do
not affect process outcomes” (see Appendix A). For the ohdenmodel, we are interested in
describing what actually happens during a software pr@adtso must include the effects of
project contexts. In order to avoid confusion between theaning and the conventional use of
the term ‘process’, | use the terRealisedProcessdefine aRealisedProcesss “A description
of a process as it really happens i.e. that takes into acdmwntall factors relevant to process
outcomes, for example, the people involved and projectecast affect these outcomes” (see
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RealisedProcess

Activity has two parts
- Method defines how Product changes

- ContextModel defines size of transformation

Engineer changed by Activity |

Context Engineer

Content | Quality

Product comprises several models

- each represents a certain perspective

ContextModel - can define new perspectives (extensible)

Method is template for Product change
ContextModel wraps up effects - any granularity
of Engineer characteristics and

- Method repository
environmental contexts

- implemented by Techniques

Figure 7.1: Schematic overview of KiTe

Appendix A).

The second point of note is that several of the propertiesgoted in Section 6.2 state a
need to represent alternatives. For example, propertydi@ates a need to represent a product
using different measures and property P9 a need to repraifienent beliefs about how human
factors affect outcomes. | address these criteria by ping@s abstraction that isfeamework
where each model component is a model in its own right. Thisvalmodellers to choose the
form of the framework model components that best represietsparticular needs and beliefs.
For example, if a project is to deliver software under spegtiality and cost constraints, those
constraints will be abstracted in a suitable way in Breduct Qualityand Costmodels. If the
process modeller believes that developer experience ahsl ale the only contextual factors
that affect outcomes, these will be represented in the rsddeEngineerand ContextModel
As the industry matures and evidence becomes availablefmsispecific models, these mod-
els become fixed within thkiTe framework as they are now current theories from which furthe
hypotheses may be formed and tested in the context of therlaygtem. The framework thus
provides support for formal experimentation.

The key aspects are overviewed below.
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Product

Productis modelled as a set of states. | view these states as ‘pgitdtithe set of all possible
states for all possible products. This allows a separatfaime ‘product’ that is the subject
of the RealisedProcesand a conceptual product in the real world and supports thatsn
described in Section 6.1.3. Figure 7.2 illustrates the ephcThe first picture, a), represents
all possible states of all possible products. The secondhows a subset of these states, those
for the product with name ‘MyWebApp’. Only some of these gppla particular project. For
example, if ‘p’ is an upgrade project, all statesRybductwill include a representation of code
content. The states for ‘p’ are shown in c). In d) lillustrdtat only some attributes are relevant
for project ‘p’. For example, the attributes depicted inlg@ might represent ‘size’, ‘number
of defects’, ‘cost in person hours’ and ‘maintainabilitpuit for project ‘p’ only ‘number of
defects’ and ‘cost in person-hours’ apply.

a) Product b) MyWebApp ¢) Product for d) Perspectives
Project "p for Product

Figure 7.2: KiTe Product

Productrepresents all artifacts that describe the software beiodyzed. These include the
software delivered to the end customer and all requiremdatigns, code, etc. to be delivered
to the development organisation as an asset for use in ladgrcps. Productattributes may be
viewed via a number dPerspectivedviost commonly, these relate to the conventional product-
related drivers i.e ContentPerspectivehow much is there’),QualityPerspectivé'how good
is it") and CostPerspectiv€how much did it cost’). However, | can encompass other potd
related objectives, for example, the need to capture bsswvedue for product artifacts [20], by
creating a new perspective model, for examBissinessValuePerspectikaalso note that some
factors generally described as ‘contextual’, for exampleehm’s ‘required reusability’ (see
Section 3.1) and Basili and Rombach’s ‘reliability requients’ (see Section 4.2) are product-
related objectives and are viewedKiile as attributes oProduct
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Activity

A KiTe Activity encompasses both the task that is carried out (representéethod and
Techniqué and how well the engineers carry out the task (represemtétbntextMode). Both
Engineerand Productare changed as a result of Aativity. For exampleEngineerattributes,
such as experience or skill, are likely to increase.

Method and Technique

A KiTe Methodis defined as a set of transformationsmduct The transformation domain
defines theMethod’s Productelated preconditions (for example, existence of somégdes
content). The transformation is not constrained and thsnmsaé¢hat, in addition to the traditional
tasks, for example, ‘code from design documerk$Te handles any task that causes change to
Product Tasks such as ‘test first design’, ‘create a prototype bagseal feature list’ or ‘code
from prototype’ are validVlethods The definition ofMethod permits tasks of any granularity.
So, for example, ‘develop product from requirements’ omegdevelop product’ are as valid as
‘carry out design review'.

A Method transformation has possibly many different codomain \&alioe every domain
value. For example, Methodthat involves injecting defects into code may be defined as in
jecting 0 or more defects and so each domain value maps tof@kume number of possible
values.Methodmay thus be considered as a family of transformations, asfaamation tem-
plate, that must be instantiated to provide a definitivesf@mation. Techniqueprovides this
instantiation and represerttew a Methodis carried out. For example, many believe that the
techique of ‘pair programming’ yields better quality sceitban coding by a single person. In
both cases, a change to source results, but the new actuakwalll probably be different in
each case.Techniquerepresents an ‘average’ of the results obtained wherTdoéiniqueis
applied in a large number of different circumstances.

I illustrate this concept in Figure 7.3. In the top two diags | show that ¢ethodapplies
to only some products. These are the products that have @pgeattributes (products D, E,
| and K in the top diagram) and whose attributes have valuagscbmply with theMethod’s
precondition (the light green domain states in the middégdim). In the bottom diagram, |
show the many-many mappings providedMgthodconstrained to become functional ones by
two Techniquegshown as red and blue mappings).

ContextModel

Researchers and practitioners have identified many faittarsre believed to affect project out-
comes. Some factors describe a ‘match’ between enginedrthamproduct they are changing,
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FCETER Product F
=
Product G
[ ]

Method ‘'m’ may be applied to Products D, E, | and K.

Techniques partition Method ‘'m’ into functions on ‘'m’s domain.

Figure 7.3: KiTe Method and Technique

for example, how familiar the engineer is with the subjeearSome relate to thEechniques
they are using, for example, how much experience the engheeewith theTechniqueand
whether or not appropriate tools are available. Many factelate to the project environment.
For example, project management may be supportive or odertyanding, expectations may
be clearly defined or vague and engineers may be enthusa@stict the project or simply tired
from overwork.

The list of possible factors is large and changes with timas €reates a number of prob-
lems. When creating models of the software developmenggsycesearchers must first choose
which factors to include as input variables. This means #otofs are now embedded in the
model i.e. the model must be changed if new influencing facioe discovered. Researchers
must also decide how to manage the large number. For exasgohe researchers implement a
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rule-base, with resulting issues of scaleability (seeiSeet.3.1).

In aKiTe RealisedProcessngineers change a product by carryingMethodsusing Tech-
niques | suggest that handling of the factors described above eainplified by viewing the
factors as affecting how well the engineers are able to werk by their effects oengineer
effectivenessIn KiTe, | abstract all the factors that affect how engineers wotk & Con-
textModel

The key idea is thaContextModelkepresents engineer effectiveness by modifying the base
effects ofMethodand Techniqueaccording to which factors it defines as relevant and howethes
are combined. For example, when capturing a waterfall pgabeContextModelis likely to
be extremely simple, as contexts are generally ignoredhfekind of process. A study in which
engineer experience and skills are believed to be of ret@varight involve only these factors
and ignore all others. This is equivalent to stating that tieeiofactors are believed to have
influenced effectiveness. A more complex model might imgetrsome ‘matching’ of skills
with those required byProductor Technique Such matching might be based on the Human
Competencies model described in Section 4.5 i.e. by majghenson and role capabilities.

Of course, for a model that aims to include large numbersfafencing factors, it is crucial
that the abstraction for engineer effectiveness is sudtctimaplexity is reduced. | suggest that
a suitable model will include a small number of orthogonajieaer-related characteristics. In
Section 4.5, | described Curtis’s Layered Behavioral Madelch suggests that individual ca-
pabilities are key for small projects and issues of uncetydor larger projects. Based on these
ideas, | propose that all contexts be mapped to the set ‘ddapatcertainty’ and ‘motivation’.

In such an abstraction, for example, factors such as ‘lagmtand ‘threatened redundancy’
affect the values for ‘certainty’ and ‘motivation’.

ContextModelthus immediately allows existing beliefs about humanteslacontexts to
be included when representing software development pseseshile providing an abstrac-
tion on which to base research into the effects of human ifacn the process. In addition,
context-related considerations are nicely partitionedifthe rest of the model, and this enables
researchers to easily ‘upgradébntextModelwhen new knowledge is uncovered.

CapabilitySpec

In order to infer engineer effectiveness, it is likely thaCantextModelmay require to carry

out some matching of engineers to the product they are chgragid theTechniqueghey are

applying. For example, an engineer experienced in PairrBnoigning will probably be more

effective applying a Pair Programmifg@chniquethan one who has no such experience.
Engineer skills and experiences and product and techneguered skills are represented in

CapabilitySpecsCapabilitySpedhus serves to capture a set of capabilities. An engineer may
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have experience in Java or skills with formal reviews. It rbaythat, to work with a product,
knowledge of computer telephony or skills in C++ are reqiiie design technique may require
expertise in structured design.

7.2 KiTe Model

In this section, | formally preserkiTe. For each model component, | provide first a brief
overview with some comment as to the rationale behind thepoornt, follow this with a
detailed description and then conclude with a descriptiofoimal notation. The reader may
choose to omit the detailed and formal descriptions at feating and ‘fill in the details’ at a
later time. Before commencing, | discuss notations used.

Although KiTe is not a software product, for the detailed description | phnwith the
IEEE Recommended Practice for Software Design Descripfie8], as this standard provides a
suitable template for capture of systems comprising dgifiekinds of elements. However, as the
target system is an abstraction rather than a software mei&ation, some of the descriptions
will be at a higher level than required for implementatioor Example, when describing how
Activity interfaces withContextModelimplementation details, for example, ‘message passing’
or ‘function call’, are not applicable.

The Standard definekesign entity attributes Identification, Type, Purp{ady it is there’),
Function(‘what it does’),Subordinate§'’composed of’) Dependenciefuses’ or ‘requires the
presence of’)|nterface(*how other entities interact with this’Resourceg'external elements
used’),Processind‘rules for achieving function’) an®ata (internal data elements). Foype
| categorise elements according to their main purpose isystem i.e. as of typAggregation
(main role is to contain other element§etOfStategmain role is to capture current state),
Projection(main role is to project data from a SetOfStatd3ataStore(main role is to hold
attributes and values antansformation(main role is to contribute to state change). | omit
Resourcess this is not relevant for modelling. For those elements @@ models in their
own right, the element will be described aFemplateand some examples of processing and
data are given. | use the ‘.’ notation for elements in a depeog relationship, for example,
Engineer.CapabilitySpec

For the formal description, | choose a representation ti@dudes set constructs and state
transitions. ThdEEE Recommended Practice for Software Requirements fisations|[74]
reminds us that “requirements methods and languages anddlsethat support them fall into
three general categories - object, process, and behavib@ct-oriented approaches organize
the requirements in terms of real-world objects, theiilaites, and the services performed by
those objects. Process-based approaches organize theemegpts into hierarchies of func-
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tions that communicate via data flows. Behavioral appraadescribe external behavior of the
system in terms of some abstract notion (such as predickteles), mathematical functions,
or state machines.” Although the KiTe model is not a softweystem, the decision as to how
best represent it may be approached by considering the #in@esalternatives. Woodcock and
Davies, in their book “Using Z” [171] remind us that “Mathetital objects are often seen as
collections of other objects: a square is a collection ofifgin a plane; a function is a collection
of pairs linking arguments with values. These collectioresalledsets..”. As the problem
space, i.e. the software development process, includésshmictural aspects and transforma-
tional ones, | choose a representation that uses the bagiematical notions of set constructs,
with constructs that describe transformational elemeaggured as relations defined by state
transitions.

KiTe components and the relationships between them are showguref7.4. | begin by
recapping what is #rojectand then overview some types | treat as ‘basic’, in that | hse t
types without providing any formal definition. | then addreschKiTe component.

| — perturbs A RealisedProcess
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Figure 7.4: KiTe model relationships

7.2.1 Project

| define Project(Appendix A) as “...a temporary endeavour to create a unsguece or prod-
uct and with a definite beginning and end” [135]. As noted iot®a& 1.8, this definition says
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nothing about the form of the service or product delivery,andhis thesis, | view a project as
any effort that makes a delivery of any kind to any stakehol&er example, a project might
deliver a finished product to a customer, a prototype to tveldpment group or a test plan to
the test group.

As stated in Chapter &iTe allows for the same conceptual product to be changed by many
Projects The description presented here allows for this while gimg notation for elements
in the context of a particulaProject

7.2.2 Atomic types
Overview

In this thesis, | treat some types as ‘atomic’ and do not defieen in detail. For example,
KiTe includes several identifiers, includirRroductldentifierand Engineerldentifier Produc-
tidentifier provides a way of uniquely identifying the product that iseged during a project
and Engineerldentifieuniquely identifies the engineers involved in the projechede types
are introduced as requirediTe also includes several types that descrbeasurementsA
measuremens a representation of some attribute of interest that gedusome notion of at-
tribute identification, meaning, scale and value. Typesutte ProductMeasurememvhich
represents some product-related attribute, @oatextMeasurementvhich represents some
context-related attribute. As discussed in Section 3#hd measurement of software-related
attributes is problematic for several reasons, includggimcorrect use of measurement scales
in common software engineering practice. Further conatd®r of this is outside the scope of
this thesis and later in this thesis | simply represebteamsuremends a binary relation that rep-
resents an attribute-value pair. For example, (Java, Hingli¢ates some attribute called ‘Java’
with value ‘High’. A related concept is that ofieasure A measurdas ameasurementith no
value assigned — a kind of ‘measurement templatéTe includesProductMeasure

7.2.3 Product
Overview

Productis an abstraction of the deliverables fronRaalisedProcess

I model Productas a set of states i.€2roductrepresents the set of all states that describe
the product for aRealisedProces$roductincludes aProductidentifiethat identifies the con-
ceptual product in the real world, for example, ‘MyWebApf.8.. This identifier is unique to
Productfor a RealisedProcessProductalso has aCapabilitySpedhat specifies the kinds of
capabilities required for working with the conceptual prog for example, ‘experience with
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Java’'. Productalso includes some attributes that describe the dynantigsstd attributes-of-
interest, for example, ‘size’ and ‘number of defects’. Tdastributes are represented as a set
of ProductMeasurement

Detailed description

Type SetOfStates Template.

Purpose Abstract the product-related deliverables for a projectthe purpose of tracking
status.

Function Productdescribes the characteristics and dynamic status of thwasef being pro-
duced.

Subordinates None.

DependenciesProductldentifier(‘isldentifiedBy’); CapabilitySpec(*hasCapabilities’); Pro-
ductMeasuremer{thasAttributes’).

Interface GoalsBenchmarkisA); RealisedProcegthasStates’)Activity (‘transforms’);Method
(‘isRelationOn’).

ProcessingNone.

Data Productreferences a subset of the ‘global’ product state spacethe . space contain-
ing all possible states of all possible conceptual produétsProductstate comprises
Productldentifierwhich identifies the product in the outside world (e.g. ‘MyW¥ep
v.1.6’), CapabilitySpeaontaining information about the capabilities requiredvi@rk-
ing with this Productand a set oProductMeasuremempturing the dynamic status of

Product Productldentifier CapabilitySpecand ProductMeasuremerare references to
specific states in the ‘global’ state space.

Formal description

Productis represented as a set of states. | represent the set okalbpmstates of all possible
products a$S and the set of states for a speciRealisedProcesg asPS™.

PS™ C PS (7.1)

A Productstate can belong to a singRealisedProcessnly i.e. the intersection dProduct
states for differenRealisedProcessésempty.

Vrpl,rp2 € RP rpl # rp2 < (PS™ N PSP = () (7.2)
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A Productstateps includes aProductldentifierthat identifies the real-world product to
which ps applies. Functiopid projectsProductldentifiefrom ps € PS.
PID is the set of allProductidentifier

pid : PS — PID (7.3)

RealisedProcedsas the properties thatRroductidentifieis unique to a singlep € RP
and that all product states forRealisedProcessg have the same value féroductldentifier
The first property provides a stronger statement of Equati@n.e. it is the value of the state’s
Productldentifiemttribute that associates the state with a sifRpalisedProcess

Vrpl,rp2 € RP, Vpsl € PS™' ¥ps2 € PS™?  (pid(psl) = pid(ps2) < PSP = PS™?)
(7.4)
A Productstate includes &apabilitySpedhat captures capabilities required for working
with the product. Functiopeps projectsCapabilitySpedrom Product

peps @ PS — CPS (7.5)

CapabilitySpedor PS" may change asp progresses, for example, if the requirement to
deliver on a specific operating system changes, indicatiagheed to add a new required ca-
pability. This means that, although each product state n@a@assingleCapabilitySpecthe
projectedCapabilitySpedor Productfor RealisedProcesg may contain more than one ele-
ment i.e. is the set aCapabilitySpedor all statesps € PS'P.

peps(PS™) = {pcps(ps) | ps € PS™} (7.6)

A Productstate includes the status of the product-related attréitenterest for-p, for ex-
ample, ‘number of defects’. Each attribute-of-interesejgresented asRroductMeasurement

PME is the set of all possibl€roductMeasurementRelationpme projects the set of
ProductMeasuremefor Productstateps € PS. This set represents the values of the product-
related attributes-of-interest for the state and beloagke power set oProductMeasurement

pme: PS — 2PME (7.7)

EachProductMeasuremend based on &#roductMeasurel he ProductMeasureepresents
the attribute-of-interest without the value of the atttéue. itis a kind ofProductMeasurement
template.

PM is the set of allProductMeasureFunctionpm extracts theProductMeasurérom a
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ProductMeasurementhis enables the isolation of a specific attribute from asdtsubsequent
access to the attribute’s value.

pm : PME — PM (7.8)

7.2.4 CapabilitySpec
Overview

CapabilitySpeaepresents a set of engineer capabilities, for examplks sér the set of capa-
bilities required for working with a specific product or tedtpue. | note that capabilities are
not limited to the commonly used ‘skills’ and ‘experienceitionay represent, for example, the
‘behavioural competencies’ such as ‘Sociability’ desedliby Acuna and Juristo (see Section
4.5).

I model CapabilitySpeas a set olCapabilityMeasuremente. as a subset of the set of all
possible combinations of all possible values of all pogstapabilityMeasurement

Detailed description

Type DataStore.
Purpose Required for matching of engineer capabilities to product chnique required ca-
pabilities.

Function Captures descriptive characteristics, technologies gpergnces relating to the par-
ent element.Product.CapabilitySpecharacterises the skills required for working with
Product for example, subject area description, required implgateam technologies,
etc. Engineer.CapabilitySpecapturesEngineercapabilities, for example, experience
with Java or level of extroversiorlechnique.CapabilitySpezharacterises the skills re-
quired for working withTechnique

Subordinates None.
DependenciesCapabilityMeasurementia ‘isA’ relationship.

Interface Product Engineerand Techniquevia a ‘hasCapabilities’ relationshigontextModel
interfaces withProduct.CapabilitySpe&ngineer. CapabilitySpeand Technique. CapabilitySpec
via a ‘usesToCalc’ relationship.

ProcessingNone.

Data A CapabilitySpecaeferences a set #froductMeasurement
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Formal description

The set of all possibl€apabilitySpeds CPS. The set of all possibl€apabilityMeasurement
ISCME.

A CapabilitySpedads a set ofCapabilityMeasuremente. is a set that is one of the power
set of the set of all possibl€apabilityMeasuremenEor example, &apabilitySpeanight be
the set{(Java, High), (Design, 6), (Linux, Mediurp)indicating capabilities in ‘Java’, ‘Design’
and ‘Linux’ with appropriate values.

CPS = 20M¢ (7.9)

7.2.5 Partition
Overview

Partitionserves to group product-related attributes into non-aypgihg sets that represent dif-
ferent kinds of product description®artitionsmust be non-overlapping because they play a
key role in the definition oMethod and Techinquepreconditions and effects. Ea&lartition
contains attributes that describe one kind of product detsmn andMethodsand Techniques
are defined by the kinds of descriptions they chanBartitionsare Definition, Architecture
Design Source Integrationand Packaged The decision is based on the need to consider all
stakeholders when defining what comprig&educti.e. the need to abstract the content of all
artifacts that capture any aspect of the software that williélivered to the end customer. The
chosenPartitionsrepresent the descriptions most frequently found in tleedture and would
seem to cover all possibilities. For exampleefinition includes anything that addresses the
problem to be solved and so might include formal requiresdeasibility studies and XP sto-
ries. Sourceincludes, in addition to code, data files and document ssuR&ckagedefers to
the system as ready to deliver. For small projects, this hiiglthe same algitegrationi.e. the
‘packaging’ step is ‘free’ as no additional work is requiraitier the system is integrated. For
larger projects, this is almost certainly not the case, f@ngple, if many large files must be
copied from various locations to a ‘delivery’ location.

Note that attributes must be specified for e&drtition For example, ‘number of known
defects in requirements’ and ‘number of known defects ireCade two separate attributes and
are represented in differeRartitions

Detailed description

Type Projection.
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Purpose Provide a means of categorising product attributes sudhattrébutes of interest to
all stakeholders are included. For example, informatiooualarchitectures may be of
interest to the developing organisation.

Function Project the product attributes and values for a specific kingroduct information,
for example. those describing architectures.

Subordinates None.

DependenciesPartitionldentifier(‘isldentifiedBy’); ProductMeasuremeffitontains’).
Interface None.

ProcessingNone.

Data Partitionhas aPartitionldentifiethat is one oDefinitionPatrtition ArchitecturePartition
DesignPartitionSourcePartitionintegrationPartitiorand PackagedPartitioand a set of
ProductMeasurement

Formal description

The set ofProductMeasuremerns partitioned into six non-overlapping subsets, calRadti-
tions These describe different representations of the prodhiactexample, representations that
relate to problem definitions such as requirements-relatedbutes are included in the ‘Def-
inition’ partition. Partitionsare identified adDEFN P, (DefinitionPartitior), ARCHP, (Ar-
chitecturePartition DESNP, (DesignPartitiol, SRCEP, (SourcePartition ZNTGP, (In-
tegrationPartitionandP ACKP, (PackagedPartition This set ofPartitionldentifieris P ALD.

PAID = {DEFNP, ARCHP,DESNP,SRCEP,INTGP,PACKP} (7.10)

Relationppame projects the set oProductMeasuremenior Productstateps € PS and
Partitionldentifiemaid € PALD.
ppame: (PS x PAID) s 2PM¢ (7.11)

For all Productstates, @roductMeasuremebelongs to only on@artitionand allProduct-
Measuremenbelong to soméartition

Vps € PS, Vpaidl, paid2 € PATID paidl # paid2 < (ppame(ps, paidl)Nppame(ps, paid2) = ()
(7.12)
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Vps € PS, Yme € pme(ps), Ipaid € PAZD (me € ppame(ps, paid)) (7.13)

7.2.6 Perspective
Overview

For Productthe product-related attributes of interest are viewedwag that is meaningful to
the modeller, for example, those describing some aspeatalftg might be viewed together.
Such a view is &erspective A Perspectivesffectively constrains which attributes are to be
viewed. Different stakeholders may choose to viewductin different ways, i.e. the choice of
Perspectivess flexible and unrestricted.

Perspectives represented by a set BfoductMeasured he Perspectiveverlays onProd-
uct to project on the required set of attributes.

| model Perspectiveas a single state in the state space of all possible combirsatif all
possible values of all possibRroductMeasure

Detailed description

Type Projection.

Purpose Represent a particular view of product attributes and wasethese change through-
out the project.

Function Projects attributes and values for a product-related tilbggdor example ,Content
or Quality.

Subordinates ProductMeasure

DependenciesProductMeasuremelfisViewOn’).

Interface None.

Processing The set ofProductMeasurprovides a view on the attributes-of-interestRioduct
as represented byroduct’sset of ProductMeasurement

Data Perspectivas represented as a set@foductMeasure

Formal description

P& is the set of all possiblerspectiveThe set ofPerspectivdor RealisedProcesg € RP
isPE™.

A Perspectives a set ofProductMeasuree. is a set that is one of the power set of the set
of all possibleProductMeasure
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PE = 2"M (7.14)

Relationppeme projects the set oProductMeasuremenmor a Productstateps € PS and
Perspectivee € PE.

ppeme: (PS x PE) s 27ME (7.15)

For all Productstates inRealisedProcessp, a ProductMeasuremefitelongs to only one
Perspectivand allProductMeasuremetdelong to soméerspective

Vrp € RP, Vps € PS™ Vpel,pe2 € PE™ pel # pe2 < (ppeme(ps, pel)Nppeme(ps, pe2) = 0)
(7.16)

Vrp € RP, Vps € PSP, Vme € pme(ps), Ipe € PE™ (me € ppeme(ps,pe))  (7.17)

The set ofProductMeasurememor a Productstateps € PS" can be found viaPartitions
or Perspectives

Vrp € RP, Vps € PS™"  pme(ps) = {ppeme(ps, pe) | pe € PE™} (7.18)

Vrp € RP, Vps € PS™  pme(ps) = {ppame(ps, paid) | paid € PAZD} (7.19)

7.2.7 GoalsBenchmark
Overview

For many projects, there is an agreement with the custona¢mdilivery of the product will
occur when a certain quality level is reached, for examplemwall known defects after test-
ing are minor and will not affect product functionality. Fotternal projects, for example, to
deliver a test plan to project management, there will probbb an agreement with the inter-
nal customer about the criteria for delivery, for exampleghén complete’ or ‘in 2 weeks’. A
GoalsBenchmarkepresents the expect@doductstate atRealisedProcessompletion. This is
represented as a subset§. It is probable that this subset has more than one possdiie st
because the expectation will be of the form, for examplenthar of known defects less than
10’ i.e. the set of ten states with ‘number of known defectgiad to 9, 8, 7 .....0.
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Detailed description

Type SetOfStates.

Purpose Capture the agreed status for the product-related obgsctir a project at time of
delivery.

Function As for Product

Subordinates As for Product
DependenciesProduct(‘isA).

Interface Interfaced to byRealisedProcegshasStates’).
ProcessingNone.

Data As for Product

Formal description

GB™ C PS.

7.2.8 Engineer
Overview

Engineerns an abstraction of the people involved in causing chandg&daductin a Realised-
Process

| model Engineeras a set of states i.&ngineemrepresents the set of all states that describe
the engineers for &ealisedProcesEngineers represented include those in the roles of ana-
lysts (who change definitions and architectures), dessgged coders (who change designs and
sources), technical writers (who produce documents tieainatuded in the packaged product)
and test personnel (who provide information about produatity). Engineerdoes not include,
for example, project managers as they do not directly ch&mngéuct

Engineerincludes a set oEngineerldentifiethat identifies the real-world engineers, for
example, ‘John Smith’ and ‘Jane Do&ngineeralso has a set dfapabilitySpedhat specifies
the engineers’ capabilities, for example, ‘experiencédéva’ or ‘extroverted’.

Detailed description

Type SetOfStates.

Purpose Abstract the people involved in changeRooduct for example, analysts, architects,
coders and build personnel.

Function Engineerdescribes the dynamic status of the people involved in dhgrigroduct
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Subordinates None.

DependenciesEngineerldentifief‘identifiedBy’); CapabilitySped‘hasCapabilities’).
Interface RealisedProceq$hasStates’)Activity (‘transforms’).

ProcessingNone.

Data Engineereferences the ‘global’ engineer state space i.e. the gjpentaining all possible
states of all possible engineers. Amgineerstate comprises a set &ngineerldentifier
that identifies the real-world engineers and a s&apabilitySpecontaining information
about the capabilities of the engineers. The specific moefaies which capabilities are
included.

Formal description
Engineers represented as a set of states. | represent the set okalbpostates of all possible
engineers a8S and the set of states fé&kealisedProcesg asES'™.

ES™P CES (7.20)

An Engineerstatees includes a set oEngineerldentifiethat identifies the real-world engi-
neers to whicles applies. Functiorid projects the set adEngineerldentifiefromes € £S.
ETID is the set of alEngineerldentifier

eid : ES s 2877 (7.21)

The set ofEngineeridentifefor RealisedProces9 is

eid(ES™) = {eid(es) | es € ES™} (7.22)

An Engineerstate includes a set @apabilitySpedhat capture capabilities possessed by
the engineers. Relatiamps projects theCapabilitySpedor Engineerldentifiefor an Engineer
state.

ecps:ES x EID — CPS (7.23)

CapabilitySpedor a real-worldengineermay change asp progresses, for example, as
the engineer gains experience. This means that, althouhezgyineer state maps to a single
CapabilitySpedor each engineer, the engineer’s project&pabilitySpedor RealisedProcess
rp may contain more than one element i.e. is the s&@agabilitySpedor all states:s € ES™.
The set ofCapabilitySpedor Engineerldentifieid in RealisedProces is
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ecps(ES™ id) = {ecps(es,id) | es € ES™ Nid € eid(es)} (7.24)

7.2.9 Context
Overview

Contextis an abstraction of the non-engineer-related factorsatedbelieved to affect how well
engineers changlroductin a RealisedProcessSuch factors may include those both internal
to the project, for example, project management style, actbfs resulting from interfaces
with other projects (for example, communication issuesyraups (for example, impending
company merger).

I model Contextas a set of states i.€Contextrepresents the set of all states that describe
the project-specific factors for RealisedProces<haracteristics of the engineers themselves
are excluded. Examples might include ‘company about to kentaver’, ‘poor development
environment’ and ‘culture of overworking employees’. Gontextis realised as a set @on-
textMeasurement

Detailed description

Type SetOfStates.
Purpose Abstract the project environment.

Function Captures non-engineer-related aspects of the projectoemaent believed to have
an effect on product outcomes. Examples are ‘availabifityustomer’, ‘tool support’.

Subordinates None.

DependenciesContextMeasuremel(isA).

Interface RealisedProcegshasStates’)ContextModel('usesToCalc’).
ProcessingNone.

Data Contextreferences the ‘global’ context state space i.e. the spamining all possible
states of all possible context€ontextattributes and values are represented by a set of
ContextMeasurement he specific model defines which items are included.

Formal description

Contextis represented as a set of states. | represent the set okalbpmstates of all possible

contexts ag’S and the set of states fé&tealisedProcesg asCS™.

cs™ CcS (7.25)



92

A Model

A Contextstate includes a set @ontextMeasuremetihat represents the conte&tME is
the set of all possibl€ontextMeasuremenRelationcme projects the set o€ontextMeasure-
mentfor Contextstatecs € CS.

cme: CS — 2°ME (7.26)

7.2.10 Method
Overview

Method represents a set of transformations Prduct It provides a definition of which at-
tributes of Productchange during the transformation and a description of h@y thange. It
thus also provides a precondition étoductattributes, for example, ‘all requirements must
be represented in designgViethod effectively provides a ‘template’ for change that is unam-
biguous. For example, a ‘code from desigM#thod has a precondition relating to existence
of designs and causes increase in attributes describingesgontent and source quality. If
the Method is ‘code from designs and fix design and code defects’, theomdition will be
the same, but the attributes that change will include desatated attributes. The purpose of
Methodis thus to provide clarity about what is changingRroductwhen some task is carried
out. There will be many possible ways to make these changes.

Detailed description

Type Transformation.

Purpose Capture a development task in an unambiguous way. Incls#ie that do not change
Product

Function Captures a task as a set of possible transformationBroduct The domain for
the transformations defines acceptable preconditionsstdtBroduct This means that
Productmust contain the correct attributes in BsoductMeasurementnd that these
attributes must have appropriate values. The codomaiesepts all possible outcomes
of the task.

Subordinates None.

DependenciesProduct(‘isRelationOn’); Techniqug'mapConstrainedBy’).
Interface None.

ProcessingNone.

Data Binary, many-many relation oRroduct
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Formal description

Methodis a transformation of states &froducti.e. is a binary relatiorPS x PS. The set of
all possibleMethodis M.

M =PS x PS (7.27)

For any Method m € M, the relation defined byn has many possible domain states.
For example, for aVlethod involving designing a product from some architectures, dbe
main states forn include all Productstates that represent a product containing the relevant
architectures. This might include states that represengxXample, a product with or without
requirements or existing integrations.

The set of possible domain statB$m) for m definesm’s precondition. FoiRealisedPro-
cessrp, the domain form is restricted to those states iAS'?, i.e. the states withPS™’s
ProductldentifierThis set of domain states is defined by mapping-e.

Ym e M, Vrp € RP  mpre(m,rp) = D(m) N PS™ (7.28)

A domain element for #ethodmaps to many possible values. These values represent the
possible transformations fdvlethod For example, aMethodthat represents creating designs
from architectures may be characterised by an increase wetllne of a ‘design’ attribute along
with an increase in the value of a ‘design defects’ attriblfer a Productdomain state with
both ‘designs’ and ‘design defects’ values equal to zere pibssible mappings include many
states i.e. those with ‘designs’ 0 and ‘design defects> 0. A Methodmay thus be viewed as
a ‘mapping template’.

I now consider the standard relational propertiefieéxion symmetrandtransitivity[159]
with respect taVlethod The reason is one of exploration — | would like to investegather
possible aspects d¥lethod not immediately apparent, for example equivalences antiapar
orderings.

Properties of reflexion includeflexiveandirreflexive A relation is reflexive if every do-
main element maps to itself. It is irreflexive if a single domelement does not map to itself.
For Method | allow reflexion i.e. one of the possible transformatiohs:aepresents no change
in Productstate. This is required fokctivities that do not changfroductfor example, devel-
oper design discussions.

Properties of symmetry includgsrmmetricantisymmetri@ndasymmetricA relation, R, is
symmetric if and only itz Rb impliesbRa. R is antisymmentric if the inclusion of bothRkb and
bRa is possible only ifa = b. An asymmetric relation does not permit the antisymmeiasgec
i.e. botha Rb andbRa may never be trueMethod changesProductin a way that is consistent
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with antisymmetry i.e. a transformation and its inverseunanly in the case of no change to
Productstate.

Properties of transitivity includegansitiveandatransitive A relation R is transitive if the
inclusion of botha Rb andbRc imply the inclusion ofa Rc. BecauseMethod defines ‘change
templates’ rather than defining size of change, the tramtgifproperty holds. For example, the
‘design’ Methodintroduced above results in an increase or decrease in gahattributes that
represent designs and an increase in value of attributeetir@sent numbers of design defects.
If the defects element of the mapping includes (0,6) and0{6 e implication is that (0,30)
will also be a possibility. The transitivity property holds

Method s reflexive, antisymmetric and transitiv&/ethod thus represents weak partial
order relation onPS [159].

7.2.11 Technique
Overview

In the previous Section, | describ&dethod as a set of transformations étroductthat effec-
tively defines what is changed froduct | noted thatMethod is effectively a template and
that there would be many different ways of carrying outMhethod Techniquedescribesow
Productchange is made and represents one way of implemeMietipod For example, for
Method'DesignAndCode’, possibl&echniquesnight be ‘PairProgramming’ and ‘Implemen-
tOOArchitecture’. Each would result in the same kind of apato the sam@roduct Partitions
for example, increase iPesignand Sourceattributes. However, each would have a slightly
different outcome, for example, many believe that ‘PaigPaonming’ will result in a smaller
increase in defect numbersechniquethus constrains th&ethodrelation to a functional one.
The resultingProducttransformation may be regarded as the ‘expected’ transtoomfor this
Techniquei.e. the average result for theechniquewhen applied to many different kinds of
products by many different kinds of engineers in many déifekinds of environments.

Techniquealso has aCapabilitySpedahat describes the capabilities required for working
with the Technique For example, an ‘OO desigiTechniquerequires skills in OO design.

Detailed description

Type Transformation.
Purpose Capture changes ®roductwhen a specifidfethodis carried out in a particular way.

Function Constrains the many-many transformation Broductdefined by aMethod to a
functional (many-one) transformation. The domain T@chniqueincludes that of its



7.2 KiTe Model 95

associatedMethod Each domain state maps to a specific value that represerdas-an
erage’ result. The value may be absolute (for example, goeeed’ defects injection
density) or relative (for example, whé€iTe is used to compare outcomes against some
benchmark).

Subordinates None.
DependenciesCapabilitySpe€‘hasCapabilities’).
Interface Methodvia ‘mapConstrainedBYy’ relationship.

Processing Extracts subset oProductthat matches ‘Precondition’ and outputs the states of
Productto which each maps.

Data An Identifieridentifies theTechnique Transformations are represented as a binary (func-
tional) relation onProduct

Formal description

Techniqueis a functional mapping between statesRsbductalong with a description of the
capabilities required to work with theechnique The set of all possibl@echniques 7T .
Functiontcps projects theCapabilitySpedor a Technique

teps: T — CPS (7.29)

Relationttran projects the functional mapping dfroductfor a Technique

VteT ttran(t): (PS — PS) (7.30)

As for Method the transformationtran defined forTechniquet has a number of possible
domain states and these repres&nprecondition. The set of domain states RealisedProcess
rp is defined by mappingpre.

VteT,Vrp e RP tpre(t,rp) = D(ttran(t)) N PS™ (7.31)

A Techniquemay be applied to &ethod m if all domain states forn are included int’s
domain. This means that every precondition state definea by included in the functional
mapping defined by. The set ofTechniquethat can be applied to Methodis T™<M .

TmeM = {t |t € T AD(m) C D(ttran(t)} (7.32)

A Techniquet € T™<™ may contain domain states not includedritis domain. For
example,t might include mappings for states with architectural cohtghereasn might be
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defined for zero architectural content only. The resuttagiplied tom is thus the transformation
defined byt restricted to then’'s domain elements. | denoteapplied tom’ ast o m.

VteTVme M tom =ttran(t) Nm (7.33)

The relation representing Bechnique’stransformation may apply to manethodsand
this means that, in the real world, tlechniquemay be implemented to realise any of these
Methods

I now check for reflexion, symmetry and transitivity. As fbfethod | allow reflexion
i.e. one of the possible transformationstof 7 represents no change Rroductstate. The
antisymmetry property holds i.e. f@t, «7T'b andbT'a both are included only i& = b. Technique
is atransitive i.e. as a function, inclusion of all of (x,{),z) and (x,z) is not possibl@echnique
is reflexive, antisymmetric and atransitive.

Further consideration of function properties leads to thdeustanding thalechniqueis
one-one(domain elements will change in a consistent way) but it isardo (all codomain
elements i.e. PS are not included in the mapping). This miaisve may not discuss in-
verse transformations i.e. we can not ‘work backwards’ulgioa set offechniquespplied in
composition.

7.2.12 ContextModel
Overview

The role ofContextModelis to abstract the effects of the project environmenRaalisedPro-
cessoutcomes.ContextModelhas two responsibilities. The first is to represent how wead-s
cific engineers are able to carry ouTachniqueon a givenProduct ContextModelmatches’
engineer capabilities with those required for working witle Techniqueand Product This
representation causes the transformatioriParductdefined byTechniquealone to be altered
to effect a different transformation. The second respalityilis to effect change ta&Engineer
and Contextas a result of engineer involvement willechniqueand Product For example,
carrying out designs for a computer telephony product mesease engineer knowledge about
computer telephony and some believe that engineers cgroyit‘PairProgramming’ become
more satisfied.

ContextModeluses information about the various capabilities and castiéxequires for
matching and thus has an expectation about the form of thElsere is thus close-coupling
betweenContextModeland models folCapabilitySpeand Contexti.e. these are all part of a
single ‘human factors’ model. This model represents rebeas’ beliefs and provides a way of
making visible assumptions in studies involving models.
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Detailed description

Type Transformation Template.
Purpose Abstract the effects of the project-specific environmentr@RealisedProcess

Function Matches characteristics of ttivity (i.e. Context EngineersProductand Tech-
nique) to provide aProducttransformation adjustment and to transfoEngineerand
Context

Subordinates None.

DependenciesContext(‘usesToCalc’)Engineer.CapabilitySpdtusesToCalc’);Product. CapabilitySpe
(‘'usesToCalc’);Technique.CapabilitySpdtusesToCalc’).

Interface Activity (‘mapConstrainedBYy’).
ProcessingNone.

Data Ternary relation orProduct(original transformation and new end states). Binary iehat
on Engineer Binary relation onContext

Formal description

ContextModelmay be described as a relation between varfRealisedProcessiements. The
relation defines the elements that are input€tmtextModeland those that are outputs. Do-
main elements areéPS x PS), £S, CS and7. Codomain elements afS, £S andCS.
The set of allContextModelis CM.
CM=(PSXPSEXESXCSXxT)x(PSxESxXCS) (7.34)
Relationecmprod provides a new end state for a transformatiorpere PS according to
Context Productand Techniquespecifics and&ngineercapabilities.
cmprod: (PS x PS) x ES x CS x T — PS (7.35)
Relationcmeng effects a transformation ors € £S according toContext Productand
Techniquespecifics and&ngineercapabilities.
cmeng: PS x ES X CS X T — ES (7.36)
Relationecmentzxt effects a transformation ars € CS according toContext Productand

Techniquespecifics and&ngineercapabilities.

cmementrt: PS x ES x CS X T — CS (7.37)
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7.2.13 Activity
Overview

Activity effects change to the state ofRealisedProcessPossible changes include those to
Product Engineerand Context For example, arActivity involving engineers coding may
result in change to botRroductand Engineerstates and one involving a discussion between
engineers and customers may result in change toBnlyineerstates.

Activity effects change by providinGontextModelwith the transformations supplied by
Methodand Techniqueand applying the modified transformation delivered@gntextModel

Note that, even when the sanfechniqueis applied by the samg&ngineerin the same
Context the final states foProduct Engineerand Contextmay be different if a differen€on-
textModelis applied.

Detailed description

Type Transformation.
Purpose Effect change to the state of th&ealisedProcess

Function Activity effects a single state changeRealisedProces3 he state change involves
changes to one or more Bfoduct Engineerand Contextstates.

Subordinates None.

DependenciesProduct EngineerandContext(‘transforms’); ContextModelMethodand Tech-
nique(‘mapConstrainedBY’).

Interface Interfaced to byRealisedProcegshasTransformation’).

Processing An Activity transformsProductaccording taVlethod TechniqueandContextModel
Activity transformsEngineerand Contextaccording todContextModel

Data Binary (functional) relation orRealisedProcesstate representing possible start states
(domain) and end states (range).

Formal description

Activity describes a functional mapping d&froduct Engineerand Context The set of all
Activity is A.

Transformation taProductresults from adjusting the transformation definedTeghnique
according toContextModel The resulting transformation is applied to tReoductMeasure-
mentsfor ps € PS". Transformation t&Engineeris according tameng.

The relation that describe&ctivity is
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A (PS x E8 x CS) = (PS x £S % CS) (7.38)

An Activity a is associated with Methodm, a Techniquet and aContextModelem. From
Equation 7.33, the transformation effected/byandt is ¢ o m. For Activity a, | denote this by
aom @nd represent by the relatiops, ps”). The ContextModefor a, denoted byz..,,, modifies
this to(ps, ps’). The domain for,,, is thus restricted téroductstates for whichu,.,, is ps”.

Applying Equations 7.34 and 7.38

a: (ps,es,cs) — (ps',es’ cs') |

Aps”: Gom(ps) = ps” A aem(ps,ps”, es, s, t) = (ps',es’, cs') (7.39)

Activity has the properties that at least ong&fes or ¢s must change.

Vrp € RP,Va € A a(ps,es,cs) = (ps',es’ cs') |

(ps,ps’ € PSP Nes,es’ € ES™ Nes,cs' € CS™) N (ps # ps' Ves # es' Vs # cs') (7.40)

7.2.14 RealisedProcess
Overview

A RealisedProcess described as as a directed graph with nodes represetdieg sf theRe-
alisedProcesand edges representing transitions between these statggskhat cause change

to the state of &RealisedProces®ay be planned by management or unplanned. Examples of
the former are ‘start working on afictivity’ and ‘currentActivity has been completed’. Exam-
ples of the latter represent either a change to prdpeeitext for example, ‘replace engineers

at short notice’, or the need to ‘change the plan’ by inteingpan Activity that is partially
complete. Because of the unplanned eveniealisedProcesaust be able to react to the envi-
ronment and an element of ‘event-response’ is introdueediie do not have a simple dataflow
situation.

A RealisedProceds made up oProduct Engineer Context someActivities and aGoals-
Benchmark Productrepresents what is delivered from tRealisedProcesand GoalsBench-
mark provides a means of checking ‘readiness to delivéthgineerrepresents people who
changeProductand they do so by involvement #uctivities. Contextprovides information that
affects how well people work when involved in tRetivities.
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Detailed description

Type Aggregation.

Purpose Abstract thesoftware procesas it is realised i.e. descriptive.

Function Transforms the state of the software process from the stategect start to a new
state at project end.

Subordinates Activity (‘hasTransformation’)Product GoalsBenchmarkeEngineerand Con-
text (‘hasStates’).

DependenciesNone.

Interface None.

ProcessingA RealisedProcesappliesActivities to transformRealisedProcesstates. State
transformation also occurs as a result of external pertiots, for example, when engi-
neers are replaced déictivities interrupted in an unplanned way.

Data A directed graph that captures changes in the staReaduct Engineer ContextandAc-
tivity. Nodes represent states of tRealisedProcesand arcs represent state transitions.
There is a single ‘start’ node, corresponding to the statheRealisedProcess project
start and a single ‘end’ node, corresponding to its state@eg end. AGoalsBench-
mark captues states that are desirable as end states. The steadechalisedProcesae
constrained by the product, engineers and context invalvede process. For exam-
ple, if the RealisedProcesacts on product ‘MyWebApp version 2.1’ and has engineers
‘Joe’, ‘Mike’ and ‘Barbara’, the state space is constrain@dnclude possible states of
this product and set of engineers.

Formal description

The set of allRealisedProceds RP. The RealisedProcedsr the Projectpr is rp.

| consider a state machine representation to mgaeThe state space for our state machine
forrpis PSx ES « C'S % A. In order to ‘mirror’ the real-world as closely as possibleapture
points of visibility into theRealisedProcesas input stimuli, and select the following events:

startActivity(a) Start work onActivity a. Productis in a known state, engineers have been
selected and context is known (i.BS, ES, C'S anda € A are defined).

changeContext Some state change Engineeror Contextis to be applied.

endActivity Stop work on the currerctivity .

A state machine representation feealisedProcesds presented in Figure 7.5.



7.2 KiTe Model 101

A0

ps, es, cs, null

changeContext
(apply new Context)

startActivity a
(null->a)

B1
ps, es’, cs’, null
Al

ps, es, cs, a

endActivity a
(apply a (ps,es,cs),
(a->null))

BO

ps’, es’, cs’, null

Figure 7.5: State machine for KiTe

Initial state A0 hasProduct Engineerand Contextin stategs, es andcs, respectively. No
Activity is active and so we haw&ctivity ‘null’. On stimulus ‘start work onActivity a’, the
‘null’ Activity state becomes ‘a’ i.e. stafel. This state is applicable throughout application
of Activity a. As we have no visibility into the process during this tilkepduct Engineerand
Contextremain in stategs, es andcs. WhenActivity a completes, either because of planned
completion or unplanned interruption, states, £S andC'S transition tops’, es’ andcs’ as
a result of full or partial application ofctivity a, anda returns to the ‘null’ state. Note that
application of aKiTe Activity may result in change to one or more Bfoduct Engineeror
Context On stimulus ‘changeContext’, tiieealisedProcessoves to staté31. In this statecs
or cs (or both) have changed, for example, engineers have bekteeb

In a real-life project, a ‘changeContext’ stimulus mightocwhen aActivity is active, for
example, if an engineer is unexpectedly sick and must bacegdl This situation may in fact
be represented by the input events already discussed. UmeFig6, | illustrate this situation.
For a change irContextwhen aActivity is active, we must first stop work oActivity and
transition to the new state according to completion states (endActivity’), then apply a

‘changeContext’ transition, and finally a ‘startActivitwhere theActivity may be a modified
version of the original.
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Al

ps, es, cs, a

changeContext

\
|
/ endActivity a’ \

(apply a’ (ps, es, cs))

A2

ps’, es’, cs’, null

changeContext
(apply new Context)

A3

ps’, es”, cs”, null

startActivity a”
(null->a”)

endActivity a”
(apply a” (ps’, es”, cs”),
a” -> null)

B2

ps”, es’”, cs”’, null

Figure 7.6: Disturbing a Method

The formal representation forfaite automatons [62]

(Q,%,6,q, F) where

Q is afinite set of states,

Y] is a finiteinput alphabet

0 is the transition function mapping x > to @,

qo is the initial state,

F C Q is the set of final or accepting states.

The representation fdRealisedProcess:

rp = (Q,%,9,q, F) where

Q ={PS™" x ES™ x CS™ x A},

Y = {‘StartActivity(a)’, ‘ChangeContext’, EndActivity'} | a € A,
0:@Q x X +— @Qisshownin Table 7.1,

qo = initial state for rp,

FCQ=GB.

Note thatGoalsBenchmarkepresents a specific set of product states i.e. the ‘désined

states. These may be considered to be the ‘accepting statdbhe RealisedProcessA Re-
alisedProcesactual end state may or may not be one of the ‘accepting’sstideexample, if
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Table 7.1: State transition diagram for RealisedProcess

StartActivity(a)

ChangeContext

EndActivity

ps, es, cs, nul

ps, €s, Cs, a

ps’, es’, cs’, null

ps, €s, CS, a

ps’, es’, cs’, null

product-related objectives are not met.
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Evidence

In Section 5.3.1, | proposed some objectiveskole. These were:
e Capture any software process or process model.
e Compare processes and process models.
e Create a new process by combining elements from differertgsses.

The conventional scientific approach towards evidenceraatation is to spawn hypotheses
based on the theory or model of interest and carry out forx@@ments that aim to disprove
the theory. The idea of a ‘null hypothesis’ is central to #xperimental paradigm. According
to Dawson et. al., this representpasitivistapproach i.e. where the researcher “looks for ir-
refutable facts and fundamental laws that can be shown touke¢gardless of the researcher
and the occasion” [38]. He reminds us that software engingés “not a pure science” and it
is “arguable whether a positivist approach can ever be qpiate for a discipline so dependent
upon people and the environment”. For this reason, manyarelsers favour amterpretivist
approach i.e. where researchers interpret results witieiicontext in which the research takes
place. Such an approach can lead to “new, empirically gredrnheories”, but not directly to
the discovery of cause-and-effect relationships. Dawdorak cite the example of impres-
sive results when a new methodology is applied being adoeddio the methodology, when
results could have been “due to something as simple as thethigotivation achieved by a pay
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rise” [38]. The authors make a case for accumulating matig Evidences of different kinds
and reference the fields of medicine, law, industrial engyiimg and knowledge management to
support their case. This approach compares with that of o&searchers who draw from the
fields of psychology and sociology to suggest the accununiadf an ‘evidence portfolio’ com-
prising case studies, anecdotes, surveys, expert opinmbo@ntrolled experiments [87, 160].

As a means of capturingiTe’s ability to meet its objectives, | have chosen an approach
calledargumentatioralong with an established notatioBpal Structure Notation (GSNjor
structuring and capturing arguments. This approach has i for many years in the safety
critical domain and has recently been applied in the so&wiamain [160].

Argumentations “an approach which can be used for describing how evideatsfies re-
guirements and objectives” [160]. The use of a suitabletimtauch assSNhelps researchers
to easily identify what evidence is required and helps stakiers see at a glance what is the
‘evidence coverage’. | have chosen this strategy for tweaea. The first relates to the fact that
the breadth of evidence required is large, and this approelgs organise and display evidence
such that both evidence and lack of evidence are relatiady & see. The second reason re-
lates to the idea presented above that, for people-intesgstems, accumulating a portfolio of
different kinds of evidence is appropriate. The argumémtapproach provides for individual
items of evidence and so is suitable for the portfolio idea.

My selection of studies to provide evidence has depended apoix of strategy and prag-
matism. The strategy has been to aim to provide a breadthidémse in the first instance,
and so an attempt has been made to choose studies that nmeattimisumber of evidence goals
met in the time available. Pragmatism has focussed the elodistudy to those with least time
overhead i.e. studies recreate processes and modelsbaekirithe literature. The use of an
evidence map enables the reader to easily see what is tlief®a cover’ and gain some idea
of the strength of the evidence at a glance. In the next Sedtimtroduce thesvidence map
and explain how it is used to show what evidence is availabsipport theiTe objectives. In
Sections 8.2 and 8.3, | present my evidence. Finally, | dis@ome interesting points brought
to light as a result of the evidence-gathering exercise.

8.1 Evidence map

According to Weaver et. al., there is a trend in modern satétical standards away from
prescriptive, process-based standards towards the usésafedy case’ with supporting evi-
dence [160]. Each safety case comprises three principalegiss —Goal, ArgumentandEvi-

dence A high level goal may be presented agaal hierarchywith supporting arguments and
evidence attached to each sub-goal [47]. Weaver et. al.estigigat “Argument without sup-
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porting evidence is unfounded, and therefore unconviri@ngd “Evidence without argument is
unexplained — it can be unclear that . . . objectives have batsfied”. This approach is called
argumentatiorand its purpose is to communicate clearly, comprehensamtlydefensibly that
a system meets its safety goals [160].

Goal Structure Notation (GSNis a graphical argumentation notation where goals are pre-
sented as rectangles, arguments as parallelograms armhewids circles. The goal hierarchy
is thus a structure showing how goals are addressed by argsiiaaed how arguments are sup-
ported by evidence. Arguments for which no evidence exigs undeveloped goals, have an
attached diamond.

| apply this approach t&iTe by stating the objectives defined in Section 5.3.1 as a geal hi
erarchy and providing arguments and evidence for each galakihierarchy. For example, the
main objective foKiTe is “Provide evidence foKiTe’ and, in Figure 5.1, | show the top level
objectives as ‘Capture’, ‘Compare’ and ‘Combine’. In Fig#8.1, | place the main objective
as the root in the goal hierarchy and provide three argumeath with evidence realised as a
sub-goal. For example, the first argument is “Argument byshg any software process can
be captured in KiTe” and the ‘evidence’ sub-goal is “Captaing software process or process
model”. Sub-goals 2 and 3 correspond to the remaikiii@ objectives. The remaining struc-
ture is built according to the objectives defined in Figurds 5 _eaf’ goals either have some
available evidence (shown as attached circles contaihengamber of a case study) or no avail-
able evidence (shown as an attached diamond). Each ‘evadgrute’ references a study that
contains information about how the goal has been met ané gressummarised in the legend
and presented in detail in the following Sections.

In Figure 8.1, | have not provided arguments and evidenceéh@rsub-goals 1.2 (“Cap-
ture software development processes and process modet$).4 (“Capture miscellaneous
processes”). These sub-goals are realised in Figures 8.2.3n

Note that this ‘evidence map’ captures breadth of evideaiteer than depth i.e. the strength
of individual pieces of evidence must be obtained from siuglyhe actual evidence. The
strength of the map is rather to provide a quick idea of whatesce exists and easy access to
that evidence [160].

8.2 Capture all Processes and Process Models

In this Section, | present the studies that comprise evielemsupport the objective of ‘Capture
any software process or process model’ (Goal 1). For eady,stuescribe my reasons for
selecting the particular study in terms of which goals atstad by the study.

As | represent various processes and model§iie, | notice that, in all cases, the attempt
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Figure 8.3: Goal hierarchy for ‘Miscellaneous’

results in exposure of ambiguities or unstated assumptibmsre could be many reasons why
these ambiguities and assumptions are present, such as @pastraints resulting in authors
having to leave out some details. However, this does noadeiom the fact that the attempt to
represent a study in a framework suchkase provides an excellent means of exposing lack of
clarity. This is an important side-effect of the use of a mMaileh askKiTe. When ambiguities
and assumptions are brought to light, | continue as if théystiad been more fully documented
by making a choice and ‘fixing’ the uncertain aspects. | belighe value of the evidence is not
affected by this, as in most cases it is clear that the achute made is not important when
considering the ability oKiTe to represent. Specific examples of process variations ace al
included as evidence studies (see Sections 8.2.2 and Bahd@his provides some confidence
that alternative descriptions may be easily represented.

In order to capture a process or process modKlTe, it is necessary to:

1. Capture the attributes of interest Broductin a model ofProduct PerspectivesThis
may includeContent Quality and Cost Perspectiveand any othePerspectiveselevant
to the modelling exercise.

2. Define theMethodsto be performed by stating the precondition for each and How i
transformsProduct Specify theTechniqueto be implemented.

3. DefineEngineerby capturing capabilities in aBngineer CapabilitySpéace. defineES.
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4. DefineContextfactors that might affect how well the&ethodsare carried out i.e. define
CS.

5. DefineContextModeli.e. the mechanism for transformi@roduct Engineerand Con-
text This involves defining the capabilities required for waidkiwith Techniqueand
Producti.e. Technique CapabilitySpeand Product CapabilitySpealong with the rules
for transformingP .S, ES andC'S.

6. Define the ‘acceptance criteria’ for the project i.e. thedpict-related objectives. These
are attributes oProductthat have agreed values at the end of the project, for example
‘90 percent of the requirements implemented and fewer tRaseects’ or ‘development
cost less than twenty thousand dollars’ KiTe, this is ourGoalsBenchmark, GS

In this Section, | follow the above steps. Note that, for thesidies in which | capture a
‘general’ process, for example, “capture a waterfall psstethe attributes applied fétroduct
Engineerand Contextare selected to best represent the process as reportedlitetatire. |
then discuss this in the light of thi€iTe framework. For example, for waterfall-based stud-
ies, the tendency is to report product-related attributdg, dor example size, defect and cost,
whereas, in an XP study, reporting tends to include engiredated attributes. For such studies,
| also choose attribute values that are representativeianlyas the study is not based on an
actual experiment, | choose values that seem to capturéakieur’ of the process as reported
in the literature. For the reasons discussed earlier, thheeisf measurement scales is out of
scope for this thesis and | manipulate values in an informegt and without discussing such
issues.

8.2.1 Study 1: Waterfall process

For my first study, | select a simple, well-known process nhalo&t is implemented in many
projects — the Waterfall. This is a traditional process (Go2a.1.1.) and | represent at a small
level of granularity (Goal 1.2.3.2.).

Because this study aims to represent a ‘typical’ waterfedcpss, | choose attributes for
Productthat are representative of those found in the literaturd,@mment that, in order to
represent with different attributes, | need simply charfgerodel forProductto include the
required attributes. For the same reason, | work with spegifribute values. For example, the
model for Producthas an attribute ‘number of requirements’ and for my illastn | choose
‘30’ as a value.

For a ‘pure’ waterfall process, i.e. one that adheres to aufaaturing process, each stage is
carried out only once. The analogy with manufacturing bsehkvn at this point as the software
equivalent to ‘thowing away defective items’ is generabhyfix some of the defects prior to
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delivery and some iteration to earlier stages is thus intierethe model. In a more realistic
process, iteration may occur in a number of different ways.tkis study, | will illustrate both
the simple model and a model with a single iteration, andudis®ther possibilities. | also
assume all waterfalMethodscomplete. The ability to represent situations whedethod is
disturbed for some reason is illustrated in Section 8.2.11.

KiTe representation

The first task is to define an approprigd@eoductmodel. Models described in the literature
generally contain some measure of product size, for exgripples of code’, ‘number of re-
guirements’ or ‘function points’, some metric involvingfdet numbers and some measure of
cost, for example, ‘person weeks’ or ‘duration’. In a waadirprocess, generally aRartitions
are affected. For this illustration | will apply tHéroductmodel in Table 8.1.

Table 8.1: Waterfall Product Model

Perspective| Partition Attribute Meaning

Content Definition | # Requirements | # requirements captured
Architecture| # Requirements | # requirements architected
Design # Requirements | # requirements designed
Source # Requirements | # requirements implemented

Integration | # Requirements | # requirements integrated
Packaged | # Requirements | # requirements packaged

Quality Definition RemainingDefects # remaining defects in requirements
KnownDefects # known defects in requirements
Architecture| RemainingDefects # remaining defects in architectures
KnownDefects # known defects in architectures

Design RemainingDefects # remaining defects in designs
KnownDefects # known defects in designs
Source RemainingDefects # remaining defects in source

KnownDefects # known defects in source
Integration | RemainingDefects # remaining defects in integrated source
KnownDefects # known defects in integrated source
Packaged | RemainingDefects # remaining defects in packaged source
KnownDefects # known defects in packaged source

Cost Definition DurationWeeks | Duration in weeks for requirements
Architecture| DurationWeeks | Duration in weeks for architectures
Design DurationWeeks | Duration in weeks for designs
Source DurationWeeks | Duration in weeks for source

Integration | DurationWeeks | Duration in weeks for integration
Packaged | DurationWeeks | Duration in weeks for packaging
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| next identify theMethodsthat are applied to transform th&roduct A waterfall model
generally is described as a number of stages, with each igagking in the production of dif-
ferent kinds of product document (see Section 2.2). For @@ ‘design’ stage results in the
production of design documents. | seledVlathod for each stage, and appMethods'Cap-
tureRequirements’, ‘Analyse’, ‘Design’, ‘Code’, ‘Integfie’ and ‘Test'. ‘CaptureRequirements’
results in change to thefinition Partitionfor all PerspectivesAnalyse’, ‘Design’ and ‘Code’
affect theArchitecture Designand Source Partitionsespectively. ‘Integrate’ causes change to
both Integrationand Packaged Partitiorsnd ‘Test’ results in change to dartitions because
some defects are brought to light and are now known and perd@pe of these defects are
resolved in the relevarRartitions | note that my choice oMethodgranularity may help us to
understand some aspects of the waterfall process, but niaglpowith other aspects. However,
the choice is suitable as a first step and sufficiently simgpbad illustration.

The next task is to identify models f&@ngineerand Contextalong with theContextModel
that defines the effects of the human-related factors on theeps. Because the waterfall
paradigm is a manufacturing one and waterfall projects raditionally lengthy, human fac-
tors are generally not captured i.e. the waterfall mindsé¢tat the effects of such factors are
negligable or ‘average out’ over the duration of a projecbwdver, the degree of tool sup-
port for the variousMethodsand Techniquess generally believed to be of relevance and so
I include aContextattribute ‘ToolSupport’ applied to eadPartition An illustrative Context
model is shown in Table 8.2ContextModeluses values for ‘ToolSupport’ to calculate engi-
neer effectiveness when working witlechniquesContextModehas no effect orEngineeror
Context

Table 8.2: Waterfall Context Model

Partition Attribute Meaning
Definition ToolSupport| level of tool support for requirements gatheripng
Architecture| ToolSupport| level of tool support for architecture
Design ToolSupport| level of tool support for design
Source ToolSupport| level of tool support for coding
Integration | ToolSupport| level of tool support for integration
Packaged | ToolSupport| level of tool support for packaging

In Figure 8.4, | illustrate &RkealisedProcedsased on a single-pass waterfall model. The
Methodsidentified above form the basis &fctivities ‘Requirements’, ‘Analysis’, ‘Design’,
‘Coding’, ‘Integration’ and ‘Testing’. | illustrate the fcts of theRealisedProcessn Prod-
uct only, as the selecte@ontextModelimplies no change t&ngineeror Context At process
start, no work has been carried out Broductand the value for all attributes is ‘0. After the
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‘RequirementsActivity, 30 requirements have been defined, 5 requirements defaadleen
injected and 8 weeks have elapsed. After the ‘Analysdivity, all defined requirements have
been architected and an additional 7 defects have beenadjeto theArchitecturedocumen-
tation. The ‘Design’Activity causes injection of 16 design defects and ‘Coding’ resuoléi
additional defects in th8ource making a total of 72 defects. The ‘Integratiofctivity carries
the 30 requirements and all defects through imtegrationand Packagedrtifacts and no new
defects are injected. After the ‘Testingctivity, 50 of the 72 defects have become visible, 4
sourced in thédefinitions 5 in theArchitectures12 in theDesignsand 29 in theSources

Product
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Figure 8.4: Simple waterfall

As noted above, in practice at least one iteration occurfustiate in Figure 8.5 a simple
case in which a single iteration is applied to correct defess there are requirements defects,
the iteration starts from the beginning and Activity for resolving defects is carried out for
eachPartition in turn. The identified defects are corrected at each stalgi#e durations for
eachPartitionincrease.

If I now assume that the expectation is that “for deliverysiexpected that at least 29 of
the requirements are implemented and the number of defed¢ss than 307, | see that the
illustratedRealisedProcedsas achieved its goals.

Recall that, inKiTe, a RealisedProces is represented as (see Section 7.2)

rp = (Q,%,9,q, F) where

Q ={PSxESxCS x A},

Y = {‘Start Activity(a)', ‘ChangeContext’,‘ EndActivity'} | a € A,

d:(@Q x X — @QisshowninTable 7.1,
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Figure 8.5: Waterfall with defect resolution

qo = initial state for rp,

FcQ@Q=GB.

For the waterfall examples illustrated above$ and C'S contain a single state i.e. any
change toEngineeror Contextis not captured.G B is the set of ‘accepting’ states i.e. all
product states in which the value of the ‘Content: PackageRBequirements’ attribute is 29
or greater and the value of the ‘Quality: Packaged: Remgib@fects’ attribute is smaller than
30. Productis defined by Table 8.1 an@ontextby Table 8.2.

Each row in Figure 8.5 represents the stat®afducton completion of arActivity. PS is
the conjunction of this set of states afid. ¢, is the set of values in the first row of the figure,
i.e. the row labelled ‘Start’. Note that, in an enhancememhaintenance project, values in the
‘Start’ row would be other than 0, i.e. there would be sdPmeduct Content

The Activities shown in Figure 8.5 are associated with the seé¥lethods

M = {‘CaptureRequirements’, ‘Analyse’, ‘Design’, ‘Code', ‘Integrate’, ‘Test’,

‘Resolve RequirementDe fects', ,  Resolve ArchitectureDe fects',  Resolve DesignDe fects',
‘ResolveCodeDefects'}.

In the example, the ‘acceptance criteria’ are met i.e. RealisedProces®aches an ‘ac-

cepting state’.
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Discussion

Several points for discussion emerge from the above stublg. fifst involves the granularity
of the Methodsselected. | chose a singlethod for each phase, for example, ‘Analyse’.
However, as each waterfall phase involves testing of thduyared artifacts, | could have chosen
to replace the singléethod with both an ‘Analyse’ and ‘ReviewMethod In this case, |
would have had a deeper insight into the existence of ‘Knogfebts”, as these would have
become apparent as a result of ‘Review’ and the informatardchave been used to initiate
an ‘Analyse’ iteration to correct defects and prevent tipeapagation to designs. | chose the
more simple process because | wanted to avoid decisions éd@tion that would confuse the
illustration.

The second point follows from the first and relates to the mmation of what exactly
is meant by ‘waterfall’ model. At each phase, a number of dsfare injected. Reviews
expose some of these defects, along with Hagtitionsin which they are sourced. If some
discovered defects are sourced in an ‘earllartition for example, defects found in designs
but sourced in requirements, some decision has to be madéwabether or not to iterate back
to requirements immediately. There are possibly many secistbn situations in a waterfall
process. At one end of the range of possibilities is an rmamdback to the earliest source
for defects at each stage. At the other end is an iterati@testy that involves waiting until
test before iterating. The situation is made more compleihbypossibilities for test options
at each stage. The possibilities range from no reviews (@@ tare no ‘KnownDefects’ and
defects are propagated), to reviews with partial ‘locaiation i.e some defects are fixed and
a decision must be made as to whether remaining ‘KnownD&fant propagated, to reviews
with immediate and complete iteration (all ‘KnownDefeatssolved).

The point to be made is that the label ‘waterfall’ is given tany different possible pro-
cesses. As long as the actual policies are not visible, we &aituation fraught with ambiguity.
Indeed, it is possible that the huge variation in outcompsented for waterfall processes is, at
least in part, due to the lack of definition of what is actudkyng done. The attempt to identify
what are theKiTe Methodsfor a waterfall process bring to light these kinds of amhigsi
as it becomes clear that the specifics kdethod are often unknown or unreported. | further
illustrate this common lack of clarity in the next study.

In addition to the ambiguities uncovered above, | noticé Brayineerand Contextare mod-
elled as unchanging during a waterfall process. This reptesa source of assumptions. For
example, in this model, if an engineer becomes sick and iaceg, the replacement engineer
is indistinguishable from the original one. In terms of thedul, the ‘ChangeContext’ input
now has no effect on thRealisedProcesstate i.e. represents a move to the same state. In
terms of the real world, changes that may affect processomés are not modelled and it is
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thus assumed that they do not affect process outcomes.

A final observation on the above study is that, if any of theaiketpresented had been
different, a differentRealisedProcessould have been represented. For example, if the first
Activity ‘Requirements’ had resulted in a ‘Remaining Defects’ vadfig, rather than 5, we
have a differenfctivity, even if the implementetethod and Techniqueare the same in both
cases. The reason is that some contextual factor has chdngedample, developers are less
experienced, and so tlf&ealisedProcedsas changed also.

8.2.2 Study 2: Coding variations

This study also represents a waterfall model, but the pergios time is to show how iKiTe |
can represent some of the many possible variations thatigazéo ambiguities when a waterfall
is discussed. The study relates to a traditional (Goal 1.3,1small-grained (Goal 1.2.3.3.)
process that captures variations to a base process (Godl)1.2nd that compares process
variations (Goal 2.2).

In this study, | consider the apparently straightforwarmlyem of defining théethod‘cre-
ate code’. This description is commonly used to mean a nupflibngs. For example, perhaps
detailed designs are available from which to base code ¢rapsrthe designs are incomplete
and ‘experts’ are available to aid understanding and glaricertainties. Perhaps it is expected
that a specific technique will be carried out, for examplé;, pepgramming.

Each of the above has different preconditionsRinductand change®roductin different
ways. InKiTe, they describe differenethods | give an example of how some of the variations
might be captured iKiTe.

KiTe representation

| first define a model foProduct | will work with a Content Perspectivaith attribute ‘number

of requirements’ in eaclrartition and aQuality Perspectivavith ‘number of remaining de-
fects’, as this model is sufficient to show capture and uncegeies. Rather than implementing
a table to show the results @tctivities on Product as in the previous study, | present results as
diagrams, as one of the aims of this study is to bring to ligfi¢inces in meaning between
processes commonly given the same name. As discussed inr58@, | use attribute values
in a ‘casual’ but illustrative manner.

For a traditional waterfall process, before coding takas@Productmight look like the first
graph in Figure 8.6. The x-axis presents #fi@e Partitionsand the y-axis in an integer scale
to represent ‘number of requirements’ and ‘number of defe&ach graph contains two sets
of columns — the left-hand (blue) column depicts ‘numberegfuirements’ for eacRartition
and the right-hand (green) column ‘number of remaining csfe Definitions Architectures
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andDesignshave a number of requirements implemented and each has sfewtsd There is
no Contentyet for Source Integrationand Packaged| note that fullDesigrs are in place and
so coding may commence. The second graph in Figure 8.6 shevesdte ofProductafter the
coding task has completed. Now | haSeurcefor all requirements and a number Sburce
defects.Definitions Architecturesand Designsare unchanged.

Figure 8.6: Coding in a waterfall process

| now want to capture what is arguably a more realistic vergibevents by considering
the case where coding commences before designs are comitetéefore’ situation irkiTe
is given by the first graph in Figure 8.7, where there are irets Architectureand Design
Content The ‘after’ graph again showSource Contenand no change té\rchitectureor
Design Because the precondition émoductis different in each of the two examples in Figures
8.6 and 8.7, in &iTe model these are differeethods. A possible third scenario is one in
which the ‘coding’ task expands to a ‘code and fix design.t&s this case, botlbesignand
Source Contenill change, and possibly also defect levels (Figure 8.8t ahotheMethod
is described.

Figure 8.7: Coding before designs completed

For ‘coding’ in an XP-type process, | might have the graphsashin Figure 8.9.Content
is ‘number of user stories’ and in this example the ‘befomajp shows that some user stories
have been fully implemented&purce Integrationand Packagedall have Conteny and a small
number of new stories are ready for implementation. Thergpgiocess used includes building
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Figure 8.8: Coding and fixing designs

and packaging the product as is seen by the incre8sedce Integrationand Packaged Con-
tent and then throwing away the implemented stories, as candrelsethe reducefefinition

Contentafter coding. (I am aware that the stories would possiblyett@imed until after another
process step involving customer acceptance, but | have &kae licence to aid description).

Figure 8.9: Coding in an XP process

For the examples illustrated above, our main focus is irifie Method Methodis defined
by its Productpreconditions and effects dAroduct The four examples above differ in either
precondition or effect and thus represent differktaetthods

Discussion

For simplicity, | did not show in the examples two other agpaaf KiTe, those relating to
Contextand Engineer In KiTe, the size of change in the ‘after’ pictures would depend upon
the various process contexts applicable at the time of fggdind theContextModelused for
their capture. For example defect injection might be smaflengineers were highly skilled
and motivated or if some good tools were in place. Partimpah a process changes engineers
in KiTe and so missing from the diagrams is a model depickngineerattributes that change
between ‘before’ and ‘after’ states.

This study illustrates the importance of being very speeifien describing what is being
done. Again, the attempt to capture ‘coding’ a¥d@e Method uncovers ambiguities that
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effectively render comparison and prediction impossible.

8.2.3 Study 3: XP process

In the previous two Sections, | represented processes basettaditional waterfall model. As
much of the discussion in the literature concerns atteropiaderstand what are the differences
between traditional and agile models, I now illustrate hquopular agile procesXP (eXtreme
Programming)s represented iKiTe [85].

As for study 8.2.1, | aim to represent a ‘typical’ process aoa@hoose attributes and values
that are representative of those found in the literaturesel neported XP ‘evidence’ as a basis
for decisions without questioning the soundness of thideswe. | also deal with attributes and
measures as frequently found in the literature and do neingit to justify the use of either.
Although careful capture of attribute meaning is critical @mpirical experimentation [89], the
state-of-the-art remains immature in this area and coreid@ of associated issues is outside
the scope of this study. For the same reasons, and for ealestration, | apply a ten-point
scale as measures for those attributes that are based ojeetsetevaluation. Also for ease of
illustration, and because developers work interchangealan XP project, | treat all engineers
as having identicaCapabilitySpecsand show only a single representat®apabilitySpecFor
this study, | applyProductand Engineertransformations whose size is subjective. This means
that the results oTechniquesnodified byContextModelare based on a subjective representa-
tion of the literature. Again, the reasons are that the itrghdoes not yet have ‘ideal’ models
or sound experimental evidence, and the aim is, in any cad&jdtrate concepts.

This study concerns an agile, small-grained process (A02l%.2. and 1.2.3.3.).

KiTe representation

In order to capture an XP process [15]KiTe, | examine each XP Practice and infer from it:

e Which characteristics oProductare changed by the Practice. These are included in
appropriateProduct Perspectives

e Which characteristics dEngineerare affected by the Practice. These becdmngineer
attributes.

e Which characteristics o€ontextare affected by the Practice. These becdbmmtext
attributes.

e How does the Practice relate Rroducttransformation? Does it describeMethod a
Techniqueor a constraint on the overall process?

In this way, | build up the&KiTe models that are appropriate for XP.
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Table 8.3 illustrates the result of identifyimdctivities, Methodsand Techniques | use
names for these that help illustrate the issues when cagtarprocess iKiTe, and so some
names are rather long, but hopefully helpful. Tables 8.4&Bdummarise the requird®rod-
uct, Engineerand Contextattributes. Selected attributes are inferred from claimthe XP
literature, and aim to address perceived benefits. For ebearigw Product | include ‘infras-
tructure’ because one of the mandates of XP is to create dmdy i required for current Stories
with no additional structure to support future requirensehtlso include ‘complexity’ because
many believe that a lack of up-front design often resultsvierly complex code and because
one of the XP Practices, ‘Refactoring’, is concerned witfu@ng code complexity. | use both
terms without defining their meaning, in keeping with the okthe terms in the XP literature.
For Engineer| include Engineer'satisfaction’ and ‘confidence’ because it is claimed that p
ticipation in an XP project enhances these. | include arrméd statement only of the meaning
of each attribute.

Table 8.3: XP Activities

Activity Method Techniques
Planning PlanningGame SmallReleases, Metaphor
PairProgramming DesignCodeAndUnitTest PairProgramming, Simt

pleDesign, Metaphor, Refac
toring, CollectiveOwnership
CodingStandards,  OnSitg
Customer, TestDrivenDesigt

- V=

Integration BuildAndUnitTestAndFixProblems DeveloperBuilds, Immedit
ateProblemFix, Integrate-
ToPackaged

CustomerTest FunctionalTesting

I now walk through a single cycle of an XP procesKiTe to illustrate how the various
Practices affecKiTe models. | assume that a cycle has already been completedhainen-
gineers have reasonable technical skills and are suffigigariliar with the subject area to
start out with high confidence. Their knowledge of the pradsismall. Variations on this are
presented in Section 8.2.10.

The situation at the start of the study is informally depiatethe first row of Figure 8.10.

A cycle has already been completed, and we have three Stiwfeed Content Definition
‘Stories’) and two of these implemente@dntent Source/Implementation/Packad@tdries’).
Developers are reasonably skillgengineersTechnicalSkills’ 5) and comfortable with the sub-
ject area EngineersSubjectAreaKnowledge’ 5), but are unfamiliar with the gust (Engineers
‘ProductKnowledge’ 1). As a result of this unfamiliarityfter the first cycle some additional
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Table 8.4: XP Product Model
Perspective| Partition | Attribute Meaning
Content Definition | Stories # Stories captured
Source Stories # Stories implemented
Infrastructure Code infrastructure (1-10)
UnitTests # Stories with unit tests
Integration| Stories # Stories integrated
Infrastructure Integrated code infrastructure (1-10)
UnitTests # Stories with integrated unit tests
Packaged | Stories # Stories delivered
Infrastructure Delivered code infrastructure (1-10).
UserTests # Stories with functional tests
Quality Definition | RemainingDefects # remaining defects in captured Stories
KnownDefects # known defects in captured Stories.
Source RemainingDefects # remaining defects in implemented Stories
KnownDefects # known defects in implemented Stories
Complexity Code complexity (1-10)
Integration| RemainingDefects # remaining defects in integrated Stories
KnownDefects # known defects in integrated Stories
Complexity Code complexity (1-10) in integrated code
Packaged | RemainingDefects # remaining defects in delivered Stories
KnownDefects # known defects in delivered Stories
Complexity Code complexity in delivered code (1-10
Cost Definition | PersonHours Total person hours for dev group only

code infrastructure has been implement€aritent Source/Implementation/Packagedtas-
tructure’ 3) and the code exhibits some complex@uélity Source/Implementation/Packaged
‘Complexity’ 3). Customer testing has found some impleragah defectsQuality Source/Im-
plementation/PackagédnownDefects’ 2) and also uncovered some changes reqtor&to-
ries (Quality Definition‘'KnownDefects’ 2).

In the Planning GamePractice, customers and developers discuss product soopéea
cide release content and priorities for the next releaséeaRe content is generally captured,
although informally, on paper or whiteboard, as ‘Storiesd ao, from aKiTe perspective,
this Practice defines KiTe Method The PlanningGameViethod precondition is ‘empty’ i.e.
nothing need be assumed abé&ubductprior to Method application. During application of
this Method some new ‘Stories’ are agreed and the required changesveisd during cus-
tomer test are also implemented as ‘Stories’. | model as anfithg’ Activity with Method
‘PlanningGame’ KiTe models after application of the ‘Planningctivity are presented in the
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Table 8.5: XP Engineer and Context Models

Attribute Meaning

Satisfaction Developer satisfaction with their work (1-10).

Confidence Developer confidence in their work (1-10).
SubjectAreaKnowledge | Developer knowledge about subject area (1-10).
ProductKnowledge Developer knowledge about product (1-10)

TechnicalSkills Subjective measure (1-10) of developer skills
EngineerCommunicatiorn Efficacy of communicn inside dev group (1-10).
CustomerCommunicationEfficacy of communicn between devs and customer (1-10).

second row of Figure 8.10. Some new requirements errorsnerauced Quality Definition
‘RemainingDefects’ 3). The result of th&ctivity is an increase in the number of ‘Stories’
defined Qefinition Content Stories’ 10), the return of the numbers of ‘Story’ defeaiszero
(Quality Definition‘RemainingDefects’ an@uality Definition‘KnownDefects’) and the sub-
sequent increase iQuality Definition ‘RemainingDefects’ as a result of some new injected
defects. Both business and technical considerationslega tato account during planning [15]
and so this task addresses some architectural concernsevdgwesults of decisions are not
captured, but rather increa&ngineer'ProductkKnowledge’ (from 1 to 3) and ‘SubjectArea-
Knowledge’ (from 5 to 6). Engineer'Satisfaction’ increases as a result of the higbntext
‘CustomerCommunication’ and ‘Confidence’ also remains laigh level. The cost associated
with the Activity is relatively high as all project personnel are involved.

For Small Releaseshe rule is that a small number of Stories are implementédlinThis
Practice does not in itself change tReoductand so does not represerkde Method Rather,
this Practice constrains ‘Planning’ to output only a smalintber of complete Stories. Both
number of defined Stories and number of new defects is snthbier depicted withouSmall
Releasesl model as arechniquefor Method ‘PlanningGame’.

The next Practice i#etaphor This, according to Beck, “replaces much of what other
people call ‘architecture™. Again, this is not capturedamper, but rather provides a common
and coherent story for both business and technical peoglérsmall ReleasesheMetaphor
Practice does not cause a direct change irRAtogluct but in this case the Practice affects how
developers approach the design task i.e. design decisidnseaconstrained by the agreed
metaphor. | model the Practice WKiTe as aTechniqueapplied to design and an increase
in engineer understanding of the software to be deliverethgWPlanningi.e. in Engineer
‘ProductKnowledge’. The situation aft&mall ReleaseasndMetaphoris depicted in row three
in Figure 8.10.
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Figure 8.10: XP process iteration

TheSimple DesigPractice involves creating the minimal design that impletséhe agreed
Stories. However, designs are not generally captured aepiiom code and so this Practice,
as forMetaphor sets a constraint on the code that is produced. The camssdhat only the
agreed Stories are represented in the code i.e. there arameviorks or extra functionality
to support future requirements. The constraint introdwegt this Practice is that th€ontent
Sourcé'Infrastructure’ attribute tends towards zero throughtwet process.

Beck deals with both ‘unit testing’ and ‘functional testingder the singl@estingPractice.
The first relates to running test code to find defects at andmphtation i.eSourcelevel. The
second relates to user-produced tests to find defects atcdicgigon i.e. atDefinition level.
Both of these change theroductand can be considered as possiiée Methods | deal with
‘unit testing’ here, and with ‘functional testing’ later this section.

‘Unit testing’ in XP is carried out as an integral part of tRair ProgrammingPractice.
This Practice results in change to tReoduct(some Stories are implemented) and so is also
a candidateKiTe Method It also defines how developers should carry out this impleme
tion and thus could representkaTe Technique As Pair Programming involves all of design,
code and unit test, | introduce a ‘PairProgrammidgtivity with Method ‘DesignCodeAn-
dUnitTest’. ThisMethod results in an increased number of coded Stor@snfent Source
‘Stories’) and unit testsGontent SourcéUnitTests’). As developers implement the Stories,
defects are injected (increaseQuality SourcéeRemainingDefects’) but many of these are dis-

covered (increase iQuality Sourcé KnownDefects’) and resolved (decrease in bQbality
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Source'RemainingDefects’ andQuality Source KnownDefects’). Assuming all discovered
defects are resolved, the net effect of Methodis a small increase iQuality SourceRe-
mainingDefects’. The actual number will be dependent upencepabilities of the engineers,
but is also influenced by application of tiMetaphor Techniqueas this is said to reduce the
risk of making inappropriate design decisions. Enginepabdity will also affect adherence to
specifications and characteristics of the code Centent Sourcénfrastructure’ andContent
Source'Complexity’. As we have engineers with reasonable techrs&ills and subject area
familiarity and theSimpleDesigriTechniqueis applied, | show a zero result for additional in-
frastructure and a small rise in code complexity. Applicanf the ‘PairProgrammingActivity

is depicted in row four of Figure 8.10. As claimed in the lgtre, ‘pair programming’ results
in increasedEngineer Satisfaction” and ‘Confidence’.

TheRefactoringPractice involves re-organising code to remove any unsacgsode com-
plexity. According to Beck, you “don’t refactor on specudet’ but rather “when the system
requires that you duplicate code”. He also suggests thatgdknger to implement a sim-
pler design is preferable to completing more quickly witlessl simple design. This Practice
does not change thBroductin its own right, but again modifies ‘DesignCodeAndUnitTest
I.e. is anotheiTechniqueRefactor for the ‘DesignCodeAndUnitTesMethod Quality Source
‘Complexity’ has reduced from 5 to 3 and cost is slightly legkrow five of Figure 8.10).

The Practice ofCollective Ownershigloes not directly changProductand so is not a
Methodin its own right. Again it specifies a differerfiechnique ‘CollectiveOwnership’, for
‘DesignCodeAndUnitTest’, because the task now becomesfibeussing on some target code
while at the same time changing some of the remaining code Revised application of the
‘PairProgrammingActivity with ‘Collective Ownership’ is depicted in row six of Figu&10.
Application of the Practice effectively reduces velocisy. ifewer Stories are implemented, but
results in a decrease in code complexity in the code b@sal(ty Source’Complexity’ 2).
There are claims that application of the ‘CollectiveOwh@’s Techniqueincreases engineer
understanding of the whole system i.e. results in incre&sggneerProductKnowledge’.

Continuous Integratiots the Practice of integrating and running all unit testsgeeuple
of hours. The idea is that identifying the owner of any introeld defects will be relatively
easy as only a small number of code changes are involved PFadice results in the creation
of Integrationand Packagedartifacts and so may be viewed aKéle Method say ‘Buil-
dAndUnitTest’. ThisMethodrequires the existence @ontent SourcéStories’ and results in
increasedContent Integration/Packagé@tories’. It also causes increase Quality Integra-
tion/PackagedRemainingDefects’ (as a result of unresolved integrafiomblems) andQuality
Source/Integration/Packagéd¢hownDefects’ (as a result of running unit tests). The irog!
tion from the XP literature is that each ‘BuildAndUnitTestcurence is immediately followed
by ‘fix integration defects’ i.e. problems are not allowed¢main in the integrated code but
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are resolved, presumably within minutes. If this truly ig ttase, the task is better captured
as Method ‘BuildAndUnitTestAndFixProblems’ which results in nQuality Integration'Re-
mainingDefects’ and no increase @uality Source/Integration/PackagéthownDefects’. |
illustrate this situation i.e. an ‘Integratiowctivity with Method ‘BuildAndUnitTestAndFix-
Problems’. However, in a real XP project, this might not bed¢hse and the build might remain
‘broken’ for hours. I look at such a possibility in Sectior28.0. There are several possibilities
for representing the ‘Integratioctivity in KiTe. If carried out as stated in the XP literature,
the effect is to closely-couple the ‘PairProgramming’ ami€gration’Activitiesi.e. every time

a code change is submitted, it is immediately integratedptesent this by implementing, for
each XP iteration, a number of ‘Code and integrate’ cyclashecomprisingActivities ‘Pair-
Programming’ and ‘Integration’. The regular confirmatidrcode interface correctness causes
an increase irEngineerConfidence’ and ‘Satisfaction’. The results for the exaengtiudy af-
ter all pair programming-integrate cycles for the iteratere shown in row seven of Figure
8.10. Source'Stories’, ‘Infrastructure’, ‘Complexity’ and ‘RemaingDefects’ are reflected
in Integrationand Packagedand defect levels remain unchangeghgineer Confidence’ and
‘Satisfaction’ increase.

For FunctionalTestingtest programs are not part of the product being deliverddarthere
is a question as to whether or not source and executablesdfee tests are viewed as attributes
of the delivered system. | assume they are. The XP projeaténasntrol over the quality and
coverage of these tests as these depend upon customeritgpaimmitment, etc. Functional
testing results in an increase in the number of known defrutisso is a candidate forkiTe
Method | model as a ‘CustomerTes&ctivity with Method ‘FunctionalTesting’. The precon-
dition for the ‘FunctionalTestingMethodis the existence o€ontent Packagebtories’. The
results ofMethodapplication include an understanding by the customer thraesof his spec-
ifications (Stories) require enhancements or correctiosaadiscovery of developer-injected
defects. The former results in an increas&umality Definitions'KnownDefects’ and the latter
in an increase irQuality Source/Integrations/Packag&hownDefects’. Both are dealt with
in the XP system by a next iteration of Stories. The resulthefCustomerTestActivity are
shown in row eight of Figure 8.10.

The Practic&l0 Hour Weekloes not cause change to fductor instruct on how any task
should be carried out and so is neithévlathodnor aTechniquelt is claimed that this Practice
results inEngineerSatisfaction’ remaining high. | model as an attributeQdntextand realise
as a lack of decrease in ‘Satisfaction’, as is generallybatied to working long hours.

On-SiteCustomeresults in Engineer'SubjectAreaKnowledge’ and ‘ProductKnowledge’
increasing regularly throughout each iteration. | modeaasncrease at the end of each it-
eration.
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Coding Standardsnust be adopted voluntarily by the whole team and are beliewe-
essary for common code ownership. The aim is consistent qodhty that facilitates code
sharing. As developers are constrained to comply with statsdduring the ‘PairProgramming’
Activity, | model as alechniqueto be applied to the ‘DesignCodeAndUnitTebethod Ap-
plication of thisTechniqueresults in higher code quality, which | model as reductioumality
Source/Integration/Packag&domplexity’.

The final KiTe Models at the end of the iteration are shown in the bottom row of Fegur
8.10.

For the XP example, attributes fétS relate to all ofContent Quality and Cost attributes
for £/S to engineer skills, knowledge and frame of mind and attabubrC'S to efficacy of
communications.

For Methodswe haveM = {‘PlanningGame',‘DesignCode AndUnitTest’,

‘Build AndUnitTest AndFix Problems’, ‘ FunctionalTesting'}.

EachMethodis implemented by &echniquethat is some amalgamation as shown in Ta-
ble 8.3. For exampleMethod ‘PlanningGame’ is implemented by theechniquethat is an
amalgamation of the Practic&nallReleasesndMetaphot

No GoalsBenchmariks defined GB = ().

Discussion

In the KiTe representationfzS andC'S capture the belief that the stated attributes (which are
typically reported for XP projects) are relevant to projsgtcess and other possible attributes
are not. This represents an assumption. The implicit s that characteristics that have
been suggested elsewhere as being relevant, such asepegat and ‘dominance’ [3], do not
affect success in an XP project. | also note thatGmalsBenchmarkG B, is defined. GB
represents the desired ‘finish’ states for RealisedProcesstate machine and the implication
is that there is an assumption in an XP project that some atkans of establishing termination
is available.

One point of interest resulting from the above capturkKiife is the variation in meaning of
the various Practices. Table 8.6 captures how each Praetates to &iTe concept. Practices
that directly result in a change to tioductare markedViethod those describing how a task
is carried out are marke@echniquethose affecting how well developers are able to perform
tasks are marke@€ontextModeland those affecting process timing and structure are marked
Process

Most Practices perform a number of roles. In some casestié@adhat areVlethodsor
Techniqueslso have an effect on developer efficacy. For example, ‘pretd both constrains
design and helps increase developer understanding of duigtr In other cases, the Prac-
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Table 8.6: XP Practices in KiTe

Practice Method | Technique | ContextModel | Process
Planning Game Yes Yes Yes No
Small Releases No Yes No Yes
Metaphor No Yes Yes No
Simple Design No Yes No No
Testing (Unit) Yes No Yes No
Testing (Functional) | Yes No No No
Refactoring No Yes Yes No
Pair Programming Yes Yes Yes No
Collective Ownership | No Yes Yes No
Continuous Integration Yes Yes Yes Yes
40-Hour Week No No Yes Yes
On-Site Customer No No Yes No
Coding Standards No Yes No No

tice describes th&lethod or Techniqueonly, for example, ‘Coding Standards’. Although not
mentioned specifically as a Practice, ‘TestDrivenDesigr@nother idea expected to be imple-
mented according to Beck. This concept constrains the déssdk to one of ‘design by unit test
creation’. TheKiTe representation for this is asf@chniquéor the ‘DesignCodeAndUnitTest’
Method The claim is that thisTechniqueresults in cleaner code design i.e. a reduction in
Quality SourceéComplexity’. In the above table, this maps to a ‘Yes’ in tlgontextModel’
column for ‘UnitTest'.

From another perspective, | note that the Practices of ‘40rMVeek’ and ‘Continuous In-
tegration’ are not represented in Table 8.3. These are tlydRvactices, along with ‘SmallRe-
leases’, represented in the ‘Process’ column of Table &é.Fractices are ‘meta-Practices’ in
that, rather than add to a description of individdativities, they describe th®ealisedProcess
itself. ‘'Small Releases’ states that a single processtiterahould be short and thRealised-
Processcomprise many iterations. ‘Continuous Integration’ stagesimilar fact about build
cycles. ‘40-Hour Week’ places a limit on output and cost facle developer and so constrains
higher-level management decisions relating to staffingraadpower. This observation raises
an interesting research question around introducing tasgects into other, more traditional,
environments as their effects would presumably be indegrenof the specifiaVlethodsand
Techniquesn place.

An iteration of an XP process comprises a single ‘Planniag¢fivity, many iterations of
‘PairProgramming’ and ‘Integration Activities and a single ‘CustomerTesAttivity. ‘Plan-
ning’ uses the ‘PlanningGame’ Practice asutsthodand is constrained by the ‘SmallReleases’
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and ‘Metaphor’ Practices aBechnique ‘PairProgramming’ has a ‘DesignCodeAndUnitTest’
Method and its implementation is constrained by seven of the Rexplus ‘Test Driven De-
sign’. ‘Integration’ uses a ‘BuildAndUnitTestAndFixPri@ms’ Method and this is uncon-
strained by any specifieechnique ‘CustomerTest’ uses the ‘FunctionalTesting’ Practice as
Methodand this is also unconstrained.

The strength of the ‘PairProgrammingctivity in an XP environment would seem to be
based on the number of restrictions placed on the impleriientaf its Method Some interest-
ing research problems might involve identifying a subsetstrictions that might be effective
in other environments.

8.2.4 Study 4: Collaborative programming field study

I now represent a field experiment carried out by Nosek to futduhat are the effects of collab-
orative programming i.e. where programmers work in paira sommon code base [120]. The
study concerns a small element (coding) of a traditionaéwali process and involves a small
number of programmers. For this representation | use treesigiplied by Nosek. The study
addresses goals 1.2.1.1. (traditional process), 1.2 @dantitative study), 1.2.3.3. (small-
grained), 1.2.5.1. (industry project), 1.2.6.4. (smatiject) 1.2.7.1. (CMM level 1), 1.2.8.2.
(co-located), 1.2.9.2. (upgrade project) and 1.2.10tan¢kard quality goals).

The aim of the experiment was to examine how developers wgrii pairs affected out-
comes. The experiment used experienced programmers \gavkian important, challenging
program, in their own environment and with their own equipindhe task was to create script
files to perform three requirements and a time limit of fditye minutes was imposed.

Four predictions were made. These were that programmeigngoin pairs will produce
more readable and functional solutions than those worKimgea groups will take less time on
average, programmers working in pairs will express higloafidence and enjoyment in their
work and experienced programmers will perform better. Tleasared product-related objec-
tives for this study were ‘Functionality’ (up to two pointgiprequirement achieved), ‘Read-
ability’ (the degree to which the problem solving strategyid be determined, measured as
O=unreadable; 2=totally readable) and ‘Time’ (elapsecetiom completion in minutes). The
measured engineer-related objectives were ‘Confidenck’Emoyment’ (no scale given).

Results for the control group (individual programmers) #melexperimental group (pairs)
are shown in Table 8.7. Means are given, with standard demiin brackets.

Results supported predictions 1, 2 and 4 with probabilityest than 1 in 20 (5 percent
confidence) that results were due to chance. The prediatiating to ‘ElapsedTime’ was not
statistically supported as there was more than a 1 in 20 ehdwecresult was due to chance.
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Table 8.7: Collaboration results (Nosek)

Output variable | Control (individuals) | Experimental (pairs)
Functionality 4.2 (1.788) 5.6 (0.547)
Readability 1.4 (0.894) 2.0 (0.000)
ElapsedMinutes| 42.6 (3.361) 30.20 (1.923)
Confidence 3.8 (2.049) 6.50 (0.500)
Enjoyment 4.00 (1.870) 6.60 (0.418)

KiTe representation

In this reproduction, | address the first three predictiamy de. programmers working in pairs
will produce a more readable and functional solution in tess. The reason is that the reported
study contains no information or data to support the premidhat experienced programmers
perform better, and the indication is that the mix of experexl and inexperienced is held
constant between the the pairs and individuals.

The first task is to define an appropri®eoductmodel. | modelContent‘Functionality’,
Quality ‘Readability’ andCost‘ElapsedMinutes’. However, it is not clear from the studyawh
are the inputs taMethod ( for example, requirements documents, designs, verbaliztgn)
and not clear what are the outputs (for example, script ssylintegrated and tested scripts,
scripts plus design documentation, etc.). This means | d&maw which Partitionsto include
in my model forProduct In order to illustrate capture, | assume requirementsrgrats and
outputs are script sources.

Table 8.8: Collaboration Product Model

Perspective| Partition | Attribute Meaning
Content Definition | Requirements | # documented requirements

Source Functionality | 0-6; 2 for each of 3 implemented requirements
Quality Source Readability 0-2; O=unreadable and 2=totally readable
Cost Source ElapsedMinutes Time in minutes

| call the Methodfor this study, ‘CodeRequirements’. We have= {CodeRequirements
The product-related precondition and transformationdlefine thisMlethodare shown in Table
8.9.

| now must decide how to represent the ‘Collaboration” amdliVidual’ factors that are
the main factors-of-interest for the study. An obvious clkeds to model as &ontexti.e. as
affecting how well developers are able to carry out coding.r®hason for considering this as a
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Table 8.9: Collaboration CodeRequirements Method

CodeRequirements

Precondition Content DefinitiorfRequirements== 3)

Transformation Content Sourc8unctionality’ >= 0 and<= 6; Quality SourcéRead-
ability’ >= 0 and <= 2; Cost SourcéElapsedMinutes’™= 0 and
<=45.

possible option is that the study of how developers work amte has tended to be considered
as a study of project context. For this choiG@antextModelould contain some ‘rules’ about
the effects of working in pairs. As @ontext these would be applied with no ‘matching’ to
engineer characteristics. However, | remember that son&algers are more suited to working
collaboratively than others, and so would like to find a repreation that takes this into account.
| can achieve this by modelling ‘Collaboration’ and ‘Indivial’ as TechniquesContextModel
now ‘matches’ thefechniquerequirement (for example, ‘work collaboratively’) witBngineer
characteristics (for example, ‘introverted’) to achieveesault that takes individual engineers
into account.

The above means that | should represent factor€@gextfactors only if | believe that
individual engineer characteristics are irrelevant. B@meple, | might model ‘Company about
to be bought’ as a context that causes engineers to becosmattivated because | believe that
| may treat engineers in a general way. In the case under,ghete is a strong possibility that
engineers differ in their preference for working with pemmnd so | represent ‘Collaboration’
and ‘Individual’ as twoTechniquedo be compared.

For Engineer | include ‘Confidence’ and ‘Enjoyment’, each using an oadliacale of 1-
10, and ‘Experience’ measured as ‘NumberOfYears’. Nosd# benstant familiarity with
environment and equipment and unfamiliarity with kind odlplem and | add these attributes to
the model forEngineer There is no mention of any other context-related factBrgyineerand
Contextmodels are presented in Table 8.10. Nosek assumes resutisi@to the application
of the Techniquesinder study only and sGontextModeldoes not contribute to the result.

Experimental results from &iTe perspective are depicted in Figure 8.11. The first row
captures the set dProductMeasuremenor start statepsO0 € P.S and theCapabilitySpedhat
characterisess € ES prior to application of ‘CodeRequirements’. The second ibygtrates
end states foffechniquéindividual’ and the third forTechniquéePairs’. Values for ‘Experi-
ence’, ‘EnvironmentFamiliarity’ and ‘ProblemUnfamilisy’ are empty because no indication
was given as to what the values should be, possibly becaase there held constant. Mean
values only are captured and this is discussed in the nexb8ec
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Table 8.10: Collaboration Engineer and Context Model
Attribute Measure
Engineer| Confidence 1-10
Enjoyment 1-10
Experience Number of years
EnvironmentFamiliarity
ProblemUnfamiliarity
Context
Product Engineer
Definition [Source
S
N
-~ = ~ S =
g o 3 g & § £ £
2 N ) 5 = ~ = S
3 § & § s £ g £ £
8 s & 5 & & & 5 B
S 3} ko] ] & ) %) S >
& 5 § & S S 2 g IS
o 0 a W O W w ] Q
Start 3 0.00 0.00 0.00 0.00 0.00
Individual 3 420 1.40 42.60 3.80 4.00
Collaboration 3 5.60 2.00 30.20 6.50 6.60
Figure 8.11: Collaboration results in KiTe

I now examine results to establish relative values for peréoce for the twdiTe Activi-

ties associated with th&echniquesindividual’ and ‘Collaboration’. | notice that the expect
output from the ‘CodeRequirement&lethod with baselineTechniquewas a score of ‘6’ for
‘Requirements’ within 45 ‘ElapsedMinutes’ with a ‘Qualitycore of ‘2. Working with mean
values only, | calculate that, for the ‘Individualechniquethe relative effectiveness is
{(‘Functionality’, 0.7 ¢.2/6)), (‘Readablity’, 0.7 (.4/2)), (‘ElapsedMinutes’, 1.0646/42.6)) }.

The same calculations for ‘Collaboration’ yields

{(‘Functionality’, 0.93 §.6/6)), (‘Readablity’, 1 ¢/2)), (‘ElapsedMinutes’, 1.4946/30.2))}
Because the contribution froi@ontextModelis assumed to be of unit size, the implication is

that the results are due entirely to the tihe&chniques
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Discussion

Once more, in the attempt to capture the experimeriife, some lack in clarity was made
visible. ForMethod it is unclear what is the pre-condition (requirements,igies word-of-
mouth, etc.) and what are the deliverables (script sounctegrated and tested scripts, scripts
plus design documentation, include tests and test restidty, This means we cannot define the
model forProduct In addition, no mention is made of any other techniques toripéemented.
For example, a technique ‘collaborating using structuremj@amming’ may yield different
results from ‘collaborating using an ad-hoc approach’. Eogineer we are informed of a
number of attributes believed to be of relevance. The firgitdo note is that, for some of
these, for example, ‘Experience’, we are informed thateéheere held constant but are not
provided with any indication of values. This means that wermat compare this study with any
other, apparently similar, study in case different levdlgxperience apply. The observation
is that values must be reported even if held constant. Thensiggoint to note is that there is
an assumption is that no other attributes affect outcombsrerlis no mention of any context-
related factors and this equates to an assumption that sgtbrs do not affect outcomes or
affect each study in the same way.

I note from above two ideas that must be further investigatée first is that | have captured
mean values only and the statistical aspect of the expetiméacking. | discuss this further
in Sections 10.5 and 11.3. The second is the observatiomtiydactor that changesngineer
that might be dependent upon individual engineer charattey is better modelled iKiTe as
a TechniqueThis represents a subtlety KfTe that | believe adds to its power.

8.2.5 Study 5: Event-driven simulation model

In this Section, | study a simuation model created by Melisadt [109] for the investigation
of the XP practices of Pair Programming (PP) and Test Drivewelbpment (TDD). The study
thus addresses Goals 1.2.1.2. (agile process), 1.2.2rhulésion model), 1.2.3.3. (small-
grained), 1.2.4. (variations to base process) and 1.2€all project).

The simulation model is essentially ‘event-driven’. It kasiumber of ‘entities’, for ex-
ample, ‘user stories’ (US) and ‘integrated code’, and soawntivities’, for example, ‘release
planning’ and ‘development session’, that modify the ‘Be&’. ‘Activities’ are carried out by
‘actors’, for example, ‘team’, ‘developer’, ‘customerActors’ have attributes that change with
time. ‘Entity’ modification occurs at the end of an ‘activifg time step), at which time contin-
uous variables, for example, ‘developer skill’, are cated using integration rates. To handle
uncertainty, for example, effort estimates for ‘user &gtia stochastic approach is used, and
statistical distributions and Monte Carlo simulation apg! The simulation shows that the use



134

Evidence

of pair programming increases development cost (workiryg)Jamproves quality (smaller de-
fect density) and design (fewer lines of code per US). Theofigest driven design increases
project duration and decreases defect density.

The granularity of the simulation is a development sesdsigpically a couple of hours.
Model equations are taken from existing models, empiriath@nd author assumptions, where
necessary. Inputs are ‘number of initial US’, ‘number of elepers’, ‘mean and standard de-
viation of initial US estimation’, ‘initial team velocity*number of iterations per release’ and
‘typical iteration duration’. Outputs are ‘number of finalSt) ‘defect density’, ‘number of
classes and methods’ and ‘delivered source instructio8$)(D

The model allows the user to define the adoption level of PPT&Md practices. In Table
8.11, results are given for the four combinations of zero fatidadoption of each practice.
Standard deviations are reported in parentheses.

Table 8.11: PP and TDD adoption results (Melis et. al.)

Output variable | PP=0% PP=100% | PP=0% PP=100%
TDD=0% | TDD=0% | TDD=100% TDD=100%
Working days 45.0(23.2) | 51.1(19.1) | 51.1 (23.6) | 60.3 (22.8)
Released US 28.8(7.9) |28.8(7.6) |28.7(7.6) |28.9(7.5)
Defects/KDSI 28.0(5.3) |24.1(6.0) | 23.0(5.3) |19.7 (4.5
KDSI 18.0(8.2) |13.0(6.1) | 21.5(10.2) | 15.6 (6.9)

KiTe representation

In order to create the model fétroduct | must identify thePerspectivesor this simulation
along with the attributes-of-interest for eaEterspective However, the paper presents some
difficulties with attribute meaning and | must deal with thrstfset of assumptions. For example,
‘defect’ is used without any definition of what is a ‘defed®asili and Rombach usgefectas a
generic term to mean any oneafor, fault or failure [13, 71], but no such definition is given in
this paper. A similar comment applies to ‘KDSI" and ‘Workidgys’. A more serious problem
occurs with the use of ‘KDSI'. In the ‘Results’ section, weeanformed that “the use of PP
decreases the number of DSI by 27%”. The implication is tB&l* is a quality-related metric
i.e. code is more succinct when applying pair programmirfgeré are two issues. The metric
‘KDSI' (thousand delivered source instructions) is oftesed as a measure Gontenti.e. as
indicator of how much work has been done. This is quite a diffemeaning and any attempt
to compare the results of experiments on the grounds of ‘KB&jht fail if the meanings are
not clear. The second issue is related. Results in Tableshdw that the number of delivered
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lines of code decreases when pair programming is appliethanehses when test driven design
is applied. The implication is either that test driven dagigcreases code quality or increases
the code output. The latter would seem more likely, and g thithe case the authors are now
implying that increased code represents more contens)teather than reduced quality. It is
meaningless for an attribute to have two different inteigirens, and questions must be asked
about what exactly is being measured. For this illustratisimply note the problem and select
the quality-related meaning.

To complete the model faProduct | must consider what are tiMethodsfor the simulation
and how these affe@roduct There are four simulation scenarios:

e No Pair Programming (PP); no TestDriven Design (TDD).
e All developers carry out PP; no TDD.
e No PP; all developers carry out TDD.
e All developers carry out PP; all developers carry out TDD.

Table 8.12: PP and TDD Product Model

Perspective| Partition | Attribute Meaning
Content Definition | US # Stories captured
Source us # Stories implemented
Integration| US # Stories integrated
Packaged | US # Stories delivered
Quiality Source KDSI thousands delivered source instructions
DefectsPerKDSI # defects per thousand DSI
Integration| KDSI thousand delivered source instructions
DefectsPerKDSI # defects per thousand DSI
Packaged | KDSI thousand delivered source instructions
DefectsPerKDSI # defects per thousand DSI
Cost Source WorkingDays Total person days

When | attempt to captu@ethods| find the problem relating to test cases discussed above
creates a problem. If the scenarios with ‘no TDD’ result inest cases, we have two different
Methodsbecause the outputs are different. This means that, fréiTa perspective, we may
not directly compare the ‘no TDD’ simulations with the ‘TD@nes. Comparisons would
be unhelpful because more output is being produced in thd'Tdases. However, as the
simulation directly compared the four scenarios, and ireottat | might illustrate capture, |
simply note the lack of clarity and assume outputs are theesanall cases. | implement a
single ‘DesignAndCodeAll'Method and apply four differenTechniquesone for each of the
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scenarios above. | also assume, as for the earlier XP siutiegdntegrationand Packaged
outputs are delivered ‘for free’ (see Section 8.2.3). Thelehdor Productis shown in Table

8.12.
Table 8.13: PP and TDD DesignAndCodeAll Method
DesignAndCodeAll
Precondition Content DefinitiorftUS’ > 0
Transformation Content Source/Intergation/Packaget)S’ increases; Quality

Source/Integration/PackageldDSI’ increases; Quality Source/Inte/
gration/PackagetDefects/KDSI' increasesCost Source/Integration
PackagedWorkingDays'’ increases.

Methodis ‘DesignAndCodeAll’ i.e. allDefinition ‘US’ are to be implemented. We have
M = {DesignAndCodeAl}. The product-related precondition and transformatioas define
this Methodare shown in Table 8.13.

The Techniqgueghat are being compared in this simulation are:

e no PP; no TDD.

e 100% PP; no TDD.

e No PP; 100% TDD.

e 100% PP; 100% TDD.

| use the first as the baseline case i.e. the expected resuttsagvhich to compare other
results is 28.8 ‘US’ are delivered in 18.0 ‘KDSI’ with 28.0 éfects/KDSI’" and taking 45.0
‘WorkingDays’. The results as represented iKide Productmodel are reproduced in Figure
8.12. Sourcevalues forContentand Quality are propagated tthtegrationand Packagedut
the value for ‘WorkingDays' is ‘0’ for thesé@artitions(see discussion in Section 8.2.3). Each
row in the table represents tih&oductend state for each of the follechniquesThe relative
performance values for each of tihechniquess presented in Figure 8.13.

Individual developer characteristics and contexts aremettioned and | assume models as
for the earlier XP studies (see Section 8.2.3).

Capture inKiTe reflects the result that, assuming all differences are ddleet@echniques
implemented, pair programming is more effective in thatrdduces less code (factor of 1.38)
and causes fewer defects (factor of 1.16), but is less ‘tiffectese’ (factor of .88) in that it
takes longer.
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Product
Source Integration Packaged
%] L 7] L 2] L
g & g & g &
%) (&) ) &) 6 [&))
— 5 § - 5 § - 5 S
o § & & ¢ § 5 & ¢ § & ¢
3 S g = 3 g g3 = 3 < g =
No PP; No TDD 28.80 18.00 28.00 45.00 28.80 18.00 28.00 0.00 28.80 18.00| 28.00 0.00
100% PP; No TDD 28.80 13.00 24.10 51.10| 28.80 13.00 24.10 0.00| 28.80 13.00 24.10( 0.00
No PP; 100% TDD 28.70 21.50 23.00 51.10] 28.70 21.50 23.00 0.00( 28.70 21.50 23.00 0.00
100% PP; 100% TDD 28.90 15.60 19.70 60.30|] 28.90 15.60 19.70 0.00f 28.90 15.60 19.70 0.00
Figure 8.12: PP and TDD simulation results in KiTe
Product
Source Integration Packaged
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3 g & = 3 g & = 3 g & =
No PP; No TDD 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
100% PP; No TDD 1.00 1.38 1.16 0.88 1.00 1.38 1.16 0.88 1.00 1.38 1.16 0.88
No PP; 100% TDD 1.00 0.84 1.22 0.88 1.00 0.84 1.22 0.88 1.00 0.84 1.22 0.88
100% PP; 100% TDD 1.00 115 1.42 075 100 115 142 075 1.00 115 142 0.75

Figure 8.13: PP and TDD Technique relative performance

Discussion
Capture irKiTerequires that the model fétroductfor the study is clearly defined. This means

that appropriat®roductPerspectivegre selected and items of interest within these perspsctive
are defined with measures clearly stated. For this simul@&xperiment, it is not clear how the
metric ‘defects per thousand lines of code’ is measuredt ehdefect’ is or what is meant by a
‘working day’. These uncertainties are effectively asstions embedded in the model i.e. the
model is build on items and equations that use a specific mgafidefect’ and a specific way
of measuring ‘defects per thousand lines of code’. Anotleisweration witiProductmodel
definition is that of the meaning of ‘KDSI’ which seems to bedivoth as a quality indicator

and a measure of size.
| next observe a number of uncertainties in the definitiorhefselectedethod and Tech-

niques For example, it is not clear if developers create unit testdl cases.
Another source of assumptions relate to engineer and dortekigure 8.13, | implied all
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of the variation in results is due to to the relative effectTethnique It is possible that some
of this variation would have been due to differences in cdstefor example, differences of
developer skill and motivation. In fact, if we examine th@frovement’ in duration when pair
programming is not used, we find two results. When TDD is aetihy the result with no PP is
15 percent better (51.1/60.3). When TDD is not actionedydiselt is only 12 percent better
(45/51.1). As these calculations are based on means onypissible that such a result in
a real-life study would indicate no inconsistency. It woaldo, however, be possible that the
result is an indication that something other than pair pogning is affecting results. ThaTe
approach would be to separate frechniquerelated data (‘PP is on average 40 percent more
time effective’) from the context-related data (‘the cotteodel assigns average pair velocity
and effectiveness of the most skilled developer’). This@altion model is hidden in the results
as presented, but would become transparent if capture&8eaContextModel

As for other studies, the attempt to represent this simanati KiTe reveals a lack of clarity
in the description of the simulation. Product attributes amndefined and treated inconsistently,
making it difficult to define the model fadProduct Lack of clarity about outputs from the four
scenarios means that it is difficult to captuvkethod with any certainty and so it is not clear
that direct comparison of results is appropriate.

8.2.6 Study 6: Pair programming classroom study

This study concerns a classroom experiment to investigagther pair programming results in
code being developed faster and with better quality [16%]e $tudy addresses goals 1.2.1.2.
(agile process), 1.2.2.4. (quantitative study), 1.2.%5s2udent project), 1.2.6.5. (tiny project)
and 1.2.10.1 (standard goals).

The experiment was carried out in 1999 by Williams et. al..rtf-one senior software
engineering students were divided into an experimentalgend a control group (individual
programmers). The task was to complete four assignmemtg aair-programming approach.
The two groups comprised the same mix of high, average angp&wrmers. “All students
attended the same classes, received the same instructigeitipated in class discussions on
the pros and cons of pair programming.” Groups completeddssignments over a period of
Six weeks.

The experiment compared the cycle time, productivity araligubetween the two groups.
Results showed that the pairs always passed more of the&lpestopment test cases and results
were more consistent. Pairs completed assignments 40¢68midaster i.e. with only a small
drop in productivity.
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KiTe representation

I now attempt to capture the study KiTe and show that this effort also exposes ambiguities
and assumptions in the target study.

Product

Content The deliverables from the process were four assignmerits;dbhave no information
about what kind of assignment (for example, stand-aloneveoé application executa-
bles, software component source code, analysis repai)t, €ts means we do not know
what the pair programming was applied to.

Quality: The experiment reports ‘percentage of test cases passgthians an operationalisa-
tion for aQuality measure. However, there is no discussion about the focubraadth
of test cases, for example, kinds of defects tested forcte&rage, etc. and so we do not
know what the reported metric means. This means we will nalide to compare this
experiment with other, apparently similar, studies.

Cost The experiment reports ‘completion times as a percentage’.

Method

Preconditions The first aim for definindMethodinvolves clarifying what is the expected state
of the Productprior to Methodinvocation. A ‘pair programming’ task might be based on
any of formal specifications, informal user stories, designuments, discussions with
the customer, etc. IKiTe, each of these potentially represents a diffetddethod The
form of the specifications for this experiment is not mengion

Transformatiort | next consider how th&lethodchanges thé&roduct As stated above, we
are not told if the expected deliverables are software soarcexecutables or written
reports. Even if we assume standalone software applicattecutables, there is still
some uncertainty as to what tiethodinvolves. We understand some integration and
‘packaging’ for delivery is indicated but we are not cleaoabwhether the students
simply build locally, and this creates the software to d&livwr whether some integration
into a larger system is required, indicating some more cerpliild process.

Technique Last of all, we must know exactly what techniques are beinglemented. The
paper describes the XP pair programming ‘rules’ but doestab¢ that the experimental
groups were instructed to follow, or checked for compliawith, these rules. Did pairs
actively engage in the same code at the same time, swapsjréter? If they did not, we
are testing something other than ‘pair programming’.
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ContextModel

Engineers We are informed that all students received the same ingiruahd that each group
contained a similar mix of capabilities. TH&ontextModefor the experiment thus in-
volves ‘capabilities’. ‘Instruction’, however, is neithaContextor anEngineerattribute.
Presumably ‘level of instruction’ is believed to relate @vel of expertise’ in some way.
The Contextmodel includes no othdengineerrelated attributes and so other attributes,
for example, motivation are believed to be of no consequentdact, for this experi-
ment, all of the experimental group and seven of the contalig had a preference for
pair programming and it is very likely that this would skewsuéts. In addition, there may
have been some bias due to the researchers having an XP fatbeiag in positions of
power over the students. Any of these would probably affemtivation levels and cause
the results to be scaled towards supporting pair progragmin

Contexts The study does not consider any other contextual factors completeContextModel
thus includes onl{engineercapabilities and expertise.

Discussion

This study presents results in an informal way and, becaligesp | use the study mainly as a

means of exposing assumptions. In Section 8.3.1, | maksidesifor some of the assumptions
in order to ‘fix’ models and include the study in a comparisetween various collaborative

approaches.

8.2.7 Study 7: State-based simulation model

| next consider a simulation model created to provide a dtaive analysis of the results of
improving inspections in a company that implements a pmbased on a waterfall model. The
study addresses goals 1.2.1.1. (traditional processR.1.2 (state based simulation model),
1.2.3.3. (small-grained process), 1.2.4. (variationsatgetprocess), 1.2.5.1. (industry project),
1.2.6.3. (medium size project), 1.2.7.1. (CMM level 1),.8.2. (co-located project), 1.2.9.2.
(upgrade project) and 1.2.10.1) standard goals.

This proof-of-concept feasibility study is based on workRgffo, Vandeville and Martin
[137] from the School of Business Administration, Portl&tdte University, Oregon, US. The
cited paper describes a simulation model developed foriXagptGrumman under sponsorship
of the Software Engineering Research Center (SERC). Thehwsdne of a number of stochas-
tic models built to provide a quantitative understandinthefdevelopment process and support
the quantitative analysis of proposed process changestprimplementation. The example
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presented in the paper examines quality outcomes when ¥i@wand inspection processes
are improved.
Some key aspects of the feasibility study are:

The development process at Northrop Grumman’s Melbourieecsimprises a number
of hierarchical process components and the portion matlebasists of four life cycle

phases - Preliminary Design, Detailed Design, Code And Uest, Computer Program
Engineering TestQPET).

Each lifecycle phase decomposes into a number of main tagksub-tasks. Each sub-
task is a distinct development step with associated prqoagsrmance data.

There are five major product verification points. Three amgpct reviews (task archi-
tecture inspection, unit architecture inspection, coditiveough) and two are testing
activities (unit test and process test).

The data used to populate the model were taken from the w@pimject teams on a large
upgrade project (200,000 lines of code, existing systemlomiines of code).

The target project uses a number of integrated developreants. The model simulates
a single development team executing the standard develdprecess.

The total lines of code for the project is 10,000 and the totmhber of defects typically
produced for this amount of development is 500 defects.

It is assumed that 20 percent of total errors are injecteshguask architecture, 30 per-
cent during unit architecture and 50 percent during coding.

It is assumed that the cost of fixing defects is .5 hours per éor errors found during
task architecture inspection, 1 hour per error for errotsiébduring unit architecture
inspection, and 2, 4 and 6 hours per error for those founchduode walkthrough, unit
test and process test, respectively.

The error detection capability is .3 of current product esrior the reviews and .75 for
the test activities. The purpose of the simulation is to @rarthe result on residual errors
when the review detection capability is raised to .7.

The model provides the mean and variance on performancésésu the results are
stochastic.

The simulation model used is a state based model based onbydflellner and others
at the Software Engineering Institut8El) in the mid-80s. The developed model uses cost,
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Table 8.14: State-based simulation Product Model (Raffo et. al.)

Perspective| Partition Attribute Meaning
Content Definition Requirements % requirements defined
Architecture| ContentComplete| % requirements architected
Design ContentComplete| % requirements designed
Source ContentComplete| % requirements implemented
Integration | ContentComplete| % requirements integrated
Quality Architecture| DefectsRemaining # known + # undiscovered arch defects
DefectsDetected | # known architected defects
Design DefectsRemaining # known + # undiscovered desn defects
DefectsDetected | # known designed defects
Source DefectsRemaining # known + # undiscovered impl defects
DefectsDetected | # known implemented defects
Integration | DefectsRemaining # known + # undiscovered integr defects
DefectsDetected | # known integrated defects
Cost Architecture| PersonHours Time to architect
Design PersonHours Time to design
Source PersonHours Time to implement
Integration | PersonHours Time to integrate

schedule and quality data from past projects and appliéstgtal methods to analyse outputs.

The research goal of the feasibility study is to determimentiost suitable statistical techniques
to deal with sparse and correlated data.

KiTe representation

Product The study focusses on software quality, and the qualitydestnumber of remain-
ing errors’. There is also an interest in ‘number of discedegrrors’. Definitions for the various
kinds of defects that occur in software products are pral/lieseveral authors (see [13, 71]),
and Basili and Rombach defimeror as “.. . defects in the human thought process made while
trying to understand given information, to solve probleargp use methods and tools” [13]. As
it is not clear that this is the meaning intended by Raffo ketl ase the more general ‘defects’.
The cost attribute described is effort measured in persamshd he target simulation appears
to assume 100 percent functionality is implemented through

| define Content, Qualityand Cost Perspective#\s the simulation assumes the existence of
functional requirements and implements a process fromk d@ashitecture’ through to ‘internal
integration and testing’Productwill include the Partitions Definition, Architecture, Design,
SourceandIntegration The model forProductis presented in Table 8.14.

Raffo et. al provide effort totals for each phase and ratessfwork, but data is not provided
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for some tasks, for example, architecture and inspectidigss means | do not have enough
information to represent project effort and so | focus betmwuality only.

ContextModel In this study, no mention is made of any engineer charatiesisr context
factors that might affect result€ontextModelthus does not modifictivity’s transformation
and effects no change fingineerE' S or ContextC'S.

Methods From the paper, | identify the following Methods. In doing, $adentify some
instances of lack of clarity iMethoddescription. These involve thdethodsrelating to defect
resolution. As discussed in Section 8.2.1, the failure &testvhat is the policy for defect
resolution is a common problem with traditional softwareqass descriptions. There are a
number of possibilities for such &ethod for example, defects isourceartifacts may be
resolved in code only, in designs and code, etc. In this pamapture the situation of local
resolution only e.g. defects found in designs are resolve@signs only. For the last step in the
process, resolution of integration defects, | assume tefeearlier phases are resolved. The
reason is one of pragmatism — the required data is not aV@jlabd so | choose the simplest
option.

DefineRequirementaNeeded only to give us an initial value for Definitions.

AnalysisAndHighLevelArchitectureAnalyse software requirements and architect at high level
(task architecture).

InspectArchitecturesTask architecture inspection.
ResolveArchitectureDefectsInArchitectureResolve known defects in Architecture artifacts.

DetailedDesignsFromArchitecture®etail design based on Architecture artifacts (architéct a
software unit level).

InspectDesignsUnit architecture inspection.
ResolveDesignDefectsinDesigriResolve known defects in Design artifacts.
CodeFromDesignsCreate source code based on Design artifacts.
InspectCodeCode walkthrough.

ResolveCodeDefectsInSourcd®esolve known defects in Source artifacts.
UnitTestCodeUnit test code.

ResolveCodeDefectsInSourcd®esolve known defects in Source artifacts.
IntegrateAndTestInternal integration and test.

ResolvelntegrationDefect®kesolve known defects in Integrations in Architecture,i@sSource
and Integration artifacts.
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Start 0 0 0 0 0 0 0 0
AnalysisAndHighLevelArch 100 0 0 0 0 0 0 0
InspectArchitectures 100 30 0 0 0 0 0 0
ResolveArchitectureDefectsinArchitectures 70 0 0 0 0 0 0 0
DetailedDesignsFromArchitectures 70 0 250 0 0 0 0 0
InspectDesigns 70 0 250 83 0 0 0 0
ResolveDesignDefectsinDesigns 70 0 167 0 0 0 0 0
CodeFromDesigns 70 0 167 0 500 0 0 0
InspectCode 70 0 167 0 500 167 0 0
ResolveCodeDefectsInSources 70 0 167 0 333 0 0 0
UnitTestCode 70 0 167 0 333 250 0 0
ResolveCodeDefectsInSources 70 0 167 0 83 0 0 0
IntegrateAndTest 70 0 167 0 83 62 83 62
ResolvelntegrationDefects 70 0 167 0 21 0 21 0

Figure 8.14: State-based simulation baseline

Because the number dethodsis large, | do not detail preconditions and effects for each
Method Assuming a traditional waterfall, preconditions for ‘ApsisAndHighLevelArchitec-
ture’ would be availability of completed requirements aod'InspectCode’ would be availabil-
ity of completed codeMethodeffects forMethodsare, for example, completed code and defect
injection for ‘CodeFromDesigns’. Assumptions have beerenabove foiMethodsinvolving
defect resolution.

| note that another lack of clarity is uncovered when attengpto defineMethodsand
Method ordering. From the results presented in Fig. 4 in the targpep | understand that
‘code walkthrough’ occurs before ‘unit test’. | implemeispectCode’ for the walkthrough,
followed by ‘ResolveCodeDefects ...". However, it woultesereasonable to assume that
‘ResolveCodeDefects ...’ is carried out after both ‘codékitmough’ and ‘unit test’. Perhaps,
however, some other strategy is followed, for example, mastances of ‘walkthrough’ and

‘unit test’ intermingled as required. In any case, what altyutakes place is not clear from the
paper and this is discussed further below.

The study involves implementing a single pass of Methods No specific techniques are
mentioned in the study. However, the aim of the simulatido examine the impacts on process
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performance if review effectiveness is increased. Thign®eymous with replacing one review
Techniquewith a ‘better’ one.

The baseline case for the simulation may be inferred fromaisimptions about the ‘ex-
pected’ error injection rates for ‘design’ and ‘codé@ethodsand about review effectiveness
rates for the ‘review’ and ‘testMethods As the study assumes all outcomes are a result of
the implementeiMethodsand Techniquesthese rates are a statement of the expected perfor-
mance of thesdethodsand Techniques From Fig. 3 in the paper, | note that assumed error
injection rates are 20 percent for architecture, 30 permerdesign and 50 percent for coding,
and the total errors injected is 500. The baseline valuethase100 errors for ‘AnalysisAnd-
HighLevelArchitecture’ (1 per percent requirements = 0.200 = 100 errors), 150 errors for
‘DetailDesignsFromArchitectures’ and 250 for ‘CodeFroesigyns’. As-is detection capabil-
ities are assumed to be .3 for ‘InspectArchitectures’,peDesigns’ and ‘InspectCode’ and
.75 for ‘UnitTestCode’ and ‘IntegrateAndTest'. It is asseoithat errors injected during testing
are negligible. I illustrate the simulated process for thedline case in Figure 8.14.

Defects are injected during architecture, design, etscaliered by reviews and tests and
then resolved. As discussed above, | illustrate a situatibere defects are resolved locally
only, with the exception of the final step, ‘ResolvelntegnaDefects’, where defects are re-
solved in earlier artifacts also.

Effectiveness | now use the data in Figs 4 and 5 in the paper to calculateteféaess relative

to the baseline for eadWlethodas implemented in the as-is and to-be simulations. Effectgs

values for the as-is process are calculated in Table 8.1%oanke to-be process in Table 8.16.
The calculated values describe the effectiveness ofAitt&vities based on thélethods

presented above. SummariesAdttivity effectiveness values for the as-is and to-be simulations

are presented below in Table 8.17.

Discussion

Our aim was to capture the process by selectMethodsand defining relativéMethod (and
Techniqué performance values andontextModeladjustments representing project contexts.
Some questions and observations arise:

e It's not clear why the rework rates for defects found duringle walkthrough (2 hours
per error) and unit test (4 hours per error) are so differé@wde walkthrough occurs
after coding is complete and then is immediately followedubyt testing. So why the
difference in rework rate? Presumably there is anotherga®step between these? Or
some test-related procedures that are ‘expensive’?
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Table 8.15: State-based As-Is calculations

Method

Defects

Effectiveness

Analyse....

Errors injected 99 (27.3+71.7 - detected + escap
‘Quality DefectsRemaining’ 99.

edp0/99=1.01

InspectArchitectures

Errors discovered 27.3. ‘Quality DefectsDiscovers
27.3.

50276 (27.3/99)

ResolveArchDefects...

‘Quality DefectsRemaining’ 71.7.

1

DetailDesigns...

On completion, 221.2 defects remain (61.4+15¢
i.e. ‘Quality DefectsRemaining’ 221.2. We infer th
221.2-71.7 = 149.5 defects were injected

).850/149.5 = 1.003
at

D

InspectDesigns

Of the 221.2 defects remaining, 61.4 are detected,
now have Remaining=221.4; Detected=61.4.

Ve’ 8

ResolveDesnDefects. .

61.4 defects resolved in Design documents leay
221.2-61.4=159.8 remaining. We don’t have enol
information to know how many of those fixed orig
nated in, and were fixed in, Architecture documet
We will assume the Method fixes Design defects o

idg
ugh

nts.
nly.

Code... On completion, 409.3 defects remain (114.4+294.9)
i.e. ‘Quality DefectsRemaining’ 409.3. We infer that
409.3-159.8=249.5 were injected

InspectCode Of the 409.3 defects remaining, 114.4 are detecte®8 (114.4/409.3

We now have Remaining=409.3; Detected=114.4,

ResolveCodeDefects.).

114.4 defects are resolved in code, leaving 40
114.4=294.9 remaining. We don’t know how many
these originated in Architectures and Designs ang
we will assume the Method fixes code defects o
We also see that from table 4 after test the num
is 304.2. 10.3 new errors were injected during fixir
So this Activity resulted in 114.4 resolved errors, 1
new ones injected.

D B34.1/114.4=.91.
of

1 so

nly.

ber

ng.

D.3

UnitTestCode

Of the 304.2 defects remaining after unit test, 19
were detected

1191.9/304.2=.63

ResolveCodeDefects. .

191.9 defects resolved in code, leaving 304
191.9=112.3 remaining. Again, we don’t know hg
many of these originated earlier on. However af
process test, 121.4 defects remained (81.6+39.8
this Method caused 9.1 defects to be injected. ‘I
fectsRemaining'=121.4.

.282.8/191.9=.95
W

ter

. So

De-

IntegrateAndTest

Of the 121.4 defects remaining, 81.6 were detecte

d67

ResolvelntegrnDefects

5 81.6 defects are resolved, leaving a DefectsRem

ain-

ing of 39.8. All fixed.
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Table 8.16: State-based To-Be calculations
Method Defects Effectiveness
Analyse... Errors injected 99 (64.2+34.8 - detected + escapedlp0/99=1.01

‘Quality DefectsRemaining’ 99..

InspectArchitectures

Errors discovered 64.2. Quality DefectsDiscover
64.2.

EB5 (64.2/99)

ResolveArchDefects..|

‘Quality DefectsRemaining’ 34.8.

1

DetailDesigns...

On completion, 184.3 defects remain (120.9+63
i.e. ‘Quality DefectsRemaining’ 184.3. We infer th
184.3-34.8 = 149.5 defects were injected.

$ 450/149.5 = 1.004
at

InspectDesigns

Of the 184.3 defects remaining, 120.9 are detec
We now have Remaining=184.3; Detected=120.9.

tedo

ResolveDesnDefects.|.

120.9 defects resolved in Design documents lea
184.3-120.9=63.4 remaining. We don’t have enol
information to know how many of those fixed orig
nated in, and were fixed in, Architecture documet
We will assume the Method fixes Design defects o

ihg
ugh
[
nts.
nly.

Code...

On completion, 312.8 defects remain (205.2+10]
i.e. ‘Quality DefectsRemaining’ 312.8. We infer th
312.8-63.4=249.4 were injected

D)
at

InspectCode

Of the 312.8 defects remaining, 205.2 are detec

We now have Remaining=312.8; Detected=205.2..

te66 (205.2/312.8)

ResolveCodeDefects.|.

114.4 defects are resolved in code, leaving 40
114.4=294.9 remaining. We don’t know how many
these originated in Architectures and Designs ang
we will assume the Method fixes code defects o
We also see that from table 4 after test the num
is 304.2. 10.3 new errors were injected during fixit
So this Activity resulted in 114.4 resolved errors, 1
new ones injected.

D BA4.1/114.4=.91.
of

l so

nly.

ber

ng.

D.3

UnitTestCode

Of the 112.5 defects remaining after unit test, 7
were detected

04.5/112.5=.627

ResolveCodeDefects.|.

.70.7 defects resolved in code, leaving 112.5-70.5
remaining. Again, we don’t know how many of the
originated earlier on. However after process test, 4
defects remained (30.1+19.5). So this Method cau
7.6 defects to be injected, ie effectively fixed 42-]
corresponding to an Effectiveness of 36.4/42=.§
(instead of 1 for all fixed). So after this Method ‘D
fectsRemaining'= 49.6.

=38.4/42=.867
se

19.6

sed

/.6

B67

D

=

IntegrateAndTest

Of the 49.6 defects remaining, 30.1 were detected

.607

ResolvelntegrnDefect

s30.1 defects are resolved, leaving a DefectsRem

ain-

ing of 19.5. All fixed.
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Table 8.17: State-based Activity effectiveness summary

Activity As-is | To-be
Analysis 1.01 | 1.01
Architecturelnspection .276 | .65
ArchitectureRework | 1 1
DetailDesign 1.003]| 1.003
Designinspection 278 | .66
ResolveDesignDefects1 1
Code 1 1

CodeWalkthrough .28 .66
WalkthroughRework | .91 976

UnitTest .63 .627
UnitTestRework .95 .867
Integration .67 .607
IntegrationRework 1 1

e There are some further issues around rework rates. Rewtit& ahd of a process is more

expensive because a larger number of documents must beethartye cost will depend
upon the origination points of defects. For example, if 16fedts are found in code, how
many of these must be fixed in code only, how many in designfiamdmany in designs
and architectures? Furthermore, if inspections are mdeetafe, presumably a larger
percentage of code defects will originate ‘upstream’ ilee tework rate will drop. It is
possible that the rework rates used in the simulation arebeusnobtained either from
the literature or from previous experiments. If this is thee, these potentially represent
hidden assumptions of the model.

Method ‘ResolveCodeDefects ...’ after code walkthrough has ireaffectiveness of

.91. This figure seems low, possibly due to stochastic natusenulation. But in a real-

world situation it might indicate that the process is notyfuinderstood. For example,
perhaps the engineers were rushed and so less effectiiegting that some of the value
ought to be attributed t&€ontextModel

The variations in numbers of errors injected, detectiorabdjy etc. arise as a conse-
guence of the stochastic nature of the simulations. On ddtacted from real projects,
this variation would appear as a variatiorAntivity effectiveness. In such cases, it might
be that the variation in values provide us with real inforimraabout what was going on
during the projecti.e. howontextaffected the engineers’ ability to carry out thiethod

e Thinking in phases is potentially misleading, as most psassult in change to docu-
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ments produced in prior phases.

The authors of the paper note that alternatives may be exahfiim the achievement of the
suggested improvement i.e. changing error detection déyais inspections from 30 percent
to 70 percent. Capturing the simulation in tkife framework provides a clearer understanding
of what these alternatives might béctivity effectiveness is achieved as a result of a base
transformation defined bilethod and Techniquemodified according ta@ContextModel 1t is
clear that either or both may be varied to achieve the desiatte. | submit that that this
transparency supports any business case made as a reblelsohulation experiment, because
the range of possible options becomes more obvious.

| also observe the need to truly understand what arévtbghodsbeing implemented and
the source of the data being used. Some of the questions atmyéave straightforward an-
swers. However, issues such as knowing origination poirgsrors, Methodswith surprisingly
low performance values and apparently contiguous taskgngawidely in cost would, in real
projects, require attention. The use of a framework helpesa such issues.

8.2.8 Study 8: System dynamics simulation model

The next study concerns a system dynamics simulation mddedaterfall process. It involves
a feasibility study based on work by Pfahl and Lebsanft [1f28in the Fraunhofer Institute
for Experimental Engineering (IESE) in Kaiserslauternyi@any. The cited paper describes a
software simulation model developed by the Fraunhofer |IESESiemens Corporate Technol-
ogy (Siemens CT) and reports on results obtained from stiouk& The purpose of the model
was to demonstrate the impact of unstable software reqeim&ron project performance and
to analyse how much effort would be required to stabiliselregnents such as to achieve the
most cost-effective outcome.

The goals addressed by this study are 1.2.1.1. (traditiomaess), 1.2.2.3. (system dy-
namics simulation model), 1.2.3.1. (large-grained pregek2.4. (variations to base process),
1.2.5.1. (industry project), 1.2.6.3. (medium size prjjet.2.7.1. (CMM level 1), 1.2.8.2.
(co-located project), 1.2.9.2. (upgrade project), 1.2 IStandard goals).

Some key aspects of the environment are:

e Within one of Siemens CT business units, requirements fowaoe projects are under the
direct control of a system engineering grogg)( This group solicits requirements from
customers, and makes decisions about which parts of themohare to be implemented
in software and which in hardware. Software requiremergshan passed to the software
development groupdgy) for implementation.
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e Software project deliveries generally comprise threeenmnts. The first implements
base functionality and provides a prototype for customediiack. The second im-
plements important requirements, and the third compldtegguirements, including
customer-specific adaptations.

e There are three or four releases (I-cycles) during eacleiment. Generally, as a result of
these releases, new requirements are received from thenoeistThese are planned for
and included bylevin subsequent releases for the increment.

¢ In many casesse chooses to change, replace or implement in hardware, seftvea
guirements that have already been implementeddyy This often happens late in the
project.

e The last item above is believed to be causing problems oéprgerformance. Siemens
CT are interested in knowing how much additional effort bg $le group would be re-
quired to stabilise requirements such as to effect the nostteffective outcome.

The simulation model developed by Fraunhofer IESE to pmvite above information is
based on the system dynamics paradigm. The ‘causal’ refdtips identified as most rele-
vant imply that increasing the number of already-impleradrgoftware requirements that are
replaced during the project results in a longer project tiloma Simulations imply that an in-
crease irse effort from 10 to 42 person weeks (representing an increageicentage total
effort from 1.7 percent to 9.1 percent) results in an optisedlition, with a total effort decrease
from 596 person weeks to 462 person weeks.

KiTe representation

| now work through the recreation of the above with #i@e model. As our current aim is to
show model feasibility, we need in the first instance to destrae that we can ‘plug in’ a set
of Activities that results in the same outputs as the system dynamics nidaeend result will
be to show that a simulation based on system dynamics carpheed withKITE, and to gain
a greater understanding of what might be assumptions inhier¢éhe two model types.

Activities | list the Activities that form the Process. For eadttivity, | then identify its
Methodalong with relative effectiveness values for the assodidgzhnique No details of the
Techniguesmplemented are given and so | assume these remain constargdn simulation
runs. From the paper, the assumption is that all outcome# feesm theMethodand Technique
only and so | assume the effect 6bntextModelis negligible. 1 show the results for each of
the six simulation runs described in the paper (see Tablel3egbaper).
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The target process has three increments and each increaseaniumber of releases ([129]
Fig. 1). For each release, there is a ‘gather requirements"@evelop from requirements’
Activity. The process thus comprises one such cycle for each rele@se.Figs. 1 and 6 of the
paper, | infer four releases for increments 1 and 2, and flordecrement 3, making a total of
11 releases. From Fig. 6 of the paper, | also infer that aselspans 10 weeks.

The process comprises the followiAgtivities.

DefineForPrototype

DevelopPrototype

DefineFromPrototype

DevelopRequirements

DefineLastRequirements

DevelopRemainingRequirements

Product The study focusses on software content and effort, and taktytocus is ‘correct-
ness of requirements’. The latter must capture both reongings that are removed (for example,
to be replaced with hardware) and requirements that aregelolfpresumably as a result of fail-
ure to capture functionality correctly). The first is a cab#hey did the wrong thing’ i.e. were
ineffective in initial capture. The second could imply trerse thing, or could be a result of
capturing the right thing, but doing it badly (‘they did it @rg’). The target study does not
differentiate between the two cases (there is a single ‘lyaelplacement factor’), but as the
focus of the study is requirements that are replaced, rechand changed, | model the incor-
rect requirements as failure to capture the right thing.nl weodel this as &@uality attribute
i.e. view as errors in requirements. However, | prefer tawlke failure to correctly capture
requirements as a lack of effectiveness in build@®antentand model as &ontentattribute
rather than auality one. | note that th&erspectiveapplied represent views on the attributes
only and so the choice does not affect model outcomes. Costaésured in ‘person weeks’. |
thus include Content and Cost perspectives, and applyaidr roduct Partitior(Definition,
Architecture, Design, Source, Integration, Package@)etements:

Content Total The total number of requirements collected or implemenidds includes re-
moved requirements, replaced requirements, and requmtsrirefinal form.

Content Correct The number of collected or implemented requirements in fiorah i.e. re-
quiring no change.

Cost ActualHours The time cost of collecting or implementing ‘Content Tot&quirements.
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For the recreation, as in the original stud@uality elements are ignored, presumably be-
cause these remain constant across process comparissssiriathere is nBroductat process
start. For this study, the software is finally delivered whémequirements have been correctly
implemented. With thé’roductmodel above, this occurs when the ‘Content Correct’ value is
equal to its maximum value i.e. the value targeted for ‘Conietal’.

From the target study ‘Reproduction of the reference mdeig. (6 in the paper), | infer that
the total number of delivered requirements is 2,000 i.ent€nt Correct’ must reach this total.

Methods EachActivity above is based onMethod The Methodsare all different as regards
effect onProduct For example, ‘DefineFromPrototype’ captures requiresibased on a pro-

totype and there is an expectation that the requirementsatibe complete at the end of the
Activity . For ‘DefineLastRequirements’, on the other hand, it is etgxkthat requirements will

be finalised. TheMethodsfor increments A, B and C are:

e CaptureRequirementsForPrototype (A)

ImplementPrototype (A)

CaptureRequirementsFromPrototype (B)

ImplementRequirements (B)

CaptureFinalRequirements (C)

ImplementFinalRequirements (C)

However, because of the feedback-based structure of arsggt@amics model, thelethod
related differences between the three increments is ntaiieap | thus implement twiethods
only, ‘CaptureRequirements’ and ‘DevelopFromRequiretsier-or the same reasons, i.e. it
is not possible to distinguish between the three incremantegards the effect of contexts, |
work with only two Activities, ‘Requirements’ and ‘Develop’. | note a limitation in thessgm
dynamics approach.

From [129] Table 2 in the paper, | see that the number of requents at project start is
1000. I can not understand how to use the ‘Initial requiremémction for increment B/C’,
but from Fig. 6, | infer ‘R(A)’ 1200, R(B) 500 and ‘R(C)’ 300. he ‘New requirements
fraction’ in Table 2 of .15 implies that .15 of the requirertsefor an increment are received
after the increment start. The values | will work with are :

R(A) 1200 (60 percent): R(A0) 1020 (51 percent); R(ANew) 180 (Zeet)
R(B) 500 (25 percent): R(B0) 420 (21 percent); R(BNew) 80 (4 paiice

R(C) 300 (15 percent): R(CO0) 260 (13 percent); R(CNew) 40 (2 pd)ce
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As Figure 5 in the paper indicates most new requirements imerement are received
during the first five weeks i.e. during the first release, | alillbcate these to the second release
for each increment (the base requirements for the increarerdllocated to the first release).

I now need to decide how to handle the changed, replaced emavesl requirements. From
Table 3in the paper | learn that the ‘actual average req@nésreplacement per week’ (AARR)
is 0.73 percent for the baseline case. In section 5.1., hldet “the number of replacing re-
guirements per week is proportional to the number of requares known at project start”.
With an initial requirements count of 1000 and an AARR of . €8gent, | calculate 7.3 require-
ments replaced per week, 73 per release (10 weeks) and 78hewmurse of the project. This
seems consistent with Fig. 8.

The natural way to do this is to assign a non-unit effectigsrie the requirements gathering
Activities. As | have no information to the contrary, | assume this ¢iffeaess is the same for
each increment and choose a value for ‘Content effectiwiest results in actual number of
2730 over 2000 total requirements. | thus work with a Congffietctiveness value of 2000/2730
=.733. I willimplement this number for each release othantthe last for each increment. For
the last releases, | will implement a Content effectiveradsk. The reason for this is that, at
the end of each iteration, all requirements for the iteratice delivered and this means that the
last releases must effectively deal with getting thingbtrige. all recaptured requirements are
correctly recaptured. Note that, if at project end | had nessjuent errors, a differenethod
would be required — perhaps one without the word ‘correctigr the ‘develop’ effectiveness
values, | assign a value 1 as it is inferred in the paper tleadbvelop’ Activities introduce no
problems.

I now examine the ‘Cost ActualHours’ associated with e&tgthod For the ‘develop/Ac-
tivity, | require some idea of the baseline cost in person weeksptement a requirement, in
order that | can see a greater cost resulting when the nunflsegoirements being replaced
increases (more requirements are implemented). Therensionan section 5.1 in the paper
that, because “each increment is different in nature, tteeeededicated level of productivity
assigned to each level”. Table 2 contains ‘Nominal averagduyztivity - functional unit per
person week’ for the three increments. However, it isn’aclehat is a ‘functional unit’, or
whether the productivity difference between iterationdus to the different number of require-
ments for each iteration (1200, 500, 300), rework, a difiedevelopment method, or different
contexts resulting in different effectiveness values.

For a first pass, | will assume the variation is due to requerisirework. This is taken care
of already (difference between ‘Content Total’ and ‘Comnt€omplete’). Thus | assume a ‘flat’
cost per requirement. From Table 3 in the paper, | see thattaase development effort of
586 weeks was required to implement 2730 requirements andittes a cost of .21465 person
weeks per requirement.
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However, if | carry out the same exercise for the other sitmeruns, | find the cost per
requirement varies.

e Case 1: 875 person weeks / 3830 requirements = .22846 peesks\wer requirement.

e Case Baseline: 586 person weeks / 2730 requirements = .23et6bn weeks per re-
quirement.

e Case 3: 499 person weeks / 2400 requirements = .20792 peesks\wer requirement.
e Case 5: 452 person weeks / 2140 requirements = .21121 peesks\wer requirement.

e Case Optimal: 420 person weeks / 2080 requirements = .208r82mweeks per require-
ment.

e Case 6: 416 person weeks / 2060 requirements = .20194 peesks\wer requirement.

It's not clear what is happening during the various runs featfthis difference. For the
baseline case | work with a cost of .21465 person weeks peireggent, and consider this as
equating to a baseline cost effectiveness of 1.

It remains to calculate the ‘cost per requirement’ for systengineering baseline require-
ments gatherindethods This doesn’t seem to be so easy, because it's not clear vy th
assumption that more time taken (low@osteffectiveness) will result in better results (higher
Contenteffectiveness). Fig. 4 in the paper gives us a relationshtpéen ‘weekly replace
factor’ and systems engineering effort. But this really saement about the effectiveness of
the requirements gathering exercise and would seem to belal mssumption that taking more
time results in fewer requirements needing replaced. Tewutl be many ways to achieve this
result, for example, using more expert engineers, bettds,tonore planning.

However, as | am attempting to reproduce the results predeihdo not need to worry about
what is the basis for the above assumption. | simply acceptthie relationship holds and use
the results of the relationship to calculate what was@batentand Costeffectiveness for the
requirements gathering activity.

For the baseline case, the ‘weeklyReplaceFactor’ (see Higs Min(.05, 1/x) where x =
(2+effort)powl.7 = (2+10)powl.7 = 17.694. So ‘weeklyReglBactor’ = Min(.05, .0565) =
.05. Applying this weekly increase to a base number of requénts 1000, over a period of 200
weeks yields a final number of requirements 1,729. This nunolbeourse, corresponds to the
‘AARR per week’ of .73 (see Table 3). For the baseline cadal tequirements is thus 1729 +
1000 (new).

For all simulations | will work from the ‘AARR’ for systems @ineering, rather than calcu-
late this from the equation, as my interest is in find@gntentand Costeffectiveness values.
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Baseline Simulation

Table 8.18: System dynamics Baseline - Incr A Activities

Activity Characteristics | Effectiveness
Requirements 1020 .0037 .733,1
Development| .25 .21465 1,1
Requirements 1200 .0037 .733,1
Development| .5 .21465 1,1
Requirements 1200 .0037 .733,1
Development| .75 .21465 1,1
Requirements 1200 .0037 1,1
Development| 1.21465 1,1

The cost that is the baseline case is 10 person weeks for Zigrements i.e. &ost
effectiveness of 1 results in a cost of 10/2730 = .0037 pevgeeks per requirement. | will
work with this baseline value. For Content effectivenesaven2000/2730 = .733.

Table 8.19: System dynamics Baseline - Incr B Activities

Activity Characteristics | Effectiveness
Requirements 1620 .0037 733,1
Development| .25 .21465 1,1
Requirements 1700 .0037 733,1
Development| .5 .21465 1,1
Requirements 1700 .0037 .733,1
Development| .75 .21465 1,1
Requirements 1700 .0037 1,1
Development| 1 .21465 1,1

Summaries of baseline simulation values for increments an@C are presented in Tables
8.18, 8.19 and 8.20. Column 1 lists tietivities, column 2 the characteristic values, for
example, ‘number of requirements gathered’, and ‘persamsper requirement’ and Column
3 lists the Content and Cost effectiveness for Aadivity. | include the ‘person weeks per
requirement’ value from which th€ontentand Cost effectiveness values are calculated. For
reasons of simplicity and limited space, | decrieivities from now as simply ‘Requirements’
and ‘Develop’.

Result is Total req. 2728; SysEng effort 10.1 ActualHoursy@&@opment effort 585.6 Actu-
alHours; Total effort 595.6 ActualHours.
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Activity Characteristics | Effectiveness
Requirements 1960 .0037 733,11
Development| .34 .21465 1,1
Requirements 2000 .0037 733, 1
Development| .67 .21465 1,1
Requirements 2000 .0037 1,1
Development| 1.21465 1,1

Case 1

We now adjust the effectiveness of the requirements gaitpActivities to give results compli-
ant with Table 3 in the paper.

For each case, | calculate the new systems engine@amgentand Costeffectiveness val-
ues and create a new input process with the new numbers.

AARR is 1.83 and systems engineering effort is 5 person weeks

Case 1 results in 3830 requirements in 5 person weeks i.e.retifrements per person
week. Cost effectiveness relative to the baseline case6ik 78 = 2.806.

For Content effectiveness we have 2000/3830 = .522. Thigevalapproximate due to the
fact that it is applied to all releases other than the lastaithancrement, where | assume they
‘do the right thing right’. Experimentation found .47 to githe correct result.

Development cost is .22846 person weeks per requiremeid.efoates to a relativ€ost
effectiveness of .21465/.22846 = .94.

Results for increment A are shown in Table 8.21.

Table 8.21: System dynamics Case nl - Increment A Activities

Activity Characteristics | Effectiveness
Requirements 1020 .0037 2.806, .47
Development| .25 .21465 939, 1
Requirements 1200 .0037 2.806, .47
Development| .5 .21465 .939,1
Requirements 1200 .0037 2.806, .47
Development| .75 .21465 939, 1
Requirements 1200 .0037 2.806,1
Development| 1.21465 939,1

Result is Total req. 3825; SysEng effort 5.04 ActualHoursy&opment effort 871.2 Actu-
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alHours; Total effort 876.24 ActualHours.

Case 3

Case 3 results in 2400 requirements in 15 person weeks Deetiirements per person week.
Cost effectiveness relative to the baseline case is 166/2386.

For Content effectiveness we have 2000/2400 .833. Expatatien found .832 to give
correct result.

Development cost is .20792 person weeks per requiremeid.efates to a relative Effi-
ciency of .21465/.20792 = 1.032.

Results for increment A are shown in Table 8.22.

Table 8.22: System dynamics Case n3 - Increment A Activities

Activity Characteristics | Effectiveness
Requirements 1020 .0037 .586, .832
Development| .25 .21465 1.032,1
Requirements 1200 .0037 .586, .832
Development| .5 .21465 1.032,1
Requirements 1200 .0037 .586, .832
Development| .75 .21465 1.032,1
Requirements 1200 .0037 .586, 1
Development| 1.21465 1.032,1

Result is Total req. 2398.12; SysEng effort 15.14 ActualidpDevelopment effort 499.4
ActualHours; Total effort 514.54 ActualHours.

Case 5

Case 5 results in 2140 requirements in 30 person weeks i.83 Téquirements per person
week. Cost effectiveness relative to the baseline case.83/2/3 = .2613. Experimentation
found .262 to give better result.

For Content effectiveness we have 2000/2140 .935. Expatatien found .9345 to give
correct result.

Development cost is .21121 person weeks per requiremein. eflaates to a relative cost
effectiveness of .21465/.21121 = 1.016.

Results for increment A are shown in Table 8.23.

Result is Total req. 2139.8; SysEng effort 30.22 Actualldplrevelopment effort 453.22
ActualHours; Total effort 483.44 ActualHours.
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Table 8.23: System dynamics Case n5 - Increment A Activities

Activity Characteristics | Effectiveness
Requirements 1020 .0037 .262, .935
Development| .25 .21465 1.016,1
Requirements 1200 .0037 262, .935
Development| .5.21465 1.016,1
Requirements 1200 .0037 262, .935
Development| .75 .21465 1.016, 1
Requirements 1200 .0037 .262,1
Development| 1.21465 1.016,1

Case Optimal (based on total effort)

AARR is 0.08 and systems engineering effort is 42 person seek

Case Optimal results in 2080 requirements in 42 person wieek49.52 requirements per
person week. Cost effectiveness relative to the baselseicad9.52/273 = .1814.

For Content effectiveness we have 2000/2080 .9615.

Development cost is .20192 person weeks per requiremerg.efjoates to a relative Cost
effectiveness of .21465/.20192 = 1.064.

Results for increment A are shown in Table 8.24.

Table 8.24: System dynamics Case Optimal - Increment A Activities

Activity Characteristics | Effectiveness
Requirements 1020 .0037 1814, .9615
Development| .25 .21465 1.064, 1
Requirements 1200 .0037 1814, .9615
Development| .5 .21465 1.064, 1
Requirements 1200 .0037 1814, .9615
Development| .75 .21465 1.064, 1
Requirements 1200 .0037 1814, 1
Development| 1.21465 1.064, 1

Result is Total req. 2080; SysEng effort 42.42 ActualHousyelopment effort 420.43
ActualHours; Total effort 462.85 ActualHours.

Case 6

AARR is 0.06 and systems engineering effort is 50 person seek
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Case 6 results in 2060 requirements in 50 person weeks i.8.rdquirements per person
week. Cost effectiveness relative to the baseline case282/B = .151.

For Content effectiveness we have 2000/2060 =.9709.

Development cost is .20194 person weeks per requiremerd.egates to a relative Cost
effectiveness of .21465/.20194 = 1.063.

Results for increment A are shown in Table 8.25.

Table 8.25: System dynamics Case n6 - Increment A Activities

Activity Characteristics | Effectiveness
Requirements 1020 .0037 151, .9709
Development| .25 .21465 1.063, 1
Requirements 1200 .0037 151, .9709
Development| .5.21465 1.063,1
Requirements 1200 .0037 151, .9709
Development| .75 .21465 1.063,1
Requirements 1200 .0037 151, 1
Development| 1 .21465 1.063, 1

Result is Total req. 2059.9; SysEng effort 50.47 Actualldplevelopment effort 416.75
ActualHours; Total effort 467.22 ActualHours.

Discussion

Although | have found values that comply with the reportesults i.e. | have successfully
represented the study KiTe, a couple of questions and observations arise:

e It's not clear what the relationship between ‘weeklyRepkactor’ and system engineer-
ing effort (Fig. 4) is based on. The Systems Engineeringctffeness values are an
alternate way of defining this relationship. It would be meting to know what is the
underlying change iMethodor Contextthat provides the different simulation values.

e The figure for developmer@osteffectiveness has been inferred by averaging across the
process. | assumed no inherent difference between the itieradions. This may be
incorrect and | may need to redo with different values fothegeration.

¢ | note that the developmer@@ost effectiveness seems to vary according to the number
of requirements and | am not really sure what is the mechatfistnunderlies this. Is
the dip at ‘n5’ meaningful? Perhaps additional manpowesea drop in effectiveness?
Or there is a penalty for changing requirements i.e. a cldingguirements costs more
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than a new one. This highlights some assumptions of the siudgme inadequacy in
reporting study detalils.

e Because of the application of a system dynamics approasmat possible to differenti-
ate between increments. However, frorKide perspective, the increments are different
because, for example, each has different preconditiongéfprirements. | have exposed
what is arguably a limitation of the system dynamics appnoac

8.2.9 Study 9: Concurrent programming field study

This study re-examines data from an industrial field studiPasrish et. al. carried out to exam-
ine programmer productivity as team size varies [126]. Gadbressed are 1.2.1.1. (traditional
process), 1.2.2.4. (quantitative study), 1.2.3.3. (smedined), 1.2.5.1. (industry project),
1.2.6.4. (small project), 1.2.7.1. (CMM level 1), 1.2.8(Ro-located project), 1.2.10.1. (stan-
dard goals).

The original study showed productivity for teams working@mmon code to be much
lower than for individuals. This result is in direct contragth results reported for pair pro-
gramming experiments. The study re-examines the data don &ze two i.e. for two devel-
opers working concurrently on the same code module and arfiad out if the role-based
protocol characteristic of pair programming, for exampise of the same computer, regular
switching of roles, is the reason for such differing resulteere were 48 modules with devel-
opment teams of size 2. éoncurrencymetric is used — this is defined as the degree to which
programmers reported working on the same module duringaime glay. The authors acknowl-
edged that, although this measure does not perfectly me#seidegree afollaboration it is
a necessary precursor and positively correlated with loottation. Pairs were categorised as
‘high-concurrency’ or ‘low-concurrency’ and the numbemwfadjusted function points (UFPS)
completed per unit of time measured.

Table 8.26: Productivity v. concurrency level (Parrish et. al.)

Concurrency level | Mean productivity | Standard deviation
Low 4.709 3.973
High 1.125 0.726

The contracted project was to rehost a legacy time accayayistem to a distributed envi-
ronment. The product had over 3,000 screens and approxynaateillion lines of code. The
new system supports over 400 distributed users.

T-test results of productivity versus concurrency levelstiown in Table 8.26.
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Results showed that the mean productivity of individuals alout four times higher than
that of pairs. The authors believe it is unlikely that theklaEproductivity was due to duplicated
or conflicting work because the developers worked at the $araéion and used a good version
control system. They conclude that the role-based protoicpair programming combats the
natural productivity loss of collaborative efforts.

Table 8.27: Concurrency Product Model

Perspective| Partition | Attribute | Meaning

Content Design | UFPs # unadjusted function points
Source | UFPs # unadjusted function points

Cost Source | TimeUnits| # 15 minute intervals

KiTe representation

As for other studies, | capture mean results and discusst#itisteal nature of the study in
Section 10.5.

The first task is to define an approprid®eoductmodel. The study measures the number
of unadjusted function points (UFPs) per hour and namesRna&luctivity’. | implement a
Productmodel as in Table 8.27. | choose to separate ‘UFP’s and ‘TinitsUbecause | expect
that working with simple units will provide &roductmodel that will facilitate comparisons
with other models and in any case the compound values arly el@sived from the simple
ones.

I next identify Method and Techniqueand again find some lack of clarity in the study
description.

Method

Preconditions There is no mention of what the developers are working frenwhat are the
inputs toMethod The study mentions that the UFPs were measured “from pirediy
design information”. As the study relates to a large-saalere traditional project, it is
likely that full and detailed design documents are avadlabut we do not know this for
sure. This is important information, because ‘coding froesigns’ and ‘coding from
requirements’ represent differedtethodsin KiTe.

Transformationt We do not know what is being created by the developers. @sietl code?
Built and integrated modules? If the latter, we are dealintt) mtegration of individual
modules into a large system and the cost of integration makidgte This cost will
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effectively be a ‘hidden cost’ if we treat thigethod as one that produceSourceonly,
and the result will be that the cost of produciSgurceappears to be very high.

Technique The factor that is the focus of the study, i.e. level of conenicy, | treat agech-
nique The reasons for this as as presented in Section 8.2.4 aaté telthe possibility that
individual engineer attributes, for example, ability tonkwaevith others, might affect the impor-
tance of this factor. | thus have twAxtivities, both withMethod‘CodeFromDesigns’ and with
TechniquesLowConcurrency’ and ‘HighConcurrency’. The relative fmmance values for
the twoActivities are shown in Figure 8.15.

Activity Product
Source
2
2
Q
§ s
Code (CodeFromDesigns:LowConcurrency) 4.71 1.00
Code (CodeFromDesignsHighConcurrency) 113  1.00

Figure 8.15: Concurrency Technique relative performance

This Figure is a direct representation of the results in@&a26 from the paper.

| now capture context-related attributes. TBegineerattribute ‘Professionalism’ is men-
tioned and the authors believe this is held constant. THeoasialso report that the developers
used a “fourth-generation tool, a modern relational databand a development environment
with “report generators, COTS libraries, database systams other new components”. | in-
clude these in the model f@ontext As these are also held constant, relative effectiveness is
the same for both low and high concurrency i.e. the authdievaethe difference in perfor-
mance is due only to the differeffechniques.e. to the different levels of concurrency. The
models forEngineerand Contextare presented in Table 8.28.

Discussion

As a result of trying to represent this studyKiiTe, | uncovered some areas of uncertainty re-
lating to Method and Productdefinition, because it is not clear whatoduct Partitions input

to Methodand what is delivered. This means | cannot represent thg stitidout first making
some assumptions. | also notice a possible problem whemgtigi define what iSechnique
The authors claim that ‘concurrency’ is a reasonable meafsur‘collaboration’, as they are
positively correlated and version control decreases #adiliood of conflict and duplication.



8.2 Capture all Processes and Process Models 163

Table 8.28: Concurrency Engineer and Context Model

Attribute Measure
Engineer| Professionalism No measure given
Context | FourthGenerationTool
RelationalDatabase

WindowsDevelopmentEnvironment
ReportGenerators

But this is an unsubstantiated claim and it would seem likie#f developers working on code
at the same time will produce a different result than dewvaispvorking on the same code at
different times as the first would presumably force more camication. Although the two ap-
pear to be positively correlated, this might not be the case Bngineemttributes are taken into
account. In any case, iKiTe we would handle these as two potentially differ@athniques

The authors report that programmers were “professionalttbs term is not described fur-
ther. It provides contextual information and so is importan study duplication. | include it
in the model forEngineernoting that any realisti€ontextModehlvould be unlikely to be able
to work with such a term, as it says little about the develspsapability to work withProduct
and Technique Some interesting thoughts about the context factors meedi, for example,
‘FourthGenerationTool’, involve the realisation thatgbealone are not particularly useful when
trying to determine how well developers work. IrkaTe system, such context factors matter
only in as much as these support developers and the use okmmaahd ‘new’ tools could
in fact cause problems for developers unfamiliar with theéxrmore completeContextModel
would include soméEngineerattributes describing familiarity with environment. Ahet pos-
sible Engineerattribute suggested by the study description is ‘familyawith subject area’
because the fact that a contract situation is involved wterd to imply that developers might
not be familiar with the subject area.

8.2.10 Study 10: Variations in XP process

In Section 8.2.3, | captured a ‘typical’ Xprocessin KiTe and illustrated howProductand
Engineemight change during a single iteration. In this study, | cdessome variations and
illustrate how these might affect outcomes. For this stuidiyst vary some of theEngineer
attribute values at the start of the iteration. | then comsttle possible situation of failure to
quickly resolve build defects and examine how this migheetfichoice ofMethodsand out-
comes. Goals addressed are 1.2.1.2. (agile process).3L.&Mall grained), 1.2.4. (variations
to base process) and 2.2. (compare process variations).
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KiTe representation

For the first part of this study, | apply the same modelsRooduct Engineerand Context
and implement the san¥ctivities, Methodsand TechniquesHowever, | now assume that the
EngineerTechnical Skills’ and ‘Product Area Knowledge’ are lowdriration start than as
for the illustration in Section 8.2.3.

For the second part of the study, | return to the decision tapaup’ build and build defect
resolution into a ‘BuildAndTestAndFixDefect®lethod and consider the situation where build
defects are not resolved quickly. For this caBmduct Engineerand Contextmodels remain
unchanged, but now the ‘IntegratioActivity is separated into ‘Build’ and ‘ResolveDefects’
Activities, with associatedMethods‘BuildAndUnitTest’ and ‘FixBuildProblems’. ThesAc-
tivities iterate until the build is ‘clean’ i.e. we have a ‘local’ isgion. | illustrate this case
with both sets ofEngineeri.e. those with high and low ‘Technical Skills’ and ‘Produtea
Knowledge'.

| reproduce Figure 8.10 from Section 8.2.3 below in Figudes8.

Product Engineer
Definition |Source Integration Packaged
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Codelntegrate 7 1056 275222962752 23627522067151 9
FunctionalTest 711562754209 6275423 627542267519
Finish 71156275429 6275423627542 2 89519

Figure 8.16: XP process iteration

Labels along the top represent the modelsRopductand Engineerand labels on the ver-
tical axis represent XP Practices. The values in the talpectiealues for the model attributes
after implementation of the Practices.

In Figure 8.17, | show a possible alternative outcome whenstarting values foEngi-
neer‘'SubjectAreaKnowledge’ and ‘TechnicalSkills’ are chaddeom ‘5’ to ‘1’ and ‘5’ to ‘2’,
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Product Engineer
Definition |Source Integration Packaged
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Figure 8.17: XP - Engineers with low skill levels

respectively. In the new scenario, The result of the ‘PaigPamming’ Practice (row 4) is an
increased ‘Infrastructure’ (from 3-8), ‘RemainingDefdifrom 5-9) and ‘Complexity’ (from
5-9). ‘Refactoring’ and ‘Collective Ownership’ do not ingue the situation, because of the
low technical skills. These skills do not improve throughthe iteration, because there are no
developers who are highly skilled to act as mentors. Howe@eibjectAreaKnowledge’ has
increased. The high ‘Infrastructure’ and code ‘Complexitse ‘invisible’, as ‘Stories’ have
been implemented as required and defects found at ‘Furatiiest’ are reasonable in number.
The result of the iteration is a code base that is complex gedl/Ito cause velocity to de-
crease in subsequent iterations. Engineers are unawargy gdfrablem and so ‘Satisfaction’
and ‘Confidence’ are high.

I now consider the possibility that build defects are nobhesd immediately. Such a sit-
uation may occur in a number of contexts. The XP team mightprma two persons only,
one experienced and one inexperienced, and the more expedief the two is sick. The team
might be located in different locations and problems in thenmunications link may occur.
To capture these situations KiTe, it is helpful to decompose the ‘BuildAndUnitTestAndFix-
Problems’Methodinto two Methods ‘BuildAndUnitTest’ and ‘FixBuildProblems’. These are
applied iteratively until build defects are resolved. Thisdel enables us to examine where
in the process possible bottlenecks may occur. For exaripler ContextModelconsiders
attributes such as ‘experience’ and ‘communication’ to beetevance, and ou€Contextis
‘only one experienced engineer’ and ‘automated integnagistem’, it is likely that ‘BuildAn-
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dUnitTest’ will expose little risk but ‘FixBuildProblemss risky. On the other hand, if our
Contextis ‘developers in different locations’, ‘communicatiorsannels of poor quality’ and

‘automated integration system’, then ‘BuildAndUnitTeist’seen to be of high risk due to the
possibility of the remote build being unavailable.

Discussion

In the first case above, | illustrated an extreme scenarigderao both show that capture of
such a scenario is straightforward and expose some pogsibiidems with the XP process
model. The attribute values were selected to serve thegmges and were not based on any
formal ContextModelrather were based on a subjective ‘what if’ reasoning.

In the second case also, | selected scenarios specificaliglillustrate how different
Contextand Methodselection might be applied when modellingKinTe.

The key idea from this Section is that the ability to captMethodsat different levels of
granularity and different attributes f@ontext Engineerand Productis necessary if we are to
model the large range of possibilities foRealisedProcess

8.2.11 Study A-H: Miscellaneous process elements

In this Section, | show how some miscellaneous process elismeuld be represented KiTe.

A: Developers have a discussion

Productis not changed and ddethodaccepts alProductstates and effects no changeRmd-
uct Techniquess ‘Discussion’ with Technique CapabilitySpetaming the relevant attributes,
for example, ‘Subject Area Knowledge’, ‘Product Knowleggéava'.

The model forEngineerincludes skill values for relevant attributes. These acedased ac-
cording toContextModelfor example, all values increase, with values for low gkilengineers
increasing more.

B: Coding standards

Contextincludes an attribute relating to the existence of codiagaards ContextModeluses
this as input when ‘matchingzngineer Techniqueand Product CapabilitySpecHd Technique
relates to coding, it is likely that the size Bfoducttransformation due t@echniquewill be
higher as a result of the coding support.
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C: Add developers late to a project

The result depends upon the details@dntextModel For example, it might be thaton-
textModel returns a higher value if the addition of the new engineecseses the general
experience and skill level. It might return a lower valuehétaddition takes the number of
engineers above some limit that is believed to be an uppérfimeffective communications.

D: Developers happier and more confident doing XP

‘Happiness’ and ‘Confidence’ may be included&sgineerattributes, Technique XP’ an at-
tribute that denotes working in pairs ai@bntextModelinclude a matching that working in
pairs makes people happier etc. A more sophisticated mougitnmvolve Engineercharac-
teristics, for example, ‘likes working with people’ beingciuded andrechnique Capability
‘PairProgramming’ including ‘People work together’. Thiuld produce a different result
from ContextModeldepending upoikngineerattribute value.

E: Parallel tasks

In a ‘real’ project, parallel tasks are always followed byrsokind of merging procedure. For
tasks that relate to different areas of the product, theqooe may be conceptual only. For
example, outputs of ‘Create test plans’ and ‘Design’ may leeged simply by placing outputs
in a target location. Possibilities include no conflicte.(i.changes to different parts of the
product that do not affect each other), no apparent confhcitsproblems because of couplings
between the changed parts of the product and conflict i.e.ptba@uct has been changed in
the same place by more than one task. It is the job of the ngmiocedure to resolve any
problems.

One way to represent the aboveKiile is to remain true to real life and apply a ‘Merge’
Activity after the parallelActivities have been applied one after the othBrchniquemight be
‘PutinLocation’ or ‘Automated’ if no conflicts are expected ‘ResolveConflicts’ if they are.
For Method ‘MergeCode’,Method precondition would be the existence 8burceand results
are changedource As always,ContextModel'matches’ Engineerskills with the Technique
requirements to modify the effectiveness of the bésehniquei.e. how well the merging is
carried out.

F: Advertise milestone release contents to open source corumity

In KiTe, each project is associated with a sinflealisedProcesand eachRealisedProcess
associated with a singleroductidentifier A delivery to any stakeholder implies some kind of
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versioning i.e. each delivery is associated with a diffefeealisedProcesdA delivery is the
final state for theRealisedProcess

G: Project retrospective

Productis not changed and sblethod accepts allProductstates and effects no change to
Product Techniques ‘Retrospective’ withTechnique CapabilitySpancluding attributes such
as ‘Brainstorming’ or ‘DiscussingProblems’.

ContextModelmight represent a belief that talking about problems malkeple happier.
The model forEngineerincludes, for example, ‘SatisfactionContextModelincreases this as
a result ofTechniqueBrainstorming’ or ‘DiscussingProblems’.

H: Technology transfer

This is similar to A.Productis not changed and sdethod accepts alProductstates and ef-
fects no change tBroduct Techniqueas ‘TechnologyTransfer witifechnique CapabilitySpec
naming the relevant attributes, for example, ‘Computeeplobny’.

The model forEngineerincludes skill values for relevant attributes. These aoedased
according toContextModelfor example, only values for low skilled engineers inceeas

|: Disturb a task

RealisedProcesis defined as a state machine and the events that cause cloasigées are
defined as ‘StartActivity’, ‘ChangeContext’ and ‘EndAdti/ (see Section 7.2.14). Method
is disturbed by ‘ChangeContext’ and the resulting stateghallustrated in Figure 7.6.

8.3 Compare Processes and Process Models

8.3.1 Study 11: Developer collaboration

In Sections 8.2.4, 8.2.5, 8.2.6 and 8.2.9, | presented fiugliess involving pairs of develop-
ers creating code. Two studies [120, 169] present resudtsitidicate that developers work-
ing collaboratively produce better quality code with veityld loss in productivity. Another

study [109] uses this result in a model for simulating XP ectg. A fourth shows that col-
laboration is about one quarter as productive as solo pmagrag and concludes that it is pair
programming’s role-based protocol that is the cause of twgesults [126]. However, the
second study [120] produces good resultsdolfaboration(not pair programming) and this is
in direct contrast with results of the last study.
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In this Section, | show how representationkime provides a means of knowing when it is
appropriate to compare studies and a mechanism for effectimparison. In order to illustrate
comparison, | first ‘fix’ some of the ambiguities and assumpiuncovered during the attempt
to represent the studies (see Sections 8.2.4, 8.2.5, $1@.8.4.9). | first focus oMethodand
illustrate the results o¥lethodon Productfor the four studies in Figure 8.18.
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Figure 8.18: Case study overview

For each pair of diagrams, the ‘before’ state is depictedhendft and the ‘after’ state on the
right. Each x-axis is divided into six — these are fi@duct Partitionsin eachPartition there
are three bars. The left blue bar depicts the value ofbetentattributes for thePartition the
middle green bar the value for tifguality attributes and the right red bar the values of Guest
attributes.

For the Williams study, | apply documented storiesvéethodinputs and code executables
as deliverables. Integrations are not applicable and tisezero cost for packaging. For the
Nosek study, | assume inputs are documented requiremedtdediverables are stand-alone
executable scripts. Again, integration is not applicalrid there is zero cost for packaging.
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For the Melis study, | assume a larger product with docuntesteries as inputs and delivery
including integrated and executable code with non-zerofoosntegrating and packaging. For
the Parrish study, | assume developers worked from contpti#signs and deliverables were
source modules, built locally only i.e. not formally intatgd or packaged. | have omitted the
y-axis values. These are values faroductattributes, but in the first instance | focus on the
‘shape’ of theMethodsi.e. which Product Partitionsare involved and so the actuBroduct
attribute values are not helpful.

Comparing

The firstinteresting observation concerns the ‘shap@rotiuctfor each case. Cases 1 (Williams)
and 2 (Nosek) hav®efinitionsas inputs and result in chang&durceand Packaged Content
with zero Costapplied to the last. Case 3 (Melis) also H2e&finitionsas inputs but produces
Source Integrationand Packagegdwith someCostapplied to all three. The last case (Parrish)
hasDesignsas inputs and results iSourcedeliverables only. | immediately understand that
the Methodsfor the studies 3 and 4 are quite different to tMethodsfor the first two studies,
and so studies 3 and 4 cannot be compared with studies 1 andithagach other. Studies 1
and 2 are candidates for comparison and aggregation adetteodsfor both are compatible.
The key point is that, iMethodschangeProductin different ways, for example, one produces
Sourceand another produceource, IntegratiorandPackagedt is not appropriate to directly
compare studies based on them.

If Methodsare compatible, | next consid&roduct The Williams study measures comple-
tion times and successful test cases as percentages anddblke $udy measures ‘functionality’
and ‘readability’ on a number scale. Tiquality aspect appears to be quite different in each
case. Is it appropriate to consid@uality metric ‘readability’ to be synonymous with ‘percent-
age of test cases passed’ for the purpose of comparisonwbhig seem to be a hypothesis
for study in its own right.

Once | have compatibility in botRroductand Method | then consideContextModel The
ContextModelfor a study represents what the researcher believes abotextaelated con-
founding factors i.e. context factors that might affectutess It is thus a vehicle for com-
municating with other researchers what was considered drat was accounted for. The
Williams study holds constarfEngineercapability and expertise and size of task i.e. works
with a ContextModelthat contains these factors only. The NosantextModelncludes and
holds constant experience, motivation, size of task andlitaity with environment and tools.
Experience levels in the two studies were different. Eveveifwere sure that the sanwethod
applied in both studies, it is quite premature to assumeathailar performance outcome is the
result of theMethod Techniquenly, as | have no idea what might be the effects of capability
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versus experience, fixed versus different motivation Evetic.

To recap, if | am to aggregate and compare results from diffestudies, | must work with
an abstraction that helps me know when it is appropriate nopewe directly and when other,
more sophisticated, mechanisms for evidence accumulatemdicated [131, 133]. Using the
KiTe abstraction, | am able to check each possible problem araacontrolled and orderly
way.

8.4 Discussion

In this Chapter, | have discussed the use of an approachlejementatiorfor collating and
presenting evidence, and have introduced different kim@widence to support the thesis that
the KiTe framework meets the objectives identified in Section 5.3.fhie attempt to provide
this evidence has brought to light some interesting points.

The first relates to the importance of being able to seWethodsat different granularities,
in order that we might uncover possible assumptions wherettiod a process. For example,
in Section 8.2.3 | first applied Method ‘BuildAndUnitTestAndFixProblems’, which appears
to be compliant with descriptions in the XP literature, ameht observed that greater insight into
possible assumptions might be gained if Method is decomposed into ‘BuildAndUnitTest’
and ‘FixBuildProblems’. A similar situation occurred in&®@n 8.2.1, where | noted that the
many possibilities for defect resolution policy are simpbt noticed if a large-grained ‘Design’
Methodis applied and we need to be able to drill down more deeply ifaweeto understand
what is really going on. The selection of appropridethodsis not directly supported by
the use ofKiTe — rather the modeller must apply his or her own thought preeesind real-
life experience. However, as a result of the definition d&fide Method the ability to work
at any granularity is a feature &fiTe and so, once a particular process has been captured,
experimentation with different granularities may be cadrout.

The second point relates to the importance of selecting proppate model foProduct
Choosing a model that is too restrictive results in studylteshat appear positive but, in fact,
do not tell the whole story. For example, the XP researchersiency to examine cost in
terms of ‘person hours’, presumably because iterationfixaé in length, leads to a failure to
more closely examine the integration task. Researchewsresthat build defects are resolved
‘immediately’, but this is certainly not the case in manyjpots. For example, if the product
is large and complex, or constituent parts developed irwdifft timezones, it is possible that
the build might remain ‘broken’ for several days. A consatem of a ‘Duration’ attribute
might very well have brought such possibilities to light. @furse, the proponents of XP
claim that, by ‘growing’ the product slowly and integratifigquently, the risk is minimal.
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However, if we are to understand how to apply various Prastin different contexts, we must
decouple the Practices and examine each separately andeximg how a Practice might affect
different kinds of product-related attributes is part astexamination. AgainKiTe does not
directly support such efforts, but does so indirectly byciiog researchers to give consideration
to attributes forProduct
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In Chapter 5, | made a case for a return to the search for adtiemrmodel of the software
process and in Chapter 7, | proposed a candidate frameWwork, One interesting side-effect
of applying a model is that the model may be used to solve problother that those for which
it was created. An example of this is illustrated in Chapten 8vhich | showed that the attempt
to capture various processes and process models resudggasure of many assumptions.

Another example of this kind of side-effect relates to thiejsct of process risk. In Section
2.3, | discussed the need to move discussion focus away fiertevel of ‘agile versus tradi-
tional’ and towards the characteristics of the varioustsmiLelements that make up any process.
| suggested that such a focus might facilitate the identiboeof risk conditions inherent in the
elements and support the building of process-specific rigkles.

In this Chapter, | expand on this idea and show how a framewock asKiTe might be
applied as an aid to risk identification. In the next Secti@verview the area of project risk and
in Section 9.2, | show houiTe is used to identify risk conditions inherent in an XP process

9.1 Overview of Risk Management

The idea of managing project risks is not new. The Projectddament Institute’s “Guide to the
Project Management Body of Knowledge (PMBOK Guide)” [13%]ludes risk management as
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one of nine key knowledge areas. The Guide defines risk mamamgeas “. . . the systematic pro-
cess of identifying, analysing, and responding to projestt’iwith the aim of “. .. minimizing
the probability and consequences of adverse events tocproigectives.” Project risk has
origins in the uncertainty that is present in all projeats the possibility of occurrence of un-
planned or uncertain events or conditions that have a rnvegeffiect on project outcomes. The
PMBOK Guide cites six major risk processes, including Rdritification, Analysis and Re-
sponse Planning. Risk identification is to a large extenjesiive in nature. The Guide suggests
a number of techniques, for example, brainstorming andnagians analysis, along with a list
of risk categories appropriate to the application areaef@mple, technical, organisational,
project management risks.

The Software Engineering Institute (SEI) supports a taroyxpased approach to risk iden-
tification [26]. Possible risks are categorised as ‘Produmgineering’, ‘Development Envi-
ronment’ and ‘Program Constraints’. Each category costaitist of factors and an associ-
ated questionnaire contains a numbered list of questiogsiidance for risk elicitation. The
SEI also approaches the issue of software project risk bygsiog a construct for describing
risks [56]. A software-dependent development effort igeepnted as a complex system with
an n-dimensional space, with each dimension relating t@gegrr characteristic that is agreed
to be of relevance. Cited examples of characteristics declprogram staff size’, ‘number of
lines of code’, ‘requirements stability’ and ‘developmemtdel’. The project at any given time
is represented as a fuzzy point in the space, and risk is diewe potential state-space tran-
sition from an acceptable state to an unacceptable one kAsrtbus expressed as a construct,
the Condition-Transition-Consequence (CTC) Constraninprising a description of the initial
state (the “condition”), the potential change to the systira “transition”) and the potential fi-
nal state (the “consequence”). One of the consequencesg afftise CTC construct is a change
in emphasis from consideration of ‘what might happen’ toatvare the system conditions that
might equate to a risk’. A cited example is ‘the graphicalrusgerface (GUI) must be coded
using X Windows and we do not have expertise in X Windows’ (@itan); ‘there is a con-
cern that the GUI code will be late and inefficient’ (Consatie). The emphasis is away from
root cause analysis of possible impact and towards coragiderof project current conditions
coupled with concerns about these conditions.

Indirectly related research is provided by Curtis et. al.aassult of a field study of the
software process for large systems [36]. The authors peoadsehavioural model of the soft-
ware development process and present the results of thgisttetms of the model. The main
findings of the study are that project problems are overwimgiy caused by a small number
of human-related factors. Curtis summarises these in apafger as relating to lack of shared
vision and domain knowledge, requirements uncertaintyissues of communication [34] and
presents a case for a ‘behavioural model’ of the softwareldewment process that gives due
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weight to the importance of the human element to projectesgc

The approaches presented above provide different kindsidégce for identifying project
risks. The PMI processes for risk identification includelaggpion of techniques, such as brain-
storming, and use of tools, such as categories. This appisapplicable to all projects. The
SEI approach involves examination of current project coowls for conditions that might con-
tribute to unwanted project states. Identification is sufgabby a checklist, but this checklist is
really aimed at large, traditional projects. For examplestof the questions under ‘code and
unit test’ assume completed designs. The Curtis field stugparted by other research [157]
raises the possibility that a small number of factors créaeyreatest risk and exposes the dan-
ger in an over-emphasis on the technological aspects ofjagbrd he implication is that risk
identification would be better based on a more ‘behavioymaltess model.

The process modelling frameworK|Te, is an example of a behavioural model of the soft-
ware development process in that both human and technalagpects are accounted for. As
it represents a model of ‘how things are’, it also providesaaework for identifying project
conditions that may be used to estabi3hRCrisk constructs.

From a project perspective, risk management is concerngtie possibility of failing to
meet project objectives. IKiTe, the project product-related objectives, for example sjgec
values relating to quality and cost, are captured in@walsBenchmarkThe consequence of
any risk that eventuates equates to a failure of the deliMereduct to reach its expected values
as defined in th&oalsBenchmarkAttribute values are achieved as a result of RealisedPro-
cessthat is implemented i.e. to application ifTe Activities. If the GoalsBenchmarkhanges
during the project as a result of an agreement with stakenslwd, for example, lower quality
expectations or include additional content, some exisisig may disappear or some new ones
may appear.

| note that risk is also present if the meaning dfraductattribute is unclear, or the attribute
is an inappropriate measure for the factor-of-interestr réasons of practicality, | assume
measurement risks are minimal.

| can thus useiTe to identify project risks by first capturing a processKive and then
asking specific questions about the captured process bideoimg) each framework component
in turn. This is equivalent to identifying th€ TC conditionsfor the elements. A captured
process comprises a numberAgtivities, each of which comprises fdethod its associated
Techniqueand aContextModel comprisingEngineerand Context | may considelActivities
at any level of granularity i.e. | may view the whole processaahigh-levelActivity, then
view each next-leveActivity, and so on. When | perform a risk assessment, | first condéer t
process-leveActivity and then eacl\ctivity at the next level. | may then further decompose
Activities if required. For eack\ctivity | ask the relevant questions. | may then wish to consider
iterations, as these often serve to reduce risk factors.qliestions are specific and reflect the
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underlyingKiTe model. For example, | first consider the precondition exgem for Method
and ask if the required artifacts are available and of sefficquality. Questions relating to
Techniquenvolve clarity of definition and availability and qualityf cequired resources.

As illustration, | carry out an initial assessment of a pcoghat will use a custom iterative
process to create software that must run securely on a nuailgifferent platforms. The
Activity is the RealisedProcessself. The steps, with questions to be asked and posskie ri
conditions for the process-level evaluation, are:

1. Methodprecondition:Are the relevant product artifacts available and of sufiitiqual-
ity? Input to theRealisedProcess the GoalsBenchmarkRisk condition might be ‘se-
curity attributes not clearly defined or agreed’.

2. Method Are the tools required to transform inputs to outputs avalgsand of sufficient
quality? ‘Unable to procure required development platforms and@eafit number of test
rgs’.

3. Technique Is the Technique sufficiently defined and available and ayaired resources
available and of sufficient qualityProcess definition unavailable or unclear’.

4. Engineers Is there a skill match between engineers and relevant priodditacts and
between engineers and techniqueb® engineers with experience in security software
or Linux’; ‘engineers new to process’.

5. Contexts- certainty: Are engineers certain about what they are doiri@bjectives and
scope not clearly captured BoalsBenchmark ‘communications issues on large, dis-
tributed project’.

6. Contexts support: Are engineers supported in what they are doirilyifanagement not

fully supportive because of pending restructure’; ‘pogrmart systems because relatively
new company’.

| note that application to thRealisedProces®gnds to expose lack of clarity in scope and
objectives ethodPrecondition) RealisedProceg$/ethodand Techniqué, manpower issues
(Engineey, clarity of vision and potential communications iSsu€sftex).

I now evaluate a single inspectidgictivity that involves reviewing design documents for
design correctness and producing review reports. A compadg on-line review system is
used. A formal inspectioffechniqueis to be used with four reviewers from the development
group and an ‘inspection facilitator’ from a remote quatigpartment.

1. Methodprecondition:Are the relevant product artifacts available and of sufiitiqual-
ity? For the example, inputs are design documents and so risktmyrsdcould be ‘de-
signs unavailable’ and ‘designs not ready for inspection’.
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2. Method Are the tools required to transform inputs to outputs avalgsand of sufficient
quality? For the example, outputs are design review artifacts. Risklitions could be
‘on-line review system unavailable’ and ‘on-line reviewsssm buggy’.

3. Technique Is the Technique sufficiently defined and available and ayaired resources
available and of sufficient qualityRor the example, risks conditions could be ‘procedure
definition unavailable’, ‘procedure definition unclearhspector might not be available’,
‘inspector inexperienced’, ‘no office available’ and ‘o#fitbo small and dark’.

4. Engineer Is there a skill match between engineers and relevant proattifacts and be-
tween engineers and techniquds® the example, the inp#troductartifacts are designs
and so risk conditions could be ‘skills mismatch betweemergers and design language’
and ‘skills mismatch between reviewers and formal reviescpdure’.

5. Context- certainty: Are engineers certain about what they are doing®@r the exam-
ple, risk conditions could be ‘design documents incompbeteo not fully capture re-
quirements’, ‘poor communications between reviewersipipcommunications between
reviewers and inspector’.

6. Context- support: Are engineers supported in what they are doing@r the example,
risk conditions could be ‘management not supportive’ arabftool support’.

In the above risk identification example, the questiongiredado Engineerand Contextare
specific in that they address skills, certainty and suppbinese questions reflect the use of a
particular ContextModel one that is based on the stated characteristics. | usethtidel be-
cause it encapsulates the most persistent ideas froméehatlite. Of course, once more sound
evidence is accumulated, the questions will change to tefleqgreater knowledge. For exam-
ple, Acuna and Juristo’s ‘Human Competencies’ model [3p&sis personal characteristics, for
example, ‘Privateness’, are key in matchiBggineerand Techniqueand use of such a model
would result in theEngineermatching’ question having a slightly different form. | alsiote
that such a change i@ontextModelwould result in identification of different risk conditions
For example, in an XP process (see Section 9.2), an engintgesuch a ‘Privateness’ char-
acteristic would, according to Acuna and Juristo [3], hawe INegotiating Skills’ and might
thus be ill-suited to a pair programming situation.

The list of questions based @iTe elements is similar to the kinds of checklist described
at the beginning of the Section, but based on current prajeetlitions rather than possible
risk outcomes. The SEI's CTC approach is to identify propwracteristics of relevance on
a project-by-project basis. | submit that the use<ofe as a framework for organising these
characteristics may help risk engineers be more thoroudhedavant in identification.

| note that the above approach may be applied for any softpra@ess. Initial capture of
the process irKiTe requires the expertise of someone familiar witife and perhaps some
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‘real-world’ experience. However, once a process is captuthe questions are the same for
any specific instance of the process i.e. the risk assesgmecdss is generic. | also note
that the questions relating tengineerand Contextreflect a particulaContextModeli.e. one
that represents the belief that ‘skills’, ‘certainty’ arglipport’ are key for a successful project
outcome. As the industry accumulates evidence in the afeBagineerand Contextfactors,

an appropriate&ContextModelmay be inserted into thkiTe framework and a set of questions
introduced that reflect the new understanding. The aim igoafse, that risk identification
identifies those factors that are known to have greatestdtmpa those represented by the
ContextModel

9.2 Risksin XP Process

We now analyse the XP process as capturdgd e with a view to uncovering areas of potential
risk in such a process [85]. Steps and questions are asloedani Section 9. The first analysis
views the whole XP process as Autivity. The associateMethodrequires asoalsBenchmark
as input and outputs a developfdoduct This transformation is constrained to follow XP
Practices i.e. th@echniques XP.

Project start

1. Methodprecondition DeliveryBenchmark Are the relevant product artifacts available
and of sufficient qualityObjectives and scope are discussed during the PlanningGame
and are generally not available at project start. This ¢tutes a risk condition, as there
is no agreed ‘understanding’ between developer and custalpoeit expectations.

2. Method Are the tools required to transform inputs to outputs avalgsand of sufficient
guality? As objectives have not been defined, it is not possible taifyeadditional tools,
for example special test rigs, that might be required.

3. Technique Is the Technique sufficiently defined and available and ayaired resources
available and of sufficient qualityPhere is a risk condition if there is any lack of clarity
about any of the XP Practices. There is a risk condition iluneml resources are not
understood or available, for example, the specific seatirapgements required for Pair
Programming, common wall space, etc. The X&chniquerequires the participation
of a customer representative (external resource) as ridigtor the lack of pre-defined
scope definition. There is a risk condition if there is anyartainty about the authority,
capability or availability of the customer representative

4. Engineer Is there a skill match between engineers and relevant prodriacts and
between engineers and techniques®scope and objectives have not been defined, it is
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not possible to identify special engineer skills that migatrequired. It is possible that
a skills mis-match will occur. A second risk condition wowdcur if engineers believe
they understand XP but do not.

5. Context- certainty: Are engineers certain about what they are doingRere is uncer-
tainty about scope and requirements.

6. Context- support: Are engineers supported in what they are doingrsk conditions
would be failure of management to understand the XP paradiggiriack of appropriate
environments to support development.

Many of the above risk conditions are similar to those thaghhbe identified for other
kinds of process, for example, the lack of management stippdrdevelopment environments
and lack of clarity about the process. Risk conditions dpetm XP projects include a lack of
up-front agreement about scope and objectives, the nesgdaific physical resources and the
need for customer participation. Consequences woulddedick of knowledge about required
resources and developer skills, an inability to carry oetghocess and dependence upon the
authority, capability and availability of the customer regentative.

9.2.1 Single iteration

An iteration comprises a single ‘Planningctivity, several cycles of ‘PairProgramming’ and
‘Integration’ Activities and a single ‘CustomerTesActivity. We identify risk conditions for
eachActivity .

Planning

Methodis ‘PlanningGame’.Techniquesre ‘Metaphor’, ‘SmallReleases’ and ‘40 Hour Week'.

1. Method (PlanningGame) precondition: There is no preconditionPoaductand so no
risk condition.

2. Method Methodoutputs are informally captured Stories. Risks relate tlalility and
guality of tools required to produce these i.e. availapiit notepads, pens and a suitable
wall. Risk conditions would include ‘paperless office’, ‘@appropriate common wall
area’ and ‘common wall area also used for other purposes’.

3. Technique(Metaphor, SmallReleases): ‘Metaphor’ is a somewhat absidea i.e. it is
not clearly defined at all. However the customer represepta required to participate
and create a suitable Metaphor. Risk conditions relates@Vailability and understand-
ing of the Metaphor concept and the required application.alfeleases ensures that
any decisions made in the form of Stories are small in numbdrumlikely to change
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i.e. Method outputs are certain. A perceived lack of progress may alsergenfrom
SmallReleases.

4. Engineer Risk conditions occur when developers do not have the redyrroduct-
related skills (Story capture) or do not understand thevaglee of the Metaphofech-
nique Risk conditions include ‘developers unskilled at captgrihe essence of Stories
and ‘developers unfamiliar with the idea of shared vision’.

5. Context- certainty: Certainty relates to shared vision and domaiovkedge, require-
ments certainty and communications. As scope and objachigge not been defined,
risk conditions are ‘customer is unavailable’, ‘customees not have required knowl-
edge’, ‘customer does not have product vision’, ‘custonmer developers have different
understanding of Metaphor’. However, any Stories agreedixed and certain.

6. Contexts- support: Again, risk conditions occur when there is lacknaihagement sup-
port.

Risk conditions inherent in the ‘Planningctivity relate to availability of appropriate space
for Stories and capability of customer.

PairProgramming

Method is ‘DesignCodeAndUnitTest’. Techniquesare ‘PairProgramming’, ‘SimpleDesign’,
‘Metaphor’, ‘Refactor’, ‘CollectiveOwnership’, ‘Codirfstandards’, ‘OnSiteCustomer’ and ‘Test-
FirstDesign’.

1. Method (DesignCodeAndUnitTest) precondition: Risks relate tailability and quality
of inputs (Stories). Risk conditions are ‘Stories and ptigations not available where
expected’ and ‘Stories or prioritisations unclear’.

2. Method Risks relate to availability and quality of tools requirex produce outputs.
Outputs are unit test and source code. Risk conditionsrédavailability and quality of
development environment.

3. Technique Risk conditions occur when any of tiiechniquess not clearly defined or
when required resources are unavailable. Examples of os#litons include ‘physical
layout not conducive to ‘PairProgramming’, ‘source cohtigstem doesn’t support free
access to all code’, ‘coding standards unavailable or odaté’, ‘customer unavailable
for problem solution’.

4. Engineer Risk conditions occur when there is a skill mis-match betmveevelopers
and Productand developers an@echnique If the TechniquesPairProgramming’ and
‘SimpleDesign’ are not carried out properly, the resultocagle may implement Stories
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incorrectly, be badly structured or contain excess deféictRefactor’ is badly executed,

code will be badly structured. If at the same time ‘Collee@wnership’ either does not
happen, or is carried out by unskilled developers, coderaffiain badly structured. The
risk conditions occur if the developers are unskilled orematessure. ‘OnSiteCustomer’
and ‘Metaphor’ mitigate incorrect implementation of Sesrionly if developers ask for
help or understand ‘Metaphor’ concept.

. Context- certainty: Risk conditions occur when developers havernmect understanding

(and so do not ask the customer) or when the customer is ualalai Both conditions
will result in incorrect implementation of Stories.

. Context- support: Developers are supported by the presence of Hterner representa-

tive. Risk conditions occur when he is not available.

Risk conditions inherent in the ‘PairProgrammindctivity relate to physical layout and

source control setup, unskilled developers, customeladibiy and understanding of Metaphor.

Integration

Methodis ‘BuildAndUnitTestAndFixProblems’Method outputs are integrated and packaged
Stories. Therechniquesre ‘DeveloperBuilds’, immediateProblemFix’ and ‘Intage ToPack-
aged’.

1.

Method precondition: Risks relate to availability and quality ofde and unit tests. Risk
conditions are ‘Code untested or likely to break the build'.

. Method Outputs include integrated and packaged Stories. Riskt®r® availability and

quality of tools required to produce outputs i.e. build eomiment.

Technique Risk conditions relate to availability and quality of reapad resources. As
developers themselves perform the integration and resigfexts, the resources include
a build setup that enables developers to easily work on-fdima. Thelntegrate ToPack-
aged Techniqueaptures the expectation that there is no separate taskaedo package
integrated modules (see Section 8.2.3). There is a riskitondf this is not feasible, for
example, if packaging results in a large overhead due todhd for copying of large data
files, inclusion of user documents, stamping of user integawith build numbers, etc.
Engineer Risk conditions occur when there is a skill mis-match wittoductand Tech-
niquesi.e. if the developers are unskilled with the use of the ba#étup or unable to
isolate and quickly resolve build problems.

. Context- certainty: Risk conditions occur when there is any undetya As developers

carry out the whole procedure, there is little risk othenthi@at relating to confidence in
the build setup.
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6. Context- support: A risk conditions occurs if developers are notpguifed in immedi-
ately resolving defects found. No specific risk.

Risk conditions inherent in the ‘IntegratioActivity relate to developers failing to imme-
diately resolve problems i.e. to developer capability, gheport provided by the build environ-
ment and the ability to package the application with minioxadrhead.

CustomerTest

Methodis FunctionalTesting

1. Methodprecondition: Risks relate to availability and quality nfegrated code.

2. Method Risks relate to availability and quality of tools requiredproduce outputs. As
the customer is responsible for test programs and rigse thiesout of the control of the
development group. This is a high-risk situation.

3. Technique Inapplicable.

4. Engineer Inapplicable.

5. Context- certainty: Risk condition would involve some mis-comnation between de-
velopers and customers i.e. if customer tests test songedifierent to what is delivered.

6. Context- support: Inapplicable.

Risk conditions inherent in ‘FunctionalTesting’ relatectesstomer ability to implement high
guality tests and understanding between customer andagersl

Iteration summary

Major risk conditions for an XP iteration include a physisatup not appropriate for an XP pro-
cess, a dependence upon the authority, capability anchauéy of the customer representative,
inadequate customer testing, developers who lack the ppate skills or are under pressure
and the infeasibility of packaging the application with mial overhead. The consequences of
these risks are poor communication (physical setup anaweestavailability), lack of clarity
about scope and objectives (customer authority, capglaititt availability), untested product
(customer testing), badly structured code containing noefigcts and incorrectly implemented
Stories (developer skills and pressure) and slow progcesg(oper skills and packaging).

9.2.2 Process

XP is a highly iterative process and it is claimed that thsdes mitigation for inherent risks.
There are two kinds of iteration. The first is captured in t@eritinuous Integration’ Practice
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the second in the ‘Small Releases’ Practice. These Practiting with ‘40-Hour Week’ appear
in the ‘Process’ column of Table 8.6. We now examine thesetees with view to identifying
new risk conditions.

40-Hour Week

This Practice really defines a resourcing policy and thertlaithat policy application reduces
pressure on developers. The risk condition of ‘developesgure’ identified in Section 9.2.1 is
removed.

Continuous Integration

This Practice involves developers integrating code evemple of hours. In ouKiTe represen-
tation, the result is to effectively tightly-couple the IFRrogramming’ and ‘IntegratiorActiv-
ities. Remembering that we are able to vidativites at any level of granularity, we introduce a
‘PairProgramAndIntegrateéActivity i.e. we now have a ‘PlanningGamactivity followed by

a number of ‘PairProgramAndIintegratéctivities and finally a single ‘CustomerTes&ctiv-
ity. The relatedVlethod is ‘DesignCodeUnitTestBuildAndUnitTestAndFixProblerasd the
Techniguesow include an additional ‘Build2HourlyTechnique

1. Methodprecondition: As foPairProgramming
2. Method As for ‘PairProgramming’ and ‘Integration’.

3. Technique As for ‘PairProgramming’ and ‘Integration’. Additionailsks that occur as
a result of the ‘Build2Hourly’ Techniquerelate to the resources required to effect the
Technique These include a build setup that supports a ‘build-antd-dgsle of less than
two hours. A risk condition occurs if the setup is too slow Dit iis not possible to
complete integration in the required timeframe.

4. Engineer As for ‘PairProgramming’ and ‘Integration’ and includiegnditions relating
to developers’ failure to understand the requirement.

5. Context- certainty: As for ‘PairProgramming’ and ‘Integration’.

6. Context- support: As for ‘PairProgramming’ and ‘Integration’.

Risk conditions inherent in the ‘Continuousintegratidativity relate to the ability to com-
plete the integration in the required timeframe. Possiblesequences of this risk are slow
progress and increased defect rate due to the inability\a#ldpers to submit Stories immedi-
ately on completion.
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Identifying Process Risks

Small Releases

This Practice captures a policy of defining only a small amadimvork (humber of Stories) at
a time. One of the aims is to identify any misunderstandimgsdefects before these become
embedded in the application. The single iteration of ‘Piagh the PairProgrammingAndin-
tegratecycle and ‘CustomerTest’ are repeated many times. No né8 gee inherent in the
‘SmallReleases’ policy.

9.2.3 Discussion

Risk conditions identified above that are inherent in thdiagfion of an XP process are:

e Lack of up-front knowledge about required resources aneldeer skills.

Dependence upon the authority, capability and availgtolithe customer representative.

Physical setup not appropriate for an XP process.

Developers who lack the appropriate skills.

Inability to complete build-and-test in under two hours.

The non-feasibility of packaging the application with nmral overhead.

Inability of the customer to provide good tests.

Some of the above are acknowledged by Beck, who states XR fsHrwall-to-medium”
projects and “it would not be possible to work in this styl&integration took a couple of
hours [15]. However, with the latter, the implication isthaesult of the Continuous Integration
Practice combined with Refactoring is that only small nurstzé modules will be built at any
one time and so the 2-hour goal is achievable. This may warknfany projects, but there
are also many projects for whom the expectation is that esliwill be based on a full build,
or where the packaging requirement is time-consuming (tangle, user documents must be
included, deliverables must be build-stamped). ‘Pure’ X&/mot be a suitable approach for
such projects and in fact some current research considerschextend XP to address issues
relevant to large systems [101].
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Evaluation

| have proposed a modd{jTe, and claimed that the model is holistic and based on undwefsta
ing. In this Chapter, | evaluate this dissertation in théoteing way. | first checkKiTe for
compliance with the properties defined in Chapter 6. Thespasties describe various process,
model and real-world characteristics that are desiraldevaay be used as criteria against which
to judge any candidate model. Satisfaction of the critertaviples some measure of confidence
that the proposed model will successfully represent daiffekinds of process and real world sit-
uations and will solve some problems exhibited by existiragpss models. | then confirm that
KiTe provides a solution that solves some of the problems | urreoMi@ the various attempts
to model the software process in a flexible way (see Chapter 4)

| next overview the evidence presented in Chapter 8 in subtine ability of KiTe to meet
two of the objectives defined in Section 5.3.1 and discusstileagths and weaknesses of this
evidence. | finally discuss the general approach taken sndissertation and discuss strengths
and limitations with the approach and with the model.

10.1 Evaluation against Criteria

In Section 6.2, | proposed some properties that any modelglexhibit. | suggested that these
properties might be used as criteria against which to judgenalidate model. The aim is to
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provide some degree of confidence that the candidate moliladaress some of the issues with
current processes and models and thus be more likely toestickging the evidence gathering
phase. In this Section, | evaluate the properties selestedtaria and evaluati€iTe in relation
to the identified properties. | address each in turn and dttat«iTe exhibits the property.

Properties were identified from three different kinds ofreeu | first examined different
kinds of process and identified characteristics that shbaléhcluded in a holistic model. |
then examined the problems with existing predictive motleds rendered tham inappropriate
for general prediction and extracted suitable propertiésally considered some real-life situ-
ations and again extracted some characteristics. Fromthkse, | extracted a set of properties
that should be included in a suitable model (see Chapter €&alse properties have been ex-
tracted from such different sources, | am confident that ndiriye characteristics that are key
for holism and understanding have been addressed. Hovikeeapproach is ad-hoc and so it
is possible that some essential properties have been missed

| now evaluateKiTe’s ability to meet the criteria.

P1 Software processes only are represented. In particulajgat management processes as
defined ilPMBOK are not includedThere is naKiTe component for planning, schedul-
ing, risk management, scope management, etc.RdaisedProcesstate space does not
include states relating to these activities. Althougjloductmay be extended to include
attributes-of-interest to different researchers, themsion is to product-related attributes
only, not management-related attributes.

P2 Product represents all descriptions of the artifacts theg delivered to the end customer.
This includes problem descriptions, for example, requéaets, and solution descriptions,
for example, design®artitionsare pre-defined and relate to all possible descriptions of a
product.Definition attributes relate to problem descriptioAschitectureto the results of
analysis and architectural decisioi3signto product designsSourceto code, product
data, help files, text files, etdntegrationattributes relate to all build descriptions and
Packagedo descriptions of the ‘ready-to-deliver’ product.

P3 Product may be represented by a number of different meastwesxample, representation
might be ‘lines of code’ or ‘number of requirement#&roductis abstracted as a model.
The form of the model is defined but the actual attributesuitet! are not. Different
models for content, quality, cost, etc. may be used.

P4 Product may be represented by more than one measure. Fompdsampresentation might
include all of ‘number of requirements’, ‘number of defé@ad ‘number of person
hours’. This allows representation of, for example, botlaldy- and cost-related at-
tributes. Productattributes are not constrained to any set. It is expectadtoaluctwill
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be viewed as a number éferspectivesand each provides a view on different kinds of
attribute, for example, relating to quality or cost.

P5 Product attributes should be extensible in that new attelsican be includedProductis
a model and, if new attributes are required, the model maxpareled to include these.
Perspectiveprovide a convenient way of organising attributes in a mmegfai way.

P6 Processes may be represented at any level of granularityeXample, ‘create product’ or
‘carry out code inspection’Methodand Techniqueare abstracted as transformations on
Productand start and end states are not constrained in any saytransformation on
Productis thus legitimate.

P7 Task definition is unambiguous. For example, for a task gtgsit is clear what the task
changes and how it performs the chan@echniquas a definition ofProducttransforma-
tion. Because alPartitionsare involved, it is very specific about which attributes apan
Methodprovides a mechanism for comparifigchniquess Techniqueshat apply to the
sameMethod changeProductin the same way and so may be compared.

P8 A task may result in change to the humans carrying out the aasksome tasks result in
change to humans only. For example, developers become ratséexl as a result of
participation in an XP project and design discussions do e¢l@nge the productPeo-
ple who change the product are representeBngineerstates which contain attributes
that characterise the individual people, for example,|skifctivity is the component
responsible for change ®ealisedProcesstate and changes all Bfoduct Engineerand
Context Activity may apply aVlethodthat causes no changeRooduct

P9 Different beliefs about how human factors affect projedtomes may be represente@on-
textModeluses information about characteristics of engineersgesdproduct and tech-
niques to modify the changes Rroductfrom Methodsand Techniques ContextModel
is a model and its form may be selected according to the Betiethe researcher or
practitioner.

P10 Some notion of ‘readiness for delivery’ is represented daadise optional.GoalsBench-
mark captures the expected state of the product at process cioonpl€he state machine
that describefRealisedProcesisas GoalsBenchmatristates as final states, but it is not
required in the state machine representation that thetes $ta reached.

P11 The model should account for product line processes, wheragie conceptual product
is changed by several projects and projects often deliveroalyct in more than one
state. Productis modelled as a set of states in some global product state spéh all
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states particular to a specifRealisedProcessaving a commorProductidentifiethat
is unique to theRealisedProcessThis allows a product, for example, ‘MyWebApp’,
to be changed by several projects. For example, one projagthave states identified
as ‘MyWebApp Prototype’ and another as ‘MyWebApp versioh'.2] restrict aKiTe
Projectto have a singleRealisedProcesand aRealisedProces® have Productin a
single state at any given time. This means that, for progelisering, for example, both
an early adopter version and a formal version of a produngw becomes clear that the
engineers involved in the real ‘single project’ are actalbrking on twoKiTe projects
in parallel. This relates to a changedantextand corresponding change in how well the
engineers are able to complete their assigned tasks. | sthatihis provides an effective
mirror on what is actually happening and exposes poteptiailiiden’ situations.

P12 Task parallelism should be supportéthe formal model specifies th®roductmay be in

a single state at any point in time. This would indicate tretapiel Activities may not
occur. However, the model also specifies tRabductstate changes only on completion
of Activities. If the Activities result in change to different parts of the product, for exam-
ple, designs and integration tests, there is no conflict. Design’ Activity completes,
Productstate changes to reflect this and remains in this new statesante otherActiv-
ity, for example, ‘IntegrationTests’ completes. If the paglaliork affects the same part
of the product, for example, developers changing a modutkeasame time, th&iTe
representation must reflect what happens in the real workildeveloper A completes,
Productstate changes to reflect this. When developer B then conspleteneone must
decide what is the ‘real’ state é¢froduct for example, by resolving conflicts when the
module is committed to the source control system. This méaatsuntil conflicts have
been resolved, the source is in an ‘undefined’ state, botharréal world and in the
KiTe representation. A possibkiTe representation would be to implemenTechnique
that accounted for the conflict situation (for example, ‘€ddthConflict’). Such arech-
niquewould concern a transformation dfroductwith lower cost-effectiveness than for
a simple ‘Code’Technique

P13 Model should be technology-independemfiechniquerepresents details about required

technologies and is not constrained. Support for diffeteabinologies is provided via
CapabilitySpeavhich allows specification of attributes working with theheology and
matching of these witlEngineercapabilities.

P14 The model should represent the uncertain nature of the ggbg providing some way of

capturing output rangesAt presentKiTe does not possess this capability. | discuss this
in Section 10.5.
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10.2 Evaluation against Related Work

In this Section, | return to the studies presented in Chaptdrhese studies all relate in some
way to the problem of comparing and synthesising processesnpare the&iTe solution with
those presented.

| first consider process frameworks, including Spiral, OP&N RUP. | then discuss the
approaches to process tailoring proposed by Basili and Romptailoring to project goals’)
and Boehm and Turner (‘balancing agility and disciplinel)next address some simulation
models for which claims of flexibility are made. | then dissuke experimental frameworks
proposed by Kitchenham et. al., Basili et. al. and Williams al. and show howKiTe
provides support for experimentation. | finally discuss HGWe supports the representation of
the various proposed models for people-related factosarsbftware process.

One observation relevant to this Section concerns the \alddferent abstractions of the
software development process. Many abstractions arelpessid useful in different circum-
stances. However, for an abstraction that will support gan@ediction, it is crucial that the
right abstraction be applied. For many of the studies in 8#@stion, the underlying abstrac-
tion did not support such generality, resulting in the latitns and assumptions described in
Chapter 4.

10.2.1 Process frameworks

In Section 4.1, | introduced some frameworks whose purp®ge support project planners
in the selection of appropriate process elements accotdisgecific project contexts. These
were the Spiral Model, the OPEN Process and the Rationalddn#rocess (RUP). All three
frameworks provide a solution that includes both projeenping and product creation. The
planning component varies from mandatory inclusion of sadgfinition and risk management
at each phase (Spiral) to the availability of support for egutanning practices (OPEN and
RUP). Limitations of these frameworks relate to the lack oifdgnce about which software
processes to select and the lack of support for includingamuiactors whan selecting elements.
Two of the frameworks, OPEN and RUP, also are specific to Olnigogies and mandate these
technologies at all points in the software process.

For the reasons given in Section 5.3KiTe does not include direct support for project
planning. For example, models for scope and risk planniegnat included. HowevekKiTe
provides a means of predicting the outcomesPooductof different choices of software pro-
cess elements. ABroductabstracts attributes of interest relating@ontent Quality and Cost
KiTe is effectively a tool to be used during planning and risk idferation. | illustrate this
by comparing the spiral andiTe approaches. Spiral ‘objectives’, for example, ‘functiliya
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and ‘performance’, define what is the expected state of tbdymt at time of delivery. Spiral
‘constraints’ are either product-related, for examplestt and ‘schedule’, or context-related,
for example, ‘developers are inexperienced’ or ‘test safewvis out-of-date’. From &iTe
perspective, there is no difference between producteglabjectives and product-related con-
straints. Both describe what is the expected state of thdugtat time of delivery. These may
be represented in KiTe GoalsBenchmarkThe task is now to find which choice éfethod
and Techniquebrings Product'closest to’ GoalsBenchmarK observe that the results of some
Techniquesre affected by the context-related contraints (for examreptestingrechniquemay
require specific test software). KiTe, such constraints are representedCasitextattributes.
Technigueoutcomes are automatically modified depending upon thesvafiuhese attributes
and the model foContextModel Thus, because relevant project factors are already remtexs
in the KiTe model, some product-related risks are effectively accodated inKiTe’s predic-
tions.

The limitations of the studied frameworks included lack afdance for process selection,
lack of support for human factors and technology specifictiith KiTe, the restriction to a
particular technology does not exist and the human-relpdct is provided b ontextModel
KiTe Activities may be selected accordingRroductstate and chang@roductstate in a defined
way. This means that, at any point inrRealisedProcesshe selection of a ‘nextActivity is
constrained and its outcomes defined, thus providing a nmésrheor self-guidance.

10.2.2 Process tailoring

In Section 4.2, | overviewed two approaches to tailoring $béware process according to
project environments. The first is an approach proposed IsyiBad Rombach and involves
improving a company process by selecting a specific goalni@rovement, for example, de-
fect numbers, and measuring the effects on this goal wheausamethods and tools are ap-
plied [13]. The second approach is proposed by Boehm andefamd involves categorising a
project along a traditional-agile scale as a means of setgah appropriate kind of process for
the project [22]. In both cases, the aim is to select a ‘best@ss according to project contexts.
In the Basili and Rombach approach, a major limitation wasdbnstraining of the goal-
setting to a single outcome. The example in the study relateédefect data’ with another
possibility given as ‘customer satisfaction’. The use ofirgle goal is pragmatic. As the
authors point out, the data required to support tailoringosavailable and they view the ap-
proach as a way of acquiring this data by limiting the studintbude a single outcome in the
context of a single organisation. Th&Te solution encompasses this approach by allowing
consideration of a single product-related outcome cagtasan attribute oProduct It also
provides a suitable framework for accumulation of studwyitssbecausé’roductmodels may
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be extended as required. HowevKkrJe goals are product-related and so, for representation
in KiTe, an attribute such as ‘customer satisfaction’ would needetmperationalised into a
number of product-related attributes, for example, gquadind cost-related. This may represent
a limitation ofKiTe.

The second limitation in this approach involved the vaoiain the list of factors that might
affect outcomes. | noted that these covered a range of eiift&inds of factors, including some
that represent product-related goals and some that rejpresgineer characteristics. KiTe,
factors such as ‘reliability requirements’ or ‘portabjliequirements’ are captured as ‘Quality’
attributes inProductand GoalsBenchmarkBudget’ and ‘deadlines’ are also capturedried-
uct and GoalsBenchmarfattributes. ‘People factors’, for example, expertise axukeence,
are captured as attributes Bhgineern.e. in Engineer CapabilitySpecSome factors noted in
the authors’ list are captured &ontextattributes that will be ‘matched’ bgontextModelfor
example, ‘machine availability’. Some factors are not uagd directly inKiTe. For example,
‘newness to the state of the art’ would be represented as om®ie capabilities required by
Product(say, a new technology, ‘x’), to be matched up wihgineercapability (say, ‘no ex-
perience with technology ‘X”). This more specific approaohldesContextModelto provide
results based on matching and also to increasettigineeercapability value as a result of
working with technology X’. ‘Programming languages’ aranuled in the same way.

KiTe does not handle factors like ‘susceptibility to change’isTik a statement abo&rod-
uct, but not one that can be used to set goals or to matainneercapabilities with required
ones. It is a viewpoint that the likelihood of change to reguoients belongs in the area of risk
management. However, it is also a viewpoint that the inghib capture this as a product-
related attribute exposes a limitationkiTe.

Boehm and Turner examine the issues relating to ‘agile ggrk&un-driven’ process selection
and believe that tailoring can be achieved by charting ptejaccording to their ‘traditional
versus agile’ characteristics and basing risk managent@tégies on the result. The approach
is also a pragmatic one in that it provides an immediate wagppiroaching the problem of
what kind of process to use. However, there is no further stipp process selection other than
the identification of risks.

In KiTe, the ‘home’ areas for traditional and agile projects wowddépresented in various
models. For example, ‘criticality’ represents a prodwetated goal and would be modelled as a
Productattribute and ‘culture’ as &ontextattribute. TheKiTe approach would also require the
beliefs to be represented. For example, what exactly isdbece of the belief that traditional
processes are ‘better’ for criticality? Representatioiifie would require statements about
the effects of specififechniquesn a specifiProductattribute, ‘criticality’.
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10.2.3 Process modelling

In Section 4.3, | discussed a number of simulation modelsekiaibit characteristics of flexi-
bility. In this Section, | show hovKiTe addresses some of the limitations in these models.

Drappa and Ludewig created a simulation model for the pwmgroject management
training [46]. The model exhibited flexibility within ceitalimits (see Section 4.3.1). | noted
that one limitation related to the lack of scalability of tihm®odel as a result of its rule-based
nature with lack of any structure. | also noted that, becalismodel effects are captured as
rules, beliefs about all aspects of the process are buri¢deinule-base and effectively are
hidden model assumptions. The abstraction of the processiamber of rules renders model
extension impractical. For example, for the two contexfaelors mentioned, ‘team size’ and
‘developer experience’, each rule relating some task toesonicome must be repeated four
times to cover all context combinations. For three contagtdrs, eight rules will be required,
etc.

The KiTe abstraction mitigates the above problems. For examplegadsof a large num-
ber of rules that represent an outcome value according ferelift combinations of input val-
ues,KiTe appliesTechnigueseach of which contains its effect dProductoutcomes, and a
ContextModelthat ‘wraps up’ human-related factors according to a paldicbelief. New
Techniquesnay be added to the system and will automatically be availadylselection when
Productis in one of the required precondition states. New contéxtelgefs will be included in
ContextModel Scalability is addressed by the ability to work at any leMajranularity when
consideringTechniquesand by a suitable abstraction f@ontextModel

Lakey proposed a theoretical framework for project manager(see Section 4.3.2). His
framework comprises a number of building blocks and cussation is achieved by copying
and renaming blocks and providing input values appropf@tspecific projects [93]. Limita-
tions included the pre-definition of both block function &y factors for affecting outcomes.

In KiTe, tasks are abstracted Methodsand these are not constrained in how they effect
change taProduct The limitation of predefinition of block function is ovemo®. In Lakey’s
model, the key factors include factors from all of processdpct and project. Customisation
is limited to selection of values that represent the envirent for the project being modelled.
In KiTe, factors are associated with different models. For exanmpteess-related factors such
as ‘defects injected’ are inherent in tifechniquethat represents a task and project-related
factors, for example, ‘tool support’ and ‘skill level’ arepresented in models @ontextand
Engineer The relevant factors are defined BypntextModeland may be changed or extended
by substitution of a new model.

In Section 4.3.3, | overviewed a model created by Munch fat@mising software devel-
opment processes based on the concept of process pattéfijs [hote that Munch’s ‘char-
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acterization vector’ captures attributes whose valueslaaeged as a result of transformations
and his ‘goal’ is a restriction on these attribute valuese Kiife Productcaptures attributes
that are changed as a result of applicatiorM#thodsand Techniquesand theKiTe Goals-
Benchmarkis a restriction onProductvalues. It would appear that ‘characterization vector
is synonymous withProduct ‘goal’ with GoalsBenchmariand ‘attribute transformation’ with
Method Munch’s model also has a ‘quality model’ that describes seeeffect relation and
this is consistent with the idea of thk&Te Technique

Munch’s model does not appear to include an abstractionmimdrelated factors ariiTe
provides such an abstraction wiimgineer Contextand ContextModell also noted a possible
scalability problem due to capturing transformations dssiuKiTe addresses with a structur-
ing of transfomations intd/ethod (families of Technique, Technique(may transform several
attributes) andContextModel(adds the human element).

10.2.4 Experimental frameworks

In Section 4.4, | described three frameworks for suppontesgarchers carrying out empirical
studies on software processes. These were Kitchenham’etpraliminary guidelines for re-
searchers, Basili et. al.'s framework for families of expemnts and Williams et. al's framework
for XP studies.

Kitchenham et. al. note problems with defining contexts tod®es and suggest some
guidelines for recording contexts [90]. Tk&Te framework demands an explicit capture dur-
ing observational studies of both developer- and contelatted information (irEngineerand
Contex). While this does not, at the present time, help us with distabg which factors are
important, it does provide a means of recording which factegre taken into account and how
these were believed to have affected outcomes. This tregrspafacilitates the comparison of
studies because researchers can see at a glance whick faeterconsidered for a study. Some
evidence to support the notion théiTe is useful for comparing studies is presented in Section
8.3.

Basili et. al. have the vision of a software engineering boflgvidence to assist project
managers in selecting processes for specific environmgsisin Section 4.4, | identified the
danger of introducing assumptions in the proposed framlew®@ne problem is in the defining
of ‘Process’ by the kind of task to be carried out, for examptespection’ or ‘Walkthrough’. |
noted that an abstraction that allows a stricter definitioimcess’ is required. 1KiTe, tasks
are represented bethodand Techniqueand these are defined as transformation®muuct
Such an abstraction means that tasks must be defined in apesific way and the problem of
introducing assumptions is minimised. The authors alse tiatt much of software engineering
experimentation involves tradeoffs, and so a common glydteto assess, say, a technique in
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comparison to a similar one. | note thgiTe allows such relative comparisons.

Williams et. al. propose a framework, XP-EF, for helpinga@ghers establish compliance
to an XP process. This framework does not support flexibdgyt refers to XP processes only
and predefines a set of relevant context fact&iiSe is not restricted to specific processes and
different context factors may be included by chang@antextModel

10.2.5 People factors

In Section 4.5, | presented three models that address tharmuehated aspects of software
development. These were the ‘layered behavioural modeCwtis and associates [37], the
‘human competencies model’ of Acuna et.al. [3] and Acungam behaviour approach’ [4].
In KiTethese models represent ideas backed by empirical stuches thie way in which human
factors affect software process outcomes. Such studiekivianm the basis of & ontextModel
For example, for team formation, Acuna et. al. present nwftel‘people’, ‘task’ and ‘team
behaviour’. These map directly on k6Te Engineer Techniqueand ContextModel

10.3 Evaluation against Research Objectives

In Section 5.3.2, | proposed that suitable objectives forcal@h of the software development
process are that the model is able to capture any softwaoegswr process model, compare
processes and process models and create a new process higingrelements from different
processes. In Chapter 8, | presented evidence to suppodftihese objectives.

Bell reminds us that, to corroborate a theory, we must stilij¢o tests that could have
shown it to be wrong. The aim is to increase the likelihood tha tests will reveal flaws [17].
The evidence presented in Chapter 8 provides some cortafiot the claim that th&iTe
framework is successful in achieving the goals of procepsuca and comparison i.e. of two
of the three stated objectives. The strengths of variousepief evidence vary but, as a result
of the transparent nature of the evidence map, can be easigsed by interested parties. The
objective of combining process elements has not yet beeresskel i.e. there is, as yet, no
corroborating evidence.

One key aspect of the provided evidence concerns the atulitypresent both a Waterfall
and an XP process iiTe (see Sections 8.2.1 and 8.2.3). Such evidence is integdsticause
these two processes represent what are commonly believasl itcompatible approaches to
developing software products. In Section 2.3, | suggestatidiscussions that categorise pro-
cesses in a polarising way are unhelpful and that focus nedas on understanding what are
the key characteristics common to all software processée fdct that | can represent both
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in a common framework gives a clear indication that furthmestigation into the essential
similarities and differences between apparently ‘opgogpitocesses is possible.

The ability of KiTe to represent apparently different simulation modellingigts has also
been demonstrated. In Sections 8.2.8, 8.2.7 and 8.2.5régepted studies based on system
dynamics, event-based and state-based models. Againbiliig & represent different kinds
of models in a common framework is a first step towards greatderstanding of the essential
similarities and differences between models.

Another key aspect of the evidence is the ability to repriggetess varations (see Sections
8.2.2 and 8.2.10). In the study on Waterfall variations,dgented some alternatives for the
coding phase in a waterfall model that arguably capture iroeemealistic way what actually
takes place. In the study on XP variations, | showed what hiigtihe outcomes if less capable
developers were involved. This evidence is important beeauprovides an indication that
KiTe is able to describe slight changes in both task- and humatedeelements of the process.

Related to the ability to represent varations is the abibtyepresent some miscellaneous
processes that commonly occur in real life. Some evidenlegig to such processes was
presented in Section 8.2.11.

One important observation is that the act of representinggsses and process models in
KiTe gives rise to the exposure of many ambiguities and assungpiiothe target processes
and models. This was demonstrated in most of the studiesde\as evidence. Before pro-
viding evidence to support the idea that use<ofe facilitates comparison between processes,
| had to first expose such ambiguities and assumptions amdcth@ose an interpretation for
each process. | was then able to show that some of the caadidatesses could be directly
compared and others could not (see Section 8.3.1).

Although an attempt was made to address ‘risky’ areas, ikigrahat many areas of po-
tential risk have not yet been tested. For example, attetoptspresent processes have not
included open source or distributed processes. Contrelpdriments and qualitative studies
have not been represented, nor have the various predicthtend defect models.

A most important point is that all studies have been basederexisting literature. Al-
though many studies reported ‘real’ projects, both largesamall, it is likely that a ‘live’ study
on a real project might display characteristics and sufi@mfproblems not obvious from re-
ported studies. This first seems more likely to be true foy V@mge projects, where size con-
tributes to greater complexity. However, it is possible ttadies of relatively small projects
would uncover issues, as people-related problems arelgdikaly although perhaps take a
different form. Some evidence to support comparison existano evidence as yet exists to
support combination.

As a side-effect resulting from evidence accumulation, $ awhle to make some interesting
observations. When attempting to represent a ‘standardeMéd process, | realised that the
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process is not defined and depends upon the existence opldaaés for defect resolution (see
Section 8.2.1). When attempting to represent an XP protésa;ned that many XP Practices
represent instructions on how to carry out the design-amt-task (see Section 8.2.3).

A second side-effect is the observation tafe can be effectively used as a risk-identification
tool. This was illustrated in Chapter 9. An interesting anactical area for future research is
exposed.

| conclude by noting that | have successfully captured mesee of varying kinds and gran-
ularities, models built using different technologies anmtlanber of ad-hoc tasks that appear in
real projects but are generally not included in process ifiefirs and that, thus far, no counter-
evidence has been discovered. This provides some confideaica framework such dsiTe
may be used to capture and compare different kinds of pr@ebsprocess models.

10.4 Evaluation of Approach

In Chapter 5, | identified a problem of a lack of a theoreticald@l of the software develop-
ment process that will support the establishment of cansgleeffect relationships and provide a
means of predicting process outcomes. | observed that sonddal might not be possible and
that substantial progress will depend on much researcht effial collaboration.

In this dissertation, | have taken various approaches #raego support such a research
effort. These include:

e The provision of an initial framework allows immediate sopgfor research with a long
term goal of providing a theoretical model for prediction.

e Consideration of all groups currently involved in modaedifor prediction has enabled
me to understand limitations and strengths and made it nikeby Il have provided a
solution that is useful for all processes and process modlaksframework approach has
provided an immediate way for researchers from differeatigs working with different
paradigms and with different beliefs to represent their ei®th a common format with
a view to better understanding essential similarities affdrénces.

e The use of an argumentation approach to capture evidentefwupports the possibilty
of collaboration as strengths and weaknesses of evideadesaisparent.

One possible limitation of the approach lies in the assuongtiat researchers in the field of
software engineering are in a position, and have the desimtlaborate towards the achieve-
ment of such a theoretical model. The field is characterigefidymentation and a desire to
produce results that are immediately useful to industrga®lifor collaboration towards some
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larger goal have been made by a number of researchers angdredargely unheeded. The
KiTe approach spawns several areas for different kinds of relseaach of which may con-
tribute to the long-term goal of flexible representationtfue purpose of prediction. However,
the field may not yet be ready for such a holistic approach.

10.5 Discussion

From Section 10.1, | note th&i Te meets all model criteria except that relating to the unaerta
nature of the process. There are two aspects for discusdiba.first relates to the infinite
nature of theKiTe state space that is a result of the need to include ‘all plessddues of all
possible combinations of all possible attributes’ for proid, engineers and contexts. TKide
model describes an infinite state machin@ealisedProcessonstrains the possible states to
include those that describe the product, engineers anéxtdhat apply in th&RealisedProcess
Activities further constrain the state space Wkethod Techniqueand ContextModel The
result is still potentially infinite, in that the domain fon @ctivity includes a possibly infinite
number of states. The second aspect for discussion retatke tleterministic nature &iTe.
EachActivity transforms each of its allowed start states to a specific &d depending upon
Method Techniqueand ContextModel It is possible, perhaps likely, that such a model is
overly simplistic for a human-intensive process. Evidepoesented above did not include
any that closely examined either the infinite or the deteistimaspect of the model. Possible
alternatives for the nature of the elements that compgd&ity are sources of future study and
are overviewed in Section 11.3.

From Section 10.2, | conclude th&iTe effectively encompasses and addresses the prob-
lems exhibited by existing solutions towards flexibilityn®possible limitation is the inability
to represent irKiTe a product attribute such as ‘susceptibility to change’s ot clear at this
stage whether such an attribute is best handled as a pogsifget risk or whether &iTe lim-
itation is exposed. In Section 10.2.2, | observed that castguch as ‘newness to the state of
the art’ can not directly be representeddiTe but must be represented as sped#ioductand
Engineercapabilities. This represents a benefit of Kige approach, in that what is meant by
the ‘state of the art’ is explicitly defined thus removing gibde sources of ambiguity.

From Section 10.3, | conclude that sufficient evidence sxstprovide some confidence
that a model for representing and comparing processes aoegs models is possible. The
lack of any conflicting evidence supports such a confidenddraticates thakiTe represents
a possible candidate model. | also note that some sidetetiéa model such akiTe include
support for risk management and for exposure of ambiguatielsassumptions. A side-effect of
this ability to expose problems is the realisation that mamplems might be mitigated KiTe
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is used to support the study design. For example, the neegfiteedvhat is theContextModel
for the study leads to consideration of engineer- and comedated factors and of how engineer
characteristics affect the way the engineers work with pebdnd techniques. These represent
possible confounding factors for experiments and factwas must be recorded for other kinds
of study.

An interesting observation was made in Section 8.2.4, whdigcussed some alternatives
when representing ‘collaboration’. One way is to represenaContext for example, ‘de-
velopers work together’ContextModelthen applies the effect of ‘working together’. For this
representation, all developers are equal in that there‘imatzhing’ taking place and individual
developer characteristics are not relevant. A secondIplessay is to represent ‘collaboration’
as aTechnique In this caseContextModelis able to directly match engineer capabilities (for
example, ‘introverted’) withTechniquerequirements (for example, ‘extroversion’) to effect a
more accurate result that depends upon which engineers\aiged. This example represents
a subtlety of the model that contributes to its usefulnesispmver.

In Section 10.4, | outlined some strengths of the approddanta this dissertation. | also
noted that the industry may not be in a position to effecyivide to the challenges of a collabo-
rative approach to a model to serve as a basis for establigtoheause-and-effect relationships
and prediction.

KiTe is not an implementation model and does not aim to represlestities that would
be required for model execution. For example, the modelrde=sc howActivity changes
Engineercharacteristics, but there is no element that acts as atdiedigr engineer capabilities
at different points in time i.e. the model does not allow foahaging’ engineers. It is likely that
any implementation oKiTe for execution would include such an entity. A second isslagirg
to implementation involves the close-coupling betwéammtextModeland the models from
which it sources its information i.eContext Product Engineerand Technique For example,
if ContextModelrequires knowledge about certain contexts and engineeacesistics, these
must be provided. This may be a limitation as regards modejels

A related discussion involves the form of the models thatengkkiTe. For example, | note
that, becaus&iTe Methodsare defined as hoWwroductis changed, it is possible to abstract
at several levels and work in a hierarchical way. | also nboé the form ofContextModelis
not defined and a set of rules is one possible option. Suchieectwould lead to the problems
of scalability discussed in Section 4.3.1. However, thentibn is that the models that make
up KiTe represent theoretical abstractions rather than praetpmalications. It is appropriate to
implementContextModelas a rule base during early stages of exploration, but theatapon
would be that the final model would represent a more the@iediostraction. For example, as
ContextModelrepresents engineer effectiveness, it is appropriatectatiiy an orthogonal set
of ‘engineer effectiveness’ factors and all map all confextors on to this set. A suggested
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set for preliminary exploration is the set ‘capability’ eitainty’ and ‘motivation’ (see Section
7.1). Such an abstraction means that we do not have to deslasgie numbers of contexts but
rather with a small set of factors. Indeed, it is likely thegearch from the social sciences might
be leveraged for both identification of, and evidence to supgey factors for effectiveness. |
note also that one outcome of the change in focus to effewa®is that we can postulate that
the factors under investigation are the same, regardlepsogct or task size. The problem
of large numbers of factors has been ‘moved one step backbnee we understand that, for
example, ‘certainty’ is key, we might then investigate wafcts ‘certainty’ in large and small
projects.

There is a possible limitation in the definition ®&chniquepreconditions. For example, a
Techniquenight define its preconditions in terms of both ‘LOC’ and ‘[etinn points’ butProd-
uct has only ‘LOC'. It appears that the precondition is not mehe Bolution is to expand the
definition of precondition to include alternatives. For exde, the precondition might be ‘size’
and may be actualised by either ‘Function points’ or ‘LOMelstructuring of preconditions is
another area for future research.

KiTe is a framework into which models are inserted. Each modeksgmts a theory in
its own right, and may be used to generate hypotheses to tegl testhe normal way [151].
A current limitation is that the form of constituent modedsnot known and this means that
predicting withKiTe suffers from the same problems of lack of support data as ptiedictive
models. For example, there is no model for ‘matching’ of eegr capabilities with those
required for working with a given product and techniques andContextModelrepresents
beliefs. It is possible that the complexity of the sofwar@elepment process will render it
impossible to successfully abstract all possible huméatee factors into &ontextModekhat
successfully represents the human effects. It is also pleshiat the issue of measurement is
insoluble and this would render it impossible to createdialodels that are internally consistent
and can be successfully manipulated.

Kitchenham et.al. remind us that, although researchers haesponsibility to “provide
some preliminary validation of their results, they are rieg best people to form objective,
rigorous evaluations of their own technologies” [90]. Thalaation presented in this Section
is subjective and therefore biased. | have, however, stredtthe discussion in an attempt to
ensure that all relevant aspects have been considerede Ishawn thaKiTe may be used to
represent very different kinds of process and process nasakthat it may be used to support
research and risk identification. In the next Chapter, I idigareas for future research.
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Conclusions

11.1 Summary

In this dissertation, | considered some viewpoints abaeihtiture of software development and
overviewed some of the processes used at the present timedioge software products. | sug-
gested that the tendency to categorise these processeslargsipg way removes focus from
the important task of understanding what are the esseihiabcteristics of all software devel-
opment processes. | then presented some of the work of cbsearwho model the software
process with a view to understanding and predicting outsorhehowed that existing models
contain ambiguities and assumptions about process, prodeontexts and this renders them
unsuitable for representing and comparing processes imergievay. The motivation for the
thesis is this lack of holism in existing processes and thbility of current models to represent
any process and support comparison and combination of ggese

| then presented some perspectives on modelling and résgati@ accumulation from fields
other than software engineering. | concluded that existiogels of the software development
process are not based on cause-and-effect relationshipscacannot be used for predicting
in a general way. | made a case for a theoretical model of tbeegs and proposed that a
candidate model should support the objectives of repraent comparison and combination
of processes and process models. | examined existing pexegrocess models and some
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real-life situations to derive some desirable model prioger

Using the desired properties as a basis for model strudturgpduced a candidate model,
KiTe, and presented evidence to support the claim kid meets the objectives of represen-
tation, comparison and combination. | discussed the us@ T for identifying process risks.
Finally, | presented an evaluation of the dissertation BleatingKiTe against properties and
objectives and by discussing the approach taken.

In this Chapter, | summarise the contributions made andeptesome areas for future re-
search.

11.2 Contributions

Despite many technological advances that support the ptisthuand maintenance of software-
intensive products, “a body of evidence has not yet been that enables a project manager
to know with great confidence what software processes peoddmat product characteristics
and under what conditions” [14]. The major contribution loistthesis is to identify the need
for a holistic model of the software development processwhihsupport researchers in their
guest to accumulate such a body of evidence and to presentiaate modelling framework,
KiTe. KiTe supports research by providing an abstraction that fatekt identification and rep-
resentation of the various factors that affect processomués. As such, it represents a holistic
and theoretical approach to software process modellingh EFamework element is a model
that may be instantiated in the short term with models regr@sg the beliefs of individual
researchers and in the long term with models representidgmese-based theories.

Three contributions result from the understanding thaethstence of a suitable framework
gives rise to a number of unplanned research directionsfifdteoncerns the use &fiTe for
identifying process-specific risks. In Chapter 9.2, | pntésd a preliminary study on the use
of KiTe to identify risks specific to XP processes. The us&dfe is this way is immediately
useful from an industry perspective. A second directionceons the use ofiTe to help with
understanding research results. In Section 8.2, | showet When representing studies in
KiTe, many ambiguities and assumptions are exposed. This lealbétter understanding of
study results. A related direction involves the possipitif using KiTe to help mitigate the
introduction of such ambiguities and assumptions whengaésy new experiments. | discuss
these directions in the next Section.

Another major contribution of this dissertation is the itigecation of the various research
groups that model the software development process togh@aticomes and the understanding
of how these groups differ in approach and what are the ltroita inherent in the work of
each. The contribution also includes a realisation thantdreow approach taken by each of
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the groups is a symptom of lack of real understanding andeiv#sis for the case for a more
holistic approach.

A final contribution is the establishment of an approach fradoping and evaluating mod-
els that claim to describe systems in a holistic and exptapatay. The strategy is to first
establish model objectives and identify a comprehensingeaf example systems to be de-
scribed by the model. In this dissertation, objectives vigeatified as ‘capture’, ‘compare’ and
‘combine’ software process elements and example systechgded various kinds of process
and process model. The next step is to examine the chasiewf, and problems with, the
example systems to help identify key model properties. @lpFevide some basis for estab-
lishment of a suitable model structure and may be used asiarigainst which to evaluate
candidate models in a preliminary evaluation step. Swatabbperties folKiTe were sourced
from process characteristics, process model limitatiord real-world examples. Next, the
ability of the candidate model to satisfy objectives is kshed by accumulating a portfolio
of different kinds of evidence relating to the example systeln this dissertation, evidence in-
cluded representing and comparing various processes aoegsmodels. Finally, evaluation of
a candidate model is performed by evaluating both the medethpliance with property-based
criteria and its ability to meet stated objectives.

11.3 Future Work

Because this thesis presents a modelling framework comgnmsodels representing different
aspects of the software development process, there arepoasiple areas for future investiga-
tion. These mostly involve attempts to acquire further exwe to support the claims féiiTe,

as such activity will inevitably expose limitations andamsistencies in the current model. One
approach would be to effect an ad-hoc approach to the acatiombf further evidence. How-
ever, because the required evidence is partitioned intcedl sobmber of goals, and evidence in
each partition potentially provides a different kind of b&hto modellers, | suggest that future
work is best organised as a numberkafe research programs, each with its specific goals. |
overview some possible programs below.

11.3.1 Model foundation

The currentKiTe model was presented formally in Section 7. If this model,rwther like it,

is to be used as a basis for hypotheses, it is necessary thaatnd and consistent. Model

checking activity is indicated and some work in this areandear discussion at the current time.
In Section 10.5, | discussed the possible problem of a détéstic model to represent the

software process with all its complexity. Once the modeinalets are defined the outcome is
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known. The majority of the models presented in Chapter 4 gatize uncertainty inherent in
real-world projects by applying some statistical mechaniBor example, a common approach
is to use a probability distribution from which values foms® input variables are chosen at
random. TheKiTe elements that affect transformation details, for exampexshniqueand
ContextModelare defined as causing definitive change. This does not piethe possibility
of values being selected from a distribution, or indeedndpéiuzzy’ in the first place. An-
other possible alternative is to treBtchniqueas a ‘fuzzy’ functional mapping and the effects
of ContextModehs fuzzy values. The outcome for any product attribute woleah also be
fuzzy in nature. A third possibility for future research idexamine the possibility of mod-
elling Activity as a Bayesian belief net [48]. According to Fenton, this appin deals with
uncertainty, incomplete information and diversity of emde. It might, however, involve ‘col-
lapsing’ of Techniqueand ContextModeland so might be useful more as a possible simulation
implementation than as model definition.

11.3.2 Process representation

A second possible program involves further representatignocesses. In this thesis | success-
fully represented a number of different kinds of proceskesgxample, Waterfall and XP, and
made a case for the inability to fully represent others, f@meple, Spiral. However, all case
studies were from the literature and many assumptions haé tnade. Focus must move to
industry, and some ‘live’ projects, both large and smalldgd. This will mean that questions
can be asked in real time when any aspects of the process @eayrand the need for mak-
ing assumptions removed. The result should be either thagooa of further evidence or the
unmasking of model limitations and inconsistencies.

In addition to ‘live’ projects, a fruitful area for researehthe representation of different
kinds of process. For example, tikideanroomapproach to software development is viewed
by some as “...not a strict methodology but a philosophipgr@ach that guides the selec-
tion of practices” [40]. It would be interesting to know if &nroom is easily represented in
KiTe. Other potentially fruitful processes include open soynegects and Web-based virtual
workspaces.

11.3.3 Process risk

It is claimed in this thesis th&iTe provides a framework to support risk identification. We
have a powerful means of both supporting this claim and piiogi an immediate benefit to
industry at the same time. | suggest a collaboration witlhistiy projects that have strong risk
management practices. Researcher and project manageategpadentify risks, the project
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manager using his normal approach and the researcher Kisiegand then the two compare
results. If theKiTe approach correctly identifies risks not identified by projeanagement, we
have some further supportive evidence. Risks identifiegdlopproject management may signal
some possible need to modify ti&Te framework or may contribute to our understanding of
one of the component models. For example, if the researstveoiiking with aContextModel
that includes aspects of uncertainty and support, andgirojanagement identifies a risk ‘the
company is about to be bought over and developers may becemetidated’, there is an op-
portunity to rethink theContextModelfor possible inclusion of some ‘motivation’ factor. This
approach of ‘comparing identified risks’ may be a powerfuyu@ the research community to
investigate the problem of developer efficacy whilst at #u@e time providing real benefits to
industry.

11.3.4 Assumptions

The activity of representing different kinds of process eledesulted in exposure of many
assumptions made by modellers (see Section 8.2). Thesmpissns related to policies about
what parts of the product are being changed, equivalencecofupt measures and the way
that human factors influence results. | suggest that usefutd work in this area would be
to investigate ways of propagating this information witkie various research groups. Until
assumptions are understood and removed, it will not be plest fulfil Basili et. al.’s vision

of ‘families of experiments’ [14] and so not possible to usese models to progress software
engineering research by providing empirical data.

11.3.5 Evidence

Yet another area for research is the comparing of differardies in order to find if results
may be combined in some way. | presented one example of thgeation 8.3.1, where |
attempted to examine three studies frequently cited as fpagramming’ studies and found
that TechniquesProductand ContextModelfor the studies varied so much that any kind of
comparison or results accumulation was not possible. Otenpally interesting subject for
this research is inspections, as there are several diffieireas of study available on this topic. A
related area is that of support for formal experimentatignysing theKiTe models to capture
experimental environments. For example,KiTe, the focus is on identifying how contexts
change peoples’ ability to carry out tasks. This means tha#ter than identifying a myriad of
factors that might affect outcomes, focus is on identifyogy these factors affect humans and
in turn how characteristics of humans affect outcomes. Th&nge in focus has already been
suggested by Curtis et. al. [37] (see Section 4.5). | sugbesKiTe may provide a suitable
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framework for further research of this kind, Astivities can be defined with any granularity and
experiments may thus focus on very small tasks carried algmumany different circumstances.
The long-term goal would be to spawn and examine hypothetatsng to the use of a single

ContextModeffor Activities of all kinds and granularity.

11.3.6 Product model

In Section 10.5, | noted a possible limitation in the curréefinition of Techniqueprecondi-
tions. The problem is one of understanding when produettedl attributes are ‘equivalent’.
For example, if aTechniqueexpects as input ‘number of requirements’, is it valid to lgpp
the Techniqueto a Productmodel with ‘number of stories’? This suggests a possibleaesh
program based oKiTe to further investigate such ‘families’ &?roductattributes.

11.3.7 Process customisation

Another research opportunity concerns the us&ide for customising processes. In theory,
KiTe supports this. However, as yet there is no evidence to stigparbination of process
elements, i.e. the third objective f&iiTe has not been tested, and this is key to customisation.
In addition, attempts at customisation basedkadhe may raise issues and points for further
investigation.

11.3.8 Predictive tool

A final interesting activity would be to commence implemdiota of the framework with the
aim of understanding how construction of such a complexesysnhight be supported in an
open source environment. For example, storddethodand Techniquenust be accumulated,
each supported with existing evidence that provides this basthe transformation sizeCon-
textModelsmust be proposed and ‘evidence’ and ‘counterexamples’vwared. In the spirit of
‘evidence-based software engineering’, where large datisof different kinds of weak evi-
dence may provide confidence, it is possible that pollingstarh evidence via the web would
obtain a good result.

11.4 And Finally

There are several interesting areas for future work basdbeoidea of a theoretical model for
the software development process in general i@ in particular. Some of the programs
suggested above aim to provide immediate benefits whilstawipg the model in parallel. An
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example, is the use of the model for risk identification. @thHeave less immediate practical
use but are necessary if the model is to be used as a basi®twetical studies, for example,
the introduction of ‘fuzziness’ into the model. Kitchenhamal., when discussing the need for
a framework for validating software measurements [89],inelas that “A full, practical frame-
work is an ambitious goal that requires input from practiics and the research community”.
This statement applies also to a framework for the softwaweldpment process.

This thesis presents a framework that comprises a first etegrds an ambitious goal. It
represents an acknowledgement that there is insufficidat atathe present time for process
synthesis and prediction and provides a mechanism to suppoumulation of such data by
supporting comparison of processes and process elemehtsthé&sis acknowledges a long
term goal that is to provide a mangement tool for a softwaggresering ‘body-of-knowledge’
by providing a mechanism for comparing and predicting pseaatcomes based on evidence
and where all evidence is transparent.
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Glossary

For this document, the following terms have meanings as e fielow.

Alphabet “An alphabetis a finite set of symbols.” [62].

Argumentation “...an approach which can be used for describing how eviglsatisfies re-
quirements and objectives” [160].

Capability [3].

Chief programmer A centralised organisation for programming teams, desidpyeMills and
Baker, that placed primary responsibility for design, pesgming, testing and installa-
tion on a single individual, the ‘chief programmer’ [33].

Construct validity “...the extent to which the variables successfully meatheeheoretical
constructs in the hypothesis.” [14].

Context The set of factors that affect how welhgineersare able to carry outsks

Correctness “. .. the degree to which a system or component is free frortidam its specifi-
cation, design, and implementation” [71].

209
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Correlation study “Usually synonymous with naxperimentabr observational study; a study
that simply observes the size and direction of a relatignahiong variables” [149] quot-
ing Shadish et. al.

Defect A generic term to mean any one @fror, fault or failure [13].

Design entity “An element (component) of a design that is structurally fumdtionally distinct
from other elements and that is separately named and reefv3].

Effectiveness A measure of how wekkngineersompletetasks

Efficiency A measure of outputs (change tgeoductfrom engineerscompleting atask to
inputs (some measure of time or cost).

Egoless teamA decentralised team structure proposed by Weinberg [I6®jhich different
team members take responsibility for those project tasksaimatch their skills [33].

Engineer Any individual involved in changing any artifacts that dese some aspect of a
product

Engineering “The application of scientific and mathematical principlegpractical ends such
as the design, manufacture, and operation of efficient andaguical structures, ma-
chines, processes, and systems” [63]. “Engineering apgtientific and technical knowl-
edge to solve human problems. Engineers use imaginatiodgijant, reasoning and ex-
perience to apply science, technology, mathematics, aaxtipal experience. The result
is the design, production, and operation of useful objectsrocesses” [163]. “...the
systematic application of scientific knowledge in creatamgl building cost-effective so-
lutions to practical problems” [43].

Entity attribute “A named characteristic or property of a design entity. tiyides a statement
of fact about the entity” [73].

Error “...defects in the human thought process made while tryongniderstand given infor-
mation, to solve problems, or to use methods and tools” [13].

Evidence “A thing or things helpful in forming a conclusion or judgent&[64].

Experiment “A study in which an intervention is deliberately introduct observe its ef-
fects” [149] quoting Shadish et. al.

External validity “...defines the extent to which the conclusions from the arpental con-
text can be generalized to the context specified in the relségpothesis.” [14].
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Failure “...the departures of the software system from softwarelirements (or intended
use). A particularfailure may be caused by seveffalults together; a particulaiailure
may be caused by differefults alternatively; somdaults may never cause failure

(difference between reliability and correctness)” [13].

Fault “...the concrete manifestation efrors within the software. Onerror may cause sev-
eralfaults variouserrors may cause identicdhults’ [13].

Finite automaton “A finite automatorconsists of a finite set of states and a set of transitions
from state to state that occur on input symbols chosen froaed@rabets. For each input
symbol there is exactly one transition out of each stategjptessback to the state itself).
One state, usually denoteg, is the initial state, in which the automaton starts. Some
states are designated as final or accepting states.” [62].

GQM Goal/Question/Metric represents an approach to assesresers in planning and cate-
gorising empirical studies. In this approach, researciuenstify the object of study (for
example, a process or product), the purpose of the experiffterexample, evaluation,
prediction, etc.), the focus i.e. the aspect of intereshefdbject of study (for exam-
ple, product reliability, process effectiveness), thespective (for example, researcher or
developer) and the context in which the measurement takes [pl11].

Hypothesis “A hypothesis is a suggested explanation of a phenomenoeasoned proposal
suggesting a possible correlation between multiple phema'h[166]. “A tentative ex-
planation for an observation, phenomenon, or scientifiblera that can be tested by
further investigation [65].

Incremental development “A software development technique in which requiremenfinde
tion, design, implementation and testing occur in an oypgilag (rather than sequential)
manner, resulting in incremental completion of the ovesaftware product” [71].

Internal validity “...defines the degree of confidence in a cause-effect oalstip between
factors of interest and the observed results” [14].

Interpretivist “...believe all research must be interpreted within thetexnin which it takes
place ...” [38]. Compare witpositivist

Interval scale “...defines a distance from one point to another, so thaéther equal intervals
between consecutive numbers. This property permits caatipas not available with the
ordinal scale, such as calculating the mean. However, ieere absolute zero point in
an interval scale, and thus ratios do not make sense. Cdressieeded when you make
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” o

comparisons.” “...we cannot say that today’s 30-degresiCetemperature is twice as
hot as yesterday’s 15 degrees” [132].

KiTe The name of the model presented in this thesis.
Language “A (formal) languages a set of strings from some oaéphabet’ [62].
Measurement “a figure, extent or amount obtained by measuring” [70].

NASA/SEL “The Software Engineering Laboratory (SEL) is an organaasponsored by the
National Aeronautics and Space Administration/Goddaat8-light Center (NASA/GSFC)
and created to investigate the effectiveness of softwagmearing technologies when ap-
plied to the development of applications software” [117].

NATO North Atlantic Treaty Organisation. “...an internatiomatjanisation for defense col-
laboration established in 1949, in support of M@rth Atlantic Treaty...” [164].

Nominal scale “.. . puts items into categories, such as when we identifycg@mming lan-
guage as Ada, Cobol, Fortran, or C++” [132].

Object In the context of this documerdbjectdenotes a person or thing in the real-world i.e. a
material thing. The term is required to distinguish betwalestract ideas e.g. state spaces
and the ‘real’ objects which the spaces describe.

Ontology “An explicit formal specification of how to represent the etijs, concepts and other
entities that are assumed to exist in some area of interesthamrelationships that hold
among them.” “A set of agents that share the same ontolodyeéble to communicate
about a domain of discourse without necessarily operating globally shared theory.
We say that an agent commits to an ontology if its observatilerss are consistent with
the definitions in the ontology” [68].

Ordinal scale “...ranks items in an order, such as when we assign failupesgressive sever-
ity like minor, major and catastrophic” [132].

PMBOK Guide Guide to the Project Management Body of Knowledge. An “istla term
that describes the sum of knowledge within the professigmaject management” [135].

Positivist “...looks for irrefutable facts and fundamental laws thah de shown to be true
regardless of the researcher and the occasion” [38]. Cawpidln interpretivist

Prescriptive process A description of gorocesshat takes into account only technical aspects
and implicitely makes assumptions that human factors daaffett processoutcomes.
Compare withrealised process
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Process“The sequence of activities, people, and systems involwaghirying out some busi-
ness or achieving some desired result” [69]. “A series oibast changes, or functions
bringing about a result” [66].

Product The artifacts thatimplement a software-intensive systedeae the deliverables from
aproject

Product engineering “The technical processes to define, design, and constriatsamble a
product’ [71].

Project “.. a temporary endeavour to create a unique service or ptahd with a definite
beginning and end” [135].

Randomized experiment “An experimentn which units are assigned to receive the treatment
or an alternative condition by a random process . .." [149topng Shadish et. al.

Quasi-Experiment “An experimenin which units are not assigned to conditions randomly” |[149
guoting Shadish et. al.

Ratio scale “...incorporates an absolute zero, preserves ratios, amdifs the most sophisti-
cated analysis. Measure such as lines of code or numberdeaftsl@re ratio measures.
It is for this scale that we can say that A is twice the size ofB2].

Realised processA description of aprocessas it really happens i.e. that takes into account
how all factors relevant tprocesoutcomes, for example, the people involved praject
contextsaffect these outcomes. Compare witlescriptive process

Reliability “...the ability of a system or component to perform its reqdifunctions under
stated conditions for a specified period of time” [71].

SCM Software Configuration Management [72].

Software design description (SDD)"A representation of a software system created to facili-
tate analysis, planning, implementation, and decisioningald blueprint or model of the
software system. The SDD is used as the primary medium fornmoamcating software
design information” [73].

Software development“Any activity related to the production or modification offs@are pur-
suing some goal(s) beyond the software itself” [104]. Tha8rdtion is broader than that
given by IEEE [71], which states a systematic and quantdiapproach. The broader
definition enables us to include more flexible and informgrapches.



214 Glossary

Software development cycle“The period of time that begins with the decision to develop a
software product and ends when the software is delivered]. [7

Software development processThe set of all activities that affect some representatiom of
software product.

Software life cycle “The period of time that begins when a software product iscetwed and
ends when the software is no longer available for use* [71].

Software process”. . .the set of all activities which are carried out in the tadt of a concrete
software development project. It usually covers aspectofitvare development, quality
management, configuration management and project manatjeib8].

Task A piece of work carried out by one or moeagineers

Theory “...atheory is a proposed description, explanation, or ehoflthe manner of inter-
action of a set of natural phenomena, capable of predictingd occurrences or obser-
vations of the same kind, and capable of being tested thremglriment or otherwise
falsified through empirical observation.” “A theory is a ioglly self-consistent model
or framework for describing the behavior of a related setattiral or social phenom-
ena.” [167].

Understandability “...the degree to which the purpose of the system or compgasielear to
the evaluator” [150].
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