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Abstract

Many different kinds of process are used to develop softwareintensive products, but there is

little agreement as to which processes give the best resultsunder which circumstances. Prac-

titioners and researchers believe that project outcomes would be improved if the development

process was constructed according to project-specific factors. In order to achieve this goal,

greater understanding of the factors that most affect outcomes is needed. To improve under-

standing, researchers build models of the process and carryout studies based on these models.

However, current models contain many ambiguities and assumptions, and so it is not clear what

the results of the studies mean. The statement of this thesisis that it is possible to create an

abstraction of the software development process that will provide a mechanism for comparing

software processes and software process models. The long term goal of the research is to pro-

vide planners with a means of tailoring the development process on a project by project basis,

with the aim of reducing risk and improving outcomes.
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1
Introduction

1.1 Research Area Overview

Many researchers and practitioners are interested in exploring different ways of producing

software-intensive products. The reason is that it is generally agreed in the software indus-

try that the kind of process used in a software project is a keyfactor in determining what are the

outcomes for the project. Example outcomes are the ability of the project to deliver the software

product on-time and within budget.

At the present time, there are a number of different kinds of process in use in industry.

These are often categorised as either ‘traditional’ (commonly referred to as ‘heavyweight’) or

‘lightweight’. Traditional processes were created to helpcontrol very large software projects

spanning several years, many of which exhibited safety-critical or other ‘large loss’ aspects.

These processes are based on a manufacturing paradigm and are characterised by a phased

approach, in which, for example, design tasks are strictly separated from coding tasks. Different

phases tend to be carried out by different people, for example, ‘systems analysts’, ‘architects’,

‘coders’ and ‘testers’. As a result of the strict separation, large quantities of documentation

are required to communicate decisions among the various parties. The well-known ‘Waterfall’

model represents an example of this kind of process.

The ‘light’ processes have emerged more recently as a response to the perceived ineffec-
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tiveness of the traditional methods when applied to, for example, Web development. These

processes tend to be more responsive to change in product requirements and are characterised

by a strong people focus. Because of the close relationshipsbetween developers and customers,

the underlying development paradigm for these methodologies is presented as ‘software-as-a-

service’ and communications are generally face-to-face. ‘XP’ (eXtreme Programming) is an

example of this kind of process.

Traditional and light processes are most commonly applied to different kinds of projects.

Traditional processes are most often used in very large projects or for safety-critical products.

Light processes are most often used for small projects or products that can be produced and

changed quickly, for example, Web applications. However, there is much discussion about how

to apply individual processes to projects other than those for which they appear to be most

suited. For example, is it appropriate to use an XP process for developing a product that is

expected to undergo further change in the future i.e. is partof a product line? There is also

much discussion about the possibility of embedding elements of one process into another. For

example, would deadlines be more likely to be met if a ‘Pair Programming’ technique from XP

was used within a Waterfall process?

In this dissertation, I address the possibility of synthesising a new process from elements of

existing processes. In order to achieve this, I study the work of those researchers who model the

software process for the purpose of predicting outcomes anduncover limitations of the models

that render the models inappropriate as a basis for synthesis. I present an abstraction of the

process that supports such synthesis.

1.2 Problem to be Addressed

It is widely acknowledged in the software industry that no one process is appropriate for all

software development projects [10, 35, 38, 57]. Some believe that each kind of process is

appropriate for specific kinds of project and should be used only within such projects. This

requires an assumption that any project can be classified as one of a number of discrete types,

each with fixed boundaries. Others are adamant that their ‘favourite’ process may be applied

to any project, with only minor adaptations required. Of greater interest is the possibility of

synthesising new processes from existing ones. Many researchers and practitioners believe that

the chance of project success can be improved by selecting process elements from different

processes in order to tailor the process according to project-specific factors [13, 35, 46, 93, 115,

144, 153].

The interest in customisation comes from two directions. The first is the ‘traditional’ ver-

sus ‘light’ discussions [16, 21]. Practitioners understand that different kinds of process have
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different strengths, but would like to know under which circumstances elements from one pro-

cess may be embedded in another. The kinds of questions askedinclude: “How well does XP

perform if the customer is unable to be on-site?”; “How woulddelivery schedules be affected

if developers practice Test Driven Design within a Waterfall process?”. The second source of

interest is from the study of software economics. The suggestion here is that a project should

maximise value creation [102] and should use a process that is no more costly than neces-

sary [24]. The kinds of questions that represent this kind ofinterest include: “What will be

the effect on the quality of the delivered product if we replace code inspections by automated

checking to reduce cost?”; “Can we customise a process to give best outcomes for a specific

project by combining elements from existing processes?”.

Although the industry would like to answer the kinds of questions illustrated above, this is

not possible at the present time. Before we can answer such questions, we must first be able

to represent any process element from any process in a way that facilitates composition and

prediction. It is contended here that no suitable abstraction exists.

One reason is that the problem space is not yet well-understood. Current processes have

emerged in response to perceived need and, although attempts have been made to understand

what are the key factors that affect outcomes, there is little data to support claims. Efforts have

been made to collect supporting data, but the complexity of the problem space has rendered

this difficult. In addition to the many technical challengespresented by a fast-changing in-

dustry, software process tasks are carried out by people rather than machines, and so issues of

psychology and social behaviour are relevant.

It is now generally accepted that human factors, for example, management style and devel-

oper experience and motivation, have a major impact on the success of a software development

effort [3, 24, 37, 34, 155, 157]. Curtis et. al. suggested in 1988 that process problems were

overwhelmingly caused by people-related factors and recognised at that time the need for a be-

havioural model of the software development process [36]. However, there are no such models

on which to base formal research into the effects of human factors on outcomes and current

processes either assume a tendency to the mean or make assumptions about which factors are

key. For example, the Waterfall process does not include anyconsideration of human factors.

This is perhaps because of its traditional use for very largeprojects where human effects ‘av-

erage out’ over the course of the project. XP, on the other hand, embeds assumptions about

developer performance, for example, that all developers work more efficiently and effectively

together than alone. Although this represents some consideration of human factors, there is no

mechanism for accommodating differences between developers.

In an attempt to accumulate data to increase the industry’s ability to predict process out-

comes, researchers have carried out different kinds of studies. There are a number of concerns

that relate to these studies. One such concern is the issue ofhow to measure the various factors
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and attributes that apply to the software process. In 1995, Kitchenham, Pfleeger and Fenton

identified a lack of integrity in the way in which software practitioners and researchers measure

software-related attributes [89]. It is important to work with validated software metrics and at

that time there was no agreed way to perform such validation.The authors made a plea for the

industry to agree on a way to bridge the gap between measurement theory and software met-

rics. Although the plea appeared to spawn some heated discussions, it seems that no consensus

has been reached, and the industry continues to work with metrics based on disputed founda-

tions [91]. A second concern is that, as software engineering is a relatively immature discipline,

researchers have not yet learned to routinely apply sound practices when conducting studies,

and so resulting data is scarce, fragmented and of varying quality [7, 14, 46, 90, 125]. Gilmore

describes four modes of research data collection and statesthat only one of these, hypothesis

testing, results in establishing causal connections. He and others agree that, in order to carry

out this kind of research, a theoretical framework is essential from which to spawn hypotheses

[38, 55, 90]. As discussed above, there is no suitable abstraction for elements of a software

process and so it is difficult to carry out hypothesis testingexperiments and establish causal

connections.

In summary, the industry at the present time has no abstraction or theoretical framework for

software development processes. This means that practitioners are unable to combine process

elements and predict outcomes and researchers find it difficult to investigate causal relation-

ships.

1.3 Modelling for Understanding

In the previous Section, I described a problem of lack of a theoretical model of the software

process. In this Section, I consider the act of model building from an historical perspective and

conclude that an appropriate model should be explanatory rather than predictive and that such

a model will be holistic rather than fragmented.

Rivett [139], when describing the status of model building in the field of operations research

in 1972, reminds us that, throughout history, man has constantly searched for pattern and gen-

eralisation. From around 700 BC, the Babylonians measured and recorded the motions of the

stars and planets, analysed these, and were successful in forecasting planetary events with great

precision. Their recordings of hundreds of years of planetary data enabled them to estimate the

value of the motion of the sun from the node with an error of only five seconds. The large quan-

tity of data collected by the Babylonians supported accurate prediction. In fact, two thousand

years later, the same estimation, based on models of planetary motion, yielded an accuracy of

only seven seconds. The observation is that large quantities of accurate data often yield more
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accurate predictions than those based on models.

Although the Babylonians recorded events with care, they made no attempt to theorise. The

Greeks, on the other hand, followed a different approach, and built first mechanical and then

geometrical models of planetary motion in an attempt to understand and explain. However,

their models were made up of a number of parts and the Greeks had no success in unifying

these. When applied to the Babylonian data, the models were found to be incorrect [139]. This

illustrates that it is often difficult to achieve consistentresults when a fragmented approach is

taken i.e. a model of a part of a system may yield results that are invalid in the context of the

bigger system.

Rivett presents another example from more recent times thatillustrates that consistent and

complete results will be achieved only if a model is based on an underlying theory. Kepler

proposed three laws of planetary motion based on data that had been collected by Tycho Brahe.

He applied an elliptical model to the motion of the planets and from this model produced laws

that appeared to work. No-one knew the fundamental reason why the laws worked. I notice

that, as the laws were based on planetary data, these laws could not predict the movements of

other celestial objects, for example, comets. Newton laterbrought some understanding to bear

on celestial motion when he postulated a force that acted between all objects with mass in the

universe. From this understanding and unification of ideas from physics and astronomy, he was

able to show that orbits for celestial objects, for example comets, were not only elliptical, but

could be hyperbolic and parabolic. He was able to predict accurately for all celestial bodies,

show that Kepler’s Laws were a special case of Newton’s Laws and improve the accuracy of

Kepler’s calculations.

Rivett summarises by stating that a model may be predictive without being explanatory, but

an holistic, explanatory model is always predictive. When Iapply this idea to the software

process, it follows that previous process data may be successfully used to predict the outcomes

of future projects that are based on similar processes. I understand that, if we wish to predict

in a more general way, our predictive models must be holisticand explanatory. This means our

models must be able to represent any element of any process, including both existing elements

and those defined at some future time.

I have identified the need to represent different process elements for synthesis and predic-

tion. In order to meet these goals, I want to capture process elements in a descriptive way i.e.

capture elements as they actually happen.
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1.4 Thesis Statement

Before we can synthesise processes from existing and futureprocess elements, we must first be

able to capture elements of processes and process models. Before we can predict outcomes of

applying process elements, we must first be able to compare the effects on these outcomes of

different elements.

I believe that it is possible to capture software development processes and process models in

a way that allows us to compare processes and process models for the purpose of constructing

new processes.

My thesis is realised as a conceptual modelling framework,KiTe, the elements of which

are themselves models. The framework supports capture of, and facilitates comparison and

composition of, processes and process models.

1.5 Approach

I have postulated the need for a model of the software development process that allows capture

of any element from any process or process model and facilitates comparison between, and

composition of, elements. The long term goal for such a modelis the ability to predict outcomes

when process elements are combined in various ways. Rivett and others argue that a model for

prediction must be holistic and explanatory. ‘Holistic’ suggests that all relevant aspects of the

process, for example, behavioural aspects, must be included. ‘Explanatory’ suggests that the

model should be based on a theoretical abstraction rather than on specific data.

The creation of such a model is difficult. If the industry is tocreate such a model, it must

first identify what are the characteristics of existing processes that must be included in a repre-

sentation and understand what are the limitations of existing predictive models that render them

inappropriate for general process representation.

I thus examine the characteristics of existing processes and process models and create from

this examination a set of ‘desirable properties’. These properties will act as preliminary criteria

against which to judge any candidate model. This provides aninformal mechanism for evalu-

ation, in that the criteria are subjective in nature. The aimis to gain some confidence prior to

any evidence-gathering attempt that the candidate model islikely to support the objectives of

capture and comparison.

Once a candidate model is proposed and evaluated against thepreliminary criteria, some

evidence must be presented to support the thesis that the model supports capture and compar-

ison for the purpose of synthesis and prediction. As there are many different kinds of process

element, there is a rich space for investigation. Possible kinds of element include those from

traditional and agile processes, large and small projects,elements from process models, and
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many more. As a means of structuring the evidence that represents the model’s ability to cap-

ture and compare process elements, I have chosen an approachcalledargumentationalong with

an established notation for structuring arguments,Goal Structuring Notation (GSN). Argumen-

tation is “an approach which can be used for describing how evidencesatisfies requirements

and objectives” [160]. The use of a suitable notation such asGSNhelps researchers to easily

identify what evidence is required and helps stakeholders see at a glance what is the ‘evidence

coverage’. This approach has been used for many years in the safety critical domain and has

recently been applied in the software domain [160].

The need to capture existing models that are the basis of various studies means that I must

provide a means of representing studies that vary in integrity. One consequence of this is that it

must be possible to capture models based on different beliefs, for example, beliefs about which

contextual factors most affect outcomes. This will be necessary until the industry has progressed

to a better understanding of these factors. This suggests that I must find an abstraction that

accommodates a potentially huge variation in the statementof possible influencing factors. I

am also required to capture processes that may have different kinds of objectives, for example,

relating to cost or quality. For these kinds of reasons, the solution model will be realised as a

framework, the elements of which are models in their own right. For example, there is a model

(abstraction) for the contextual factors and one for the process objectives.

Evaluation of the framework will involve:

1. Identification of the range of processes and process models that must be successfully

represented.

2. Discussion about how the framework meets the criteria established as a result of exami-

nation of process characteristics and process model limitations.

3. Presentation of evidence to support the claim that identified processes and models can be

represented and that representation supports comparison.

4. Discussion about some limitations inherent in the approach.

1.6 Overview of Contributions

The main contribution of this thesis is the identification ofthe need for a holistic approach

to modelling the sofware development process in a descriptive way and the presentation of a

candidate modelling framework that provides a way of representing and comparing different

kinds of process elements.

A second contribution is the identification of the various research groups that model the

software development process to predict outcomes and the understanding of how these groups
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differ in approach and what are the limitations inherent in the work of each. The contribution

also includes a realisation that the narrow approach taken by each of the groups is a symptom

of lack of real understanding and is the basis for the case fora more holistic approach.

A third contribution is the establishment of an approach fordeveloping and evaluating mod-

els that claim to describe systems in a holistic and explanatory way. The strategy is to first

establish model objectives and identify a comprehensive range of example systems to be de-

scribed by the model. The next step is to examine the characteristics for, and problems with,

the example systems to help identify key model properties. These provide some basis for es-

tablishment of a suitable model structure and may be used as criteria against which to evaluate

candidate models in a preliminary evaluation step. Finally, the ability of the candidate model

to satisfy objectives is established by accumulating a portfolio of different kinds of evidence

relating to the example systems.

A final contribution is the understanding that the existenceof a suitable framework gives

rise to a number of unplanned research directions and the addressing of one such possibility,

that of process-specific risk profiles. Remaining directions include the use of the framework to

support research. Such directions are suggested as areas for future research.

1.7 Terminology

The issue of terminology in the field of software engineeringis problematic. Words such as

‘task’ and ‘activity’ are used by different authors to mean the same thing. ‘Process’ and ‘prod-

uct’ also tend to be undefined and many other terms are appliedwithout any definition of what

they mean.

My approach in this dissertation is to define terms used in a general way in a Glossary (see

Appendix A). Such terms areitalicisedand defined on first use and subsequently italicised only

when this helps clarify content. I also useitalicised text when emphasising a word or phrase,

even if not included in the Glossary.

For terms used by authors of a study being described, I include the term in ‘single quotes’.

For example, a process might be described by an author as comprising a number of ‘Activities’

and ‘Tasks’. In such cases, I do not try to define exactly what the term means, unless this is

necessary for the discussion.

I also use ‘single quotes’ when paraphrasing and “double quotes” when quoting phrases

from other sources.

For elements of the model that is the subject of this thesis, IuseSlanting Text.
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1.8 Document Roadmap

This dissertation is placed in the area ofsoftware processesused byprojectsto produce software-

intensiveproducts. A project is “.. a temporary endeavour to create a unique service or product

and with a definite beginning and end” [135]. I note that this definition says nothing about the

form of the service or product delivery and, in this thesis, Iview a project as any effort that

makes a delivery of any kind to any stakeholder. For example,a project might deliver a finished

product to a customer, a prototype to the development group or a test plan to the test group.

In other words, project objectives and scope are decided by the interested parties and project

definition is constrained only by the need to have a defined start and end and agreed delivery.

A software processis “. . . the set of all activities which are carried out in the context of a con-

crete software development project” [59]. Aproductcomprises the artifacts that implement a

software-intensive system and are the deliverables from a project.

This thesis is organised as follows.

In Chapter 2, I consider some different viewpoints on what issoftware development and

note that the range of proposed paradigms indicates a lack ofreal understanding of the essential

nature of the activity. I then provide an overview of some common software development

processes. I finally discuss some ways in which processes arecategorised. I suggest that the

interest in categorising is a symptom of lack of understanding and that focus should return to the

more important task of understanding what are the key characteristics common to all software

processes.

In Chapter 3, I examine the various kinds of study carried outby researchers with the goal of

predicting software process outcomes. I learn that there are three separate communities and each

applies a different approach and builds different kinds of models of the process. I expose some

limitations inherent in the work of the different groups by showing that the kinds of models

applied by each contain ambiguities and assumptions that render impossible comparison of

results.

In Chapter 4, I examine research related to the goal of process flexibility. This related

work spans several research areas, some directly related and others more indirectly. I first

discuss processes and process frameworks for which claims of flexibility are made and suggest

limitations based on an inability to capture the different kinds of process presented in Chapter

2. I then examine process models for which claims of flexibility are made and show how each

is limited according to its underlying approach as discussed in the previous Chapter. I finally

discuss attempts to model human-related factors and note that research is progressing in this

direction but, as yet, no suitable model of the human aspectsof the process exists.

In Chapter 5, I present a justification of the need for a theoretical model of the software

development process. I first provide a general overview of the different approaches to gathering
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data and discover that, if the aim is to establish causal connections between factors, a theoretical

framework is required. I next present some quotes from a number of researchers stating the need

for a holistic theory and reminding us that a characteristicof studies that are not based on such

a theory is an inability to achieve consistent results. Finally, I suggest that current software

process research is achieving inconsistent results because the research is fragmented and is

not based on an underlying theory. I conclude that a formal model of the software process is

required and formalise the objectives for such a model in thecontext of this thesis.

In Chapter 6, I analyse the various processes and process models described in Chapters 2 –

5 with the aim of understanding what might be the properties of a model that is a solution to the

problem of process customisation. I also consider some ‘real-life’ scenarios from industry to

help with identification of such properties. I then list the desired properties to be used as criteria

against which to evaluate a candidate model.

In Chapter 7, I present a candidate model,KiTe. My approach to presentation is to first

provide a schematic overview as a ‘gentle’ introduction, and to then present and formalise the

abstract model.

In Chapter 8, I present some evidence to support the proposedmodel. This includes evidence

to support the claim thatKiTe may be used to capture any process or process model and that it

supports comparison of studies.

In Chapter 9, I discuss how the existence of a suitable model provides some benefits not

originally planned or realised. As illustration, I show howKiTe can be applied to the identifi-

cation of risks specific to XP (eXtreme Programming) processes.

In Chapter 10, I evaluate the candidate modelKiTe. I first discuss how wellKiTe fulfils the

criteria stated in Chapter 6. The aim of this discussion is toprovide some preliminary confidence

thatKiTe will address the various process characteristics described in Chapter 2 and overcome

the limitations of current process models described in Chapters 3 and 4. I then examine the

evidence presented in Chapter 8 and discuss the strengths and weaknesses of the evidence.

The studies that comprise this evidence represent attemptsto find inadequacies withKiTe as a

solution to the problem of capture and comparison. I find thatthe evidence is reasonably strong,

but there are some serious gaps. I finally discuss some limitations inherent in the approach

taken.

Chapter 11, I summarise the thesis and suggest some future research directions resulting

from the research.



2
Software Development Processes

In Section 2.1, I present some different ideas about what is the nature of software development

and suggest that the diversity of ideas is an indication thatthe software community lacks under-

standing of the essential nature of the software process. InSection 2.2, I overview a sample of

software development processes, selected for their differences. In Section 2.3, I discuss some

ways in which processes are categorised. I suggest that the interest in categorising is a symp-

tom of the lack of understanding and represents an attempt tosolve problems the industry does

not understand. I also suggest that discussions and research based on polarisation do not help

the industry to progress towards understanding what are thekey characteristics common to all

software processes and that focus should return to understanding these characteristics.

2.1 Nature of Software Development

In the 1960s, programming was largely seen as anart and most practitioners had received no

formal training in the field [156]. As software systems became larger and more complex, this

perception of the practice became less appropriate and researchers began to be concerned about

the lack of a sound theoretical basis. As a result, they beganto apply an approach based on

manufacturing processes i.e. a process involving a single analysis, design and production stage.

One of the key events in the history of Software Engineering was the conference organ-

11
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ised in 1968 by theNATO Science Committeeto discuss issues relating to “software manufac-

ture” [118]. The term “Software Engineering” was coined at this conference with the deliberate

intention of implying the need for the discipline to be more stongly based on theoretical and

engineering principles. It is interesting to note that nearly all of the issues believed to be of rel-

evance today were brought up at this conference. For example, attendees discussed the need to

iterate and obtain feedback from the customer, reuse of components in preference to continually

‘reinventing the wheel’, the lack of clarity about what ‘production’ means in a software project,

measuring the production process, the risks involved in delivering software implemented us-

ing new and unproven techniques and the importance of findinga suitable abstraction for the

software product. However, despite such discussions, there appears to have been little attempt

to reframe the creation of software-intensive systems as anything other than amanufacturing

process, with stages of analysis, design and production. This paradigm was compliant with the

then-popularwaterfall process model, in which each stage must be completed and fully docu-

mented and verified before the next one commences. One resultof the use of this paradigm has

been the application ofprocess controlprinciples to manage quality outcomes.

There has been much evidence in the form of failed projects tosupport the idea that a single

passmanufacturingapproach is not generally an appropriate one for software systems, and one

result of this was the updating in 1987 of the US Department ofDefenseDoD standardDoD-

Std-2167to replace the waterfall model with an iterative approach (DoD-Std-2167A). Despite

evidence and change in standard, the industry has continueduntil recently to exhibit a “waterfall

mentality” [95].

During the 1980s and early 1990s, various groups around the world recognised the need

to deal with change and uncertainty relating to software project deliverables and, becoming

frustrated with the unsuitability of the waterfall model for such projects, came up with method-

ologies of their own. These methodologies were seen aslightweightand were oriented towards

frequent deliveries and feedback from the customer. This approach represents a paradigm of

software as a service, and in 2001, representatives of these processes formed anagile alliance

to promote the approach. Representative methodologies aretermedagile, and include, for ex-

ample,XP, Scrum, Dynamic Systems Development and Feature Driven Development.

Cockburn describes software development as acooperative game, with the aim of the game

being to make “ideas concrete in an economic context” and under limited resources. He appears

to view ‘process’ as being a number of pre-defined sets of instructions aimed at removing depen-

dence on key individuals but which actually overconstrain individuals. He advocates an agile

approach [29] and specifically uses thecooperative gameparadigm in hisCrystalmethodology.

A number of other paradigms have been proposed for software development although, to my

knowledge, none of these has spawned representative methodologies. Ricardo Peculis also be-

lieves that a rigid engineering approach using process control techniques constrains developers
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and reduces creativity and that people are the key. His solution is to regard software develop-

ment as acomplex adaptive systemand claims that software management should be based on

chaos theory along with leadership to orient the system to achieve expected results. No spe-

cific solution is presented other than a need to use “alternative, chaotic models” [127]. Lehman

revisits the problem of uncertainty about what ‘production’ means in a software project, and

declares software development to be adesignactivity [96]. Researchers from the discipline of

psychology view programming as a “complex cognitive and social task ... involving several

kinds of specialized knowledge” [128]. Armour believes software processes are about finding

out what we do not know [6] and Curtis et. al. also have the viewthat software is aprob-

lem solvingprocess and thus is at least partially aboutuncertainty and learning[37]. Several

authors perceive software development as aprobabilisticprocess, and this paradigm has been

applied in efforts to model the process (see Chapter 3).

In recent years, there has been a revival of interest in the idea of software development as

craftmanship. According to Pete McBreen, very large projects are generally hardware-driven

and are reallysystems engineeringprojects, but most software projects require fast delivery

and low cost, and thecraftmanshipparadigm is more suitable. In this paradigm, people are

more important and “Software craftmanship stands for a different kind of relationship between

developers and users” [108]. DeGrace also mentionscraftmanship[42] but believes that this

viewpoint has in fact led practitioners to become almost religious in their attitudes, and we are

“pulled this way and that by those who have the knowledge of The Right Way and The True

Faith”. DeGrace also mentions theheroparadigm for software development and includes in his

book quotes from several individuals who have single-handedly produced successful software,

for example, Bill Gates and Andy Hertzfeld. Dawson et.al. suggest that the large variation in

project circumstances mean that “guiding principles are hard to establish” and this has led to the

belief that software development is an art or craft. The result is “individuals forming their own

ideas for working practice based on a mixture of their own experiences, hearsay from others

and general folklore and myths” [38].

Kitchenham and Carn, after consideration of what is the practice of software engineering,

conclude that “the software production process is an engineering discipline like any other en-

gineering discipline” [88]. As support for this claim, I present three definitions ofengineering.

The American Heritage Dictionary of the English Language defines it as “The application of

scientific and mathematical principles to practical ends such as the design, manufacture, and

operation of efficient and economical structures, machines, processes, and systems” [63]. From

Wikipedia, “Engineering applies scientific and technical knowledge to solve human problems.

Engineers use imagination, judgment, reasoning and experience to apply science, technology,

mathematics, and practical experience. The result is the design, production, and operation

of useful objects or processes” [163]. Hansen believes engineering is “. . . the systematic ap-
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plication of scientific knowledge in creating and building cost-effective solutions to practical

problems” [43]. It would appear that the engineering paradigm is an appropriate one for the

problem of software development. However, it is clear from the discussions above that this term

is viewed by some as relating to only large systems, and Hansen points out that the concept of

applying ‘Engineering’ to software still arouses debate [43]. Perhaps this also is a consequence

of the original usage of the term at the NATO Conference beingassociated with ideas of large,

critical systems and a manufacturing mindset.

One interesting point that arises from the above discussions is that most authors equatepro-

cesswith document-driven, manufacturing process. However, aprocessmay be defined simply

as “The sequence of activities, people, and systems involved in carrying out some business or

achieving some desired result” [69], and I would argue that models that represent all of the

above paradigms can be represented as aprocessaccording to this definition.

In the above discussion, I presented many different ideas about what is software develop-

ment. The lack of consensus within the industry is, in my view, a clear indication that the space

is not yet well understood. The processes presented in the next Section are each founded on

a particular idea and represent the industry’s solutions toan unstated and vaguely understood

problem. This view is supported by Fuggetta, who believes that “the approach of most Soft-

ware Engineering researchers is oriented to inventing new ‘things’ rather than pursuing a deeper

understanding of the problem we want to solve . . . ” [54].

2.2 Processes Overview

The processes overviewed in this Section are selected for variation in characteristics. Some

common processes excluded areAdaptive Software Development (ASD), Dynamic Systems De-

velopment (DSDM)andLean Software Development.

2.2.1 Waterfall

A waterfallprocess involves a number of sequential phases, for example, ‘Gather requirements’,

‘Design’, ‘Implement’ and ‘Test’. Each phase includes a verification step, and the phase should

be completed and fully documented before the next begins. Asin a manufacturing process, it

is most likely that each phase will involve different people, for example, analysts, designers,

coders and testers, and so communication is based on large amounts of documentation. Feed-

back between phases is permitted, but this is very controlled and no phases are omitted. For

example, if problems in requirements are discovered duringtest, all of requirements, designs,

code and test artifacts should be updated to reflect the change.
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In a ‘pure’ waterfall process, a single delivery is made to the customer i.e. there is no op-

portunity for refining of requirements from customer feedback. In a real software development

project, this approach is impractical [142]. Seldom is the end customer sure at the start of the

project exactly what he or she wants and so a constant stream of change requests must be man-

aged. Maintaining consistent documentation is difficult under time pressure and documentation

tends to become inconsistent between phases. There is a tendency for developers to start work

on subsequent phases before earlier ones are complete. It isdoubtful that many projects have in

fact implemented a ‘pure’ waterfall process [95] and there are many reports indicating a more

iterative approach in practice.

Winston Royce is often quoted as creating the waterfall model in 1970 [141]. However,

according to Boehm, the waterfall model is a refinement of a stagewise model introduced in

1956 to address problems of inadequate architecture and difficult-to-read code resulting from

the ‘code-and-fix’ approach practiced in the earlier years of programming [23]. In fact, Royce

has been somewhat misinterpreted, perhaps as a result of the‘manufacturing mindset’ existing

at the time, as he includes in his documented process the steps “do it twice” i.e. deliver the

second version as final version to the customer and “involve the customer” i.e. solicit feedback

from the customer throughout the process [141].

The industry has spent much effort in debating the usefulness of a waterfall approach to

software development and it might be argued that the majority of subsequent processes have

been created in reponse to the inadequacies of the waterfallmodel. Some claim that the waterfall

approach “pushes risk forward in time so it is costly to undo mistakes from earlier phases” [92].

It has also been noted that the waterfall represents an attempt to managethe development of

software and as such is not based on an understanding of the processes involved and so does

not reflect the real activities that take place [88]. This means that it does not capture cause-and-

effect relationships and so cannot be used as the basis for a model for describing different kinds

of process.

2.2.2 Spiral

TheSpiralmodel of software development was created in 1988 by Barry Boehm as arisk-driven

approach to the software development process [23]. The model was a response to the belief that

the then popular waterfall approach was “discouraging moreeffective approaches to software

development such as prototyping and software reuse”. The reason for this is that the waterfall

defines a strict order for process phases and so, for example,does not account for situations in

which the coding of a prototype is appropriate before requirements are consolidated.

The model comprises a number of cycles, the required number of these varying with the

project. Each cycle commences by determining cycle objectives (what the cycle must achieve),
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alternatives (possible ways to achieve objectives, for example, reuse) and constraints on the

alternatives (for example, cost, module interfaces). The next step in a cycle involves performing

a risk analysis on the possible alternatives to meet the objectives. The third step is to create and

test the deliverables required to meet the cycle objectivesand the fourth to plan a subsequent

cycle, if required. For some projects, objectives for earlycycles might be high level in nature

and involve, for example, feasibility studies or prototypes as deliverables. The cycles would

then begin to address more specific issues, for example, requirements and designs. Smaller,

more well-defined projects might commence with a ‘formal requirements’ cycle. A key point is

the inclusion of a risk identification and management phase during every cycle.

The spiral model provides much flexibility, as what is to be achieved during each cycle

is defined by those using the model. This means that the model encompasses other models,

for example, waterfall and it also means that other models can be combined within the spiral

framework. For example, if cycle objectives are defined to beconsistent with those of the wa-

terfall phases, the spiral becomes a waterfall model. In a similar way, a project with high risk

of creating the wrong user interface and with low budget riskmight implement many ‘require-

ments/design/code’ cycles, and risk considerations mightlead to a decision not to document

specifications. The spiral thus becomes equivalent to anevolutionaryapproach in which con-

tent is allowed to evolve as the project progresses.

Boehm acknowledged a number of difficulties in applying the model. These include the

need for greater process determination when software development is contracted out, the need

for risk-assessment expertise and the need for further elaboration of steps [23]. I note that the

approach is a response to the inability of waterfall to accommodate situations in which different

phasing is appropriate.

2.2.3 Rational Unified Process (RUP)

TheRationalUnified Process, (RUP)was developed byRational Softwareand integrated with

its suite of software development tools [92]. Its base is theObjectory process created in 1987

by Ivar Jacobson, a process centred on the concept of use caseand object oriented design and

obtained on merger of Rational withObjectory ABin 1995. The addition of theBooch Method,

an iterative approach to OO analysis and design, requirements management (fromRequisite,

Inc.) and a test process (fromSQA, Inc.) resulted in theRational Objectory Process. RUP re-

sulted from further mergers, resulting in acquisition of business modelling, project management

and configuration management capability. I observe that elements included originally related

specifically to software development activity, and have extended over time to include software

development support and project management.

The process applies to development efforts that use anObject Oriented (OO)approach.
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Processes (‘workflows’ in RUP) are included for project management, business modelling, re-

quirements, analysis and design, implementation, test, configuration management, environment

and deployment. These span a number of ‘phases’ and iterations are encouraged within each

‘phase’.

RUP is an artifact-driven process and ‘workflows’ are constrained by the tools supported in

the product. It is possible to configure the process by modifying steps and adding guidelines

and checkpoints, but within the provided structure of provided ‘phases’, ‘iterations’ and ‘work-

flows’. Key ideas include the need to manage risk and to establish a core architecture during

early iterations [95].

RUP does not define a singleprocess, rather it is aprocess framework. The claim is that

the RUP framework represents an attempt to bring together known best practices for software

development and project management. The idea is that users of RUP create processes based on

the included ‘best practices’. However, the claim of supporting ‘best practices’ is tenuous and

Rational fails to justify such claims by reference to available evidence. Indeed, a ‘best practice’

appears to be defined as one currently supported by RUP. For example, RUP documentation

references theSoftware Program Managers Network (SPMN)[75] as the source of project man-

agement best practices. However, the interpretation of these practices in RUP is loose. Two of

the six RUP best practices are ‘Develop Software Iteratively’ and ‘Visually Model Software’ but

these practices are not included in those suggested by SPMN.The SPMN practices of ‘Adopt

Continuous Risk Management’ and ‘Use Metrics to Manage’ arenot included in the RUP list,

but rather are catered for as specific aspects of the ‘ProjectManagement Workflow’.

2.2.4 Cleanroom

TheCleanroomapproach to developing software was developed by Harlan Mills and was ini-

tially practiced in 1987 at IBM [150]. The traditional, craft-based approach of the time viewed

the introduction ofdefectsinto the software and the related costs of detection and removal as

inevitable [100, 150]. Management focus was on moving into execution quickly in order to

commence debugging. The introduction of a phased, waterfall approach represented an attempt

to control software quality by applying a manufacturing-based process. In a manufacturing sit-

uation, items found to be defective at the end of the process are discarded. The aim is to reduce

the number of defective items by improving the process. However, for software-intensive prod-

ucts, the concept of discarding defective items does not apply, rather defects are repaired prior

to delivery. For a manufacturing-based process such as waterfall, the cost of repair for defects

discovered at the end of the process is high because of the large quantities of documentation

involved.

Mills recognised that defect removal at the execution stageis an inefficient activity and
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the key idea of the Cleanroom approach is one of defect prevention. “Cleanroom software

engineering is a set of principles and practices for software management, specification, design

and testing that have been proven effective in improving software development quality while

at the same time improving productivity and reducing cost” [41]. The name ‘Cleanroom’ was

taken from the electronics industry, and represents the vision of zero defect injection. Studies

report that the numbers of defects found in code as measured prior to initial unit test activity is

greatly reduced by the application of a Cleanroom approach and the kinds of defects discovered

are generally “. . . simple mistakes easily found and fixed . . .”.

The approach represents a move “from traditional, craft-based software development prac-

tices to rigorous, engineering-based practices”. The theoretical foundations of Cleanroom are

formal specification and design, mathematically based correctness verification and statistical

testing. The process involves small teams developing and certifying software increments, with

a hierarchical arrangement of teams for large projects. System integration is continuous and

developers maintain intellectual control [100]. Developers do not execute and test their code,

rather independent teams carry out all verification and testing from first execution. The aim

is to quickly deliver an initial product of high quality and then incorporate new requirements.

Cleanroom prototypes are used to elicit feedback when requirements are unclear.

Specifications are generally developed by development and certification teams working to-

gether with the customer. Functional and usage scenarios are defined and include both correct

and incorrect examples. The functional specification formsthe basis for development and the

usage specification for the generation of test cases. Specifications are used for increment plan-

ning. Developers carry out design and correctness verifications for each increment using the

concept of ‘box structures’. When an increment is completed, it is integrated and delivered

to the test team who execute test cases. Testing is viewed as astatistical experiment i.e. a

“. . . representative subset of all possible uses of the software is generated, and performance of

the subset is used as a basis for conclusions about general operational performance. In other

words, a ‘sample’ is used to draw conclusions about a ‘population’.” [150] If quality standards

are not met, testing ceases and developers return to the design stage.

Claimed benefits of the approach include significant improvements in correctness, reliability

and understandability. These are supported in a 1987 empirical study by Selby, Basili and

Baker, who found that Cleanroom teams met deliveries more frequently than non-Cleanroom

teams and produced code that contained fewer defects and wasof higher quality. Eighty-one

percent of the Cleanroom developers said they would use the approach again [147].

Limitations of the Cleanroom approach include the requirement for training — managers

must have a “sound understanding of Cleanroom imperatives”and developers must be suffi-

ciently skilled to “adapt the process to the local environment” [150]. It is also believed to be in-

effective to use Cleanroom to effect small changes to software developed using non-Cleanroom
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technologies. Other limitations for some projects includethe difficulty of defining a “represen-

tative subset” of uses for testing, the high cost of implementation and the need for independent

teams.

2.2.5 Agile alliance

In the 1990s, several individuals who were unhappy about theuse of traditional methods used

for creating software independently evolved processes they believed to be more appropriate for

‘real’ software projects. From Europe emergedDynamic Systems Development Methodology

(DSDM), from AustraliaFeature-Driven Developmentand from the USAExtreme Program-

ming (XP), Crystal, Adaptive Software DevelopmentandScrum[168]. Despite the fact that the

methodologies appeared to have little in common, representatives from each met in 2001 in an

attempt to find common ground and the ‘Agile Manifesto’ was formed. The common ground

was that participants were “sympathetic to the need for an alternative to documentation driven,

heavyweight software development processes” [61]. The resultant manifesto represents an at-

tempt to redress a perceived process-heavy imbalance in theindustry by adopting the philoso-

phy that people play the key role in software development andprocess must play a secondary

role [32]. I overview some of the agile methodologies and discuss further in the next Section.

2.2.6 XP

XP (eXtreme Programming) is a “light-weight methodology for small-to-medium-sized teams

developing software” and was proposed by Kent Beck as a response to the need to manage

“vague or rapidly changing requirements” [15]. Beck introduces four‘Values’ and a number

of basic ‘Principles’ that realise the ‘Values’. His process solution comprises the development

‘Practices’ that comply with the ‘Principles’.

The Practices cited by Beck are [15]:

The Planning Game Quickly determine the scope of the next release by combiningbusiness

priorities and technical estimates. As reality overtakes the plan, update the plan.

Small ReleasesPut a simple system into production quickly, then release new versions on a

very short cycle.

Metaphor Guide all development with a simple shared story of how the whole system works.

Simple Design The system should be designed as simply as possible at any given moment.

Extra complexity is removed as soon as it is discovered.

Testing Programmers continually write unit tests, which must run flawlessly for development

to continue. Customers write tests demonstrating that features are finished.
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Refactoring Programmers restructure the system without changing its behavior to remove du-

plication, improve communication, simplify, or add flexibility.

Pair Programming All production code is written with two programmers at one machine.

Collective Ownership Anyone can change any code anywhere in the system at any time.

Continuous Integration Integrate and build the system many times a day, every time a task is

completed.

40-Hour Week Work no more than 40 hours a week as a rule. Never work overtimea second

week in a row.

On-Site Customer Include a real, live user on the team, available full-time toanswer ques-

tions.

Coding Standards Programmers write all code in accordance with rules emphasizing commu-

nication through the code.

In this paradigm, working software is delivered every couple of weeks and the above Prac-

tices carried out for each cycle. Rather than defining the product up-front, the approach is to

allow it to grow in an evolutionary way, as customers become more clear about what is wanted

as a result of feedback. Beck suggests that the XP Practices support each other and that process

efficacy will be compromised if any are missing.

2.2.7 Scrum

Scrum was developed by Ken Schwaber in 1996 and is based on thenotion that software de-

velopment is inherently unpredictable. The mitigation strategies for the ‘unpredictability’ risk

factor include 30-day work intervals and a daily status meeting of developers, customers and

managers. Developers work from a prioritised list of features. Key principles are [30]:

• Small working teams that maximize communication, minimizeoverhead, and maximize

sharing of tacit, informal knowledge.

• Adaptability to technical or marketplace (user/customer)changes to ensure the best pos-

sible product is produced.

• Frequent ‘builds’, or construction of executables, that can be inspected, adjusted, tested,

documented, and built on.

• Partitioning of work and team assignments into clean, low coupling partitions, or packets.

• Constant testing and documentation of a product as it is built.

• Ability to declare a product ‘done’ whenever required.

No guidelines are given on how to create the product. I suggest that this methodology

represents a management approach to risk mitigation.
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2.2.8 Crystal

This is a family of methods created by Alistair Cockburn to address the problem of poor com-

munication in software projects. All methods have a core setof ‘roles’, ‘work products’, ‘tech-

niques’ and ‘notations’ and the set expands as the team size grows or priorities change. Priori-

ties are project dependent, for example, ‘productivity’, ‘system criticality’, ‘legal liability’ [30].

Practices from both agile and plan-driven methods are implemented and techniques from psy-

chology and organizational development research incorporated [21]. All crystal methods have

three ‘Priorities’. These are ‘project outcome’, ‘efficiency’ and ‘habitability’. Shared ‘Proper-

ties’ include ‘Frequent Delivery’, ‘Reflective Improvement’ and ‘Close Communication’ [53].

2.2.9 Feature Driven Development (FDD)

FDD was developed by Jeff DeLuca and Peter Coad as the result of an attempt to save a failing

project [30]. This is an architecturally based process in that an overall object architecture is

established up front along with a features list [21]. Features are “small items useful in the

eyes of the client” [30]. They are captured in a language understandable by all parties and

each is expected to take no more than 10 days to develop. The role of Chief Architect and Chief

Programmer are maintained and OO design methodolgies implied. Adaptation is achieved by 2-

week iterations. FDD does not mandate daily involvement of the client and a central repository

is used to capture all important project information, for example, minutes, knowledge, decisions

and issues.

2.3 Categorising Processes

Many practitioners and researchers spend much time in the ‘traditional versus agile’ debate [16,

21, 30]. Terms such as ‘plan-driven’ are used to to describe traditional processes, with the in-

ference that agile methods are weak as regards planning [16]. Others believe agile processes

exhibit strong planning, as the setting of customer expectations is supported by short cycles and

estimation and monitoring are inherent aspects of agile processes. Articles state that agile soft-

ware development “is about feedback and change” [168], implying that traditional methods are

unsuited to projects displaying these characteristics. Larman and Basili point out that iterative

and incremental practices to specifically address problemsof change have been carried out from

at least 1968 [95].

There is general agreement that the actual practices implemented in agile methodologies

are not new. Although many authors have attempted to characterise agile methodologies [5,

16, 21, 30, 168], confusion reigns as to what exactly are the distinguishing characteristics. In
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the overviews presented above we see a range of combinationsof practices with ‘traditional’

and ‘agile’ practices interspersed. For example, daily customer contact is a recognised ‘agile’

practice but is not implemented in FDD; up-front features definition is a recognised ‘traditional’

practice but is practised in Scrum. Fowler believes there are “some fundamental principles that

unite these methodologies [53]”. He believes that the agileapproach of minimal documentation

is a symptom of two deeper characteristics and these are a belief in the adaptive rather than

predictive nature of software development and an orientation towards people as key to success.

As support for the former, he cites Cockburn who points out that process predictability requires

linear components but people are not linear. The latter means that the role of a process is

to support the development team [53]. Both characteristicsproposed by Fowler confirm the

people-centric nature of software development.

Although processes are commonly categorised as ‘traditional’ or ‘agile’, I notice that other

kinds of categorisation might be applied. If I categorise according to ‘what is software devel-

opment?’, I find Waterfall and Cleanroom are categorised as ‘manufacturing’, Spiral as ‘risk

management’, XP as ‘service’, Crystal as ‘cooperative game’, and so on. I also notice that

some paradigms have no representative process. For example, Curtis’s plea for a behavioural

model of the process has not been actioned and no representative process exists.

A third possible categorisation involves determining the degree of definition of a process.

I notice that XP is very tightly defined. Iteration length is fixed, rules for how to design and

code are very explicit (as it is expected that techniques such aspair programmingandcommon

code basewill be implemented) and communication strategies are mandated. Spiral, on the

other hand, provides complete flexibility in how to create the product and mandates only that

the management practices of planning and risk identification be carried out in a specific way.

Decisions about the use of prototypes, how to design and codeand when and how to inspect are

left to the user of the process. Waterfall also leaves many decisions to the process user. Although

based on a manufacturing, and thus tightly defined, process,opportunities for flexibility result

from the facts that people perform the process tasks and thatdefects are generally resolved

rather than thrown away. Decisions about, for example, coding techniques and inspection and

rework policies are left to the process user and it is the phasing only that is defined for Waterfall.

The problem space is a rich one and processes can be categorised in several ways. However,

I suggest that such categorisation only succeeds in confusing the issue by polarising processes

in a way that makes it difficult to understand the common factors. For example, any of the

available techniques that ‘characterise’ agile processes, for example, documentation, up-front

requirements, test-first design, status meetings, iterations and customer collaboration, can be,

and have been, applied in both agile and traditional situations. Situations that appear on the

surface very different may be viewed as different solutionsto the one problem. For example,

managing product definition may be achieved by exhaustive up-front capture of requirements
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with a single delivery of the product, up-front capture withincremental delivery allowing for

some feedback from the customer or minimal initial product definition and many prototypical

deliveries aimed at growing the product in an evolutionary way. The first is believed to be

appropriate for products such as compilers and the last for products with low understanding of

user interface requirements [23]. A similar discussion around how product knowledge is held

leads to the identification of ‘suitable’ and ‘risk’ situations. If knowledge is held in documents,

it is believed that developers have a view of only part of the product, with little understanding

of the rationale for the product or the characteristics of the application area. If knowledge is in

peoples’ heads, there is a risk of knowledge being unavailable, for example, if developers leave

or are unable to share knowledge for any reason. The point is that, for a given project, the ‘best’

strategy will depend upon a consideration of specific solution strategies in the context of the

project. There is no need to be ‘agile’ or ‘agile with a littletraditional’ or, maybe, ‘traditional

with a little agile’.

In summary, I suggest that, if the goal of customisation is tobe met, discussions that cate-

gorise processes in a polarising way are unhelpful and focusneeds to be on understanding what

are the characteristics of the software process and how these relate to specific project contexts.

I provide some support for this viewpoint in Section 10.3.
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3
Software Process Models

In an attempt to better understand the issues involved and thus facilitate prediction capability,

researchers use various techniques to model the development process. There are three main

groups involved in modelling for understanding and prediction, each with a different kind of

goal. Researchers in the first group apply statistical manipulations on existing datasets with a

view to predicting outcomes on future data sets. Models based on statistical prediction tech-

niques are overviewed in Section 3.1. Researchers in the second group are involved in formal

experimental research with the aim of providing sound research data for use in further studies.

Some research based on this approach is overviewed in Section 3.2. Researchers in the third

group model and simulate the development process, often with the aim of perturbing the process

to study what effect this has on specific outcomes, for example, quality. Some of these models

are overviewed in Section 3.3.

One characteristic all groups have in common is that the lackof available, sound data con-

strains efforts in some way with the result that models oftencontain ambiguities and are based

on unstated assumptions. This means that we do not really understand what is the meaning of

results achieved. For each of the groups, I identify the kinds of limitations characteristic of the

kinds of models created.

25
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3.1 Predictive Modelling

3.1.1 Cost estimation

In the 1960s and 1970s, researchers and practitioners became concerned that software-intensive

projects were plagued by problems not present in other manufacturing projects. These prob-

lems resulted in failure to meet delivery expectations and spawned a number of models aimed

at supporting predictions of project cost and duration [103]. The models in general represent

a pragmatic approach aimed at improving estimation accuracy rather than an attempt to under-

stand underlying causes. To this end, models apply, for example, statistical methods to predict

based on existing data.

Early predictive models aimed to facilitate the predictionof costs and durations for a given

project [19, 103]. These cost estimation models are equations linking costs to the size of the

software product to be delivered and a number of other factors believed to influence costs, for

example, staff size. The form of the model equation is inferred from a statistical manipulation

on a number of datasets collected from real projects. Cost estimation activity has continued to

the present time and different kinds of techniques applied.

Possibly the earliest known model is that of Farr and Zagorski, introduced in 1965. The

model has thirteen predictors and estimates manpower required from delivery of complete re-

quirements to release for integration i.e. for design, codeand debug [103]. The Wolverton

model from TRW Systems (1974) assumed manpower is directly proportional to size and uses

historical data, a phased approach and a ‘difficulty’ scale for old or new software. The Doty

model (1977) is a set of recommendations for estimating and may be applied to command and

control, scientific and business systems. Size is used to compute a cost, which is refined us-

ing seventeen environmental predictors [103]. SLIM was developed in the late 1970s by Larry

Putnam. This model uses Source Lines of Code (SLOC) for project size and then modifies this

through the use of a Rayleigh curve model to produce effort estimates. Two key parameters

influence the shape of the curve — the ‘manpower buildup index’ (initial slope) and ‘productiv-

ity factor’ [25]. The COnstructive COst MOdel (COCOMO) was developed by Barry Boehm

of TRW and is based on an analysis of 63 software development projects. The model predicts

effort and duration based on size measured in KDSI (thousands of delivered source instructions)

and a number of ‘cost drivers’. There are three alternativesfor model equations for different

kinds of project.

More recent studies consider a range of data-intensive modelling techniques such as ordi-

nary least-squares regression (OLS), Analysis of Varianceapproach for unbalanced data sets

(ANOVA), classification and regression trees (CART), analogy-based approaches [7, 25] and

data pruning approaches [28].
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Practitioners and researchers continue to express concernabout their inability to accurately

estimate costs based on the above models [77, 82]. A 1987 empirical evaluation of four popular

models, SLIM, ESTIMACS, Function Points and COCOMO revealed that when models were

applied in an environment different from that in which the model had been developed, average

error rates ((estimated effort - actual effort) / actual effort) ranged from 85 to 772 percent.

After calibration to the local environment, SLIM showed an 88 percent correlation between

estimates and actuals, with other models performing less well. Most models appeared to be

adding extraneous information [82]. A 1999 study by Briand et. al. examined a number of

data-intensive modelling techniques using a large database of business applications. Techniques

included the four modelling techniques introduced earlierin this paragraph. Results showed

that outputs from all of the models was “from a practical perspective, far from satisfactory for

cost estimation purposes” [25]. Researchers continue to investigate techniques for improving

predictions. For example, Auer and Biffl propose an extension to an analogy-based approach

i.e. one in which estimates are derived from historical databy finding projects with similar

features. The extension takes into account the fact that different project features “are known

to have varying impact on actual project similarity” [7]. They propose a scheme for weighting

features based on relative impact. Chen et. al. observe thatreal world data sets “often contain

noisy, irrelevant, or redundant variables”. They claim “huge improvements” if data for similar

projects only is included and if most of the columns (i.e. input parameters in the data set) are

pruned away [28]. These research efforts indicate that, although many agree that predictive

models are useful under certain circumstances, care must betaken when selecting source data

for predictions and models may not be applied in a general way.

3.1.2 Fault prediction

A second example of the use of statistical modelling techniques on large datasets concerns the

various research efforts aimed at identifying what are the factors that affect the incidence of

softwarefaults[12, 18, 50, 58, 60, 83, 94, 112, 116, 123, 124, 172, 173]. Thisresearch is driven

by the high cost of finding and fixing faults just prior to a product’s release. The strategy is

to identify fault-prone modules earlier in the developmentcycle, for example, after design or

just prior to testing, and thus enable development and testing efforts to focus on these high-risk

modules.

This research has spanned twenty years. Inputs to the statistical models generally include a

number of product metrics, for example, size measured as ‘lines of code’ or ‘Halstead program

length’, control flow structure measured as ‘McCabe cyclomatic complexity’ and design cou-

pling measured as ‘fanin’ and ‘fanout’ [94]. Models aim to either predict expected module fault

density [12, 60, 58, 123] or to classify modules as ‘fault prone’ or ‘not fault prone’ [83, 94].
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A number of statistical techniques has been applied to the problem. Early models applied

multiple regression techniques but this approach was believed to be problematic because of

the non-normal nature of the fault data (for example, modules typically exhibit no, or few,

faults at later stages in the software cycle) [116]. Khoshgoftaar et. al. in 1996 applied a non-

parametric discriminant analysis technique to classify programs as ‘low-fault’ or ‘high-fault’.

Eleven complexity metrics were developed as independent variables, including ‘code lines’,

‘character count’, ‘Halstead’s program length’ and ‘McCabe’s cyclomatic complexity’. The

problem of multicollinearity in the independent variableswas addressed by applying principal

component analysis, resulting in only two orthogonal (uncorrelated) complexity domains. Cor-

relations between these two domains and program faults was found to be high [116]. Lanubile

and Visaggio used techniques of principal component analysis, discriminant analysis and logis-

tic regression to classify modules. They believe logistic regression is preferrable to discriminant

methods because the technique is not based on normality assumptions [94]. Fenton and Ohls-

son remind us that data are measured on different scales and statistical analysis techniques must

take this into account [50]. Graves et. al. apply ‘generalized linear models’ to determine fault

rates as these are appropriate for non-Normal distributions, but comment that the “choice of

parametric family . . . led to some complications” [58]. Ostrand et. al. developed a negative

binomial regression model to sort files in descending order of predicted fault density and report

accurate predictions [18, 124].

3.1.3 Limitations

Cost estimation models have proved disappointing for estimating outcomes for real projects.

One possible reason is that models are based on an assumptionabout what are the factors, in

addition to size, that most influence productivity. COCOMO measures size in ‘Lines of Code’

(LOC) and includes, for example, ‘personnel experience’, ‘personnel continuity’, ‘database

size’, ‘required reusability’, ‘virtual machine volatility’ and ‘requirements volatility’. Briand

et. al. measure size in ‘Experience Function Points’ (derived from the Albrecht Function Point

measure) and include ‘organization type’, ‘application type’, ‘customer participation’, ‘require-

ments volatility’ and ‘team skills of staff’. The implication is that the relevant factors are not yet

properly understood. This creates a problem that is compounded by the difficulty of collecting

data on these factors-of-interest. This idea is supported by the Briand study where comparisons

between the use of company-specific data and multi-organisation data failed to show a signif-

icant difference when company-specific data was used. The authors suggest that “the main

source of heterogeneity may come from the project characteristics themselves rather than the

organizations where they take place” [25].

In the case of fault density prediction, there is some lack ofagreement about results. An
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example is the use of statistical techniques to predict the relationship between module size and

fault density. Are small, medium or large modules most fault-prone? Several researchers have

found that, contrary to popular belief and the notions of structured and modular programming,

fault density has been found to increase in smaller modules and remain constant for increasing

size [12, 112, 123]. Explanations given relate to the increase in interfaces for smaller modules.

Hatton, however, makes the case for a U-shaped result and cites authors in addition to himself

who have found that fault density increases as modules become smaller or larger than some

minimum value[60]. His explanation involves the idea that humans hold a predefined number

of pieces of information in short term memory — this corresponds to the ‘dip’ in the curve —

and when this is exceeded i.e. the module is too big, long termmemory mechanisms come into

play. More recently, Fenton found no relation to module sizeand this was backed up in a later

paper by Ostrand and Weyuker[124]. Lanubile et. al. compareseveral modelling techniques for

predicting software quality by building models based on software product measures and using

the models to classify components as high- or low-risk. Techniques included principal com-

ponent analysis, discriminant analysis and logistic regression. They conclude that “no model

was able to effectively discriminate between components with faults and components without

faults”. They warn that, although past research has indicated correlation between product mea-

sures and fault densities, “the underlying phenomena continue to be poorly understood” and

researchers are working with assumptions [94].

In all of the above examples, researchers use statistical techniques on existing datasets with

a view to identifying influential factors for use in predictive models. Basic statistical wisdom

tells us that, in this modelling paradigm, results are not applicable to situations other than those

existing during data collection [31]. Statistical methodscan show correlation but without un-

derstanding how factors in different situations might ‘change the rules’, there is no possibility

of applying results to other circumstances. One symptom of this is that researchers find it diffi-

cult to obtain consistent experimental results, and this fact is reflected in the above discussion.

The problem is acknowledged by a number of researchers in thefield of software engineering.

Lanubile et. al. believe that “Predictive models are very attractive to build, but they can be a

waste of time if we rely on false assumptions . . . ” [94]. The need for a deeper investigation into

the underlying processes is reiterated by Zhang et. al. who believe that a failure to consider

other factors that might contribute to software reliability has “become somewhat a limitation of

the existing software reliability models” [173]. Fenton et. al. remind us that statistical mod-

els do not capture causal relationships and “recommend morecomplete models” that include

explanatory factors [50].
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3.2 Controlled Experiments

In 1976, NASA’s Goddard Space Flight Center (NASA/GSFC) created a partnership with the

University of Maryland (UM) and Computer Sciences Corporation (CSC) “for the purpose of

understanding and improving the overall software process and products that were being created

within the GSFC Flight Dynamics Division” [117]. This groupis theSoftware Engineering

Laboratory (SEL). The strategies applied by this group involved measurementand experimen-

tation. This application of controlled experimentation techniques to increase understanding

reflected the desire of some researchers to increase the integrity of empirical research in the in-

dustry. However, perhaps because of the complexity of the software development environment,

the approach has been adopted by only a small group of researchers.

It is, however, generally agreed by researchers that, if we are to progress as a professional

discipline, it is now time to move away from the ‘analytical advocacy research’ [49] with which

the industry is familiar and towards a more formal approach to experimentation. A recent

(2005) literature survey examining controlled experiments in software engineering uncovered

the fact that “the majority of published articles in computer science and software engineering

provide little or no empirical validation and the proportion of controlled experiments is partic-

ularly low” [149]. Basili et. al. believe that “. . . in software engineering, the balance between

evaluation of results and development of new models is stillskewed in favor of unverified pro-

posals” [14].

The industry is now witnessing an increased interest in sound empirical research. The stan-

dard techniques for empirical research include observational studies, for example, case studies,

and controlled experiments [44, 90]. The former are generally carried out when the aim is one

of exploration or comparison i.e. the researcher wishes to more fully understand some aspect

of the system under study, perhaps as a preliminary step towards theory-building. Controlled

experiments aim to examine causal relationships between various factors and study a problem

stated as a hypothesis based on some theory or model [55]. Keyaspects of this paradigm in-

clude an operationalisation that states what are the real-world entities that will be measured

to represent the hypothesis, the soundness of the experimental design, control of any variables

that might affect results, the use of random data and the application of appropriate statistical

techniques for rejection of the null hypothesis.

Research into the software process can be categorised as examining the inter-relationships

between process, product and people. For example, “Which inspection technique is better?”,

“Did the technique yield better results if the developers were experienced?”. Some controlled

experiments that have been carried out include studies examining various reading techniques for

inspections and object-oriented designs and code [2, 117] and studies on regression testing [80].
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3.2.1 Limitations

Formal empirical research tends to be careful about definingwhat is being measured and tested,

but the problems with interpreting results is acknowledgedby a number of researchers. Carver

et al. [27] point out that there is a problem with understanding what are the common assump-

tions arising in current empirical research efforts. It is difficult for researchers to be sure that

all possible explanations for results have been identified and that effects are, in fact, due to the

cause under investigation. This is a problem ofinternal validity. For example, in experiments

involving process and product, are we certain the human factors were held constant? According

to Kitchenham et. al., “... controls are difficult to define because software engineering tasks

depend upon human skills” [90] and an existing ontology of context “identifies a very large

number of factors but does not offer any advice as to which factors are most important” [90].

We remember to take account of experience and skills, but arethere any other factors that might

confound results, for example, motivation and ease of communications? Carver et. al. com-

ment that “the variation among the subjects can outweigh theinfluence of the real variable of

interest” [27]. The “potentially large number of context variables” [14] also causes problems of

external validityand “we cannot a priori assume that the results of any study apply outside the

specfic environment in which it was run” [14]. Sjoberg et. al remind us that “there is no gen-

erally accepted set of background variables for guiding data collection . . . because the software

engineering community does not know what are the important ones [149].

3.3 Simulation Modelling

A third set of researchers originally addressed the problems exhibited by software projects by

attempting to enforce greater control of the process. The models created by this group were

prescriptivein nature i.e. defined what steps were to be carried out and how. Such models

tended towards automation of the process environment [67, 111]. This trend was highlighted

by a well-quoted and much acclaimed keynote speech at the 1987 International Conference on

Software Engineering (ICSE9), where Leon Osterweil declared that “software processes are

software too” [122]. Others disagreed with this view and, atthe same conference, Lehman

delivered a ‘response’ paper claiming that “the existence of a programming language sets up

constraints as to how a problem may be solved, severely limits human creativity” and that it

“. . . is the problem domains . . . that become well understood and formally modelled, not the the

process for program development in general [97]”. He believed that process programs “do not

. . . appear to provide a fundamental contribution to the further development of a software engi-

neering discipline“ and suggested that the challenge of thefuture was to improve clarification

and understanding of the general process. He and many othershave taken up this challenge by
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creating executable models of the software process specifically aimed at understanding what

are the key influencing factors [19, 81, 103, 130, 134, 137].

One of the early models in this direction was that of Abdel-Hamid and Madnick, based on

a system dynamics paradigm (see Section 3.3.1). This model addresses the managerial aspects

of software devlopment [1] and represents a response to the idea that there was too much focus

on modelling the technological aspects only of the process.Substantial attention is now given

to modelling in a descriptive, rather than prescriptive, way and the termsimulation modelling

has been coined. An annual Workshop, the Workshop for Process Modelling and Simulation

(PROSIM), is held in conjunction with the International Conference for Software Engineering

(ICSE) and the Journal of Systems and Software has produced anumber of issues dedicated to

this subject.

Model simulations have used techniques from various disciplines and the scope of work has

varied from small portions of the product lifecycle to long term organisational matters. The dis-

cipline is “increasingly being used to address a variety of issues from the strategic management

of software development, to supporting process improvements, to software project management

training” [81]. The main paradigms currently applied to simulation modelling are system dy-

namics [1, 51, 99, 105, 119, 138, 162], discrete event simulation, state based [67, 137], and rule

based [46, 143, 153]. More recently, researchers have combined paradigms in an attempt to

overcome limitations inherent in individual paradigms [45, 93, 107, 106, 136].

Modellers tend to approach a problem from the viewpoint of the paradigm selected. Lehman,

Ramil and others have studied long term product evolution using a system dynamics approach [99,

138, 162] based on Jay Forrester’s work on the study of socialsystems [52]. Abdel-Hamid and

Madnick have applied the system dynamics method to study manpower and quality-related is-

sues [1]. A number of researchers have based their work on this. Pfahl and Lebsanft have

used an extended model to study planning and control at the project level; several papers at

Prosim 2003 applied a system dynamics approach to study elements of the lifecycle [51, 119];

Madachy explored an inspection-based process [105]; Lakeyhas also used a hybrid model for

project management [93]. Raffo et al. have applied a state-based approach from systems anal-

ysis and design to the evaluation of possible process changes [137], and embed a discrete event

model in a continuous framework to understand the consequences of omitting unit tests when

developers are experienced [107]. Donzelli and Iazeolla propose a two-tier approach, with a dis-

crete event queuing network at the higher level and a mix of analytical and continuous methods

at the lower [45]. Scacchi [143], Drappa and Ludewig [46] andStorrle [153] have implemented

a rule-based approach.

I now overview the common paradigms applied in this researchalong with limitations as

perceived by fellow researchers.
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3.3.1 System dynamics

System dynamics is an approach originally applied by Jay Forrester in 1961 to systems analysis.

It was soon applied to a number of social systems, and then to software development in 1991 [1].

The main idea is that, for systems exhibiting feedback loops, unexpected results may occur as

a result of feedback interactions. System variables of interest are represented as ‘levels’ and

feedback loops create ‘flows’ that cause the levels to rise and fall. Feedback from individual

flows is linear, and the total result for a level may be exponential increase, exponential decrease

or oscillations depending upon the multiplication factorsfor the various flows.

The application to software development is based on the premise that software develop-

ment processes “form multi-loop, non-linear feedback systems” [134] (citing Abdel-Hamid and

Madnick). One such loop common in large-scale software projects is the defect injection and

resolution cycle, where defects are injected at a rate dependent upon, for example, developer

experience, discovered later in the process by testing and then ‘cycled back’ for resolution. The

cycle re-commences as further defects are injected during resolution activity. Other elements

of such a loop may be, for example, ‘schedule pressure’ and ‘productivity’ as rework causes

slippage [93].

A typical modelling effort in this paradigm involves identifying a problem, developing

“a dynamic hypothesis explaining the cause of the problem”,building a computer simulation

model of the system and testing the model to ensure it reproduces real-world behaviours [154].

One claimed benefit of such an approach is that outputs are dependent upon all relevant factors

in a ‘global way’. Lehman warns of the danger of ‘local’ process improvements and declares

that “Local fine tuning cannot be expected to make a major contribution to global effectiveness”

because “It is a well-known property of complex systems thatlocal optimisation usually causes

global sub-optimisation” [98]. TheSystem Dynamics Societyreminds us that “Only the study

of the whole system as a feedback system will lead to correct results” [154].

The system dynamics approach to modelling social systems has been criticised by several

researchers. Starr comments that such modelling is a form ofnon-experimental research and the

model effectively represents a theory about the operation of a system. As hypothesis generation

and testing are absent, the model is not reflective of true causal mechanisms and can not be used

for predicting. He believes there is a danger of slipping into ‘prescribe’ mode when using such

models [151]. Legasto and Maciariello believe models are prone to methodological problems,

for example, disagreement about whether to model unmeasured variables and the suitability of

the loop-cause-effect format for individual problems. Other criticisms are the lack of an em-

pirical base and the intended use of the paradigm for long-term policy-making, both of which

render the approach inappropriate for short term prediction [8]. More recent criticisms from

the field of software engineering include the inability to capture attributes in system dynamics
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models. For example, a model ‘level’ for a ‘code’ entity may rise and fall in size, representing,

for example ‘amount of completed code’, but there is no way tocapture other attributes, for

example, ‘code complexity’ [107]. Because system dynamicsworks at a system level, limita-

tions also include the inability to model, for example, a ‘start coding’ task while preventing, for

example, ‘start design’ from commencing as soon as the ‘Code’ level became non-zero [106].

My contributions to the list of criticisms include the use ofthe term ‘causal loop’ when

such a loop actually represents a belief about how we think software development works and

the embedding of process decisions in the model, generally in a non-transparent way. The first

means that there is a confusion between ‘belief’ and ‘causation’ and beliefs become unavailable

for altering or fine-tuning. It also means it is not possible to model random factors (for example,

an engineer is unhappy because his dog just died). The secondcriticism means we tightly-

couple process and policy and so remove the possibility of decision-making during process

execution. For example, in the feedback loop cited above, there is a loop linking ‘defects

generated’, ‘schedule and effort’ and ‘staffing profile’ [93]. The embedded assumption is that

an increase in rework required results in increased staffing. The ‘fixing’ of the process in this

way equates to a fixing of a policy i.e. that staff numbers willbe increased to handle an increased

need for rework. Such a policy might be applied and then changed according to circumstances

but is now embedded as an integral part of the process. Barroset. al. also comment on the

mingling of facts and assumptions and suggest a strategy to effect separation [39]. I also notice

that the concept of ‘feedback’ in engineering systems generally does not involve a consideration

of time — it is assumed that feedback manifests quickly and results, for example, steady state,

are achieved within a short time interval. When applied to social systems, the aim is generally

one of understanding and again time frames are not of key interest. However, time frames are

crucial in software development projects. It is important to know if the results predicted by the

causal loops in the process model, for example, fewer defects, can be expected to occur within

the life-time of the process! The warnings in the early literature against using the method for

short term predictions [9] seem relevant to software projects. Despite all of this, the claims in

the literature are that good results have been achieved whena model is callibrated with data

from specific organisation.

3.3.2 Event driven

In a discrete event simulation, discrete entities (‘units of traffic’) move (‘flow’) from point to

point in the system while competing for scarce resources. Entities instigate and respond to

events (things that happen and change the state of the system). The system state changes at

only a discrete, and possible random, set of simulated time points [145]. When this paradigm

is applied to software development, the ‘product artifact’entities flow through process blocks.
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Each process accepts unique input items and creates unique output products [93]. The ‘complete

activity’ event is the event that causes system change. Times for each activity are embedded in

the model and sourced from a target organisation.

This approach has proven suitable for the software domain, as software processes are gener-

ally defined in discrete terms, for example, ‘design’ [93]. Efforts and durations may be based on

statistical distributions, allowing the uncertainty thatoccurs in real software projects to be mod-

elled [158]. In this paradigm, delays may also be captured, for example, when test equipment

is unavailable.

The limitations of this paradigm relate to the fact that timechanges only at event comple-

tion. This means it is difficult to model smoothly varying variables (e.g. productivity, schedule

pressure) as some process blocks have a long time span. A second limitation is that the approach

“restricts the software development process to a predefinedsequence of activities” [46]. A di-

rect application of this paradigm would present difficulties if we want to change the process in

a non predetermined way. For example, if we want to add an inspection step, or omit the design

step and move straight to coding with pair programming and test first design, we would have to

change the model structure.

3.3.3 State based

As described earlier in this Section, several researchers have applied a state-based approach

to modelling the software development process, an approachfirst suggested by Humphrey and

Kellner [67]. State transitions are triggered by events relating to task commencement or com-

pletion. States describe task status, for example, ‘InDesign’ or ‘Tested’. Parallelism can be

represented, for example, ‘design’ task completion might cause the system to be in a state that

represents both ‘InCode’ and ‘InTestPreparation’ [158]. Wakeland points out that feedback

loops cannot easily be represented because state change occurs only with events and long time

frames may exist between events.

The state-based approach as described here has states that are described in terms of task

status. This has limitations for flexibility, for example, apolicy to ‘commence coding when

designs are 80 percent complete’ is not easily captured.

3.3.4 Limitations

Simulation models are generally created for a specific company process and tend to use metrics

data from the target company for model formulation. The reasons for this are that the software

development process is complex with many factors influencing outcomes and there is a con-

sequent lack of sound, comprehensive industry data on whichto base models [46]. Research
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aimed at an improved understanding of the keys factors that affect software project outcomes

is thus difficult, and researchers focus on understanding within specific environments. This

situation means that many current simulation models are essentiallyproductsrather than repre-

sentations of a theory about how software projects work.

One consequence of this is that results from modelling studies are applicable only in the

same environment. Studies generally aim at aiding specific companies to predict the results of

process changes based on previous projects.

In addition to the above ‘scope-of-application’ limitations, simulation models tend to con-

tain many assumptions relating to project contexts. Some ofthese assumptions manifest as

integral parts of the model architecture. For example, whenAbdel-Hamid and Madnick first

applied a system dynamics approach to the modelling of the software process, they postulated

that developer motivation decreases over long projects [1]. The form of the ‘causal’ relationship

is characterised in the model equations. This relationshiphas appeared as an unstated assump-

tion in almost all subsequent system dynamics models. Otherassumptions are often ‘hidden’ in

the metrics used to populate a model. For example, a company’s metrics database may contain

a measure of ‘typical productivity’ or ‘average number of defects injected or found’, and these

metrics in fact ‘hide’ the fact that real people are coding ata certain rate and with a certain level

of proficiency. If we don’t know what were the human factors atplay when the metrics were

collected, we have no idea whether or not we may apply the samemetrics in another project. In

simulation experiments, the definition of what is being measured is generally clear, as the target

process is generally that of a specific company. Assumptionsfor this approach tend to relate to

contexts, as these are often either buried in the model architecture or assumed in the target data.

An interesting discussion that occurs in the simulation modelling literature relates to the

capture of continuous variables. System dynamics modellers tend to claim that some variables,

for example developer motivation during long projects, exhibit feedback, i.e. change throughout

the process in a continuous way, and this is best representedby the system dynamics paradigm.

Other modellers emply a discrete mechanism to capture such change. For example, Raffo and

Harrison manage such variables by means of some persistent storage that captures changing

values as the project progresses [136]. Martin and Raffo present a model in which values for

continuous elements are obtained by calculating model equations at regular time intervals [106].

The use of discrete intervals to model continuously changing values is addressed in the early

modelling literature [140].

Although several simulation modelling researchers have examined the theme of software

process flexibility [13, 35, 46, 93, 115, 144, 153], a model that facilitates comparison of pro-

cesses across modelling paradigms has not yet been suggested.
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3.4 Discussion

In the Sections above, I overviewed three kinds of empiricalmodels used to help researchers

understand the software development process with a view to predicting outcomes. To my knowl-

edge, these represent current such research. I argued that each of the three model types (pre-

dictive models, models used for controlled experimentation and simulation models) are char-

acterised by assumptions and these assumptions impose limitations on conclusions that may be

drawn from studies based on the models. One consequence of this is that some studies appear

to give inconsistent results. For example, in an examination of studies involving pairs of de-

velopers creating code [84], two studies [120, 169] presentresults that indicate that developers

working collaboratively produce better quality code with very little loss in productivity, and a

third study shows that collaboration is about one quarter asproductive as solo programming

and concludes that it is pair programming’s role-based protocol that is the cause of the good

results [126]. However, the second study [120] produces good results forcollaboration(not

pair programming) and this is in direct contrast with results of the last study.

The lack of consistency in experimental results is an acknowledged problem when empirical

research is not based on an underlying theoretical model [55, 88, 90]. I take this up again in

Chapter 5.

3.4.1 Software measurement

I conclude this Chapter with a discussion on the problem of software measurement. According

to Kitchenham, Pfleeger and Fenton, there is a problem with the integrity with which software

practitioners and researchers measure software-related attributes [89]. It is important to work

with validated software metrics and at the current time there is no agreed way to perform such

validation. Several researchers have addressed the issue of validation. For example, Weyuker

proposes a set of properties that measures must be shown to exhibit. However this set is believed

by Zuse to be inconsistent. The result is that “. . . new measures are being justified according to

disputed criteria, and some commonly-used measures may notinfact be valid according to any

widely accepted criteria” [89]. This situation has not yet been resolved [91] and is problematic

because “the major rationale for using metrics is to improvethe software engineering decision

making process from a managerial and technical perspective” [48].

Kitchenham et. al. discuss the structure of measurement andpresent a framework for val-

idating measures along with a plea to the software communitythat discussion is needed for

agreement to be reached. They believe that “. . . software measurement must be consistent with

measurement in other disciplines” [89] and remind us that “Ameasured value cannot be inter-

preted unless we know to what entity it applies, what attribute it measures and in what unit” [89].
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They also remind us that, according to measurement theory, thescalefor a measurement is gen-

erally one ofnominal, ordinal, interval and ratio, and each of these obeys specific rules for

manipulation. For example, fault categories with values ‘Major’, ‘Minor’, and ‘Negligable’

might be captured using anordinal scale. This means it is not appropriate to perform arithmetic

manipulation on the values. A common mistake occurs when thecategories are represented

numerically, for example, ‘0’, ‘1’ and ‘-1’, and then combined in some way to obtain a ‘rep-

resentative’ value. The problem lies in the fact that the labels are entirely arbitrary and so

arithmetic manipulation is meaningless. Consideration ofcommon software measures in the

light of such errors show that many common software measuresare flawed and that “a range

of simple measures are valid within well-defined contexts, but also shows that certain measures

cannot be deemed to be valid according to any reasonable scientific notion” [89]. The authors

specifically discuss function points in this context and Kitchenham expands the discussion in

[86].

There is disagreement about some of the details of the proposed framework. For example,

Kitchenham et. al. believe that the unit that describes how we measure an attribute defines the

scale, for example, ‘Fahrenheit’ is aninterval scaleunit of temperature, whereas ‘Kelvin’ is a

ratio scaleunit of temperature. Attributes are thus independent of theunits used to measure

them and “any property of an attribute that is asserted to be ageneralproperty but implies a

specific measurement scale must also be invalid” [89]. Morasca et. al. believe such a model

will present problems when there are well-understood intuitions, and cite the example of an

intuitive understanding about the concept of object size, i.e. when two objects are put together,

the size of the compound object is not less than the size of either constituent [113].

The fact that there is disagreement between researchers at such a basic level supports the

belief of Kitchenham et. al. that the industry is working with disputed criteria and that the

foundations of software metrics are very shaky. Issues of measurement are highly relevant to

the problem of comparing processes because, if we cannot measure, we have no sound basis

on which to base comparisons. However, for reasons of pragmatism, I regard problems of

measurement as out-of-scope for this dissertation and simply work with the measures that are

commonly applied by practitioners and researchers.



4
Related Work

This dissertation addresses the need to synthesise processes according to project environments

in order to predict outcomes. In Section 1.4, I noted that, before we can synthesise, we must

be able to represent elements of processes and process models. I also noted that, before we can

predict outcomes of applying process elements, we must firstbe able to compare the effects on

these outcomes of different elements.

In this Section, I overview a number of research areas that are relevant to the problems of

representing, comparing and combining processes. In Section 4.1, I overview some existing

process frameworks that provide support for project-specific specialisation, in Section 4.2, I de-

scribe some researchers’ approaches to tailoring the software process to project environments

and, in Section 4.3, I describe some simulation models that aim to support flexible representa-

tion of processes. In all cases, I describe what has been achieved and discuss limitations. In

Sections 4.4 and 4.5, I overview some related areas of research and comment on why these

are relevant to this thesis. In Section 4.4, I overview some frameworks aimed at aiding exper-

imentation. In Section 4.5, I overview some efforts at providing a suitable abstraction for the

human-related factors in a software process.

39
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4.1 Process Frameworks

Some process models presented in Section 2.2 are in fact frameworks that allow specialisa-

tion. In this Section, I discuss these frameworks and the limitations that restrict their ability to

represent any development process in a flexible way.

4.1.1 The Spiral model

The Spiral model was presented in Section 2.2 as a risk-driven model [23]. Spiral effectively

supports flexibility in the ordering of the phases, for example, coding a prototype may take

place before specifications are complete. The ‘best’ phase to action in each cycle is determined

by risk assessment of objectives, alternatives and constraints. As the model is completely flex-

ible in what are the objectives for each cycle, it is, in fact,a process framework that allows

specialisation.

The model requires up-front management activity (planning, scope-setting, constraints iden-

tification and risk assessment) at the start of each cycle. Thus, although there is flexibility in the

technical aspect of the model, i.e. there are no constraintson what is implemented during the

cycle, the management aspect is mandated. In this sense, each cycle is like a mini-project, in

that planning, scope definition and risk management are integral. Although the need for plan-

ning is acknowledged by the software industry, I observe that the planning activities included in

the Spiral model represent only a subset of the activities suggested in the project management

literature [135] and these activities are mandated for all software projects, regardless of size or

criticality. I suggest that this represents a limitation tothe model’s use as a general framework,

as flexibility in the planning function is removed. I take up the issue of planning in Section

5.3.2.

I also note that, although the model has a step for identifying constraints imposed by the

environment, human factors do not appear to form part of these constraints. Although one

could identify, for example, ‘project manager does not communicate well’ as a constraint that

spawns a risk, it would seem that this is pushing the bounds ofthe expected use of the model.

This lack of inclusion of a ‘human factors’ aspect in fact creates an inherent risk in model

usage. The assumption of risk management expertise is acknowledged by Boehm as a difficulty

in applying the model, but I would also add the risks of lack ofplanning expertise and a lack of

acknowledgement of the effects of the human-related factors.

4.1.2 The OPEN process

OPEN is an object-oriented methodology, created by theOPEN Consortium, that provides sup-

port for the software development process. It is based on a number of methodologies, for
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exampleMOSES, SOMA, Firesmithand has an associated modelling language,OML (Object

Modeling Language). Openis described as ‘Third Generation’ because it addresses thewhole

process lifecycle, rather than the development lifecycle only, and provides a mechanism for

tailoring of processes to suit project contexts [57].

OPENprovides a number of ‘Activities’, some relating to technical development, some to

the project lifecycle and some to program planning. Examples are ‘Project initiation’, ‘Analysis

and model refinement’ and ‘Project planning’. Each ‘Activity’ is realised by application of a

number of ‘Tasks’ and each ‘Task’ is implemented using one ormore ‘Techniques’. ‘Activities’

have pre-conditions and post-conditions, the latter resulting from the mandatory inclusion of a

‘testing Task’. OPEN is often referred to as a ‘contract driven lifecycle’ because an ‘Activity’

may not commence unless all pre-conditions are satisfied. Although ‘Activities’ are fixed, flexi-

bility is achieved by selecting ‘Tasks’ and ‘Techniques’ that best fit the project environment i.e.

by applying a suitable ‘process pattern’ from a number of common process patterns appropriate

to different domains.

As a framework to support process flexibility, OPEN has a number of severe limitations. The

most obvious is that the framework supports OO technology only. This limitation applies toall

lifecycle ‘Activities’, including those concerned with requirements and planning. Although the

authors make a case for the need for a seamless environment, many software practitioners dis-

agree that OO techniques are automatically best for all software architectures [148]. In addition,

the expectation that the client will always be comfortable thinking in terms of objects is quite

inconsistent with the idea that analysts should speak to customers in their own language [121].

Another set of limitations relate to the failure of OPEN to provide comprehensive support tasks.

For example, ‘Project Planning’ is included but some key planning tasks are omitted and some

represented only superficially. For example, quality planning is key for many projects but there

are no relevant ‘Tasks’ available in OPEN. The practice ofSCM (Software Configuration Man-

agement)is also key to many projects and involves several different aspects, for example, item

identification and auditing, but ‘Establish change management strategy’ is the only aspect of

SCM represented [72]. As further examples, there is no mention of ‘Project monitoring and

control’, a serious omission for projects of any size [135],and some subtasks do not obviously

map to ‘parent’ ‘Activities’. For example, some subtasks for ‘Resource allocation planning’

appear to bear no relation to resource planning. A further limitation occurs in the pre-definition

of ‘Activities’ and post-conditions. The latter means thatevery ‘Activity’ has an associated

‘testing’ or ‘evaluation’ ‘Task’ i.e. is constrained in some way and advancement is not possible

until the precondition is met. The former means the process is constrained to comprise specific,

predefined ‘Activities’. Although the authors suggest the OPEN process is suitable for small

teams [57], it would appear that some agile processes are notsupported. This represents a limi-

tation when considering OPEN as a suitable framework for general representation of processes.
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In summary, the OPEN framework permits selection of ‘Tasks’based on project contexts

but the list of ‘Tasks’ from which to select is incomplete. There is no guidance on how to

select tasks. The idea is, I think, that a number of ‘process patterns’ will be developed for

different contexts, presumably based on expert opinion. There is no mechanism for capturing

context-related information and human aspects do not appear to be addressed.

4.1.3 The Rational Unified Process (RUP)

In Section 2.2 I described theRational Unified Process (RUP). This process is also a process

framework, in that the supported process can be “adapted andextended to suit the needs of an

adopting organization” [92].

RUPhas four ‘Phases’, and each is implemented by a number of ‘Iterations’. Nine ‘Work-

flows’ are defined (for example, project management, requirements) and are active concurrently

throughout all ‘Phases’ and ‘Iterations’. This provides a high degree of flexibility in process def-

inition and both agile and traditional projects have been captured inRUP. The iterative nature

of each ‘Phase’ also allows the possibility of risk management activity thoughout the process.

As an implementation framework,RUPlimitations include support forOO technology only,

a lack of guidance as to what is an appropriate process for a given project and the lack of a

mechanism for capturing contexts.

4.2 Process Tailoring Approaches

I now overview some approaches taken by researchers towardstailoring the software process for

specific project environments. I exclude approaches based on modelling, as these are described

in the next Section.

4.2.1 Basili and Rombach: Tailoring to Project Goals and Environments

In 1987, Basili and Rombach presented a methodology for “improving the software process by

tailoring it to the specific project goals and environment” [13]. The methodology was aimed at

improving the process within a given environment. The research involved aNASA/SELcollab-

oration. The vision presented in the Basili-Rombach paper represents one similar to that which

is the subject of this thesis — a mechanism for supporting short-term data accumulation and

long term process selection and tailoring.

The key idea is that improvement may be attained by identifying a productivity or quality

goal for improvement, by applying theGQM (Goal/Question/Metric) paradigm [11] to quantify

the goal, and by finally identifying the effects of selected methods and tools on the quantified
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goal. The authors describe an application of this methodology in which the goal involves min-

imising defects (errors, faultsandfailures). The goal is quantified as the number and types of

defects imposed by environmental factors and methods and tools are categorised by the number

and type of defects related to their use. They suggest that other approaches to goal selection

and quantification are possible, for example, involving some measure of customer satisfaction.

The authors point out that, rather than measuring the environment directly, they are “ac-

tually measuring the impact of the environment on the quality of the software process and its

resulting products”. They claim that this indirect characterization has the advantage of objec-

tivity, although this claim is supported by neither explanation nor evidence. They also point

out that, for improvement to be effective, knowledge about the impact of methods and tools

on defect profiles is necessary and “we do not have enough knowledge yet”. They suggest

that each application of the improvement methodology will result in increased knowledge and

some substitution of actual analysis results for hypotheses. An application of the approach to a

‘characteristic’ project in theNASA/SELenvironment is presented. The process applied was a

well-established one, with continuity of experienced management. The improvement method-

ology proved to be feasible and beneficial.

The vision for the research was to enable software development environments to include, in

addition to the standard construction tools, flexibility inselecting a process model and the ability

to tailor it to specificprojectgoals and environments. The authors acknowledged that, before

this vision could be achieved, much data had to be accumulated. They saw the methodology as

being a step towards supporting such accumulation. Although the approach has been extended

by the same group [110], it would appear that uptake by other groups has been minimal. Several

limitations in the described approach are apparent and it ispossible that these limitations have

contributed towards the failure of industry to participatein the effort. I overview the limitations

below.

The improvement exercise described is an experiment in which some factors (methods and

tools) are perturbed to ascertain results on a quantification of a goal. The aim is that the effects

of the perturbation on the goal will be better understood, providing data towards supporting

tailoring. However, as a tailoring mechanism, there is a lack of holism that compromises the

usefulness of the approach. For example, the goals of a software development effort gener-

ally involve more than one factor and several authors warn against the danger of focussing

on a single factor [90, 93]. A more realistic expectation might be that both a certain level of

functionality and an agreed defect level are achieved at some agreed cost. A second limitation

relates to the identification of possible confounding factors. The authors categorise these as

‘problem factors’ (for example, the type of problem, newness to the state of the art, suscep-

tibility to change), the ‘people factors’ (for example, number of people, their expertise), the

‘product factors’ (for example, size, deliverables, reliability and portability requirements), ‘re-
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source factors’ (for example, machine availability, budget) and ‘process and tool factors’ (for

example, available tools, training, code analysers). Someof these factors really form part of

the goal definition for a software development effort. For example, ‘reliability requirements’

are an expectation on the delivered product i.e. the productmust have, in addition to certain

functionality and cost, an agreed reliability performance. Although this list may be viewed as

confounding factors for an experiment in which a single goalis examined, I believe this list is

too unstructured to provide appropriate support for tailoring. Although the approach has proven

useful for improvement within a given (and assumed constant) environment, it does not provide

support for the general case.

4.2.2 Boehm and Turner: Balancing Agility and Discipline

Boehm and Turner examine the issues relating to ‘agile versus traditional’ process selection and

believe that it is necessary to “have a repository of ‘plug-compatible’ process assets that can be

quickly adopted, arranged, and put in place to support specific projects” [21]. They believe

this can be achieved by a risk driven approach. They examine the ‘home grounds’ for the agile

and traditional approaches i.e. the environments in which the approaches are believed to be

most successful. They then specify five critical project-related factors based on these as orthog-

onal dimensions. Dimensions are ‘criticality’, ‘size’, ‘culture’, ‘dynamism’ and ‘personnel’.

Projects are charted according to their values along the fivedimensions. Projects closer to the

centre of the chart are ‘more agile’ and those closer to the edge are ‘more traditional’. Standard

risk management processes are then applied to select a strategy according to the perceived risks

along each of the dimensions [22].

The authors state that the five project factors identified above are ‘critical’ and ‘orthogonal’,

but these statements are unsupported and not discussed. It is possible that some correlation

exists between, for example, ‘culture’ and ‘dynamism’. Themain limitation of this approach

is that its principal purpose is to identify the kind of risksthat categorise the project. Risk

management techniques are required to actually choose appropriate strategies and processes. A

second limitation is that it is based upon beliefs about the ‘home’ areas for the different process

types. As pointed out in Section 2.3, the issue of what comprises traditional and agile processes

is not clear cut and any categorisation is inherently approximate.

4.3 Process Simulation

In Chapter 3, I presented three research groups interested in modelling the software process

in order to better understand and predict process outcomes.In this Section, I discuss some
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models from one of the groups, the simulation modellers. Themodels discussed all in some

way support flexibility in process selection.

4.3.1 Drappa and Ludewig: Interactive simulation

Drappa and Ludewig [46] describe a simulation system that allows trainee project managers to

manage a simulated project interactively and view the results of decisions made on project effort

and defects. A rule-based modelling language is implemented and a time-discrete mechanism

used for simulation. The model is initialised with a specificprocess and calibrated with data

from the literature, augmented with expert opinion.

In this system, a modelling language, SESAM, allows software projects to be described by

a collection of rules, each of which produces a certain effect on the state of the project. Rules

exist for various process granularities and are hierarchically managed, providing flexibility in

the level at which users may interact with the system. Users ‘run’ a number of time steps and

may issue commands to the system, for example, to assign specific developers to a task. As

all rules act on a global data structure, the system may be extended by adding rules that cover

different aspects of the process. Model assumptions are discussed and include, for example,

decrease in developer productivity when team size increases and improved productivity and

quality when developers are experienced and capable. Models may be adapted for different

environments by expressing model parameters as constants rather than embedding in rules, as

constant values can be easily changed.

This model allows much flexibility within certain limits. The authors report that the model

is “. . . restricted to a certain class of software projects” as it proved too difficult to “. . . develop a

universal model that fits any particular software project . .. ”. This decision is possibly based on

a potential ‘rule explosion’ (the authors report several hundred rules for a realistic model) and

effectively constricts the activities provided by the model. This means that it is not possible to

represent, for example, to start coding when designs are 80 percent complete. A second possible

limitation is a potential mismatch between the use of ‘typical’ industry data and the scoping of

the model to “. . . small to medium size software projects . . . ”, as available data tends to be from

large-scale projects. Other limitations relate to the model assumptions, for example, the effects

of team size and developer experience on productivity and quality.

I note that abstracting the process as a number of rules may cause problems as the system

grows in size. Each possible factor that affects outcomes, for example, ‘experience’, must be

included in every rule that predicts outcomes and every possible combination with other factors.

As the number of factors grows, the number of possible combinations will become prohibitive

and so the abstraction is not scalable. In addition, the possibility of adding conflicting rules

will increase. I also note that model assumptions, althoughacknowledged, are buried within the
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model rules.

4.3.2 Lakey: Project management

Lakey [93] introduces a hybrid model to support software project estimation and management.

The model is intended as a theoretical framework. It comprises a number of building block

activities along with equations for each that calculate themodel required values (for exam-

ple, ‘number of defects generated’). Calculation inputs include values for a number of project

factors that are believed to affect the results, for example, size, skill level, tool support. The in-

ternals for each block are captured as a system dynamics model in which relationships between

schedule pressure, defects, etc. are embedded.

In this system, project-specific process models are built bycreating an appropriate number

of building blocks and callibrating the equations for each with data from the project to be mod-

elled. Four building blocks are available — these are ‘preliminary design’, ‘detailed design’,

‘code and unit test’ and ‘subsystem integration and test’. Values for project, process and product

factors are input to customise the blocks. Examples of project factors included in the model are

‘communication overhead’, ‘tool support’ and ‘skill levels’. Examples of process factors are

‘defects injected’ and ‘estimated calendar weeks’. Product factors include ‘size’ and ‘quality’.

A strength of this model is the inclusion of all of the cost, schedule and quality performance

parameters in a holistic system as “the primary software project performance parameters of

cost, schedule and quality are not independent, and they cannot be tracked and managed inde-

pendently”. However, customisation is achieved by copyingand renaming building blocks to

achieve the correct process structure and then providing the relevant input values. I observe that

this means that only basic building blocks as provided are available and there is no possibility of

representing any tasks that do not comply with one of these blocks. I suggest that customisation

thus refers to changing input values rather than changing the process. Another limitation is in

the pre-definition of the factors that are believed to affectoutcomes. The beliefs are effectively

model assumptions.

4.3.3 Munch: Process patterns

Munch applies a patterns approach to the development of custom-tailored process models [114,

115]. He believes that “The development of high-quality software or software-intensive systems

requires custom-tailored process models that fit the organizational and project goals as well as

the independent contexts”. In Munch’s solution, a process pattern is a reusable fragment of a

process model that represents an activity. Patterns can be combined to represent combinations

of process models. Each pattern is described along with someinformation. This includes a
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‘characterization vector’ that contains attributes such as ‘SW maintenance is false’, ‘Maximal

effort is 2000’ and ‘Requirements is false’ along with a goalthat describes a restriction on

these attributes, for example, ‘Maximal effort is less than2000’. Required information also

includes a description of how attributes are transformed when the pattern is applied, for exam-

ple, causing a change to ‘reliability’ [115]. A goal also mayincorporate a ‘quality pattern’, for

example, a prediction model for test effort based on design complexity, that effectively defines

the transformation function.

In this model, the required goals are restrictions on project attributes. It appears that these

attributes include only those over which the project has control. Transformations change at-

tribute values, and goals are restrictions on those values.This means that the model does not

include factors over which the project has no control, for example, developer characteristics or

company culture, and the human element is not modelled.

Another limitation is that the transformation model implements a number of rules that apply

actions (transformations) according to the value of a characterisation vector attribute [114]. For

the reasons discussed in Section 4.3.1, I suggest that the rule-based nature of the abstraction

will cause problems of scalability when applied to the many possible characterisation vector at-

tributes. Munch reminds us that patterns have been applied to software design and believes that,

as a reuse mechanism, their use is appropriate for the software development process. However,

I suggest that the human-intensive nature of the software process renders definition of patterns

prey to the same problems as definition of processes i.e. the large number of contexts that affect

developer efficacy must be captured in some way. The described model appears to have no

abstraction for these ‘human-related’ factors.

4.3.4 Storrle: Process patterns

Storrle [153] presents a new adaptive paradigm for softwareprocesses based on agile develop-

ment ideas and suggest the use of process patterns for unifying software processes. A process

pattern describes a piece of a process and is described in such a way that composition of patterns

according to pre- and post-conditions is possible. Selection of patterns is subjective, however,

and there is no mechanism in the model for evaluation of a resulting process against some

predefined objectives.

4.4 Experimental Frameworks

In Chapter 3, I identified three groups of researchers who build models of the software devel-

opment process for the purpose of greater understanding. One of the groups carries out formal

experiments, and I noted that this group, although growing in size, comprises only a small num-
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ber of researchers. In an effort to increase the quality of this reseach and empirical research in

general, several authors have proposed frameworks for helping researchers plan and implement

software engineering studies. Kitchenham et al. present a set of guidelines “intended to assist

researchers, reviewers, and meta-analysts in designing, conducting, and evaluating empirical

studies” [90]. Basili et. al. [14] address the planning of experiments by using the GQM frame-

work [11] to articulate the purpose of the study and extending this to facilitate categorising of

studies. Williams et. al. [170] propose a framework, XP-EF,for collecting data in XP case stud-

ies. I discuss these below and identify the contributions and limitations of each in the context

of the goal of process flexibility.

4.4.1 Kitchenham et. al.: preliminary guidelines

Kitchenham et. al. state in 2002 that “In our view, the standard of empirical software engi-

neering research is poor” [90]. The authors admit there are methodological difficulties applying

standard statistical procedures to software experiments,but that the main problem is due to re-

searchers with insufficient understanding of statistical techniques. The authors propose some

guidelines to help improve the quality of future research efforts. They suggest that such guide-

lines will also increase the likelihood of combining results of related studies in meta-studies.

The guidelines suggested relate to all of ‘experimental context’, ‘experimental design’, ‘con-

duct of experiment and data collection’, ‘analysis’, ‘presentation of results’ and ‘interpretation

of results’. They thus provide a means of achieving sound empirical results that will serve to

contribute to a wider body of knowledge. Such a body of knowledge would, of course, mitigate

many of the problems identified in Section 3.

The authors remind us that one goal of the guidelines for ‘experimental context’ is “to

ensure that the description of the research provides enoughdetail for other researchers and

for practitioners” and that researchers need to “identify the particular factors that might affect

the generality and utility of the conclusions”. However theauthors, although clearly stating

the importance of recording contextual information and providing guidelines for the kinds of

information to include, do acknowledge that “Unlike other disciplines, software engineering has

no well-defined standards for determining what contextual information” is relevant [90]. The

guidelines suggest including the target industry (for example, banking, telecommunications),

the kind of development organisation, developer skills andexperiences, supporting software

tools used (for example, compilers, design tools) and the software processes used (for example,

quality assurance and configuration management processes). This list does not include some

potentially important factors, for example, ‘developer uncertainty’ or ‘motivation’ (see Section

4.5). The identification of relevant contexts remains problematic, and the authors acknowledge

this and suggest research into an appropriate ontology of context.
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4.4.2 Basili et. al.: families of experiments

Basili et. al. remind us that “experimentation in software engineering is necessary but diffi-

cult” [14]. As discussed previously, one problem is the large number of context variables. The

authors suggest that researchers need a way to work togetherto obtain a cohesive understanding

of experimental results. They suggest the use of a frameworkthat facilitates replication with

and without some context changes and thus deals with ‘families of studies’. Such an approach

will eventually lead to “a body of evidence” that will support project management decision-

making. The authors use a set of experiments with software reading techniques to illustrate

their approach.

The framework proposed by the authors involves first applying the ‘Goal/Question/Metric’

(GQM) template to help categorise the experiment. The GQM approach is to identify the ob-

ject of study (for example, a process or product), the purpose of the experiment (for example,

evaluation, prediction, etc.), the focus i.e. the aspect ofinterest of the object of study (for ex-

ample, product reliability, process effectiveness), the perspective (for example, researcher or

developer) and the context in which the measurement takes place. The authors comment on the

large number of context variables that may influence the results of applying a technique. In or-

der to support capture of the experiment, the authors suggest classifying the object of study. For

example, ‘processes’ are classified first by scope and then further categorised. The examples

given are ‘Life Cycle Model’ with sub-classifications ‘Waterfall’, ‘Spiral’, etc., ‘Method’ with

sub-classifications ‘Inspection’, ‘Walkthrough’, etc. and ‘Technique’ with sub-classifications

‘Reading’, ‘Testing’ etc. Experimental results are classified in a similar way. For example, ‘Ef-

fectiveness’ measures are categorised as ‘Analysis’ with sub-classifications ‘Defect Detection’,

‘Usability’, etc. or ‘Construction’ with sub-classifications ‘Reuse’, ‘Maintenance’, etc.

As for the Guidelines described in the previous Section, this framework is aimed at sup-

porting researchers carrying out experiments, rather thanproviding a means of representing

software development processes. However, the classifications provided by the authors describe

abstractions for process and product. As described above, ‘process’ is categorised into ‘Life

Cycle Model’, ‘Method’ and ‘Technique’, with sub-classification in the ‘Method’ category re-

lating to the kind oftaskbeing carried out, for example, ‘Inspection’ or ‘Walkthrough’. The

authors remind us that “there are many ways of classifying processes”. However, it would ap-

pear that the underlying abstraction for ‘process’ is basedon the idea of a task i.e. some piece

of work carried out, and there is some assumption that the name that identifies the sub-category,

for example, ‘Inspection’, is well-defined.

For some efforts, this may be true, for example, if explicit instructions are available. How-

ever, I suggest that such as abstraction is fraught with danger, as mis-communication as to what

exactly is done is rife within the software world. For example, I present later in this thesis a
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consideration of some ‘PairProgramming’ research and discover that from three studies com-

monly referenced as studies about Pair Programming, two are, in fact, about collaboration and

concurrency (see Section 8.2). Unless the abstraction allows us to be very specific about what

is being done, assumptions will be introduced. At first glance, this appears to be a problem

of software development terminology i.e. is a consequence of failing to clearly define what is

meant by, for example, ‘Inspection’. However, I suggest that pre-defining a set of tasks, even if

carefully specified, represents a belief about how softwaredevelopment should be carried out.

If we are to address the issue of flexibility, we require an abstraction that allows the introduction

of new kinds of task that change the product in different ways. I suggest that the framework

proposed by Basili et. al. is too limiting to support the goalof flexibility.

4.4.3 Williams et. al.: XP-EF

Williams et. al. present XP-EF, “a high-level view of a measurement framework that has

been used with multiple agile software development industrial case studies” [170]. The authors

propose that the framework be used as a first pass at a guideline for XP case studies. The

framework allows capture of the extent to which an organisation has adopted or modified XP

Practices. One component of the framework relates to context factors, for example, ‘team size’

and ‘geographical dispersion’. Possible factors are organised according to categories defined

by Jones [79]. Projects are first evaluated according to the five ‘critical’ factors suggested by

Boehm and Turner and plotted on a polar chart (see Section 4.2.2). Anomalies are further

investigated by digging “deeper into the context information”.

Limitations of the framework include application to a specific process (XP) and a ‘fixing’ of

contexts for capture before the industry really knows whichcontexts are important and which

may be ignored. The danger of such a reductionist approach isthat we may regard the selected

attributes as ‘truth’ rather than ‘hypothesis’ and so placemore faith in results that is appropriate.

4.5 People Factors

As discussed in Section 1.2, many researchers and practitioners express the importance of

the influence of human factors on productivity and quality inthe software development pro-

cess [3, 14, 24, 37, 34, 54, 144, 155, 157]. Early attempts to better understand these in-

fluences included consideration of both individual programmer and team. In the 1970’s and

1980’s, there was an interest in the psychology of programming and techniques from psychol-

ogy were applied in the examination of individual cognitivebehaviour [76]. It was observed

that “programmers rarely complete one subtask before beginning the next”, but rather repeat-

edly alternate between understanding the problem, design,code and revision [128]. Rather
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than working in a top-down way, developers work at differentlevels of abstraction simultane-

ously, alternating between levels as needed. The problem ofmental models of the problem was

also studied with observations that “requirements documents and client’s statement of goals

are never complete”, this resulting in the “criticality of domain knowledge for interpreting re-

quirements” [128]. Around the same time, researchers examined how team structure affected

outcomes, with specific interest in the centralisedchief programmerstructure of Mills and Baker

and the decentralisedegoless teamstructure of Weinberg [161]. Shaw concluded that the dif-

ferent team structures were most suited to different conditions [33].

Despite this early interest in evidence based on theories from the social sciences and the

acknowledged importance of human factors, to my knowledge,there have been few attempts

to create theoretical models appropriate for the software process. Traditional software process

models, for examplewaterfall, treat the process as a technological one only. Proponents of the

more recent agile methodologies declare the need to value people over process, and include

process elements that claim to support the developers’ ability to work well. These elements are

based on the beliefs of the founders of the methodology and sorepresent hypotheses derived

from some unstated theory of human performance. As such, theagile models provide little in

the way of understanding and this contributes to the fact that questions about, for example, their

effectiveness in large or distributed projects can be answered only by further exploratory studies

rather than by forming hypotheses based on an underlying theory.

The field of software engineering is not alone in being slow tolook to other disciplines

for knowledge that might improve performance. Douglas Stewart informs us that the field of

operations management asks “why, when there are so many opportunities, have we paid so little

attention to psychology in our research?” [152]. He suggests that the reason might be that the

field has historically studied manufacturing processes in which human inputs are minimal. He

also suggests that the human aspect is now more important because human-centric processes are

now being studied, and the role of humans has been elevated inmany manufacturing operations.

There is little disagreement that the human element is key for the software process. Many

would agree with John Finan, recent winner of the Motorola ‘future vision’ scholarship com-

petition, who believes “A great technology is one that uses the human brain as a core compo-

nent” [78]. I overview three research efforts that involve creating models of the human element.

The first study presents suggestions for a model based on observation and the second two based

on theory from other disciplines.

4.5.1 Layered behavioural model

Curtis, Krasner, Shen and Iscoe, in 1987 and 1988, reported the results of a field study of large

software development projects [37]. The authors remind us that, if a model of the software
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development process is to help increase productivity and quality, it must accurately reflect what

happens i.e. must “represent the processes that control thelargest share of the variability in soft-

ware development”. They believe that models such as thewaterfallmodel reflect amanagement

orientation and provide no insight into the actual development processes. They also submit that

Osterweil’s proposal that software engineering processesshould be viewed as software prod-

ucts [122] is flawed because of the variability of the processes being specified. This is a result

of skill differences in the developers, degree of exposure to customers and other factors.

The purpose of the field study was to determine what are the high-leverage factors through

empirical research and to describe how these factors exert their influence during the design

process. The authors believe that for larger projects key factors are more likely to relate to

project-and organisational-level factors, as these will tend to swamp the effects of cognitive

and motivational effects of developers. They use a layered model for organising observations.

The innermost layer represents theindividual developer, the next layer, theteam, the third

represents theprojectand then thecompanyandbusiness milieu. They suggest that when they

“overlay these behavioral processes” on the traditional technological ones, they gain insights

into inefficiencies in the process.

The field study involved nineteen projects ranging in size, application domain and key sys-

tem characteristics, for example, real-time, embedded, etc. The authors expected, and found,

that, for small projects, individual factors would exert greatest influence on outcomes and, for

very large projects, organisational factors would have most weight. Many interesting observa-

tions were made. There was a tendency for coalitions to form i.e. where a “small subset of

the design team with superior application domain knowledgeoften exerts a large impact on the

design”. There was also a tendency for developers to spend some substantial time ‘rediscover-

ing’ existing knowledge. For example, customers might generate operational scenarios while

determining requirements, but these were not recorded. Developers then tended to be unable to

envisage problematic conditions.

The three main problems exposed by Curtis et. al. [36] are thethin spread of application

domain knowledge, fluctuating and conflicting requirementsand communication and coordina-

tion breakdown. The conclusions from the study are that “developing large software systems

must be treated, at least in part, as a learning, communication and negotiation process” [34] and

that developer uncertainty resulting from the above problems plays a key role. The implication

is that any descriptive model of the software development process must abstract the factors that

represent these problems and overlay the abstraction on thetechnological one.
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4.5.2 Human competencies model

Acuna and Juristo reference research in human resources management and psychology and pro-

pose a mechanism for assigning people to software development roles according to behavioural

competencies [3]. Their solution is based on the Logic of Core Competencies, a logic that is

“practiced in many organisations for different purposes, such as personnel selection and recruit-

ment . . . ”. They see their model as a first attempt to develop the logic of core competencies for

the software process.

A key element in the model is the ‘capability’ or ‘behavioural competency’. These include

intrapersonal skills, such as ‘Independence’ and ‘Tenacity’, organisational skills, such as ‘En-

vironmental orientation’ and ‘Discipline’, interpersonal skills, such as ‘Empathy’ and ‘Socia-

bility’ and management skills, such as ‘Group leadership’ and ‘Planning’. Capabilites are then

tabled with personality factors from a standard psychometric test to obtain a ‘capability-person’

relationship and with software devlopment processes to obtain a ‘capability-role’ relationship.

For example, a personality factor ‘Dominance’ is mapped to capabilities ‘Independence’ and

‘Group leadership’ and the role ‘Designer’ to a number of capabilities, including ‘Analysis’ and

‘Decision making’. Capabilities of people and roles are then matched to achieve a ‘best’ assign-

ment of people to roles. For example, a developer with a personality profile that suggests a high

‘Empathy’ capability may be preferred over a ‘low empathy’ colleague for a customer-related

role where ‘empathy’ is included in the capability-role profile.

This work is important as it is an attempt to abstract human factors in a way that is based on

theory, rather than on ad-hoc and undefined values, such as ‘experience’. It also represents an

early attempt to ‘match’ people with tasks based on a theoretical model.

4.5.3 Team behaviour model

Acuna, Gomez and Juristo reference research in social psychology to propose a model for team

performance in the software domain [4]. They then apply the model to agile and heavy-weight

development strategies with a view to finding heuristics foreffective team forming. The model

includes people-specific, task-related and team behaviourcomponents. People-specific compo-

nents include aspects of personality (for example, ‘Extraversion’), knowledge, skills and abil-

ities and preferences (for example, ‘Innovative’ or ‘Conservative’). Task components include

factors such as ‘Routine’ or ‘Creative’. Aspects of team behaviour include, for example, ‘Team

vision’.

This work also represents an attempt to use models found to beeffective in other disciplines

to abstract people and tasks and match people and tasks in an appropriate way.



54 Related Work



5
Case for a Theoretical Model

In this Chapter, I discuss some perspectives on modelling and show that, if we are to predict in a

general way, models must be based on an underlying theory. I next overview some perspectives

on research and note that, if we are to establish cause-and-effect relationships, research must be

based on a theoretical framework.

I then apply these ideas to current software process research. I conclude that research models

are not based on theory and so cannot be used to establish cause-and-effect relationships or

predict in a general way. I propose the need for a theory-based model of software development

and provide quotes from a number of researchers to support this proposition. I establish some

objectives for such a model and present a discussion on an appropriate scope for a candidate

model. I finally present my approach to the presentation of evidence to support a candidate

model’s ability to meet the stated objectives.

5.1 Research Perspectives

5.1.1 Modelling basics

In Chapter 3, I showed that existing models of the software process contain many assumptions.

In order to clarify what is the basis of these assumptions, I now discuss why researchers build

models and provide a general overview of the characteristics of different kinds of models.

55
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According to Seidewitz, models may be created to specify a system to be built or to describe

an existing system [146]. An example of a model for specification is aUML (Unified Modelling

Language)model that describes how an OO software system will be constructed. Models that

describe existing systems include, for example, Newton’s model describing celestial motion and

the models presented in Chapter 3 that describe the softwareprocess.

Models that describe existing systems capture relationships between various system com-

ponents. It is possible to describe relationships without understanding why the relationship

exists. An example supplied by Kitchenham et. al. concerns the documenting of a relation-

ship between ‘cyclomatic complexity number’ (CCN) and ‘number of faults’ [90]. Although

some correlation is observed, the reasons for the correlation are unknown. Another example

is given by Kepler’s three laws of planetary motion. As described in Section 1.3, these were

based on existing planetary data and, although they appeared to successfully predict the motions

of the planets, no-one knew why the laws worked. The laws describe correlations rather than

cause-and-effect relationships.

Models that describe correlations should be based on data orobservations. One main char-

acteristic of such models is that they can be used to predict only in circumstances that exactly

match those in which the observations were made or data collected. Keppler’s laws do not ap-

ply to other celestial bodies or planetary systems. Relationships between cyclomatic complexity

and numbers of defects are not guaranteed to be the same for different pieces of code produced

in different circumstances. The main reason is that, for correlations, we do not know what is

the real cause of the relationship and so have no way of knowing if the causal factors remain the

same in the new circumstances. If a model that describes a correlation is used in a circumstance

other than the one in which the observation was made or data collected, it embodies an implicit

assumption that other factors do not matter i.e. an assumption that the model represents a causal

rather than correlative relationship.

For a model to be used to predict in a general way, the model must be based on cause-and-

effect relationships i.e. on an understanding of what are the causal factors. Newton’s Laws are

an example of a causal model. As described in Section 1.3, Newton postulated a force between

all objects with mass in the universe and this understandingenabled him to predict accurately

for all celestial bodies. The key characteristic of such models is that they are based on some

theory or theoretical framework. Should such a model fail topredict accurately, it is understood

that the underlying theory is incorrect. An example of this is the discovery that Newton’s Laws

explain universal forces for bodies moving at speeds much slower than the speed of light, but

break down for high-speed particles such as are found insideatomic nuclei. Although Newton’s

Laws do not correctly explainall motion, they continue to describe a causal relationship within

a well-understood domain i.e. that of constant space and time.

One way to distinguish between correlative and causal relationships is to establish if the
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relationship describes an alteration over space and time. For example, a mark on a ball moving

through the air will change as the ball moves [165]. A model based on cause-and-effect rela-

tionships describes atheory. Such a model may be used in a predictive way and may be proven

incorrect should predictions prove false.

In summary, models that describe systems are based on relationships that may be correlative

or cause-and-effect. Only cause-and-effect relationships support general prediction. Models

based on such relationships represent theories.

5.1.2 Research basics

In Section 1.2, I commented on the scarcity, fragmentation and varying quality of existing

software process data and suggested that this is in part a consequence of the immaturity of the

field and its approach to research. In an attempt to place research efforts in perspective, I now

present a brief overview from the field of psychology of the various modes of research data

collection. I show that the only way to establish cause-and-effect relationships is to create and

test hypotheses based on theoretical models.

In 1990, Gilmore described four modes of research data collection. These areHypothesis

testing, Comparisons, EvaluationsandExplorations[55].

The aim of hypothesis-testing is to determine a causal relationship between two factors of

interest. In this paradigm, a single factor (the independent factor) is manipulated for the purpose

of discovering if the manipulation causes change to the second (dependent) factor. Everything

in the experimental situation other than the essential manipulation is held constant. An example

given concerns a theory that claims that code “comprehension is attained through an initial

analysis of syntactic structure and, therefore that the useof indentation to indicate syntactic

structure will lead to improvements in all aspects of program comprehension” [55]. A simple

hypothesis-testing experiment might involve supplying subjects with indented or non-indented

programs and asking them to perform tasks that may, or may not, require comprehension of the

syntactic structure. Gilmore reminds us, however, that line wrapping, for example, may render

the experiment impure as now any observed effect may be affected by indentation or line-

wrapping. The researcher must now introduce ‘unrealistic’conditions, for example comparing

with and without line wrap, in order that the hypothesised effect might be properly observed.

According to Gilmore, a theoretical framework is vital to this kind of research [55]. Kitchen-

ham et. al. also believe that hypotheses must be based on an underlying theory. They provide

an example relating to a relationship between CCN and ‘number of faults’ and suggest that bet-

ter understanding would be achieved if cognition and problem-solving theories were applied to

establish the causal nature of the relationship [90].

Because the aim of this kind of research is to establish causation, I notice that researchers
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must be sure that the observed effect is due to the hypothesised cause i.e. that the experiment has

internal validity. I also notice that, as a result of the causal nature of the observed relationships,

issues ofexternal validityare not relevant.

Comparisonsare similar to hypothesis testing but are intended to observe rather than ex-

plain any effect. Here, the researcher attempts to discoverwhich of a number of alternatives

is ‘better’ according to some metric. In this paradigm, the establishment of relationships often

gives rise to questions or ideas about possible causality. This approach is “excellent at stimulat-

ing hypotheses and theoretical frameworks” [55]. In the example above, the research question

might be whether indentation provides a more useable representation of a computer program.

Line wrap is now not an issue, as it is a necessary feature of the indentation of real programs.

Although results of such comparisons are traditionally tested for statistical significance, a more

useful measure would be theeffect sizei.e. the size of the difference between the two con-

ditions [55]. The CCN example above may be viewed as a Comparison as the investigation

concerns an observation that high code complexity is often correlated with high fault numbers.

I note that, in this kind of research, issues ofexternal validityare key as the lack of consid-

eration of confounding factors generally renders results inapplicable in other circumstances.

Evaluationsare similar to comparisons but tend to occur when we are asking a question,

for example, “Can people use flowcharts?”, rather than “Are flowcharts better than structure

diagrams?”. The intent may be to improve some weakness in a system. In this paradigm, many

measures may be used, for example, subjective, human preferences may be as important as

performance. Decisions about which measures are most useful may be made post-hoc [55].

Explorationinvolves collecting data to answer a question of the kind “What happens if ...?”.

This approach is most often used when new paradigms are beingstudied i.e. when there is

insufficient data for other kinds of data collection. This data can be very difficult to collect and

record and is usually not well-defined. Analysis can be time-consuming [55]. Such studies

are often used as a first step and the aim is often to better understand what might be important

factors in a system by capturing what is observed in a relatively unrestricted way. Results from

such studies often form the basis for further evaluative, comparative or causal investigation.

In summary, research data is collected for a number of different reasons. The most general is

exploration. Results from explorations often form the basis of evaluations and comparisons. Re-

sults from all may provide insights into possible causal relationships and these are investigated

via hypothesis testing. This paradigm must be based on some theory or theoretical framework.
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5.2 Case for a Theoretical Model

5.2.1 Need for a model

Above, I provided examples from fields other than software engineering to show that, if we are

to predict in a general way, we must create models based on causal relationships and, if we are

to establish causal relationships, we must have theoretical models.

The above discussion, when applied to the models described in Chapter 3, exposes the fact

that these models are not based on theory and are thus correlative in nature. Simulation models

are based on observation, usually within a specific circumstance. Predictive models are based

on data from previous projects. Controlled experiments arebased on hypotheses, but these

are not theory based. One definition of the term ‘hypothesis’is “A hypothesis is a suggested

explanation of a phenomenon or reasoned proposal suggesting a possible correlation between

multiple phenomena” [166]. No causation is implied in this definition. However, according

to Gilmore and Kitchenham, causation is key if general predictions are to be supported. An

alternative, more appropriate, definition of ‘hypothesis’is “A tentative explanation for an ob-

servation, phenomenon, or scientific problem that can be tested by further investigation” [65].

The above observations suggest the current situation for software process modelling is anal-

ogous to the situations from history presented by Rivett [139] (see Section 1.3). Research into

the software process is generally carried out without reference to a theoretical framework and

is, by Gilmore’s definition, comparative, evaluative or explorative in nature. Predictive models

are based on either observations or data and are correlativein nature and so incomplete. Rivett

believes that, for true predictive ability, a model must be holistic and based on understanding of

the system being modelled. The correlative nature of existing software process models means

that the models cannot be used for predicting in a general way.

5.2.2 Support for a model

In the previous Section, I proposed that current research does not support exposure of cause-and-

effect relationships and that current model-building exhibits characteristics of lack of holism

and prediction without understanding. I complete this Section by presenting comments from

a number of researchers who also propose the need for a theoretical framework to support

prediction and research.

When discussing context for formal experiments, Kitchenham et. al. state the need to be

wary of oversimplification, as in the real world, techniquesare carried out within rich industrial

settings [90]. An example given is a study that shows the failure of inspection meetings to

decrease defects. The authors believe such a study is too simplistic because other possible ben-

efits of inspection meetings may be missed, for example, promotion of teamwork, technology
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transfer, identification of root cause detection and increased conformance to standards. One

possible result of such oversimplification is that a positive result might be taken as represent-

ing the situation and used as a basis for change, when in reality the result represents a ‘local

maximum’ only. For example, a technique that is shown to improve the identification of defects

(local maximum) might be implemented despite the fact that it also results in higher cost, higher

risk and increase in developer frustration. The advantagesmay not outweigh the disadvantages,

and the implementation thus represents a sub-optimisationof the whole system. I suggest that

problems of oversimplification and sub-optimisation are a direct result of studying parts of a

system in isolation without understanding of causal relationships.

Gilmore reminds us that hypothesis-testing is the only paradigm suitable for uncovering

causality and that “Hypothesis-testing research is not possible without a theoretical framework

. . . ” [55].

Basili et. al., when proposing a framework for experimentation, declare that what is required

is “. . . a set of unifying principles that allows results to becombined . . . ” and that “The ultimate

objective is to build up a unifying theory . . . ” [14].

Fughetta believes the field lacks foundations “. . . related to a better understanding of the

activities that constitute the software development process . . . ” [54]. He also believes we must

“increase the emphasis on problem analysis” and “pursue long-term research goals” [54].

In Section 2.1, I state that Kitchenham and Carn view the software process as an engineering

discipline, albeit an immature one. They state that “. . . before software engineering can mature

as an engineering discipline, practitioners need a better understanding of the process by which

software is created” and of the risks associated with the process [88].

As mentioned in the last Section, Kitchenham et. al. believethat a problem occurs when

researchers state hypotheses that are not based on any underlying theory. For example, docu-

menting a relationship between ‘cyclomatic number’ and ‘number of faults’ does little to ex-

pand industry knowledge as no causal mechanism is known. We can better understand the

relationship in question if cognition and problem-solvingtheories were applied. “Without any

underlying theories, we cannot understand the reason why empirical studies are inconsistent”

and “Without the link from theory to hypothesis, empirical results cannot contribute to a wider

body of knowledge” [90].

Dawson et. al. believe that the discipline of software engineering “needs to move towards

being a rigorous discipline” and that “. . . theories and hypotheses have to be formed. . . ” and

“. . . new ideas must be advanced. . . ” [38].

In Section 1.3, Rivett states that a model may be predictive without being explanatory, but

an holistic, explanatory model is always predictive.

Scacchi believes that “contemporary models of software development must account for the

interrelationships between software products and production processes, as well as for the roles
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played by tools, people and their workplaces” [144].

Basili et. al. remind us that, when carrying out controlled experiments, “. . . it’s hard to know

how to abstract important knowledge without a framework forrelating the studies” [14].

A theory is a model or framework for understanding. Buildingtheoretical models repre-

sents an accepted approach to predicting and generating hypotheses for better understanding

cause-and-effect relationships. My thesis is realised as atheoretical model of the software de-

velopment process. This represents a step towards establishing cause-and-effect relationships

and predicting process outcomes.

5.3 Approach

I have made a case for a model of the software development process that provides a theoret-

ical framework for prediction and research. As discussed earlier, the conventional scientific

approach is to spawn hypotheses based on the theory or model of interest and carry out formal

experiments that aim to disprove the theory.

At this time, it is not clear what will be the form of a theoretical model for the software

development process. In order to progress down the path of defining a candidate model, I

consider what such a model must be capable of i.e. what are thekinds of things we should be

able to do with the model. This approach is equivalent to thatof designing a system according to

a number of objectives. If I can create a model that describesthe software development process

in a way that satisfies the stated objectives, I can propose this model as a representation of a

theory of the software development process. At this point, the model is available for testing in

the usual way, by carrying out formal experiments based on the model.

5.3.1 Objectives

My thesis is that it is possible to represent software development processes and process models

in a way that allows us to compare processes and process models for the purpose of constructing

new processes. I propose that model objectives are the ability to:

• Capture any software process or process model.

• Compare processes and process models.

• Create a new process by combining elements from different processes.

My approach is to aim to create a solution that satisfies the above objectives. The three

objectives stated are very broad. For example, there are many aspects of processes, including
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granularity and formality. The objectives must now be expanded to be more specific. In Figure

5.1, I show the three top level objectives of ‘Capture’, ‘Compare’ and ‘Combine’ and have

expanded the ‘Compare’ objective to include some differentkinds of required comparisons.

This Figure represents a top-level specification for a suitable model.

1. Capture any software process or process model 

2. Compare results of modelling experiments across research groups

Compare:

2.1  Traditional and agile processes

2.2  Process variations

2.3  Models using the same modelling paradigm

2.4  Models using different modelling paradigms

3. Combine elements from different processes

Figure 5.1: Model objectives

In a similar way, I expand the ‘capture any software process or process model’ objective

in Figure 5.2. The first level expansion includes clauses for‘development processes’, ‘support

processes’, ‘product-line processes’ and ‘miscellaneousprocesses’. There are many different

aspects of ‘development processes’, all of which must be addressed by a suitable solution.

The next level expansion thus includes aspects of granularity, process participants (students or

professionals), project size, maturity levels, etc.

The form of the objectives is similar to that of a specification for a software system. This is a

useful model for stating objectives in a complete and unambiguous way. The specification pre-

sented in Figures 5.1 and 5.2 does not obey the rules for soundrequirements specifications [74].

For example, it is incomplete and the meanings of some terms are not defined. Some terms are

relative, for example, ‘Very large’, and there is potentialoverlap between objectives. An ‘Other’

category is probably required in each group. However, I believe it forms a useful starting point

for model creation and the meaning of its clauses is sufficiently clear for the purpose of model

definition.
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1.   Capture any software process or process model 

     Capture:
     1.1  Software support processes and process models

     1.2  Software development processes and process models

1.2.1  Process paradigms
1.2.1.1  Traditional
1.2.1.2  Agile
1.2.1.3  Open source
1.2.1.4  Open

1.2.2  Research studies
1.2.2.1  Simulation models
1.2.2.2  Predictive models
1.2.2.3  Controlled experiments
1.2.2.4  Quantitative studies
1.2.2.5  Qualitative studies

1.2.3  Process granularity
1.2.3.1  Large-grained
1.2.3.2  Medium-grained
1.2.3.3  Small-grained

1.2.4  Process variations
1.2.5  Kinds of participants

1.2.5.1  Industry
1.2.5.2  Students

1.2.6  Project size
1.2.6.1  Very large
1.2.6.2  Large
1.2.6.3  Medium
1.2.6.4  Small
1.2.6.5  Tiny

1.2.7  CMM levels
1.2.7.1  CMM level 1
1.2.7.2  CMM level 2 or 3
1.2.7.3  CMM level 4 or 5

1.   Capture any software process or process model 

1.2.8  Organisational paradigms
1.2.8.1  Outsourcing
1.2.8.2  Co-located projects
1.2.8.3  Distributed projects

1.2.9  Product stage
1.2.9.1  New development project
1.2.9.2  Upgrade project
1.2.9.3  Maintenance

1.2.10 Project objectives
1.2.10.1 Standard (cost, quality, content)
1.2.10.2 Non-standard goals (e.g. business value)
1.2.10.3 Developer-oriented

1.2.11 Product types
1.2.11.1 Data-intensive
1.2.11.2 Web
1.2.11.3 Real-time
1.2.11.4 Embedded

     1.3  Product-line processes and process models
     1.4  Miscellaneous processes

1.4.1  Developers have a discussion

1.4.2  Coding standards
1.4.3  Add developers late to a project

1.4.4  Developers get more enjoyment doing XP
1.4.5  Parallel tasks
1.4.6  Open source milestone release
1.4.7  Project retrospective

1.4.8  Technology transfer

Figure 5.2: Objectives for ‘Represent’

5.3.2 Scope

Before continuing, I discuss what constitutes a ‘software process’. For some time now, I have

been concerned about the tendency within the discipline of software engineering to tightly-

couple different aspects of software product creation. Forexample, there is a trend towards

‘integrated’ solutions that provide support for both development and project management ac-

tivities, as exhibited by the Spiral and RUP models and the OPEN process. There is also a

tendency to create an entire process solution tied to a product creation technology. For exam-

ple, the OPEN process mandates an OO approach for all processand project activities.

I believe that software product creation and software project management are different kinds

of functions that should be represented by different processes. I provide support for this be-

lief by discussing content from theProject Management Body of Knowledge (PMBOK)[135].

PMBOK is produced by theProject Management Instituteand describes the knowledge and

practices that are generally accepted by project management professionals.

According to thePMBOK Guide, the key project management activities are partitioned into
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theKnowledge areasof Project Integration, Scope, Time, Cost, Quality, Human Resource, Com-

munications, RiskandProcurement Management. The intent is thatall projects require appli-

cation of these processes i.e. these are the accepted and commonly practised project processes.

It does not matter what kind of product or service is being created by the project. Different

application areas may add some new processes that are specific to that area. For example, in the

construction area, there are special practices relating toprocurement and in bioscience to regu-

latory requirements. The suggestion is that these specific product-related processes may be in-

cludedin addition tothe core processes (and notsubstituted forany of the core processes) [135].

The PMBOK Guide thus suggests that life cycle processes specific to the kind of product be-

ing produced, in this case, software processes, should include only those activities not already

represented in the core management processes. The issue is one of re-inventing the project

management wheel.

I suggest that the tendency for existing process models to include aspects of project man-

agement processes is counter to the recommendations made inPMBOK. I also suggest that a

lack of understanding of what are project management processes has been the source of some

disagreements between process advocates.

A first example concerns the misunderstanding of the role of ‘scope management’. Scope

management is a project management process for controllingchanges to project scope. Project

scope involves capturing justification for the project, identifying the intended deliverables, for

example “. . . the major deliverables for a software development project might include working

computer code, a user manual, and an interactive tutorial . .. ”, and controlling scope changes,

for example, a request to omit the interactive tutorial fromthe set of deliverables. Scope man-

agement thus includes the identification of all the deliverables to project stakeholders. This has

nothing to do with requirements management, which is a product-related activity and concerns

describing what the product will do. A project delivers to a number of different stakeholders.

In addition to delivering a product to some end customer, it may be required to deliver, for

example, progress reports to managers or designs and test rigs to the sponsoring organisation.

For a software project, the ‘organisation stakeholder’ mayrequire delivery of requirements, de-

signs and test beds. I submit that the decision whether or notto create design artifacts is not

a technical one but is rather a scope planning one. This viewpoint marries well with the need

to consider product-line planning, where a single project is just one step in a potentially long

chain, and technical members of the project team have insufficient visibility to be able to make

appropriate decisions about what documentation should be delivered.

A second example involves risk management processes. Risk management is concerned

with identifying situations tht might cause a project to fail to meet its objectives, defining

strategies to minimise the occurrence and impact of such situations and then monitoring for

situations and effecting strategies as appropriate. This raises two points for clarification with
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respect to software development processes. The first is thatthe identification and monitoring

processes continue throughout the project. It is project management’s job to select suitable

point of visibility into the development process and, at these points, check for the occurrence

of any risk situations, react accordingly and repeat the identification and strategy definition in

the context of the current situation. This is standard risk management practice. There is no

need to include risk practices in software processes. The second point for clarification is that,

for software development, a particular process might be indicated as a result of such identifica-

tion. For example, a mitigation strategy for requirements uncertainty might be ‘have a customer

representative on site’ and one for product criticality might be ‘complete formal reviews for all

components’. Different process solutions will be appropriate for different risk situations. The

point here is that it makes no sense to claim of a process that it “addresses risk at all levels of the

development process” [15]. Any process will be an effectivemitigation strategy for some risk

situations but such mitigation is required only if the situation eventuates. If everyone knows

what is the product to be created, there is no need for an on-site customer. The key idea is that

such situations will be identified by the project managementfunction.

For the above reasons, my intended model will be scoped to theproduct-related software

process and will not aim to include any project management processes. This means the require-

ment to ‘capture any software process or process model’ willfail to be met for those processes

and process models that comprise both kinds of process. Examples are Boehm’s spiral model, in

which a risk management step is mandated in each cycle, and the OPEN process, which includes

some project management activities. My solution will aim toinclude only the product-related

processes for these examples. I would argue that, in a ‘bigger picture’ model, the software pro-

cess would be expected to neatly ‘slot into’ the project management ones in the same way as a

‘construction process’ would. The spiral and OPEN models would fail to do so and violate the

‘add-not-replace’ expectation stated in the Guide [135].

5.4 Evidence Strategy

In order to judge a candidate solution model, I must show thatthe model satisfies the objectives

recorded in Figures 5.1 and 5.2.

Sources for an appropriate approach are the fields of psychology and social science, and the

subset of the software engineering community interested inmatters of evidence [38, 87, 160].

These sources suggest that, for people-intensive systems,an appropriate approach is to accu-

mulate an ‘evidence portfolio’ i.e. a varied accumulation of evidence that helps to support the

target theory or model. Such evidence might be gathered by means of formal experimentation,

case studies, expert evidence and other techniques. The main considerations are that the breadth
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of evidence and the degree to which we may trust the evidence are transparent.

My strategy will be to accumulate such a portfolio for the stated model objectives. In this

thesis, I take a pragmatic, risk-based approach to evidenceaccumulation and aim for breadth

and coverage rather than depth in the first instance. The reason is that the attempt to create an

appropriate abstraction of the software process is exploratory in nature i.e. it is not clear that

such an abstraction is possible. The approach is thus to try to accumulate evidence to support

different kinds of objectives and to include objectives that appear the most difficult to satisfy.



6
Model Properties

In the previous Chapter, I presented a case for a theoreticalmodel of the software development

process and captured a set of objectives that should be satisfied by any candidate model.

As a prelude to constructing a candidate model that meets theobjectives presented in Section

5.3.1, I consider what might be some of the model properties.The aim is to establish a set of

criteria against which a candidate model might be judged prior to formal evaluation in order

that some confidence be gained that the candidate is likely tobe successful in meeting the

stated objectives.

In order to establish properties, I first identify what are some of the characteristics of existing

processes that must be represented. I then identify what arethe limitations of existing predictive

models that render them inappropriate for general process representation. I then consider some

situations from real life projects and identify some characteristics that need to be addressed.

Finally, I extract a number of properties required for a candidate model.

6.1 Properties Source

6.1.1 Process characteristics

From the discusion in Section 2.2, I observe the following:

67
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1. A task is defined informally as “A piece of work carried out by one or more engineers”

(see Appendix A). In many cases a single task name is used to describe tasks that differ in

their effects on the product. For example, the term ‘design’is used to mean many things,

including ‘create formal designs from formal requirements’, ‘create formal designs from

discussions with the customer’, ‘create formal designs, review the results and correct any

defects’, ‘create code using informal design strategies’,etc. This means it is difficult to

know when we can compare tasks.

2. There is great variation in the kinds of tasks that are carried out. For example, how do we

capture the effects of ‘discuss requirements with the customer’ or ‘team meeting’? These

tasks do not change the product but many authors agree they have an important effect on

project outcomes.

3. The term ‘process’ is used to cover anything from a complete lifecycle, for example,

‘waterfall’, to a single, small task, for example, ‘review designs’. Processes are described

at different levels of granularity and this means it is difficut to know how to compare and

construct processes.

4. Many processes are characterised by tasks being carried out in parallel, for example,

designs and test plan production. When the same area of the product is affected, for

example, developers working on the same piece of code, thereare potential problems

with defining what is the correct version.

5. There is inconsistency in what aspects of the product are measured and no mechanism

for categorising or comparing measurements. For example, can we compare tasks if one

results in change to ‘Lines of code’, another to ‘Number of requirements implemented’

and a third to ‘Number of stories implemented’?

6. There is interest in representing different kinds of product-related objectives, for example,

those relating to economic value. For example, some authorsbelieve that it is necessary

to capture the business value of a product and this must be done throughout the project to

reflect value-related attributes at each stage in the process.

7. Processes include different assumptions about how humanfactors affect outcomes. For

example, traditional processes assume issues of team size are the only relevant ones but

some authors believe many other factors affect outcomes.

8. Some processes claim that the developers involved changeas a result of participation. For

example, it is claimed that developers become more confidentand are more satisfied as a

result of participation in an XP project.
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9. Some process descriptions mandate a particular technology, for example, OO. Such de-

scriptions can not be used to represent processes in a general way.

10. Many believe it is not possible to represent processes ina deterministic way. For example,

modellers often handle what is regarded as inherent uncertainty by taking inputs from

statistical distributions and presenting study results asmeans and standard deviations.

6.1.2 Model limitations

In Chapter 3, I identified the following limitations in current research models:

1. Research models tend to report only some objectives and sofail to give the whole picture

as regards model efficacy. For example, many studies report data on numbers of defects

but do not provide associated cost data. The disadvantages of this were discussed in

Section 5.2.2.

2. Models embed different beliefs about how human characteristics affect outcomes. For ex-

ample, many system dynamics models include ‘developer motivation’ and the assumption

that this decreases over long projects.

3. Many measures are applied without a clear statement of what these measures mean and

manipulations on these measures is often inappropriate (see Section 3.4.1).

6.1.3 Real-world situations

I now consider some real-world situations that should be addressed by a candidate model. First

I discuss product lines. In Section 5.3.2, I pointed out thatthe deliverables from many projects

comprise part of a product line. In this situation, a single conceptual product exists separate

from an individual project. I illustrate this situation in Figure 6.1. Product ‘MyWebApp’ is

transformed by three different processes, ‘A’, ‘B’ and ‘C’.Two of these occur in parallel i.e.

‘MyWebApp’ is in two different states at the same time.

This diagram also illustrates another ‘real-life’ scenario. It is possible that an industry

project is required to deliver its product in more than one state. For example, a project tasked to

deliver version 1.0 of a new application might be expected toalso make a pre-release delivery

to an ‘early-adopter’ customer.

In Section 5.3.2, I noted that the organisation that sponsors a project is a stakeholder and

may require that the project delivers documentation to it, for example, architectures and designs.

This is likely in the case of product line projects but can apply to any project. This means that
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MyWebApp

A

Prototype 1.0

Version 1.0

B

C

Prototype 2.0

Figure 6.1: Product and process

all artifacts delivered to all stakeholders should be considered as being part of the delivered

product.

In Section 5.3.2, I also discussed the existence of theProject Management Body of Knowl-

edge (PMBOK)[135] and stated the need for a clean interface between the processes used to

create the product (thesoftwareprocesses) and those used to manage the project (theproject

managementprocesses). The result of the discussion is a decision that acandidate model should

represent software processes only.

Finally, I address the issue of ‘readiness for delivery’. Projects commonly deliver according

to some agreed ‘quality attributes’. For example, it may have been agreed in a Quality Plan that

delivery may take place when the only known defects remaining after testing are unlikely to

cause incorrect product functioning.

6.2 Properties

From the above, I extract the following properties.

P1 Only processes that directly affect the software product are represented (described in this

dissertation assoftware development processes). In particular, project management pro-

cesses as defined inPMBOKare not included.

P2 Product represents all descriptions of all artifacts that are delivered to all stakeholders. This

includes problem descriptions, for example, requirements, and solution descriptions, for
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example, designs.

P3 Product may be represented by a number of different measures. For example, representation

might be ‘lines of code’ or ‘number of requirements’.

P4 Product may be represented by more than one measure. For example, representation might

include all of ‘number of requirements’, ‘number of defects’ and ‘number of person

hours’. This allows representation of, for example, both quality- and cost-related at-

tributes.

P5 Product representation should be extensible in that new attributes can be included.

P6 Processes may be represented at any level of granularity. For example, ‘create product’ or

‘carry out code inspection’.

P7 Task definition is unambiguous. For example, for a task ‘design’, it is clear what the task

changes and how it performs the change.

P8 A task may result in change to the humans carrying out the taskand some tasks result in

change to humans only. For example, developers become more satisfied as a result of

participation in an XP project and design discussions do notchange the product.

P9 Different beliefs about how human factors affect project outcomes may be represented.

P10 Some notion of ‘readiness for delivery’ is represented and its use optional.

P11 The model should account for product line processes, where asingle conceptual product

is changed by several projects and projects often deliver a product in more than one state.

P12 Task parallelism should be supported.

P13 The model should be technology-independent.

P14 The model should represent the uncertain nature of the process by providing some way of

capturing output ranges.

The above properties should be displayed by any model that claims to be a candidate rep-

resentation of the required abstraction. They represent informal criteria against which such a

model might be judged prior to formal evidence accumulation. Property P7 implies the need

for some formality in any candidate model.
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7
A Model

In this Chapter I present a candidate model,KiTe.

In the rest of this document, elements that areKiTe components are presented asslanting

text.

7.1 Overview

Figure 7.1 shows a schematic overview ofKiTe. The purpose is to introduce some terms and

provide an introduction to some of the model components.

The first point to note is that I represent aRealisedProcess. The term ‘process’ is generally

used to describe the technical aspects of software development only and is often used in a

prescriptive way. Aprescriptive processcan be defined as “A description of a process that takes

into account only technical aspects and implicitly makes assumptions that human factors do

not affect process outcomes” (see Appendix A). For the intended model, we are interested in

describing what actually happens during a software projectand so must include the effects of

project contexts. In order to avoid confusion between this meaning and the conventional use of

the term ‘process’, I use the termRealisedProcess. I define aRealisedProcessas “A description

of a process as it really happens i.e. that takes into accounthow all factors relevant to process

outcomes, for example, the people involved and project contexts, affect these outcomes” (see

73
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Technique

RealisedProcess

ContextModel

Method

Activity

Context Engineer

CostQualityContent

Product

Activity has two parts

- Method defines how Product changes

- ContextModel defines size of transformation

Activity has two parts

- Method defines how Product changes

- ContextModel defines size of transformation

ContextModel wraps up effects 
of Engineer characteristics and 
environmental contexts

ContextModel wraps up effects 
of Engineer characteristics and 
environmental contexts

Method is template for Product change

- any granularity

- Method repository

- implemented by Techniques

Method is template for Product change

- any granularity

- Method repository

- implemented by Techniques

Product comprises several models

- each represents a certain perspective

- can define new perspectives (extensible)

Product comprises several models

- each represents a certain perspective

- can define new perspectives (extensible)

Engineer changed by ActivityEngineer changed by Activity

Figure 7.1: Schematic overview of KiTe

Appendix A).

The second point of note is that several of the properties presented in Section 6.2 state a

need to represent alternatives. For example, property P3 indicates a need to represent a product

using different measures and property P9 a need to representdifferent beliefs about how human

factors affect outcomes. I address these criteria by proposing an abstraction that is aframework

where each model component is a model in its own right. This allows modellers to choose the

form of the framework model components that best representstheir particular needs and beliefs.

For example, if a project is to deliver software under specific quality and cost constraints, those

constraints will be abstracted in a suitable way in theProduct QualityandCost models. If the

process modeller believes that developer experience and skills are the only contextual factors

that affect outcomes, these will be represented in the models for EngineerandContextModel.

As the industry matures and evidence becomes available to support specific models, these mod-

els become fixed within theKiTe framework as they are now current theories from which further

hypotheses may be formed and tested in the context of the larger system. The framework thus

provides support for formal experimentation.

The key aspects are overviewed below.
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Product

Productis modelled as a set of states. I view these states as ‘pointing to’ the set of all possible

states for all possible products. This allows a separation of the ‘product’ that is the subject

of the RealisedProcessand a conceptual product in the real world and supports the situation

described in Section 6.1.3. Figure 7.2 illustrates the concept. The first picture, a), represents

all possible states of all possible products. The second, b), shows a subset of these states, those

for the product with name ‘MyWebApp’. Only some of these apply in a particular project. For

example, if ‘p’ is an upgrade project, all states ofProductwill include a representation of code

content. The states for ‘p’ are shown in c). In d) I illustratethat only some attributes are relevant

for project ‘p’. For example, the attributes depicted in yellow might represent ‘size’, ‘number

of defects’, ‘cost in person hours’ and ‘maintainability’,but for project ‘p’ only ‘number of

defects’ and ‘cost in person-hours’ apply.

b) MyWebApp c) Product for 

Project `p`
a) Product d) Perspectives

for Product

Figure 7.2: KiTe Product

Productrepresents all artifacts that describe the software being produced. These include the

software delivered to the end customer and all requirements, designs, code, etc. to be delivered

to the development organisation as an asset for use in later projects.Productattributes may be

viewed via a number ofPerspectives. Most commonly, these relate to the conventional product-

related drivers i.e.ContentPerspective(‘how much is there’),QualityPerspective(‘how good

is it’) and CostPerspective(‘how much did it cost’). However, I can encompass other product-

related objectives, for example, the need to capture business value for product artifacts [20], by

creating a new perspective model, for exampleBusinessValuePerspective. I also note that some

factors generally described as ‘contextual’, for example,Boehm’s ‘required reusability’ (see

Section 3.1) and Basili and Rombach’s ‘reliability requirements’ (see Section 4.2) are product-

related objectives and are viewed inKiTe as attributes ofProduct.
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Activity

A KiTe Activity encompasses both the task that is carried out (represented by Method and

Technique) and how well the engineers carry out the task (represented by ContextModel). Both

EngineerandProductare changed as a result of anActivity . For example,Engineerattributes,

such as experience or skill, are likely to increase.

Method and Technique

A KiTe Method is defined as a set of transformations onProduct. The transformation domain

defines theMethod’s Product-related preconditions (for example, existence of some design

content). The transformation is not constrained and this means that, in addition to the traditional

tasks, for example, ‘code from design documents’,KiTe handles any task that causes change to

Product. Tasks such as ‘test first design’, ‘create a prototype basedon a feature list’ or ‘code

from prototype’ are validMethods. The definition ofMethod permits tasks of any granularity.

So, for example, ‘develop product from requirements’ or even ‘develop product’ are as valid as

‘carry out design review’.

A Method transformation has possibly many different codomain values for every domain

value. For example, aMethod that involves injecting defects into code may be defined as in-

jecting 0 or more defects and so each domain value maps to one of a large number of possible

values.Methodmay thus be considered as a family of transformations, or transformation tem-

plate, that must be instantiated to provide a definitive transformation.Techniqueprovides this

instantiation and representshowa Method is carried out. For example, many believe that the

techique of ‘pair programming’ yields better quality source than coding by a single person. In

both cases, a change to source results, but the new actual values will probably be different in

each case.Techniquerepresents an ‘average’ of the results obtained when theTechniqueis

applied in a large number of different circumstances.

I illustrate this concept in Figure 7.3. In the top two diagrams, I show that aMethodapplies

to only some products. These are the products that have appropriate attributes (products D, E,

I and K in the top diagram) and whose attributes have values that comply with theMethod’s

precondition (the light green domain states in the middle diagram). In the bottom diagram, I

show the many-many mappings provided byMethodconstrained to become functional ones by

two Techniques(shown as red and blue mappings).

ContextModel

Researchers and practitioners have identified many factorsthat are believed to affect project out-

comes. Some factors describe a ‘match’ between engineers and the product they are changing,



7.1 Overview 77

Product A

Product B

Product D

Product C

Product E

Product G

Product F

Product H

Product I

Product J

Product K

Method `m` may be applied to Products D, E, I and K.

Method `m` may be applied to certain states of Product E.

Techniques partition Method `m` into functions on `m’s domain.

Figure 7.3: KiTe Method and Technique

for example, how familiar the engineer is with the subject area. Some relate to theTechniques

they are using, for example, how much experience the engineer has with theTechniqueand

whether or not appropriate tools are available. Many factors relate to the project environment.

For example, project management may be supportive or overlydemanding, expectations may

be clearly defined or vague and engineers may be enthusiasticabout the project or simply tired

from overwork.

The list of possible factors is large and changes with time. This creates a number of prob-

lems. When creating models of the software development process, researchers must first choose

which factors to include as input variables. This means the factors are now embedded in the

model i.e. the model must be changed if new influencing factors are discovered. Researchers

must also decide how to manage the large number. For example,some researchers implement a
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rule-base, with resulting issues of scaleability (see Section 4.3.1).

In aKiTe RealisedProcess, engineers change a product by carrying outMethodsusingTech-

niques. I suggest that handling of the factors described above can be simplified by viewing the

factors as affecting how well the engineers are able to work i.e. by their effects onengineer

effectiveness. In KiTe, I abstract all the factors that affect how engineers work into a Con-

textModel.

The key idea is thatContextModelrepresents engineer effectiveness by modifying the base

effects ofMethodandTechniqueaccording to which factors it defines as relevant and how these

are combined. For example, when capturing a waterfall process, theContextModelis likely to

be extremely simple, as contexts are generally ignored for this kind of process. A study in which

engineer experience and skills are believed to be of relevance might involve only these factors

and ignore all others. This is equivalent to stating that no other factors are believed to have

influenced effectiveness. A more complex model might implement some ‘matching’ of skills

with those required byProductor Technique. Such matching might be based on the Human

Competencies model described in Section 4.5 i.e. by matching person and role capabilities.

Of course, for a model that aims to include large numbers of influencing factors, it is crucial

that the abstraction for engineer effectiveness is such that complexity is reduced. I suggest that

a suitable model will include a small number of orthogonal engineer-related characteristics. In

Section 4.5, I described Curtis’s Layered Behavioral Modelwhich suggests that individual ca-

pabilities are key for small projects and issues of uncertainty for larger projects. Based on these

ideas, I propose that all contexts be mapped to the set ‘capability’, ‘certainty’ and ‘motivation’.

In such an abstraction, for example, factors such as ‘large team’ and ‘threatened redundancy’

affect the values for ‘certainty’ and ‘motivation’.

ContextModelthus immediately allows existing beliefs about human-related contexts to

be included when representing software development processes while providing an abstrac-

tion on which to base research into the effects of human factors on the process. In addition,

context-related considerations are nicely partitioned from the rest of the model, and this enables

researchers to easily ‘upgrade’ContextModelwhen new knowledge is uncovered.

CapabilitySpec

In order to infer engineer effectiveness, it is likely that aContextModelmay require to carry

out some matching of engineers to the product they are changing and theTechniquesthey are

applying. For example, an engineer experienced in Pair Programming will probably be more

effective applying a Pair ProgrammingTechniquethan one who has no such experience.

Engineer skills and experiences and product and technique required skills are represented in

CapabilitySpecs. CapabilitySpecthus serves to capture a set of capabilities. An engineer may
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have experience in Java or skills with formal reviews. It maybe that, to work with a product,

knowledge of computer telephony or skills in C++ are required. A design technique may require

expertise in structured design.

7.2 KiTe Model

In this section, I formally presentKiTe. For each model component, I provide first a brief

overview with some comment as to the rationale behind the component, follow this with a

detailed description and then conclude with a description in formal notation. The reader may

choose to omit the detailed and formal descriptions at first reading and ‘fill in the details’ at a

later time. Before commencing, I discuss notations used.

Although KiTe is not a software product, for the detailed description I comply with the

IEEE Recommended Practice for Software Design Descriptions[73], as this standard provides a

suitable template for capture of systems comprising different kinds of elements. However, as the

target system is an abstraction rather than a software implementation, some of the descriptions

will be at a higher level than required for implementation. For example, when describing how

Activity interfaces withContextModel, implementation details, for example, ‘message passing’

or ‘function call’, are not applicable.

The Standard definesdesign entity attributes Identification, Type, Purpose(‘why it is there’),

Function(‘what it does’),Subordinates(‘composed of’),Dependencies(‘uses’ or ‘requires the

presence of’),Interface(‘how other entities interact with this’),Resources(‘external elements

used’),Processing(‘rules for achieving function’) andData (internal data elements). ForType,

I categorise elements according to their main purpose in thesystem i.e. as of typeAggregation

(main role is to contain other elements),SetOfStates(main role is to capture current state),

Projection(main role is to project data from a SetOfStates),DataStore(main role is to hold

attributes and values andTransformation(main role is to contribute to state change). I omit

Resourcesas this is not relevant for modelling. For those elements that are models in their

own right, the element will be described as aTemplateand some examples of processing and

data are given. I use the ‘.’ notation for elements in a dependency relationship, for example,

Engineer.CapabilitySpec.

For the formal description, I choose a representation that includes set constructs and state

transitions. TheIEEE Recommended Practice for Software Requirements Specifications[74]

reminds us that “requirements methods and languages and thetools that support them fall into

three general categories - object, process, and behavioral. Object-oriented approaches organize

the requirements in terms of real-world objects, their attributes, and the services performed by

those objects. Process-based approaches organize the requirements into hierarchies of func-
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tions that communicate via data flows. Behavioral approaches describe external behavior of the

system in terms of some abstract notion (such as predicate calculus), mathematical functions,

or state machines.” Although the KiTe model is not a softwaresystem, the decision as to how

best represent it may be approached by considering the abovethree alternatives. Woodcock and

Davies, in their book “Using Z” [171] remind us that “Mathematical objects are often seen as

collections of other objects: a square is a collection of points in a plane; a function is a collection

of pairs linking arguments with values. These collections are calledsets. . . ”. As the problem

space, i.e. the software development process, includes both structural aspects and transforma-

tional ones, I choose a representation that uses the basic mathematical notions of set constructs,

with constructs that describe transformational elements captured as relations defined by state

transitions.

KiTe components and the relationships between them are shown in Figure 7.4. I begin by

recapping what is aProject and then overview some types I treat as ‘basic’, in that I use the

types without providing any formal definition. I then address eachKiTe component.
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Figure 7.4: KiTe model relationships

7.2.1 Project

I defineProject(Appendix A) as “. . . a temporary endeavour to create a uniqueservice or prod-

uct and with a definite beginning and end” [135]. As noted in Section 1.8, this definition says
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nothing about the form of the service or product delivery and, in this thesis, I view a project as

any effort that makes a delivery of any kind to any stakeholder. For example, a project might

deliver a finished product to a customer, a prototype to the development group or a test plan to

the test group.

As stated in Chapter 6,KiTe allows for the same conceptual product to be changed by many

Projects. The description presented here allows for this while providing notation for elements

in the context of a particularProject.

7.2.2 Atomic types

Overview

In this thesis, I treat some types as ‘atomic’ and do not definethem in detail. For example,

KiTe includes several identifiers, includingProductIdentifierandEngineerIdentifier. Produc-

tIdentifier provides a way of uniquely identifying the product that is changed during a project

andEngineerIdentifieruniquely identifies the engineers involved in the project. These types

are introduced as required.KiTe also includes several types that describemeasurements. A

measurementis a representation of some attribute of interest that includes some notion of at-

tribute identification, meaning, scale and value. Types include ProductMeasurement, which

represents some product-related attribute, andContextMeasurement, which represents some

context-related attribute. As discussed in Section 3.4.1,the measurement of software-related

attributes is problematic for several reasons, including the incorrect use of measurement scales

in common software engineering practice. Further consideration of this is outside the scope of

this thesis and later in this thesis I simply represent aMeasurementas a binary relation that rep-

resents an attribute-value pair. For example, (Java, High)indicates some attribute called ‘Java’

with value ‘High’. A related concept is that ofmeasure. A measureis ameasurementwith no

value assigned — a kind of ‘measurement template’.KiTe includesProductMeasure.

7.2.3 Product

Overview

Productis an abstraction of the deliverables from aRealisedProcess.

I modelProductas a set of states i.e.Productrepresents the set of all states that describe

the product for aRealisedProcess. Productincludes aProductIdentifierthat identifies the con-

ceptual product in the real world, for example, ‘MyWebApp v.1.6’. This identifier is unique to

Productfor a RealisedProcess. Productalso has aCapabilitySpecthat specifies the kinds of

capabilities required for working with the conceptual product, for example, ‘experience with



82 A Model

Java’. Productalso includes some attributes that describe the dynamic status of attributes-of-

interest, for example, ‘size’ and ‘number of defects’. These attributes are represented as a set

of ProductMeasurement.

Detailed description

Type SetOfStates Template.

Purpose Abstract the product-related deliverables for a project for the purpose of tracking

status.

Function Productdescribes the characteristics and dynamic status of the software being pro-

duced.

Subordinates None.

DependenciesProductIdentifier(‘isIdentifiedBy’); CapabilitySpec(‘hasCapabilities’);Pro-

ductMeasurement(‘hasAttributes’).

Interface GoalsBenchmark(‘isA’); RealisedProcess(‘hasStates’);Activity (‘transforms’);Method

(‘isRelationOn’).

ProcessingNone.

Data Product references a subset of the ‘global’ product state space i.e.the space contain-

ing all possible states of all possible conceptual products. A Productstate comprises

ProductIdentifierwhich identifies the product in the outside world (e.g. ‘MyWebApp

v.1.6’), CapabilitySpeccontaining information about the capabilities required for work-

ing with thisProductand a set ofProductMeasurementcapturing the dynamic status of

Product. ProductIdentifier, CapabilitySpecandProductMeasurementare references to

specific states in the ‘global’ state space.

Formal description

Productis represented as a set of states. I represent the set of all possible states of all possible

products asPS and the set of states for a specificRealisedProcessrp asPSrp.

PSrp ⊆ PS (7.1)

A Productstate can belong to a singleRealisedProcessonly i.e. the intersection ofProduct

states for differentRealisedProcessesis empty.

∀rp1, rp2 ∈ RP rp1 6= rp2 ⇔ (PSrp1 ∩ PSrp2 = ∅) (7.2)
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A Product stateps includes aProductIdentifierthat identifies the real-world product to

whichps applies. Functionpid projectsProductIdentifierfrom ps ∈ PS.

PID is the set of allProductIdentifier.

pid : PS 7→ PID (7.3)

RealisedProcesshas the properties that aProductIdentifieris unique to a singlerp ∈ RP

and that all product states for aRealisedProcessrp have the same value forProductIdentifier.

The first property provides a stronger statement of Equation7.2 i.e. it is the value of the state’s

ProductIdentifierattribute that associates the state with a singleRealisedProcess.

∀rp1, rp2 ∈ RP , ∀ps1 ∈ PSrp1 ∀ps2 ∈ PSrp2 (pid(ps1) = pid(ps2) ⇔ PSrp1 = PSrp2)

(7.4)

A Productstate includes aCapabilitySpecthat captures capabilities required for working

with the product. Functionpcps projectsCapabilitySpecfrom Product.

pcps : PS 7→ CPS (7.5)

CapabilitySpecfor PSrp may change asrp progresses, for example, if the requirement to

deliver on a specific operating system changes, indicating the need to add a new required ca-

pability. This means that, although each product state mapsto a singleCapabilitySpec, the

projectedCapabilitySpecfor Productfor RealisedProcessrp may contain more than one ele-

ment i.e. is the set ofCapabilitySpecfor all statesps ∈ PSrp.

pcps(PSrp) = {pcps(ps) | ps ∈ PSrp} (7.6)

A Productstate includes the status of the product-related attributes of interest forrp, for ex-

ample, ‘number of defects’. Each attribute-of-interest isrepresented as aProductMeasurement.

PME is the set of all possibleProductMeasurement. Relationpme projects the set of

ProductMeasurementfor Productstateps ∈ PS. This set represents the values of the product-

related attributes-of-interest for the state and belongs to the power set ofProductMeasurement.

pme:PS 7→ 2PME (7.7)

EachProductMeasurementis based on aProductMeasure. TheProductMeasurerepresents

the attribute-of-interest without the value of the attribute i.e. it is a kind ofProductMeasurement

template.

PM is the set of allProductMeasure. Functionpm extracts theProductMeasurefrom a
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ProductMeasurement. This enables the isolation of a specific attribute from a setand subsequent

access to the attribute’s value.

pm : PME 7→ PM (7.8)

7.2.4 CapabilitySpec

Overview

CapabilitySpecrepresents a set of engineer capabilities, for example, skills, or the set of capa-

bilities required for working with a specific product or technique. I note that capabilities are

not limited to the commonly used ‘skills’ and ‘experience’ but may represent, for example, the

‘behavioural competencies’ such as ‘Sociability’ described by Acuna and Juristo (see Section

4.5).

I modelCapabilitySpecas a set ofCapabilityMeasurementi.e. as a subset of the set of all

possible combinations of all possible values of all possibleCapabilityMeasurement.

Detailed description

Type DataStore.

Purpose Required for matching of engineer capabilities to product and technique required ca-

pabilities.

Function Captures descriptive characteristics, technologies and experiences relating to the par-

ent element.Product.CapabilitySpeccharacterises the skills required for working with

Product, for example, subject area description, required implementation technologies,

etc. Engineer.CapabilitySpeccapturesEngineercapabilities, for example, experience

with Java or level of extroversion.Technique.CapabilitySpeccharacterises the skills re-

quired for working withTechnique.

Subordinates None.

DependenciesCapabilityMeasurementvia ‘isA’ relationship.

Interface Product, EngineerandTechniquevia a ‘hasCapabilities’ relationship;ContextModel

interfaces withProduct.CapabilitySpec, Engineer.CapabilitySpecandTechnique.CapabilitySpec

via a ‘usesToCalc’ relationship.

ProcessingNone.

Data A CapabilitySpecreferences a set ofProductMeasurement.
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Formal description

The set of all possibleCapabilitySpecis CPS . The set of all possibleCapabilityMeasurement

is CME .

A CapabilitySpecis a set ofCapabilityMeasurementi.e. is a set that is one of the power

set of the set of all possibleCapabilityMeasurement. For example, aCapabilitySpecmight be

the set{(Java, High), (Design, 6), (Linux, Medium)}, indicating capabilities in ‘Java’, ‘Design’

and ‘Linux’ with appropriate values.

CPS = 2CME (7.9)

7.2.5 Partition

Overview

Partitionserves to group product-related attributes into non-overlapping sets that represent dif-

ferent kinds of product descriptions.Partitionsmust be non-overlapping because they play a

key role in the definition ofMethod andTechinquepreconditions and effects. EachPartition

contains attributes that describe one kind of product description andMethodsandTechniques

are defined by the kinds of descriptions they change.PartitionsareDefinition, Architecture,

Design, Source, IntegrationandPackaged. The decision is based on the need to consider all

stakeholders when defining what comprisesProducti.e. the need to abstract the content of all

artifacts that capture any aspect of the software that will be delivered to the end customer. The

chosenPartitionsrepresent the descriptions most frequently found in the literature and would

seem to cover all possibilities. For example,Definition includes anything that addresses the

problem to be solved and so might include formal requirements, feasibility studies and XP sto-

ries. Sourceincludes, in addition to code, data files and document sources. Packagedrefers to

the system as ready to deliver. For small projects, this might be the same asIntegrationi.e. the

‘packaging’ step is ‘free’ as no additional work is requiredafter the system is integrated. For

larger projects, this is almost certainly not the case, for example, if many large files must be

copied from various locations to a ‘delivery’ location.

Note that attributes must be specified for eachPartition. For example, ‘number of known

defects in requirements’ and ‘number of known defects in code’ are two separate attributes and

are represented in differentPartitions.

Detailed description

Type Projection.
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Purpose Provide a means of categorising product attributes such that attributes of interest to

all stakeholders are included. For example, information about architectures may be of

interest to the developing organisation.

Function Project the product attributes and values for a specific kindof product information,

for example. those describing architectures.

Subordinates None.

DependenciesPartitionIdentifier(‘isIdentifiedBy’); ProductMeasurement(‘contains’).

Interface None.

ProcessingNone.

Data Partitionhas aPartitionIdentifierthat is one ofDefinitionPartition, ArchitecturePartition,

DesignPartition, SourcePartition, IntegrationPartitionandPackagedPartitionand a set of

ProductMeasurement.

Formal description

The set ofProductMeasurementis partitioned into six non-overlapping subsets, calledParti-

tions. These describe different representations of the product.For example, representations that

relate to problem definitions such as requirements-relatedattributes are included in the ‘Def-

inition’ partition. Partitionsare identified asDEFNP, (DefinitionPartition), ARCHP , (Ar-

chitecturePartition), DESNP, (DesignPartition), SRCEP , (SourcePartition), INT GP , (In-

tegrationPartition) andPACKP , (PackagedPartition). This set ofPartitionIdentifierisPAID.

PAID = {DEFNP,ARCHP,DESNP,SRCEP , INT GP ,PACKP} (7.10)

Relationppame projects the set ofProductMeasurementfor Productstateps ∈ PS and

PartitionIdentifierpaid ∈ PAID.

ppame: (PS × PAID) 7→ 2PME (7.11)

For allProductstates, aProductMeasurementbelongs to only onePartitionand allProduct-

Measurementbelong to somePartition.

∀ps ∈ PS , ∀paid1, paid2 ∈ PAID paid1 6= paid2 ⇔ (ppame(ps, paid1)∩ppame(ps, paid2) = ∅)

(7.12)
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∀ps ∈ PS , ∀me ∈ pme(ps), ∃paid ∈ PAID (me ∈ ppame(ps, paid)) (7.13)

7.2.6 Perspective

Overview

For Product, the product-related attributes of interest are viewed in away that is meaningful to

the modeller, for example, those describing some aspect of quality might be viewed together.

Such a view is aPerspective. A Perspectiveeffectively constrains which attributes are to be

viewed. Different stakeholders may choose to viewProductin different ways, i.e. the choice of

Perspectivesis flexible and unrestricted.

Perspectiveis represented by a set ofProductMeasures. ThePerspectiveoverlays onProd-

uct to project on the required set of attributes.

I model Perspectiveas a single state in the state space of all possible combinations of all

possible values of all possibleProductMeasure.

Detailed description

Type Projection.

Purpose Represent a particular view of product attributes and values as these change through-

out the project.

Function Projects attributes and values for a product-related objective, for example,Content

or Quality.

Subordinates ProductMeasure.

DependenciesProductMeasurement(‘isViewOn’).

Interface None.

ProcessingThe set ofProductMeasureprovides a view on the attributes-of-interest forProduct,

as represented byProduct’sset ofProductMeasurement.

Data Perspectiveis represented as a set ofProductMeasure.

Formal description

PE is the set of all possiblePerspective. The set ofPerspectivefor RealisedProcessrp ∈ RP

is PErp.

A Perspectiveis a set ofProductMeasurei.e. is a set that is one of the power set of the set

of all possibleProductMeasure.
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PE = 2PM (7.14)

Relationppeme projects the set ofProductMeasurementfor a Productstateps ∈ PS and

Perspectivepe ∈ PE .

ppeme: (PS × PE) 7→ 2PME (7.15)

For all Productstates inRealisedProcessrp, a ProductMeasurementbelongs to only one

Perspectiveand allProductMeasurementbelong to somePerspective.

∀rp ∈ RP , ∀ps ∈ PSrp, ∀pe1, pe2 ∈ PErp pe1 6= pe2 ⇔ (ppeme(ps, pe1)∩ppeme(ps, pe2) = ∅)

(7.16)

∀rp ∈ RP , ∀ps ∈ PSrp, ∀me ∈ pme(ps), ∃pe ∈ PErp (me ∈ ppeme(ps, pe)) (7.17)

The set ofProductMeasurementfor a Productstateps ∈ PSrp can be found viaPartitions

or Perspectives.

∀rp ∈ RP , ∀ps ∈ PSrp pme(ps) = {ppeme(ps, pe) | pe ∈ PErp} (7.18)

∀rp ∈ RP , ∀ps ∈ PSrp pme(ps) = {ppame(ps, paid) | paid ∈ PAID} (7.19)

7.2.7 GoalsBenchmark

Overview

For many projects, there is an agreement with the customer that delivery of the product will

occur when a certain quality level is reached, for example, when all known defects after test-

ing are minor and will not affect product functionality. Forinternal projects, for example, to

deliver a test plan to project management, there will probably be an agreement with the inter-

nal customer about the criteria for delivery, for example, ‘when complete’ or ‘in 2 weeks’. A

GoalsBenchmarkrepresents the expectedProductstate atRealisedProcesscompletion. This is

represented as a subset ofPS. It is probable that this subset has more than one possible state

because the expectation will be of the form, for example, ‘number of known defects less than

10’ i.e. the set of ten states with ‘number of known defects’ equal to 9, 8, 7 .....0.
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Detailed description

Type SetOfStates.

Purpose Capture the agreed status for the product-related objectives for a project at time of

delivery.

Function As for Product.

Subordinates As for Product.

DependenciesProduct(‘isA’).

Interface Interfaced to byRealisedProcess(‘hasStates’).

ProcessingNone.

Data As for Product.

Formal description

GBrp ⊆ PS.

7.2.8 Engineer

Overview

Engineeris an abstraction of the people involved in causing change toProductin a Realised-

Process.

I modelEngineeras a set of states i.e.Engineerrepresents the set of all states that describe

the engineers for aRealisedProcess. Engineers represented include those in the roles of ana-

lysts (who change definitions and architectures), designers and coders (who change designs and

sources), technical writers (who produce documents that are included in the packaged product)

and test personnel (who provide information about product quality). Engineerdoes not include,

for example, project managers as they do not directly changeProduct.

Engineerincludes a set ofEngineerIdentifierthat identifies the real-world engineers, for

example, ‘John Smith’ and ‘Jane Doe’.Engineeralso has a set ofCapabilitySpecthat specifies

the engineers’ capabilities, for example, ‘experience with Java’ or ‘extroverted’.

Detailed description

Type SetOfStates.

Purpose Abstract the people involved in change toProduct, for example, analysts, architects,

coders and build personnel.

Function Engineerdescribes the dynamic status of the people involved in changing Product.
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Subordinates None.

DependenciesEngineerIdentifier(‘identifiedBy’); CapabilitySpec(‘hasCapabilities’).

Interface RealisedProcess(‘hasStates’);Activity (‘transforms’).

ProcessingNone.

Data Engineerreferences the ‘global’ engineer state space i.e. the spacecontaining all possible

states of all possible engineers. AnEngineerstate comprises a set ofEngineerIdentifier

that identifies the real-world engineers and a set ofCapabilitySpeccontaining information

about the capabilities of the engineers. The specific model defines which capabilities are

included.

Formal description

Engineeris represented as a set of states. I represent the set of all possible states of all possible

engineers asES and the set of states forRealisedProcessrp asESrp.

ESrp ⊆ ES (7.20)

An Engineerstatees includes a set ofEngineerIdentifierthat identifies the real-world engi-

neers to whiches applies. Functioneid projects the set ofEngineerIdentifierfrom es ∈ ES.

EID is the set of allEngineerIdentifier.

eid : ES 7→ 2EID (7.21)

The set ofEngineerIdentiferfor RealisedProcessrp is

eid(ESrp) = {eid(es) | es ∈ ESrp} (7.22)

An Engineerstate includes a set ofCapabilitySpecthat capture capabilities possessed by

the engineers. Relationecps projects theCapabilitySpecfor EngineerIdentifierfor anEngineer

state.

ecps: ES × EID 7→ CPS (7.23)

CapabilitySpecfor a real-worldengineermay change asrp progresses, for example, as

the engineer gains experience. This means that, although each engineer state maps to a single

CapabilitySpecfor each engineer, the engineer’s projectedCapabilitySpecfor RealisedProcess

rp may contain more than one element i.e. is the set ofCapabilitySpecfor all stateses ∈ ESrp.

The set ofCapabilitySpecfor EngineerIdentifierid in RealisedProcessrp is
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ecps(ESrp, id) = {ecps(es, id) | es ∈ ESrp ∧ id ∈ eid(es)} (7.24)

7.2.9 Context

Overview

Contextis an abstraction of the non-engineer-related factors thatare believed to affect how well

engineers changeProductin a RealisedProcess. Such factors may include those both internal

to the project, for example, project management style, and factors resulting from interfaces

with other projects (for example, communication issues) orgroups (for example, impending

company merger).

I modelContextas a set of states i.e.Context represents the set of all states that describe

the project-specific factors for aRealisedProcess. Characteristics of the engineers themselves

are excluded. Examples might include ‘company about to be taken over’, ‘poor development

environment’ and ‘culture of overworking employees’. AContext is realised as a set ofCon-

textMeasurement.

Detailed description

Type SetOfStates.

Purpose Abstract the project environment.

Function Captures non-engineer-related aspects of the project environment believed to have

an effect on product outcomes. Examples are ‘availability of customer’, ‘tool support’.

Subordinates None.

DependenciesContextMeasurement(‘isA’).

Interface RealisedProcess(‘hasStates’);ContextModel(‘usesToCalc’).

ProcessingNone.

Data Contextreferences the ‘global’ context state space i.e. the space containing all possible

states of all possible contexts.Contextattributes and values are represented by a set of

ContextMeasurement. The specific model defines which items are included.

Formal description

Context is represented as a set of states. I represent the set of all possible states of all possible

contexts asCS and the set of states forRealisedProcessrp asCSrp.

CSrp ⊆ CS (7.25)
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A Contextstate includes a set ofContextMeasurementthat represents the context.CME is

the set of all possibleContextMeasurement. Relationcme projects the set ofContextMeasure-

ment for Contextstatecs ∈ CS.

cme: CS 7→ 2CME (7.26)

7.2.10 Method

Overview

Method represents a set of transformations onProduct. It provides a definition of which at-

tributes ofProductchange during the transformation and a description of how they change. It

thus also provides a precondition onProductattributes, for example, ‘all requirements must

be represented in designs’.Method effectively provides a ‘template’ for change that is unam-

biguous. For example, a ‘code from designs’Method has a precondition relating to existence

of designs and causes increase in attributes describing source content and source quality. If

the Method is ‘code from designs and fix design and code defects’, the precondition will be

the same, but the attributes that change will include design-related attributes. The purpose of

Method is thus to provide clarity about what is changing inProductwhen some task is carried

out. There will be many possible ways to make these changes.

Detailed description

Type Transformation.

Purpose Capture a development task in an unambiguous way. Include tasks that do not change

Product.

Function Captures a task as a set of possible transformations onProduct. The domain for

the transformations defines acceptable precondition states of Product. This means that

Productmust contain the correct attributes in itsProductMeasurementsand that these

attributes must have appropriate values. The codomain represents all possible outcomes

of the task.

Subordinates None.

DependenciesProduct(‘isRelationOn’);Technique(‘mapConstrainedBy’).

Interface None.

ProcessingNone.

Data Binary, many-many relation onProduct.
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Formal description

Method is a transformation of states ofProducti.e. is a binary relationPS × PS . The set of

all possibleMethod isM.

M = PS × PS (7.27)

For anyMethod m ∈ M, the relation defined bym has many possible domain states.

For example, for aMethod involving designing a product from some architectures, thedo-

main states form include all Productstates that represent a product containing the relevant

architectures. This might include states that represent, for example, a product with or without

requirements or existing integrations.

The set of possible domain statesD(m) for m definesm’s precondition. ForRealisedPro-

cessrp, the domain form is restricted to those states inPSrp, i.e. the states withPSrp’s

ProductIdentifier. This set of domain states is defined by mappingmpre.

∀m ∈ M, ∀rp ∈ RP mpre(m, rp) = D(m) ∩ PSrp (7.28)

A domain element for aMethod maps to many possible values. These values represent the

possible transformations forMethod. For example, aMethod that represents creating designs

from architectures may be characterised by an increase in the value of a ‘design’ attribute along

with an increase in the value of a ‘design defects’ attribute. For aProductdomain state with

both ‘designs’ and ‘design defects’ values equal to zero, the possible mappings include many

states i.e. those with ‘designs’> 0 and ‘design defects’> 0. A Methodmay thus be viewed as

a ‘mapping template’.

I now consider the standard relational properties ofreflexion, symmetryandtransitivity[159]

with respect toMethod. The reason is one of exploration — I would like to investigate other

possible aspects ofMethod not immediately apparent, for example equivalences and partial

orderings.

Properties of reflexion includereflexiveand irreflexive. A relation is reflexive if every do-

main element maps to itself. It is irreflexive if a single domain element does not map to itself.

ForMethod, I allow reflexion i.e. one of the possible transformations of m represents no change

in Productstate. This is required forActivities that do not changeProduct, for example, devel-

oper design discussions.

Properties of symmetry includesymmetric, antisymmetricandasymmetric. A relation,R, is

symmetric if and only ifaRb impliesbRa. R is antisymmentric if the inclusion of bothaRb and

bRa is possible only ifa = b. An asymmetric relation does not permit the antisymmetric case

i.e. bothaRb andbRa may never be true.Method changesProductin a way that is consistent
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with antisymmetry i.e. a transformation and its inverse occur only in the case of no change to

Productstate.

Properties of transitivity includetransitiveandatransitive. A relationR is transitive if the

inclusion of bothaRb andbRc imply the inclusion ofaRc. BecauseMethod defines ‘change

templates’ rather than defining size of change, the transitivity property holds. For example, the

‘design’ Method introduced above results in an increase or decrease in valueof attributes that

represent designs and an increase in value of attributes that represent numbers of design defects.

If the defects element of the mapping includes (0,6) and (6,30), the implication is that (0,30)

will also be a possibility. The transitivity property holds.

Method is reflexive, antisymmetric and transitive.Method thus represents aweak partial

order relation onPS [159].

7.2.11 Technique

Overview

In the previous Section, I describedMethod as a set of transformations onProductthat effec-

tively defines what is changed inProduct. I noted thatMethod is effectively a template and

that there would be many different ways of carrying out theMethod. Techniquedescribeshow

Productchange is made and represents one way of implementingMethod. For example, for

Method ‘DesignAndCode’, possibleTechniquesmight be ‘PairProgramming’ and ‘Implemen-

tOOArchitecture’. Each would result in the same kind of change to the sameProduct Partitions,

for example, increase inDesignandSourceattributes. However, each would have a slightly

different outcome, for example, many believe that ‘PairProgramming’ will result in a smaller

increase in defect numbers.Techniquethus constrains theMethod relation to a functional one.

The resultingProducttransformation may be regarded as the ‘expected’ transformation for this

Techniquei.e. the average result for theTechniquewhen applied to many different kinds of

products by many different kinds of engineers in many different kinds of environments.

Techniquealso has aCapabilitySpecthat describes the capabilities required for working

with theTechnique. For example, an ‘OO design’Techniquerequires skills in OO design.

Detailed description

Type Transformation.

Purpose Capture changes toProductwhen a specificMethod is carried out in a particular way.

Function Constrains the many-many transformation onProduct defined by aMethod to a

functional (many-one) transformation. The domain forTechniqueincludes that of its
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associatedMethod. Each domain state maps to a specific value that represents an‘av-

erage’ result. The value may be absolute (for example, an ‘expected’ defects injection

density) or relative (for example, whenKiTe is used to compare outcomes against some

benchmark).

Subordinates None.

DependenciesCapabilitySpec(‘hasCapabilities’).

Interface Methodvia ‘mapConstrainedBy’ relationship.

ProcessingExtracts subset ofProduct that matches ‘Precondition’ and outputs the states of

Productto which each maps.

Data An Identifier identifies theTechnique. Transformations are represented as a binary (func-

tional) relation onProduct.

Formal description

Techniqueis a functional mapping between states ofProductalong with a description of the

capabilities required to work with theTechnique. The set of all possibleTechniqueis T .

Functiontcps projects theCapabilitySpecfor aTechnique.

tcps: T 7→ CPS (7.29)

Relationttran projects the functional mapping onProductfor a Technique.

∀t ∈ T ttran(t): (PS 7→ PS) (7.30)

As for Method, the transformationttran defined forTechniquet has a number of possible

domain states and these representt’s precondition. The set of domain states forRealisedProcess

rp is defined by mappingtpre.

∀t ∈ T , ∀rp ∈ RP tpre(t, rp) = D(ttran(t)) ∩ PSrp (7.31)

A Techniquemay be applied to aMethod m if all domain states form are included int′s

domain. This means that every precondition state defined bym is included in the functional

mapping defined byt. The set ofTechniquethat can be applied to aMethod is Tm∈M .

Tm∈(M) = {t | t ∈ T ∧ D(m) ⊆ D(ttran(t)} (7.32)

A Techniquet ∈ Tm∈M may contain domain states not included inm′s domain. For

example,t might include mappings for states with architectural content whereasm might be
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defined for zero architectural content only. The result oft applied tom is thus the transformation

defined byt restricted to them′s domain elements. I denote ‘t applied tom’ as t ◦ m.

∀t ∈ T ∀m ∈ M t ◦ m = ttran(t) ∩ m (7.33)

The relation representing aTechnique’stransformation may apply to manyMethodsand

this means that, in the real world, theTechniquemay be implemented to realise any of these

Methods.

I now check for reflexion, symmetry and transitivity. As forMethod, I allow reflexion

i.e. one of the possible transformations oft ∈ T represents no change inProductstate. The

antisymmetry property holds i.e. forT , aTb andbTa both are included only ifa = b. Technique

is atransitive i.e. as a function, inclusion of all of (x,y),(y,z) and (x,z) is not possible.Technique

is reflexive, antisymmetric and atransitive.

Further consideration of function properties leads to the understanding thatTechniqueis

one-one(domain elements will change in a consistent way) but it is not onto (all codomain

elements i.e. PS are not included in the mapping). This meansthat we may not discuss in-

verse transformations i.e. we can not ‘work backwards’ through a set ofTechniquesapplied in

composition.

7.2.12 ContextModel

Overview

The role ofContextModelis to abstract the effects of the project environment onRealisedPro-

cessoutcomes.ContextModelhas two responsibilities. The first is to represent how well spe-

cific engineers are able to carry out aTechniqueon a givenProduct. ContextModel‘matches’

engineer capabilities with those required for working withthe TechniqueandProduct. This

representation causes the transformation onProductdefined byTechniquealone to be altered

to effect a different transformation. The second responsibility is to effect change toEngineer

andContext as a result of engineer involvement withTechniqueandProduct. For example,

carrying out designs for a computer telephony product may increase engineer knowledge about

computer telephony and some believe that engineers carrying out ‘PairProgramming’ become

more satisfied.

ContextModeluses information about the various capabilities and contexts it requires for

matching and thus has an expectation about the form of these.There is thus close-coupling

betweenContextModeland models forCapabilitySpecandContext i.e. these are all part of a

single ‘human factors’ model. This model represents researchers’ beliefs and provides a way of

making visible assumptions in studies involving models.
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Detailed description

Type Transformation Template.

Purpose Abstract the effects of the project-specific environment ontheRealisedProcess.

Function Matches characteristics of theActivity (i.e. Context, Engineers, ProductandTech-

nique) to provide aProduct transformation adjustment and to transformEngineerand

Context.

Subordinates None.

DependenciesContext(‘usesToCalc’);Engineer.CapabilitySpec(‘usesToCalc’);Product.CapabilitySpec

(‘usesToCalc’);Technique.CapabilitySpec(‘usesToCalc’).

Interface Activity (‘mapConstrainedBy’).

ProcessingNone.

Data Ternary relation onProduct(original transformation and new end states). Binary relation

onEngineer. Binary relation onContext.

Formal description

ContextModelmay be described as a relation between variousRealisedProcesselements. The

relation defines the elements that are inputs toContextModeland those that are outputs. Do-

main elements are(PS × PS), ES, CS andT . Codomain elements arePS , ES andCS.

The set of allContextModelis CM.

CM = (PS × PS × ES × CS × T ) × (PS × ES × CS) (7.34)

Relationcmprod provides a new end state for a transformation onps ∈ PS according to

Context, ProductandTechniquespecifics andEngineercapabilities.

cmprod: (PS × PS) × ES × CS × T 7→ PS (7.35)

Relationcmeng effects a transformation ones ∈ ES according toContext, Productand

Techniquespecifics andEngineercapabilities.

cmeng:PS × ES × CS × T 7→ ES (7.36)

Relationcmcntxt effects a transformation oncs ∈ CS according toContext, Productand

Techniquespecifics andEngineercapabilities.

cmcmcntxt:PS × ES × CS × T 7→ CS (7.37)
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7.2.13 Activity

Overview

Activity effects change to the state of aRealisedProcess. Possible changes include those to

Product, Engineerand Context. For example, anActivity involving engineers coding may

result in change to bothProductandEngineerstates and one involving a discussion between

engineers and customers may result in change to onlyEngineerstates.

Activity effects change by providingContextModelwith the transformations supplied by

MethodandTechniqueand applying the modified transformation delivered byContextModel.

Note that, even when the sameTechniqueis applied by the sameEngineerin the same

Context, the final states forProduct, EngineerandContextmay be different if a differentCon-

textModel is applied.

Detailed description

Type Transformation.

Purpose Effect change to the state of theRealisedProcess.

Function Activity effects a single state change toRealisedProcess. The state change involves

changes to one or more ofProduct, EngineerandContextstates.

Subordinates None.

DependenciesProduct, EngineerandContext(‘transforms’);ContextModel, MethodandTech-

nique(‘mapConstrainedBy’).

Interface Interfaced to byRealisedProcess(‘hasTransformation’).

ProcessingAn Activity transformsProductaccording toMethod, TechniqueandContextModel.

Activity transformsEngineerandContextaccording toContextModel.

Data Binary (functional) relation onRealisedProcessstate representing possible start states

(domain) and end states (range).

Formal description

Activity describes a functional mapping onProduct, Engineerand Context. The set of all

Activity isA.

Transformation toProductresults from adjusting the transformation defined byTechnique

according toContextModel. The resulting transformation is applied to theProductMeasure-

mentsfor ps ∈ PSrp. Transformation toEngineeris according tocmeng.

The relation that describesActivity is
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A : (PS × ES × CS) 7→ (PS × ES × CS) (7.38)

An Activity a is associated with aMethodm, aTechniquet and aContextModelcm. From

Equation 7.33, the transformation effected bym andt is t ◦ m. ForActivity a, I denote this by

at◦m and represent by the relation(ps, ps′′). TheContextModelfor a, denoted byacm, modifies

this to(ps, ps′). The domain foracm is thus restricted toProductstates for whichat◦m is ps′′.

Applying Equations 7.34 and 7.38

a: (ps, es, cs) 7→ (ps′, es′, cs′) |

∃ps′′: at◦m(ps) = ps′′ ∧ acm(ps, ps′′, es, cs, t) = (ps′, es′, cs′) (7.39)

Activity has the properties that at least one ofps, es or cs must change.

∀rp ∈ RP , ∀a ∈ A a(ps, es, cs) = (ps′, es′, cs′) |

(ps, ps′ ∈ PSrp ∧ es, es′ ∈ ESrp ∧ cs, cs′ ∈ CSrp)∧ (ps 6= ps′ ∨ es 6= es′ ∨ cs 6= cs′) (7.40)

7.2.14 RealisedProcess

Overview

A RealisedProcessis described as as a directed graph with nodes representing states of theRe-

alisedProcessand edges representing transitions between these states. Events that cause change

to the state of aRealisedProcessmay be planned by management or unplanned. Examples of

the former are ‘start working on anActivity ’ and ‘currentActivity has been completed’. Exam-

ples of the latter represent either a change to projectContext, for example, ‘replace engineers

at short notice’, or the need to ‘change the plan’ by interrupting anActivity that is partially

complete. Because of the unplanned events, aRealisedProcessmust be able to react to the envi-

ronment and an element of ‘event-response’ is introduced i.e. we do not have a simple dataflow

situation.

A RealisedProcessis made up ofProduct, Engineer, Context, someActivities and aGoals-

Benchmark. Productrepresents what is delivered from theRealisedProcessandGoalsBench-

mark provides a means of checking ‘readiness to deliver’.Engineerrepresents people who

changeProductand they do so by involvement inActivities. Contextprovides information that

affects how well people work when involved in theActivities.
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Detailed description

Type Aggregation.

Purpose Abstract thesoftware processas it is realised i.e. descriptive.

Function Transforms the state of the software process from the state at project start to a new

state at project end.

Subordinates Activity (‘hasTransformation’);Product, GoalsBenchmark, EngineerandCon-

text (‘hasStates’).

DependenciesNone.

Interface None.

ProcessingA RealisedProcessappliesActivities to transformRealisedProcessstates. State

transformation also occurs as a result of external perturbations, for example, when engi-

neers are replaced orActivities interrupted in an unplanned way.

Data A directed graph that captures changes in the state ofProduct, Engineer, ContextandAc-

tivity . Nodes represent states of theRealisedProcessand arcs represent state transitions.

There is a single ‘start’ node, corresponding to the state oftheRealisedProcessat project

start and a single ‘end’ node, corresponding to its state at project end. AGoalsBench-

mark captues states that are desirable as end states. The states for aRealisedProcessare

constrained by the product, engineers and context involvedin the process. For exam-

ple, if theRealisedProcessacts on product ‘MyWebApp version 2.1’ and has engineers

‘Joe’, ‘Mike’ and ‘Barbara’, the state space is constrainedto include possible states of

this product and set of engineers.

Formal description

The set of allRealisedProcessis RP. TheRealisedProcessfor theProjectpr is rp.

I consider a state machine representation to modelrp. The state space for our state machine

for rp is PS ∗ES ∗CS ∗A. In order to ‘mirror’ the real-world as closely as possible,I capture

points of visibility into theRealisedProcessas input stimuli, and select the following events:

startActivity(a) Start work onActivity a. Product is in a known state, engineers have been

selected and context is known (i.e.PS, ES, CS anda ∈ A are defined).

changeContext Some state change toEngineeror Contextis to be applied.

endActivity Stop work on the currentActivity .

A state machine representation forRealisedProcessis presented in Figure 7.5.
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A0

ps, es, cs, null

A1

ps, es, cs, a

startActivity a
(null->a)

B0

ps’, es’, cs’, null

endActivity a
(apply a (ps,es,cs),

(a->null))

changeContext
(apply new Context)

B1

ps, es’, cs’, null

Figure 7.5: State machine for KiTe

Initial stateA0 hasProduct, EngineerandContext in statesps, es andcs, respectively. No

Activity is active and so we haveActivity ‘null’. On stimulus ‘start work onActivity a’, the

‘null’ Activity state becomes ‘a’ i.e. stateA1. This state is applicable throughout application

of Activity a. As we have no visibility into the process during this time,Product, Engineerand

Contextremain in statesps, es andcs. WhenActivity a completes, either because of planned

completion or unplanned interruption, statesPS, ES andCS transition tops′, es′ andcs′ as

a result of full or partial application ofActivity a, anda returns to the ‘null’ state. Note that

application of aKiTe Activity may result in change to one or more ofProduct, Engineeror

Context. On stimulus ‘changeContext’, theRealisedProcessmoves to stateB1. In this statees

or cs (or both) have changed, for example, engineers have been replaced.

In a real-life project, a ‘changeContext’ stimulus might occur when aActivity is active, for

example, if an engineer is unexpectedly sick and must be replaced. This situation may in fact

be represented by the input events already discussed. In Figure 7.6, I illustrate this situation.

For a change inContext when aActivity is active, we must first stop work onActivity and

transition to the new state according to completion status (i.e. ‘endActivity’), then apply a

‘changeContext’ transition, and finally a ‘startActivity’where theActivity may be a modified

version of the original.
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state
A3

ps’, es’’, cs’’, null

A4

ps’, es’’, cs’’, a’’

startActivity a’’
(null->a’’)

A1

ps, es, cs, a
changeContext

endActivity a’’
(apply a’’ (ps’, es’’, cs’’),

a’’ -> null)

B2

ps’’, es’’’, cs’’’, null

A2

ps’, es’, cs’, null

changeContext
(apply new Context)

endActivity a’
(apply a’ (ps, es, cs))

Figure 7.6: Disturbing a Method

The formal representation for afinite automatonis [62]

(Q, Σ, δ, q0, F ) where

Q is a finite set of states,

Σ is a finiteinput alphabet,

δ is the transition function mappingQ × Σ to Q,

q0 is the initial state,

F ⊆ Q is the set of final or accepting states.

The representation forRealisedProcessis:

rp = (Q, Σ, δ, q0, F ) where

Q = {PSrp × ESrp × CSrp × A},

Σ ≡ {‘StartActivity(a)′, ‘ChangeContext′, ‘EndActivity′} | a ∈ A,

δ : Q × Σ 7→ Q is shown in Table 7.1,

q0 = initial state for rp,

F ⊆ Q = GB.

Note thatGoalsBenchmarkrepresents a specific set of product states i.e. the ‘desired’ end

states. These may be considered to be the ‘accepting states’for the RealisedProcess. A Re-

alisedProcessactual end state may or may not be one of the ‘accepting’ states, for example, if
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Table 7.1: State transition diagram for RealisedProcess

StartActivity(a) ChangeContext EndActivity
ps, es, cs, null ps, es, cs, a ps’, es’, cs’, null -
ps, es, cs, a - - ps’, es’, cs’, null

product-related objectives are not met.
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8
Evidence

In Section 5.3.1, I proposed some objectives forKiTe. These were:

• Capture any software process or process model.

• Compare processes and process models.

• Create a new process by combining elements from different processes.

The conventional scientific approach towards evidence accumulation is to spawn hypotheses

based on the theory or model of interest and carry out formal experiments that aim to disprove

the theory. The idea of a ‘null hypothesis’ is central to thisexperimental paradigm. According

to Dawson et. al., this represents apositivistapproach i.e. where the researcher “looks for ir-

refutable facts and fundamental laws that can be shown to be true regardless of the researcher

and the occasion” [38]. He reminds us that software engineering is “not a pure science” and it

is “arguable whether a positivist approach can ever be appropriate for a discipline so dependent

upon people and the environment”. For this reason, many researchers favour aninterpretivist

approach i.e. where researchers interpret results within the context in which the research takes

place. Such an approach can lead to “new, empirically grounded theories”, but not directly to

the discovery of cause-and-effect relationships. Dawson et. al. cite the example of impres-

sive results when a new methodology is applied being accreditied to the methodology, when

results could have been “due to something as simple as the higher motivation achieved by a pay

105
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rise” [38]. The authors make a case for accumulating many little evidences of different kinds

and reference the fields of medicine, law, industrial engineering and knowledge management to

support their case. This approach compares with that of other researchers who draw from the

fields of psychology and sociology to suggest the accumulation of an ‘evidence portfolio’ com-

prising case studies, anecdotes, surveys, expert opinion and controlled experiments [87, 160].

As a means of capturingKiTe’s ability to meet its objectives, I have chosen an approach

calledargumentationalong with an established notation,Goal Structure Notation (GSN), for

structuring and capturing arguments. This approach has been used for many years in the safety

critical domain and has recently been applied in the software domain [160].

Argumentationis “an approach which can be used for describing how evidencesatisfies re-

quirements and objectives” [160]. The use of a suitable notation such asGSNhelps researchers

to easily identify what evidence is required and helps stakeholders see at a glance what is the

‘evidence coverage’. I have chosen this strategy for two reasons. The first relates to the fact that

the breadth of evidence required is large, and this approachhelps organise and display evidence

such that both evidence and lack of evidence are relatively easy to see. The second reason re-

lates to the idea presented above that, for people-intensive systems, accumulating a portfolio of

different kinds of evidence is appropriate. The argumentation approach provides for individual

items of evidence and so is suitable for the portfolio idea.

My selection of studies to provide evidence has depended upon a mix of strategy and prag-

matism. The strategy has been to aim to provide a breadth of evidence in the first instance,

and so an attempt has been made to choose studies that maximise the number of evidence goals

met in the time available. Pragmatism has focussed the choice of study to those with least time

overhead i.e. studies recreate processes and models described in the literature. The use of an

evidence map enables the reader to easily see what is the ‘evidence cover’ and gain some idea

of the strength of the evidence at a glance. In the next Section, I introduce theevidence map

and explain how it is used to show what evidence is available to support theKiTeobjectives. In

Sections 8.2 and 8.3, I present my evidence. Finally, I discuss some interesting points brought

to light as a result of the evidence-gathering exercise.

8.1 Evidence map

According to Weaver et. al., there is a trend in modern safetycritical standards away from

prescriptive, process-based standards towards the use of a‘safety case’ with supporting evi-

dence [160]. Each safety case comprises three principal elements —Goal, ArgumentandEvi-

dence. A high level goal may be presented as agoal hierarchywith supporting arguments and

evidence attached to each sub-goal [47]. Weaver et. al. suggest that “Argument without sup-
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porting evidence is unfounded, and therefore unconvincing” and “Evidence without argument is

unexplained — it can be unclear that . . . objectives have beensatisfied”. This approach is called

argumentationand its purpose is to communicate clearly, comprehensivelyand defensibly that

a system meets its safety goals [160].

Goal Structure Notation (GSN), is a graphical argumentation notation where goals are pre-

sented as rectangles, arguments as parallelograms and evidence as circles. The goal hierarchy

is thus a structure showing how goals are addressed by arguments and how arguments are sup-

ported by evidence. Arguments for which no evidence exists,i.e. undeveloped goals, have an

attached diamond.

I apply this approach toKiTe by stating the objectives defined in Section 5.3.1 as a goal hi-

erarchy and providing arguments and evidence for each goal in the hierarchy. For example, the

main objective forKiTe is “Provide evidence forKiTe” and, in Figure 5.1, I show the top level

objectives as ‘Capture’, ‘Compare’ and ‘Combine’. In Figure 8.1, I place the main objective

as the root in the goal hierarchy and provide three arguments, each with evidence realised as a

sub-goal. For example, the first argument is “Argument by showing any software process can

be captured in KiTe” and the ‘evidence’ sub-goal is “Captureany software process or process

model”. Sub-goals 2 and 3 correspond to the remainingKiTe objectives. The remaining struc-

ture is built according to the objectives defined in Figures 5.1. ‘Leaf’ goals either have some

available evidence (shown as attached circles containing the number of a case study) or no avail-

able evidence (shown as an attached diamond). Each ‘evidence circle’ references a study that

contains information about how the goal has been met and these are summarised in the legend

and presented in detail in the following Sections.

In Figure 8.1, I have not provided arguments and evidence forthe sub-goals 1.2 (“Cap-

ture software development processes and process models”) and 1.4 (“Capture miscellaneous

processes”). These sub-goals are realised in Figures 8.2 and 8.3.

Note that this ‘evidence map’ captures breadth of evidence rather than depth i.e. the strength

of individual pieces of evidence must be obtained from studying the actual evidence. The

strength of the map is rather to provide a quick idea of what evidence exists and easy access to

that evidence [160].

8.2 Capture all Processes and Process Models

In this Section, I present the studies that comprise evidence to support the objective of ‘Capture

any software process or process model’ (Goal 1). For each study, I describe my reasons for

selecting the particular study in terms of which goals are satisfied by the study.

As I represent various processes and models inKiTe, I notice that, in all cases, the attempt
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results in exposure of ambiguities or unstated assumptions. There could be many reasons why

these ambiguities and assumptions are present, such as space constraints resulting in authors

having to leave out some details. However, this does not detract from the fact that the attempt to

represent a study in a framework such asKiTe provides an excellent means of exposing lack of

clarity. This is an important side-effect of the use of a model such asKiTe. When ambiguities

and assumptions are brought to light, I continue as if the study had been more fully documented

by making a choice and ‘fixing’ the uncertain aspects. I believe the value of the evidence is not

affected by this, as in most cases it is clear that the actual choice made is not important when

considering the ability ofKiTe to represent. Specific examples of process variations are also

included as evidence studies (see Sections 8.2.2 and 8.2.10) and this provides some confidence

that alternative descriptions may be easily represented.

In order to capture a process or process model inKiTe, it is necessary to:

1. Capture the attributes of interest forProduct in a model ofProduct Perspectives. This

may includeContent, Quality andCost Perspectivesand any otherPerspectivesrelevant

to the modelling exercise.

2. Define theMethods to be performed by stating the precondition for each and how it

transformsProduct. Specify theTechniqueto be implemented.

3. DefineEngineerby capturing capabilities in anEngineer CapabilitySpeci.e. defineES.
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4. DefineContextfactors that might affect how well theMethodsare carried out i.e. define

CS.

5. DefineContextModeli.e. the mechanism for transformingProduct, EngineerandCon-

text. This involves defining the capabilities required for working with Techniqueand

Producti.e. Technique CapabilitySpecandProduct CapabilitySpecalong with the rules

for transformingPS, ES andCS.

6. Define the ‘acceptance criteria’ for the project i.e. the product-related objectives. These

are attributes ofProductthat have agreed values at the end of the project, for example,

‘90 percent of the requirements implemented and fewer than 20 defects’ or ‘development

cost less than twenty thousand dollars’. InKiTe, this is ourGoalsBenchmark, GS.

In this Section, I follow the above steps. Note that, for those studies in which I capture a

‘general’ process, for example, “capture a waterfall process”, the attributes applied forProduct,

EngineerandContextare selected to best represent the process as reported in theliterature. I

then discuss this in the light of theKiTe framework. For example, for waterfall-based stud-

ies, the tendency is to report product-related attributes only, for example size, defect and cost,

whereas, in an XP study, reporting tends to include engineer-related attributes. For such studies,

I also choose attribute values that are representative onlyi.e. as the study is not based on an

actual experiment, I choose values that seem to capture the ‘flavour’ of the process as reported

in the literature. For the reasons discussed earlier, the issue of measurement scales is out of

scope for this thesis and I manipulate values in an informal way and without discussing such

issues.

8.2.1 Study 1: Waterfall process

For my first study, I select a simple, well-known process model that is implemented in many

projects — the Waterfall. This is a traditional process (Goal 1.2.1.1.) and I represent at a small

level of granularity (Goal 1.2.3.2.).

Because this study aims to represent a ‘typical’ waterfall process, I choose attributes for

Productthat are representative of those found in the literature, and comment that, in order to

represent with different attributes, I need simply change the model forProductto include the

required attributes. For the same reason, I work with specific attribute values. For example, the

model forProducthas an attribute ‘number of requirements’ and for my illustration I choose

‘30’ as a value.

For a ‘pure’ waterfall process, i.e. one that adheres to a manufacturing process, each stage is

carried out only once. The analogy with manufacturing breaks down at this point as the software

equivalent to ‘thowing away defective items’ is generally to fix some of the defects prior to
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delivery and some iteration to earlier stages is thus inherent in the model. In a more realistic

process, iteration may occur in a number of different ways. For this study, I will illustrate both

the simple model and a model with a single iteration, and discuss other possibilities. I also

assume all waterfallMethodscomplete. The ability to represent situations where aMethod is

disturbed for some reason is illustrated in Section 8.2.11.

KiTe representation

The first task is to define an appropriateProductmodel. Models described in the literature

generally contain some measure of product size, for example, ‘lines of code’, ‘number of re-

quirements’ or ‘function points’, some metric involving defect numbers and some measure of

cost, for example, ‘person weeks’ or ‘duration’. In a waterfall process, generally allPartitions

are affected. For this illustration I will apply theProductmodel in Table 8.1.

Table 8.1: Waterfall Product Model

Perspective Partition Attribute Meaning
Content Definition # Requirements # requirements captured

Architecture # Requirements # requirements architected
Design # Requirements # requirements designed
Source # Requirements # requirements implemented
Integration # Requirements # requirements integrated
Packaged # Requirements # requirements packaged

Quality Definition RemainingDefects # remaining defects in requirements
KnownDefects # known defects in requirements

Architecture RemainingDefects # remaining defects in architectures
KnownDefects # known defects in architectures

Design RemainingDefects # remaining defects in designs
KnownDefects # known defects in designs

Source RemainingDefects # remaining defects in source
KnownDefects # known defects in source

Integration RemainingDefects # remaining defects in integrated source
KnownDefects # known defects in integrated source

Packaged RemainingDefects # remaining defects in packaged source
KnownDefects # known defects in packaged source

Cost Definition DurationWeeks Duration in weeks for requirements
Architecture DurationWeeks Duration in weeks for architectures
Design DurationWeeks Duration in weeks for designs
Source DurationWeeks Duration in weeks for source
Integration DurationWeeks Duration in weeks for integration
Packaged DurationWeeks Duration in weeks for packaging
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I next identify theMethodsthat are applied to transform theProduct. A waterfall model

generally is described as a number of stages, with each stageresulting in the production of dif-

ferent kinds of product document (see Section 2.2). For example, a ‘design’ stage results in the

production of design documents. I select aMethod for each stage, and applyMethods‘Cap-

tureRequirements’, ‘Analyse’, ‘Design’, ‘Code’, ‘Integrate’ and ‘Test’. ‘CaptureRequirements’

results in change to theDefinition Partitionfor all Perspectives. ‘Analyse’, ‘Design’ and ‘Code’

affect theArchitecture, DesignandSource Partitionsrespectively. ‘Integrate’ causes change to

both IntegrationandPackaged Partitionsand ‘Test’ results in change to allPartitions, because

some defects are brought to light and are now known and perhaps some of these defects are

resolved in the relevantPartitions. I note that my choice ofMethodgranularity may help us to

understand some aspects of the waterfall process, but may not help with other aspects. However,

the choice is suitable as a first step and sufficiently simple to aid illustration.

The next task is to identify models forEngineerandContextalong with theContextModel

that defines the effects of the human-related factors on the process. Because the waterfall

paradigm is a manufacturing one and waterfall projects are traditionally lengthy, human fac-

tors are generally not captured i.e. the waterfall mindset is that the effects of such factors are

negligable or ‘average out’ over the duration of a project. However, the degree of tool sup-

port for the variousMethodsandTechniquesis generally believed to be of relevance and so

I include aContextattribute ‘ToolSupport’ applied to eachPartition. An illustrativeContext

model is shown in Table 8.2.ContextModeluses values for ‘ToolSupport’ to calculate engi-

neer effectiveness when working withTechniques. ContextModelhas no effect onEngineeror

Context.

Table 8.2: Waterfall Context Model

Partition Attribute Meaning
Definition ToolSupport level of tool support for requirements gathering
Architecture ToolSupport level of tool support for architecture
Design ToolSupport level of tool support for design
Source ToolSupport level of tool support for coding
Integration ToolSupport level of tool support for integration
Packaged ToolSupport level of tool support for packaging

In Figure 8.4, I illustrate aRealisedProcessbased on a single-pass waterfall model. The

Methods identified above form the basis ofActivities ‘Requirements’, ‘Analysis’, ‘Design’,

‘Coding’, ‘Integration’ and ‘Testing’. I illustrate the effects of theRealisedProcesson Prod-

uct only, as the selectedContextModelimplies no change toEngineeror Context. At process

start, no work has been carried out onProductand the value for all attributes is ‘0’. After the
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‘Requirements’Activity , 30 requirements have been defined, 5 requirements defects have been

injected and 8 weeks have elapsed. After the ‘Analyse’Activity , all defined requirements have

been architected and an additional 7 defects have been injected into theArchitecturedocumen-

tation. The ‘Design’Activity causes injection of 16 design defects and ‘Coding’ results in 44

additional defects in theSource, making a total of 72 defects. The ‘Integration’Activity carries

the 30 requirements and all defects through intoIntegrationandPackagedartifacts and no new

defects are injected. After the ‘Testing’Activity , 50 of the 72 defects have become visible, 4

sourced in theDefinitions, 5 in theArchitectures, 12 in theDesignsand 29 in theSources.
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Start 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Requirements 30 5 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Analysis 30 5 0 9 30 12 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Design 30 5 0 9 30 12 0 21 30 28 0 10 0 0 0 0 0 0 0 0 0 0 0 0

Coding 30 5 0 9 30 12 0 21 30 28 0 11 30 72 0 10 0 0 0 0 0 0 0 0

Integration 30 5 0 9 30 12 0 21 30 28 0 11 30 72 0 12 30 72 0 1 30 72 0 1

Testing 30 5 4 9 30 12 9 21 30 28 21 11 30 72 50 12 30 72 50 1 30 72 50 5

Figure 8.4: Simple waterfall

As noted above, in practice at least one iteration occurs. I illustrate in Figure 8.5 a simple

case in which a single iteration is applied to correct defects. As there are requirements defects,

the iteration starts from the beginning and anActivity for resolving defects is carried out for

eachPartition, in turn. The identified defects are corrected at each stage,while durations for

eachPartition increase.

If I now assume that the expectation is that “for delivery, itis expected that at least 29 of

the requirements are implemented and the number of defects is less than 30”, I see that the

illustratedRealisedProcesshas achieved its goals.

Recall that, inKiTe, aRealisedProcessrp is represented as (see Section 7.2)

rp = (Q, Σ, δ, q0, F ) where

Q = {PS × ES × CS × A},

Σ = {‘StartActivity(a)′, ‘ChangeContext′, ‘EndActivity′} | a ∈ A,

δ : Q × Σ 7→ Q is shown in Table 7.1,
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Start 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Requirements 30 5 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Analysis 30 5 0 9 30 12 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Design 30 5 0 9 30 12 0 21 30 28 0 10 0 0 0 0 0 0 0 0 0 0 0 0

Coding 30 5 0 9 30 12 0 21 30 28 0 11 30 72 0 10 0 0 0 0 0 0 0 0

Integration 30 5 0 9 30 12 0 21 30 28 0 11 30 72 0 12 30 72 0 1 30 72 0 1

Testing 30 5 4 9 30 12 9 21 30 28 21 11 30 72 50 12 30 72 50 1 30 72 50 5

RequirementsResolve 30 1 0 11 30 12 9 21 30 28 21 11 30 72 50 12 30 72 50 1 30 72 50 5

AnalysisResolve 30 1 0 11 30 3 0 23 30 28 21 11 30 72 50 12 30 72 50 1 30 72 50 5

DesignResolve 30 1 0 11 30 3 0 23 30 7 0 13 30 72 50 12 30 72 50 1 30 72 50 5

CodingResolve 30 1 0 11 30 3 0 23 30 7 0 13 30 22 0 14 30 72 50 1 30 72 50 5

Integration 30 1 0 11 30 3 0 23 30 7 0 13 30 22 0 14 30 22 0 2 30 22 0 6

Testing 30 1 0 11 30 3 0 23 30 7 0 13 30 22 2 14 30 22 2 2 30 22 2 8

Figure 8.5: Waterfall with defect resolution

q0 = initial state for rp,

F ⊂ Q = GB.

For the waterfall examples illustrated above,ES andCS contain a single state i.e. any

change toEngineeror Context is not captured.GB is the set of ‘accepting’ states i.e. all

product states in which the value of the ‘Content: Packaged:# Requirements’ attribute is 29

or greater and the value of the ‘Quality: Packaged: RemainingDefects’ attribute is smaller than

30. Productis defined by Table 8.1 andContextby Table 8.2.

Each row in Figure 8.5 represents the state ofProducton completion of anActivity . PS is

the conjunction of this set of states andGB. q0 is the set of values in the first row of the figure,

i.e. the row labelled ‘Start’. Note that, in an enhancement or maintenance project, values in the

‘Start’ row would be other than 0, i.e. there would be someProduct Content.

TheActivities shown in Figure 8.5 are associated with the set ofMethods

M = {‘CaptureRequirements′, ‘Analyse′, ‘Design′, ‘Code′, ‘Integrate′, ‘Test′,

‘ResolveRequirementDefects′, , ‘ResolveArchitectureDefects′, ‘ResolveDesignDefects′,

‘ResolveCodeDefects′}.

In the example, the ‘acceptance criteria’ are met i.e. theRealisedProcessreaches an ‘ac-

cepting state’.
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Discussion

Several points for discussion emerge from the above study. The first involves the granularity

of the Methodsselected. I chose a singleMethod for each phase, for example, ‘Analyse’.

However, as each waterfall phase involves testing of the produced artifacts, I could have chosen

to replace the singleMethod with both an ‘Analyse’ and ‘Review’Method. In this case, I

would have had a deeper insight into the existence of ‘KnownDefects”, as these would have

become apparent as a result of ‘Review’ and the information could have been used to initiate

an ‘Analyse’ iteration to correct defects and prevent theirpropagation to designs. I chose the

more simple process because I wanted to avoid decisions about iteration that would confuse the

illustration.

The second point follows from the first and relates to the consideration of what exactly

is meant by ‘waterfall’ model. At each phase, a number of defects are injected. Reviews

expose some of these defects, along with thePartitions in which they are sourced. If some

discovered defects are sourced in an ‘earlier’Partition, for example, defects found in designs

but sourced in requirements, some decision has to be made about whether or not to iterate back

to requirements immediately. There are possibly many such decision situations in a waterfall

process. At one end of the range of possibilities is an iteration back to the earliest source

for defects at each stage. At the other end is an iteration strategy that involves waiting until

test before iterating. The situation is made more complex bythe possibilities for test options

at each stage. The possibilities range from no reviews (so there are no ‘KnownDefects’ and

defects are propagated), to reviews with partial ‘local’ iteration i.e some defects are fixed and

a decision must be made as to whether remaining ‘KnownDefects’ are propagated, to reviews

with immediate and complete iteration (all ‘KnownDefects’resolved).

The point to be made is that the label ‘waterfall’ is given to many different possible pro-

cesses. As long as the actual policies are not visible, we have a situation fraught with ambiguity.

Indeed, it is possible that the huge variation in outcomes reported for waterfall processes is, at

least in part, due to the lack of definition of what is actuallybeing done. The attempt to identify

what are theKiTe Methodsfor a waterfall process bring to light these kinds of ambiguities,

as it becomes clear that the specifics forMethod are often unknown or unreported. I further

illustrate this common lack of clarity in the next study.

In addition to the ambiguities uncovered above, I notice that EngineerandContextare mod-

elled as unchanging during a waterfall process. This represents a source of assumptions. For

example, in this model, if an engineer becomes sick and is replaced, the replacement engineer

is indistinguishable from the original one. In terms of the model, the ‘ChangeContext’ input

now has no effect on theRealisedProcessstate i.e. represents a move to the same state. In

terms of the real world, changes that may affect process outcomes are not modelled and it is
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thus assumed that they do not affect process outcomes.

A final observation on the above study is that, if any of the details presented had been

different, a differentRealisedProcesswould have been represented. For example, if the first

Activity ‘Requirements’ had resulted in a ‘Remaining Defects’ valueof 7, rather than 5, we

have a differentActivity , even if the implementedMethodandTechniqueare the same in both

cases. The reason is that some contextual factor has changed, for example, developers are less

experienced, and so theRealisedProcesshas changed also.

8.2.2 Study 2: Coding variations

This study also represents a waterfall model, but the purpose this time is to show how inKiTe I

can represent some of the many possible variations that giverise to ambiguities when a waterfall

is discussed. The study relates to a traditional (Goal 1.2.1.1.), small-grained (Goal 1.2.3.3.)

process that captures variations to a base process (Goal 1.2.4.) and that compares process

variations (Goal 2.2).

In this study, I consider the apparently straightforward problem of defining theMethod ‘cre-

ate code’. This description is commonly used to mean a numberof things. For example, perhaps

detailed designs are available from which to base code or perhaps the designs are incomplete

and ‘experts’ are available to aid understanding and clarify uncertainties. Perhaps it is expected

that a specific technique will be carried out, for example, pair programming.

Each of the above has different preconditions onProductand changesProductin different

ways. InKiTe, they describe differentMethods. I give an example of how some of the variations

might be captured inKiTe.

KiTe representation

I first define a model forProduct. I will work with a Content Perspectivewith attribute ‘number

of requirements’ in eachPartition and aQuality Perspectivewith ‘number of remaining de-

fects’, as this model is sufficient to show capture and uncover issues. Rather than implementing

a table to show the results ofActivities onProduct, as in the previous study, I present results as

diagrams, as one of the aims of this study is to bring to light differences in meaning between

processes commonly given the same name. As discussed in Section 8.2, I use attribute values

in a ‘casual’ but illustrative manner.

For a traditional waterfall process, before coding takes placeProductmight look like the first

graph in Figure 8.6. The x-axis presents theKiTe Partitionsand the y-axis in an integer scale

to represent ‘number of requirements’ and ‘number of defects’. Each graph contains two sets

of columns — the left-hand (blue) column depicts ‘number of requirements’ for eachPartition

and the right-hand (green) column ‘number of remaining defects’. Definitions, Architectures
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andDesignshave a number of requirements implemented and each has some defects. There is

no Contentyet for Source, IntegrationandPackaged. I note that fullDesigns are in place and

so coding may commence. The second graph in Figure 8.6 shows the state ofProductafter the

coding task has completed. Now I haveSourcefor all requirements and a number ofSource

defects.Definitions, ArchitecturesandDesignsare unchanged.
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Figure 8.6: Coding in a waterfall process

I now want to capture what is arguably a more realistic version of events by considering

the case where coding commences before designs are complete. The ‘before’ situation inKiTe

is given by the first graph in Figure 8.7, where there are incompleteArchitectureandDesign

Content. The ‘after’ graph again showsSource Contentand no change toArchitectureor

Design. Because the precondition onProductis different in each of the two examples in Figures

8.6 and 8.7, in aKiTe model these are differentMethods. A possible third scenario is one in

which the ‘coding’ task expands to a ‘code and fix designs’ task. In this case, bothDesignand

Source Contentwill change, and possibly also defect levels (Figure 8.8). Yet anotherMethod

is described.
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Figure 8.7: Coding before designs completed

For ‘coding’ in an XP-type process, I might have the graphs shown in Figure 8.9.Content

is ‘number of user stories’ and in this example the ‘before’ graph shows that some user stories

have been fully implemented (Source, IntegrationandPackagedall haveContent) and a small

number of new stories are ready for implementation. The coding process used includes building
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Figure 8.8: Coding and fixing designs

and packaging the product as is seen by the increasedSource, IntegrationandPackaged Con-

tent, and then throwing away the implemented stories, as can be seen by the reducedDefinition

Contentafter coding. (I am aware that the stories would possibly be retained until after another

process step involving customer acceptance, but I have taken some licence to aid description).
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Figure 8.9: Coding in an XP process

For the examples illustrated above, our main focus is in theKiTe Method. Method is defined

by its Productpreconditions and effects onProduct. The four examples above differ in either

precondition or effect and thus represent differentMethods.

Discussion

For simplicity, I did not show in the examples two other aspects of KiTe, those relating to

ContextandEngineer. In KiTe, the size of change in the ‘after’ pictures would depend upon

the various process contexts applicable at the time of ‘coding’ and theContextModelused for

their capture. For example defect injection might be smaller if engineers were highly skilled

and motivated or if some good tools were in place. Participation in a process changes engineers

in KiTe and so missing from the diagrams is a model depictingEngineerattributes that change

between ‘before’ and ‘after’ states.

This study illustrates the importance of being very specificwhen describing what is being

done. Again, the attempt to capture ‘coding’ as aKiTe Method uncovers ambiguities that
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effectively render comparison and prediction impossible.

8.2.3 Study 3: XP process

In the previous two Sections, I represented processes basedon a traditional waterfall model. As

much of the discussion in the literature concerns attempts to understand what are the differences

between traditional and agile models, I now illustrate how apopular agile process,XP (eXtreme

Programming)is represented inKiTe [85].

As for study 8.2.1, I aim to represent a ‘typical’ process andso choose attributes and values

that are representative of those found in the literature. I use reported XP ‘evidence’ as a basis

for decisions without questioning the soundness of this evidence. I also deal with attributes and

measures as frequently found in the literature and do not attempt to justify the use of either.

Although careful capture of attribute meaning is critical for empirical experimentation [89], the

state-of-the-art remains immature in this area and consideration of associated issues is outside

the scope of this study. For the same reasons, and for ease of illustration, I apply a ten-point

scale as measures for those attributes that are based on a subjective evaluation. Also for ease of

illustration, and because developers work interchangeably in an XP project, I treat all engineers

as having identicalCapabilitySpecs, and show only a single representativeCapabilitySpec. For

this study, I applyProductandEngineertransformations whose size is subjective. This means

that the results ofTechniquesmodified byContextModelare based on a subjective representa-

tion of the literature. Again, the reasons are that the industry does not yet have ‘ideal’ models

or sound experimental evidence, and the aim is, in any case, to illustrate concepts.

This study concerns an agile, small-grained process (Goals1.2.1.2. and 1.2.3.3.).

KiTe representation

In order to capture an XP process [15] inKiTe, I examine each XP Practice and infer from it:

• Which characteristics ofProduct are changed by the Practice. These are included in

appropriateProduct Perspectives.

• Which characteristics ofEngineerare affected by the Practice. These becomeEngineer

attributes.

• Which characteristics ofContext are affected by the Practice. These becomeContext

attributes.

• How does the Practice relate toProduct transformation? Does it describe aMethod, a

Techniqueor a constraint on the overall process?

In this way, I build up theKiTe models that are appropriate for XP.
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Table 8.3 illustrates the result of identifyingActivities, Methodsand Techniques. I use

names for these that help illustrate the issues when capturing a process inKiTe, and so some

names are rather long, but hopefully helpful. Tables 8.4 and8.5 summarise the requiredProd-

uct, EngineerandContext attributes. Selected attributes are inferred from claims in the XP

literature, and aim to address perceived benefits. For example, for Product, I include ‘infras-

tructure’ because one of the mandates of XP is to create only what is required for current Stories

with no additional structure to support future requirements. I also include ‘complexity’ because

many believe that a lack of up-front design often results in overly complex code and because

one of the XP Practices, ‘Refactoring’, is concerned with reducing code complexity. I use both

terms without defining their meaning, in keeping with the useof the terms in the XP literature.

For Engineer, I includeEngineer‘satisfaction’ and ‘confidence’ because it is claimed that par-

ticipation in an XP project enhances these. I include an informal statement only of the meaning

of each attribute.

Table 8.3: XP Activities

Activity Method Techniques
Planning PlanningGame SmallReleases, Metaphor
PairProgramming DesignCodeAndUnitTest PairProgramming, Sim-

pleDesign, Metaphor, Refac-
toring, CollectiveOwnership,
CodingStandards, OnSite-
Customer, TestDrivenDesign

Integration BuildAndUnitTestAndFixProblems DeveloperBuilds, Immedi-
ateProblemFix, Integrate-
ToPackaged

CustomerTest FunctionalTesting

I now walk through a single cycle of an XP process inKiTe to illustrate how the various

Practices affectKiTe models. I assume that a cycle has already been completed, andthat en-

gineers have reasonable technical skills and are sufficiently familiar with the subject area to

start out with high confidence. Their knowledge of the product is small. Variations on this are

presented in Section 8.2.10.

The situation at the start of the study is informally depicted in the first row of Figure 8.10.

A cycle has already been completed, and we have three Storiesdefined (Content Definition

‘Stories’) and two of these implemented (Content Source/Implementation/Packaged‘Stories’).

Developers are reasonably skilled (Engineers‘TechnicalSkills’ 5) and comfortable with the sub-

ject area (Engineers‘SubjectAreaKnowledge’ 5), but are unfamiliar with the product (Engineers

‘ProductKnowledge’ 1). As a result of this unfamiliarity, after the first cycle some additional
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Table 8.4: XP Product Model

Perspective Partition Attribute Meaning
Content Definition Stories # Stories captured

Source Stories # Stories implemented
Infrastructure Code infrastructure (1-10)
UnitTests # Stories with unit tests

Integration Stories # Stories integrated
Infrastructure Integrated code infrastructure (1-10)
UnitTests # Stories with integrated unit tests

Packaged Stories # Stories delivered
Infrastructure Delivered code infrastructure (1-10).
UserTests # Stories with functional tests

Quality Definition RemainingDefects # remaining defects in captured Stories
KnownDefects # known defects in captured Stories.

Source RemainingDefects # remaining defects in implemented Stories
KnownDefects # known defects in implemented Stories
Complexity Code complexity (1-10)

Integration RemainingDefects # remaining defects in integrated Stories
KnownDefects # known defects in integrated Stories
Complexity Code complexity (1-10) in integrated code

Packaged RemainingDefects # remaining defects in delivered Stories
KnownDefects # known defects in delivered Stories
Complexity Code complexity in delivered code (1-10)

Cost Definition PersonHours Total person hours for dev group only

code infrastructure has been implemented (Content Source/Implementation/Packaged‘Infras-

tructure’ 3) and the code exhibits some complexity (Quality Source/Implementation/Packaged

‘Complexity’ 3). Customer testing has found some implementation defects (Quality Source/Im-

plementation/Packaged‘KnownDefects’ 2) and also uncovered some changes requiredto Sto-

ries (Quality Definition ‘KnownDefects’ 2).

In the Planning GamePractice, customers and developers discuss product scope and de-

cide release content and priorities for the next release. Release content is generally captured,

although informally, on paper or whiteboard, as ‘Stories’ and so, from aKiTe perspective,

this Practice defines aKiTe Method. ThePlanningGameMethod precondition is ‘empty’ i.e.

nothing need be assumed aboutProductprior to Method application. During application of

this Method, some new ‘Stories’ are agreed and the required changes discovered during cus-

tomer test are also implemented as ‘Stories’. I model as a ‘Planning’ Activity with Method

‘PlanningGame’.KiTe models after application of the ‘Planning’Activity are presented in the
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Table 8.5: XP Engineer and Context Models

Attribute Meaning
Satisfaction Developer satisfaction with their work (1-10).
Confidence Developer confidence in their work (1-10).
SubjectAreaKnowledge Developer knowledge about subject area (1-10).
ProductKnowledge Developer knowledge about product (1-10)
TechnicalSkills Subjective measure (1-10) of developer skills
EngineerCommunication Efficacy of communicn inside dev group (1-10).
CustomerCommunicationEfficacy of communicn between devs and customer (1-10).

second row of Figure 8.10. Some new requirements errors are introduced (Quality Definition

‘RemainingDefects’ 3). The result of theActivity is an increase in the number of ‘Stories’

defined (Definition Content‘Stories’ 10), the return of the numbers of ‘Story’ defects to zero

(Quality Definition ‘RemainingDefects’ andQuality Definition ‘KnownDefects’) and the sub-

sequent increase inQuality Definition ‘RemainingDefects’ as a result of some new injected

defects. Both business and technical considerations are taken into account during planning [15]

and so this task addresses some architectural concerns. However, results of decisions are not

captured, but rather increaseEngineer‘ProductKnowledge’ (from 1 to 3) and ‘SubjectArea-

Knowledge’ (from 5 to 6).Engineer‘Satisfaction’ increases as a result of the highContext

‘CustomerCommunication’ and ‘Confidence’ also remains at ahigh level. The cost associated

with theActivity is relatively high as all project personnel are involved.

For Small Releases, the rule is that a small number of Stories are implemented infull. This

Practice does not in itself change theProductand so does not represent aKiTe Method. Rather,

this Practice constrains ‘Planning’ to output only a small number of complete Stories. Both

number of defined Stories and number of new defects is smallerthan depicted withoutSmall

Releases. I model as aTechniquefor Method ‘PlanningGame’.

The next Practice isMetaphor. This, according to Beck, “replaces much of what other

people call ‘architecture”’. Again, this is not captured onpaper, but rather provides a common

and coherent story for both business and technical people. As forSmall Releases, theMetaphor

Practice does not cause a direct change in theProduct, but in this case the Practice affects how

developers approach the design task i.e. design decisions will be constrained by the agreed

metaphor. I model the Practice inKiTe as aTechniqueapplied to design and an increase

in engineer understanding of the software to be delivered during Planning i.e. in Engineer

‘ProductKnowledge’. The situation afterSmall ReleasesandMetaphoris depicted in row three

in Figure 8.10.
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Start 3 2 2 1 2 3 2 3 2 3 3 2 3 2 3 2 3 1 2 3 2 3 2 3 0 5 1 5 6 6

PlanningGame 10 3 0 5 2 3 2 3 2 3 3 2 3 2 3 2 3 1 2 3 2 3 2 3 0 6 3 5 8 6

ReleasesMetaphor 7 1 0 5 2 3 2 3 2 3 3 2 3 2 3 2 3 1 2 3 2 3 2 3 0 6 5 5 8 6

PP 7 1 0 5 7 3 7 5 2 5 8 2 3 2 3 2 3 1 2 3 2 3 2 3 0 6 5 5 9 8

PPRefactor 7 1 0 5 7 2 7 5 2 3 9 2 3 2 3 2 3 1 2 3 2 3 2 3 0 6 5 5 9 8

PPRefactorCollective 7 1 0 5 6 2 7 5 2 2 9 2 3 2 3 2 3 1 2 3 2 3 2 3 0 6 6 5 9 8

CodeIntegrate 7 1 0 5 6 2 7 5 2 2 9 6 2 7 5 2 2 3 6 2 7 5 2 2 0 6 7 5 10 9

FunctionalTest 7 1 1 5 6 2 7 5 4 2 9 6 2 7 5 4 2 3 6 2 7 5 4 2 2 6 7 5 10 9

Finish 7 1 1 5 6 2 7 5 4 2 9 6 2 7 5 4 2 3 6 2 7 5 4 2 2 8 9 5 10 9

Figure 8.10: XP process iteration

TheSimple DesignPractice involves creating the minimal design that implements the agreed

Stories. However, designs are not generally captured separate from code and so this Practice,

as forMetaphor, sets a constraint on the code that is produced. The constraint is that only the

agreed Stories are represented in the code i.e. there are no frameworks or extra functionality

to support future requirements. The constraint introducedwith this Practice is that theContent

Source‘Infrastructure’ attribute tends towards zero throughoutthe process.

Beck deals with both ‘unit testing’ and ‘functional testing’ under the singleTestingPractice.

The first relates to running test code to find defects at an implementation i.e.Sourcelevel. The

second relates to user-produced tests to find defects at a specification i.e. atDefinition level.

Both of these change theProductand can be considered as possibleKiTe Methods. I deal with

‘unit testing’ here, and with ‘functional testing’ later inthis section.

‘Unit testing’ in XP is carried out as an integral part of thePair ProgrammingPractice.

This Practice results in change to theProduct(some Stories are implemented) and so is also

a candidateKiTe Method. It also defines how developers should carry out this implementa-

tion and thus could represent aKiTe Technique. As Pair Programming involves all of design,

code and unit test, I introduce a ‘PairProgramming’Activity with Method ‘DesignCodeAn-

dUnitTest’. ThisMethod results in an increased number of coded Stories (Content Source

‘Stories’) and unit tests (Content Source‘UnitTests’). As developers implement the Stories,

defects are injected (increase inQuality Source‘RemainingDefects’) but many of these are dis-

covered (increase inQuality Source‘KnownDefects’) and resolved (decrease in bothQuality
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Source‘RemainingDefects’ andQuality Source‘KnownDefects’). Assuming all discovered

defects are resolved, the net effect of theMethod is a small increase inQuality Source‘Re-

mainingDefects’. The actual number will be dependent upon the capabilities of the engineers,

but is also influenced by application of theMetaphorTechniqueas this is said to reduce the

risk of making inappropriate design decisions. Engineer capability will also affect adherence to

specifications and characteristics of the code i.e.Content Source‘Infrastructure’ andContent

Source‘Complexity’. As we have engineers with reasonable technical skills and subject area

familiarity and theSimpleDesignTechniqueis applied, I show a zero result for additional in-

frastructure and a small rise in code complexity. Application of the ‘PairProgramming’Activity

is depicted in row four of Figure 8.10. As claimed in the literature, ‘pair programming’ results

in increasedEngineer‘Satisfaction’ and ‘Confidence’.

TheRefactoringPractice involves re-organising code to remove any unnecessary code com-

plexity. According to Beck, you “don’t refactor on speculation” but rather “when the system

requires that you duplicate code”. He also suggests that taking longer to implement a sim-

pler design is preferable to completing more quickly with a less simple design. This Practice

does not change theProduct in its own right, but again modifies ‘DesignCodeAndUnitTest’

i.e. is anotherTechnique, Refactor, for the ‘DesignCodeAndUnitTest’Method. Quality Source

‘Complexity’ has reduced from 5 to 3 and cost is slightly higher (row five of Figure 8.10).

The Practice ofCollective Ownershipdoes not directly changeProduct and so is not a

Method in its own right. Again it specifies a differentTechnique, ‘CollectiveOwnership’, for

‘DesignCodeAndUnitTest’, because the task now becomes oneof focussing on some target code

while at the same time changing some of the remaining code base. Revised application of the

‘PairProgramming’Activity with ‘Collective Ownership’ is depicted in row six of Figure8.10.

Application of the Practice effectively reduces velocity i.e. fewer Stories are implemented, but

results in a decrease in code complexity in the code base (Quality Source‘Complexity’ 2).

There are claims that application of the ‘CollectiveOwnership’ Techniqueincreases engineer

understanding of the whole system i.e. results in increasedEngineer‘ProductKnowledge’.

Continuous Integrationis the Practice of integrating and running all unit tests every couple

of hours. The idea is that identifying the owner of any introduced defects will be relatively

easy as only a small number of code changes are involved. ThisPractice results in the creation

of Integrationand Packagedartifacts and so may be viewed as aKiTe Method, say ‘Buil-

dAndUnitTest’. ThisMethod requires the existence ofContent Source‘Stories’ and results in

increasedContent Integration/Packaged‘Stories’. It also causes increase toQuality Integra-

tion/Packaged‘RemainingDefects‘ (as a result of unresolved integrationproblems) andQuality

Source/Integration/Packaged‘KnownDefects’ (as a result of running unit tests). The implica-

tion from the XP literature is that each ‘BuildAndUnitTest’occurence is immediately followed

by ‘fix integration defects’ i.e. problems are not allowed toremain in the integrated code but
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are resolved, presumably within minutes. If this truly is the case, the task is better captured

asMethod ‘BuildAndUnitTestAndFixProblems’ which results in noQuality Integration‘Re-

mainingDefects’ and no increase inQuality Source/Integration/Packaged‘KnownDefects’. I

illustrate this situation i.e. an ‘Integration’Activity with Method ‘BuildAndUnitTestAndFix-

Problems’. However, in a real XP project, this might not be the case and the build might remain

‘broken’ for hours. I look at such a possibility in Section 8.2.10. There are several possibilities

for representing the ‘Integration’Activity in KiTe. If carried out as stated in the XP literature,

the effect is to closely-couple the ‘PairProgramming’ and ‘Integration’Activities i.e. every time

a code change is submitted, it is immediately integrated. I represent this by implementing, for

each XP iteration, a number of ‘Code and integrate’ cycles, each comprisingActivities ‘Pair-

Programming’ and ‘Integration’. The regular confirmation of code interface correctness causes

an increase inEngineer‘Confidence’ and ‘Satisfaction’. The results for the example study af-

ter all pair programming-integrate cycles for the iteration are shown in row seven of Figure

8.10. Source ‘Stories’, ‘Infrastructure’, ‘Complexity’ and ‘RemainingDefects’ are reflected

in IntegrationandPackagedand defect levels remain unchanged.Engineer‘Confidence’ and

‘Satisfaction’ increase.

ForFunctionalTesting, test programs are not part of the product being delivered and so there

is a question as to whether or not source and executables for these tests are viewed as attributes

of the delivered system. I assume they are. The XP project hasno control over the quality and

coverage of these tests as these depend upon customer capability, commitment, etc. Functional

testing results in an increase in the number of known defectsand so is a candidate for aKiTe

Method. I model as a ‘CustomerTest’Activity with Method ‘FunctionalTesting’. The precon-

dition for the ‘FunctionalTesting’Method is the existence ofContent Packaged‘Stories’. The

results ofMethodapplication include an understanding by the customer that some of his spec-

ifications (Stories) require enhancements or corrections and a discovery of developer-injected

defects. The former results in an increase inQuality Definitions‘KnownDefects’ and the latter

in an increase inQuality Source/Integrations/Packaged‘KnownDefects’. Both are dealt with

in the XP system by a next iteration of Stories. The results ofthe ‘CustomerTest’Activity are

shown in row eight of Figure 8.10.

The Practice40 Hour Weekdoes not cause change to theProductor instruct on how any task

should be carried out and so is neither aMethodnor aTechnique. It is claimed that this Practice

results inEngineer‘Satisfaction’ remaining high. I model as an attribute ofContextand realise

as a lack of decrease in ‘Satisfaction’, as is generally attributed to working long hours.

On-SiteCustomerresults inEngineer ‘SubjectAreaKnowledge’ and ‘ProductKnowledge’

increasing regularly throughout each iteration. I model asan increase at the end of each it-

eration.



8.2 Capture all Processes and Process Models 127

Coding Standardsmust be adopted voluntarily by the whole team and are believed nec-

essary for common code ownership. The aim is consistent codequality that facilitates code

sharing. As developers are constrained to comply with standards during the ‘PairProgramming’

Activity , I model as aTechniqueto be applied to the ‘DesignCodeAndUnitTest’Method. Ap-

plication of thisTechniqueresults in higher code quality, which I model as reduction inQuality

Source/Integration/Packaged‘Complexity’.

The finalKiTe Models at the end of the iteration are shown in the bottom row of Figure

8.10.

For the XP example, attributes forPS relate to all ofContent, Quality andCost, attributes

for ES to engineer skills, knowledge and frame of mind and attributes forCS to efficacy of

communications.

ForMethodswe haveM = {‘P lanningGame′, ‘DesignCodeAndUnitTest′,

‘BuildAndUnitTestAndF ixProblems′, ‘FunctionalTesting′}.

EachMethod is implemented by aTechniquethat is some amalgamation as shown in Ta-

ble 8.3. For example,Method ‘PlanningGame’ is implemented by theTechniquethat is an

amalgamation of the PracticesSmallReleasesandMetaphor.

No GoalsBenchmarkis defined (GB = ∅).

Discussion

In theKiTe representation,ES andCS capture the belief that the stated attributes (which are

typically reported for XP projects) are relevant to projectsuccess and other possible attributes

are not. This represents an assumption. The implicit statement is that characteristics that have

been suggested elsewhere as being relevant, such as ‘privateness’ and ‘dominance’ [3], do not

affect success in an XP project. I also note that noGoalsBenchmark, GB, is defined. GB

represents the desired ‘finish’ states for theRealisedProcessstate machine and the implication

is that there is an assumption in an XP project that some othermeans of establishing termination

is available.

One point of interest resulting from the above capture inKiTe is the variation in meaning of

the various Practices. Table 8.6 captures how each Practicerelates to aKiTe concept. Practices

that directly result in a change to theProductare markedMethod, those describing how a task

is carried out are markedTechnique, those affecting how well developers are able to perform

tasks are markedContextModeland those affecting process timing and structure are marked

Process.

Most Practices perform a number of roles. In some cases, Practices that areMethodsor

Techniquesalso have an effect on developer efficacy. For example, ‘Metaphor’ both constrains

design and helps increase developer understanding of the product. In other cases, the Prac-
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Table 8.6: XP Practices in KiTe

Practice Method Technique ContextModel Process
Planning Game Yes Yes Yes No
Small Releases No Yes No Yes
Metaphor No Yes Yes No
Simple Design No Yes No No
Testing (Unit) Yes No Yes No
Testing (Functional) Yes No No No
Refactoring No Yes Yes No
Pair Programming Yes Yes Yes No
Collective Ownership No Yes Yes No
Continuous Integration Yes Yes Yes Yes
40-Hour Week No No Yes Yes
On-Site Customer No No Yes No
Coding Standards No Yes No No

tice describes theMethod or Techniqueonly, for example, ‘Coding Standards’. Although not

mentioned specifically as a Practice, ‘TestDrivenDesign’ is another idea expected to be imple-

mented according to Beck. This concept constrains the design task to one of ‘design by unit test

creation’. TheKiTe representation for this is as aTechniquefor the ‘DesignCodeAndUnitTest’

Method. The claim is that thisTechniqueresults in cleaner code design i.e. a reduction in

Quality Source‘Complexity’. In the above table, this maps to a ‘Yes’ in the ‘ContextModel’

column for ‘UnitTest’.

From another perspective, I note that the Practices of ‘40-Hour Week’ and ‘Continuous In-

tegration’ are not represented in Table 8.3. These are the only Practices, along with ‘SmallRe-

leases’, represented in the ‘Process’ column of Table 8.6. The Practices are ‘meta-Practices’ in

that, rather than add to a description of individualActivities, they describe theRealisedProcess

itself. ‘Small Releases’ states that a single process iteration should be short and theRealised-

Processcomprise many iterations. ‘Continuous Integration’ states a similar fact about build

cycles. ‘40-Hour Week’ places a limit on output and cost for each developer and so constrains

higher-level management decisions relating to staffing andmanpower. This observation raises

an interesting research question around introducing theseaspects into other, more traditional,

environments as their effects would presumably be independent of the specificMethodsand

Techniquesin place.

An iteration of an XP process comprises a single ‘Planning’Activity , many iterations of

‘PairProgramming’ and ‘Integration ’Activities and a single ‘CustomerTest ’Activity . ‘Plan-

ning’ uses the ‘PlanningGame’ Practice as itsMethodand is constrained by the ‘SmallReleases’
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and ‘Metaphor’ Practices asTechnique. ‘PairProgramming’ has a ‘DesignCodeAndUnitTest’

Method and its implementation is constrained by seven of the Practices plus ‘Test Driven De-

sign’. ‘Integration’ uses a ‘BuildAndUnitTestAndFixProblems’ Method and this is uncon-

strained by any specificTechnique. ‘CustomerTest’ uses the ‘FunctionalTesting’ Practice as

Methodand this is also unconstrained.

The strength of the ‘PairProgramming’Activity in an XP environment would seem to be

based on the number of restrictions placed on the implementation of itsMethod. Some interest-

ing research problems might involve identifying a subset ofrestrictions that might be effective

in other environments.

8.2.4 Study 4: Collaborative programming field study

I now represent a field experiment carried out by Nosek to find out what are the effects of collab-

orative programming i.e. where programmers work in pairs ona common code base [120]. The

study concerns a small element (coding) of a traditional waterfall process and involves a small

number of programmers. For this representation I use the data supplied by Nosek. The study

addresses goals 1.2.1.1. (traditional process), 1.2.2.4.(quantitative study), 1.2.3.3. (small-

grained), 1.2.5.1. (industry project), 1.2.6.4. (small project) 1.2.7.1. (CMM level 1), 1.2.8.2.

(co-located), 1.2.9.2. (upgrade project) and 1.2.10.1. (standard quality goals).

The aim of the experiment was to examine how developers working in pairs affected out-

comes. The experiment used experienced programmers working on an important, challenging

program, in their own environment and with their own equipment. The task was to create script

files to perform three requirements and a time limit of forty-five minutes was imposed.

Four predictions were made. These were that programmers working in pairs will produce

more readable and functional solutions than those working alone, groups will take less time on

average, programmers working in pairs will express higher confidence and enjoyment in their

work and experienced programmers will perform better. The measured product-related objec-

tives for this study were ‘Functionality’ (up to two points per requirement achieved), ‘Read-

ability’ (the degree to which the problem solving strategy could be determined, measured as

0=unreadable; 2=totally readable) and ‘Time’ (elapsed time to completion in minutes). The

measured engineer-related objectives were ‘Confidence’ and ‘Enjoyment’ (no scale given).

Results for the control group (individual programmers) andthe experimental group (pairs)

are shown in Table 8.7. Means are given, with standard deviations in brackets.

Results supported predictions 1, 2 and 4 with probability ofless than 1 in 20 (5 percent

confidence) that results were due to chance. The prediction relating to ‘ElapsedTime’ was not

statistically supported as there was more than a 1 in 20 chance the result was due to chance.
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Table 8.7: Collaboration results (Nosek)

Output variable Control (individuals) Experimental (pairs)
Functionality 4.2 (1.788) 5.6 (0.547)
Readability 1.4 (0.894) 2.0 (0.000)
ElapsedMinutes 42.6 (3.361) 30.20 (1.923)
Confidence 3.8 (2.049) 6.50 (0.500)
Enjoyment 4.00 (1.870) 6.60 (0.418)

KiTe representation

In this reproduction, I address the first three predictions only i.e. programmers working in pairs

will produce a more readable and functional solution in lesstime. The reason is that the reported

study contains no information or data to support the prediction that experienced programmers

perform better, and the indication is that the mix of experienced and inexperienced is held

constant between the the pairs and individuals.

The first task is to define an appropriateProductmodel. I modelContent‘Functionality’,

Quality ‘Readability’ andCost ‘ElapsedMinutes’. However, it is not clear from the study what

are the inputs toMethod ( for example, requirements documents, designs, verbal instruction)

and not clear what are the outputs (for example, script sources, integrated and tested scripts,

scripts plus design documentation, etc.). This means I do not know whichPartitionsto include

in my model forProduct. In order to illustrate capture, I assume requirements are inputs and

outputs are script sources.

Table 8.8: Collaboration Product Model

Perspective Partition Attribute Meaning
Content Definition Requirements # documented requirements

Source Functionality 0-6; 2 for each of 3 implemented requirements
Quality Source Readability 0-2; 0=unreadable and 2=totally readable
Cost Source ElapsedMinutes Time in minutes

I call theMethod for this study, ‘CodeRequirements’. We haveM = {CodeRequirements}.

The product-related precondition and transformation thatdefine thisMethodare shown in Table

8.9.

I now must decide how to represent the ‘Collaboration’ and ‘Individual’ factors that are

the main factors-of-interest for the study. An obvious choice is to model as aContext i.e. as

affecting how well developers are able to carry out coding. My reason for considering this as a



8.2 Capture all Processes and Process Models 131

Table 8.9: Collaboration CodeRequirements Method

CodeRequirements
Precondition Content Definition‘Requirements’== 3)
Transformation Content Source‘Functionality’>= 0 and<= 6; Quality Source‘Read-

ability’ >= 0 and<= 2; Cost Source‘ElapsedMinutes’>= 0 and
<= 45.

possible option is that the study of how developers work in teams has tended to be considered

as a study of project context. For this choice,ContextModelwould contain some ‘rules’ about

the effects of working in pairs. As aContext, these would be applied with no ‘matching’ to

engineer characteristics. However, I remember that some developers are more suited to working

collaboratively than others, and so would like to find a representation that takes this into account.

I can achieve this by modelling ‘Collaboration’ and ‘Individual’ asTechniques. ContextModel

now ‘matches’ theTechniquerequirement (for example, ‘work collaboratively’) withEngineer

characteristics (for example, ‘introverted’) to achieve aresult that takes individual engineers

into account.

The above means that I should represent factors asContext factors only if I believe that

individual engineer characteristics are irrelevant. For example, I might model ‘Company about

to be bought’ as a context that causes engineers to become less motivated because I believe that

I may treat engineers in a general way. In the case under study, there is a strong possibility that

engineers differ in their preference for working with people, and so I represent ‘Collaboration’

and ‘Individual’ as twoTechniquesto be compared.

For Engineer, I include ‘Confidence’ and ‘Enjoyment’, each using an ordinal scale of 1-

10, and ‘Experience’ measured as ‘NumberOfYears’. Nosek held constant familiarity with

environment and equipment and unfamiliarity with kind of problem and I add these attributes to

the model forEngineer. There is no mention of any other context-related factors.Engineerand

Contextmodels are presented in Table 8.10. Nosek assumes results are due to the application

of theTechniquesunder study only and soContextModeldoes not contribute to the result.

Experimental results from aKiTe perspective are depicted in Figure 8.11. The first row

captures the set ofProductMeasurementfor start stateps0 ∈ PS and theCapabilitySpecthat

characteriseses ∈ ES prior to application of ‘CodeRequirements’. The second rowillustrates

end states forTechnique‘Individual’ and the third forTechnique‘Pairs’. Values for ‘Experi-

ence’, ‘EnvironmentFamiliarity’ and ‘ProblemUnfamiliarity’ are empty because no indication

was given as to what the values should be, possibly because these were held constant. Mean

values only are captured and this is discussed in the next Section.
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Table 8.10: Collaboration Engineer and Context Model

Attribute Measure
Engineer Confidence 1-10

Enjoyment 1-10
Experience Number of years
EnvironmentFamiliarity
ProblemUnfamiliarity

Context
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Figure 8.11: Collaboration results in KiTe

I now examine results to establish relative values for performance for the twoKiTe Activi-

ties associated with theTechniques‘Individual’ and ‘Collaboration’. I notice that the expected

output from the ‘CodeRequirements’Method with baselineTechniquewas a score of ‘6’ for

‘Requirements’ within 45 ‘ElapsedMinutes’ with a ‘Quality’ score of ‘2’. Working with mean

values only, I calculate that, for the ‘Individual’Technique, the relative effectiveness is

{(‘Functionality’, 0.7 (4.2/6)), (‘Readablity’, 0.7 (1.4/2)), (‘ElapsedMinutes’, 1.06 (45/42.6))}.

The same calculations for ‘Collaboration’ yields

{(‘Functionality’, 0.93 (5.6/6)), (‘Readablity’, 1 (2/2)), (‘ElapsedMinutes’, 1.49 (45/30.2))}.

Because the contribution fromContextModelis assumed to be of unit size, the implication is

that the results are due entirely to the twoTechniques.
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Discussion

Once more, in the attempt to capture the experiment inKiTe, some lack in clarity was made

visible. ForMethod, it is unclear what is the pre-condition (requirements, designs, word-of-

mouth, etc.) and what are the deliverables (script sources,integrated and tested scripts, scripts

plus design documentation, include tests and test results,etc.). This means we cannot define the

model forProduct. In addition, no mention is made of any other techniques to beimplemented.

For example, a technique ‘collaborating using structured programming’ may yield different

results from ‘collaborating using an ad-hoc approach’. ForEngineer, we are informed of a

number of attributes believed to be of relevance. The first point to note is that, for some of

these, for example, ‘Experience’, we are informed that these were held constant but are not

provided with any indication of values. This means that we can not compare this study with any

other, apparently similar, study in case different levels of experience apply. The observation

is that values must be reported even if held constant. The second point to note is that there is

an assumption is that no other attributes affect outcomes. There is no mention of any context-

related factors and this equates to an assumption that such factors do not affect outcomes or

affect each study in the same way.

I note from above two ideas that must be further investigated. The first is that I have captured

mean values only and the statistical aspect of the experiment is lacking. I discuss this further

in Sections 10.5 and 11.3. The second is the observation thatany factor that changesEngineer

that might be dependent upon individual engineer characteristics is better modelled inKiTe as

aTechnique. This represents a subtlety ofKiTe that I believe adds to its power.

8.2.5 Study 5: Event-driven simulation model

In this Section, I study a simuation model created by Melis et. al. [109] for the investigation

of the XP practices of Pair Programming (PP) and Test Driven Development (TDD). The study

thus addresses Goals 1.2.1.2. (agile process), 1.2.2.1. (simulation model), 1.2.3.3. (small-

grained), 1.2.4. (variations to base process) and 1.2.6.4.(small project).

The simulation model is essentially ‘event-driven’. It hasa number of ‘entities’, for ex-

ample, ‘user stories’ (US) and ‘integrated code’, and some ‘activities’, for example, ‘release

planning’ and ‘development session’, that modify the ‘entities’. ‘Activities’ are carried out by

‘actors’, for example, ‘team’, ‘developer’, ‘customer’. ‘Actors’ have attributes that change with

time. ‘Entity’ modification occurs at the end of an ‘activity’ (a time step), at which time contin-

uous variables, for example, ‘developer skill’, are calculated using integration rates. To handle

uncertainty, for example, effort estimates for ‘user stories’, a stochastic approach is used, and

statistical distributions and Monte Carlo simulation applied. The simulation shows that the use
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of pair programming increases development cost (working days), improves quality (smaller de-

fect density) and design (fewer lines of code per US). The useof test driven design increases

project duration and decreases defect density.

The granularity of the simulation is a development session,typically a couple of hours.

Model equations are taken from existing models, empirical data and author assumptions, where

necessary. Inputs are ‘number of initial US’, ‘number of developers’, ‘mean and standard de-

viation of initial US estimation’, ‘initial team velocity’, ‘number of iterations per release’ and

‘typical iteration duration’. Outputs are ‘number of final US’, ‘defect density’, ‘number of

classes and methods’ and ‘delivered source instructions (DSI)’.

The model allows the user to define the adoption level of PP andTDD practices. In Table

8.11, results are given for the four combinations of zero andfull adoption of each practice.

Standard deviations are reported in parentheses.

Table 8.11: PP and TDD adoption results (Melis et. al.)

Output variable PP=0%
TDD=0%

PP=100%
TDD=0%

PP=0%
TDD=100%

PP=100%
TDD=100%

Working days 45.0 (23.2) 51.1 (19.1) 51.1 (23.6) 60.3 (22.8)
Released US 28.8 (7.9) 28.8 (7.6) 28.7 (7.6) 28.9 (7.5)
Defects/KDSI 28.0 (5.3) 24.1 (6.0) 23.0 (5.3) 19.7 (4.5)
KDSI 18.0 (8.2) 13.0 (6.1) 21.5 (10.2) 15.6 (6.9)

KiTe representation

In order to create the model forProduct, I must identify thePerspectivesfor this simulation

along with the attributes-of-interest for eachPerspective. However, the paper presents some

difficulties with attribute meaning and I must deal with the first set of assumptions. For example,

‘defect’ is used without any definition of what is a ‘defect’.Basili and Rombach usedefectas a

generic term to mean any one oferror, fault or failure [13, 71], but no such definition is given in

this paper. A similar comment applies to ‘KDSI’ and ‘Workingdays’. A more serious problem

occurs with the use of ‘KDSI’. In the ‘Results’ section, we are informed that “the use of PP

decreases the number of DSI by 27%”. The implication is that ‘DSI’ is a quality-related metric

i.e. code is more succinct when applying pair programming. There are two issues. The metric

‘KDSI’ (thousand delivered source instructions) is often used as a measure ofContenti.e. as

indicator of how much work has been done. This is quite a different meaning and any attempt

to compare the results of experiments on the grounds of ‘KDSI’ might fail if the meanings are

not clear. The second issue is related. Results in Table 8.11show that the number of delivered
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lines of code decreases when pair programming is applied andincreases when test driven design

is applied. The implication is either that test driven design decreases code quality or increases

the code output. The latter would seem more likely, and if this is the case the authors are now

implying that increased code represents more content (tests), rather than reduced quality. It is

meaningless for an attribute to have two different interpretations, and questions must be asked

about what exactly is being measured. For this illustration, I simply note the problem and select

the quality-related meaning.

To complete the model forProduct, I must consider what are theMethodsfor the simulation

and how these affectProduct. There are four simulation scenarios:

• No Pair Programming (PP); no TestDriven Design (TDD).

• All developers carry out PP; no TDD.

• No PP; all developers carry out TDD.

• All developers carry out PP; all developers carry out TDD.

Table 8.12: PP and TDD Product Model

Perspective Partition Attribute Meaning
Content Definition US # Stories captured

Source US # Stories implemented
Integration US # Stories integrated
Packaged US # Stories delivered

Quality Source KDSI thousands delivered source instructions
DefectsPerKDSI # defects per thousand DSI

Integration KDSI thousand delivered source instructions
DefectsPerKDSI # defects per thousand DSI

Packaged KDSI thousand delivered source instructions
DefectsPerKDSI # defects per thousand DSI

Cost Source WorkingDays Total person days

When I attempt to captureMethods, I find the problem relating to test cases discussed above

creates a problem. If the scenarios with ‘no TDD’ result in notest cases, we have two different

Methodsbecause the outputs are different. This means that, from aKiTe perspective, we may

not directly compare the ‘no TDD’ simulations with the ‘TDD’ones. Comparisons would

be unhelpful because more output is being produced in the ‘TDD’ cases. However, as the

simulation directly compared the four scenarios, and in order that I might illustrate capture, I

simply note the lack of clarity and assume outputs are the same in all cases. I implement a

single ‘DesignAndCodeAll’Method and apply four differentTechniques, one for each of the
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scenarios above. I also assume, as for the earlier XP studies, that IntegrationandPackaged

outputs are delivered ‘for free’ (see Section 8.2.3). The model for Product is shown in Table

8.12.

Table 8.13: PP and TDD DesignAndCodeAll Method

DesignAndCodeAll
Precondition Content Definition‘US’ > 0
Transformation Content Source/Intergation/Packaged‘US’ increases; Quality

Source/Integration/Packaged‘KDSI’ increases; Quality Source/Inte-
gration/Packaged‘Defects/KDSI’ increases;Cost Source/Integration/-
Packaged‘WorkingDays’ increases.

Method is ‘DesignAndCodeAll’ i.e. allDefinition ‘US’ are to be implemented. We have

M = {DesignAndCodeAll}. The product-related precondition and transformations that define

thisMethodare shown in Table 8.13.

TheTechniquesthat are being compared in this simulation are:

• no PP; no TDD.

• 100% PP; no TDD.

• No PP; 100% TDD.

• 100% PP; 100% TDD.

I use the first as the baseline case i.e. the expected result against which to compare other

results is 28.8 ‘US’ are delivered in 18.0 ‘KDSI’ with 28.0 ‘Defects/KDSI’ and taking 45.0

‘WorkingDays’. The results as represented in aKiTe Productmodel are reproduced in Figure

8.12. Sourcevalues forContentandQuality are propagated toIntegrationandPackagedbut

the value for ‘WorkingDays’ is ‘0’ for thesePartitions(see discussion in Section 8.2.3). Each

row in the table represents theProductend state for each of the fourTechniques. The relative

performance values for each of theTechniquesis presented in Figure 8.13.

Individual developer characteristics and contexts are notmentioned and I assume models as

for the earlier XP studies (see Section 8.2.3).

Capture inKiTe reflects the result that, assuming all differences are due totheTechniques

implemented, pair programming is more effective in that it produces less code (factor of 1.38)

and causes fewer defects (factor of 1.16), but is less ‘time effective’ (factor of .88) in that it

takes longer.
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No PP; No TDD 28.80 18.00 28.00 45.00 28.80 18.00 28.00 0.00 28.80 18.00 28.00 0.00

100% PP; No TDD 28.80 13.00 24.10 51.10 28.80 13.00 24.10 0.00 28.80 13.00 24.10 0.00

No PP; 100% TDD 28.70 21.50 23.00 51.10 28.70 21.50 23.00 0.00 28.70 21.50 23.00 0.00

100% PP; 100% TDD 28.90 15.60 19.70 60.30 28.90 15.60 19.70 0.00 28.90 15.60 19.70 0.00

Figure 8.12: PP and TDD simulation results in KiTe
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No PP; No TDD 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

100% PP; No TDD 1.00 1.38 1.16 0.88 1.00 1.38 1.16 0.88 1.00 1.38 1.16 0.88

No PP; 100% TDD 1.00 0.84 1.22 0.88 1.00 0.84 1.22 0.88 1.00 0.84 1.22 0.88

100% PP; 100% TDD 1.00 1.15 1.42 0.75 1.00 1.15 1.42 0.75 1.00 1.15 1.42 0.75

Figure 8.13: PP and TDD Technique relative performance

Discussion

Capture inKiTe requires that the model forProductfor the study is clearly defined. This means

that appropriateProductPerspectivesare selected and items of interest within these perspectives

are defined with measures clearly stated. For this simulation experiment, it is not clear how the

metric ‘defects per thousand lines of code’ is measured, what a ‘defect’ is or what is meant by a

‘working day’. These uncertainties are effectively assumptions embedded in the model i.e. the

model is build on items and equations that use a specific meaning of ‘defect’ and a specific way

of measuring ‘defects per thousand lines of code’. Another consideration withProductmodel

definition is that of the meaning of ‘KDSI’ which seems to be used both as a quality indicator

and a measure of size.

I next observe a number of uncertainties in the definition of the selectedMethodandTech-

niques. For example, it is not clear if developers create unit testsin all cases.

Another source of assumptions relate to engineer and context. In Figure 8.13, I implied all
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of the variation in results is due to to the relative effect ofTechnique. It is possible that some

of this variation would have been due to differences in contexts, for example, differences of

developer skill and motivation. In fact, if we examine the ‘improvement’ in duration when pair

programming is not used, we find two results. When TDD is actioned, the result with no PP is

15 percent better (51.1/60.3). When TDD is not actioned, theresult is only 12 percent better

(45/51.1). As these calculations are based on means only, itis possible that such a result in

a real-life study would indicate no inconsistency. It wouldalso, however, be possible that the

result is an indication that something other than pair programming is affecting results. TheKiTe

approach would be to separate theTechnique-related data (‘PP is on average 40 percent more

time effective’) from the context-related data (‘the context model assigns average pair velocity

and effectiveness of the most skilled developer’). This calculation model is hidden in the results

as presented, but would become transparent if captured as aKiTe ContextModel.

As for other studies, the attempt to represent this simulation inKiTe reveals a lack of clarity

in the description of the simulation. Product attributes are undefined and treated inconsistently,

making it difficult to define the model forProduct. Lack of clarity about outputs from the four

scenarios means that it is difficult to captureMethod with any certainty and so it is not clear

that direct comparison of results is appropriate.

8.2.6 Study 6: Pair programming classroom study

This study concerns a classroom experiment to investigate whether pair programming results in

code being developed faster and with better quality [169]. The study addresses goals 1.2.1.2.

(agile process), 1.2.2.4. (quantitative study), 1.2.5.2.(student project), 1.2.6.5. (tiny project)

and 1.2.10.1 (standard goals).

The experiment was carried out in 1999 by Williams et. al.. Forty-one senior software

engineering students were divided into an experimental group and a control group (individual

programmers). The task was to complete four assignments using a pair-programming approach.

The two groups comprised the same mix of high, average and lowperformers. “All students

attended the same classes, received the same instruction and participated in class discussions on

the pros and cons of pair programming.” Groups completed four assignments over a period of

six weeks.

The experiment compared the cycle time, productivity and quality between the two groups.

Results showed that the pairs always passed more of the post-development test cases and results

were more consistent. Pairs completed assignments 40-50 percent faster i.e. with only a small

drop in productivity.
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KiTe representation

I now attempt to capture the study inKiTe and show that this effort also exposes ambiguities

and assumptions in the target study.

Product

Content: The deliverables from the process were four assignments, but we have no information

about what kind of assignment (for example, stand-alone software application executa-

bles, software component source code, analysis report, etc.). This means we do not know

what the pair programming was applied to.

Quality: The experiment reports ‘percentage of test cases passed’ and this is an operationalisa-

tion for aQuality measure. However, there is no discussion about the focus andbreadth

of test cases, for example, kinds of defects tested for, testcoverage, etc. and so we do not

know what the reported metric means. This means we will not beable to compare this

experiment with other, apparently similar, studies.

Cost: The experiment reports ‘completion times as a percentage’.

Method

Preconditions: The first aim for definingMethodinvolves clarifying what is the expected state

of theProductprior toMethodinvocation. A ‘pair programming’ task might be based on

any of formal specifications, informal user stories, designdocuments, discussions with

the customer, etc. InKiTe, each of these potentially represents a differentMethod. The

form of the specifications for this experiment is not mentioned.

Transformation: I next consider how theMethodchanges theProduct. As stated above, we

are not told if the expected deliverables are software source or executables or written

reports. Even if we assume standalone software applicationexecutables, there is still

some uncertainty as to what theMethodinvolves. We understand some integration and

‘packaging’ for delivery is indicated but we are not clear about whether the students

simply build locally, and this creates the software to deliver, or whether some integration

into a larger system is required, indicating some more complex build process.

Technique: Last of all, we must know exactly what techniques are being implemented. The

paper describes the XP pair programming ‘rules’ but does notstate that the experimental

groups were instructed to follow, or checked for compliancewith, these rules. Did pairs

actively engage in the same code at the same time, swap drivers, etc.? If they did not, we

are testing something other than ‘pair programming’.
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ContextModel

Engineers: We are informed that all students received the same instruction and that each group

contained a similar mix of capabilities. TheContextModelfor the experiment thus in-

volves ‘capabilities’. ‘Instruction’, however, is neither aContextor anEngineerattribute.

Presumably ‘level of instruction’ is believed to relate to ‘level of expertise’ in some way.

TheContextmodel includes no otherEngineer-related attributes and so other attributes,

for example, motivation are believed to be of no consequence. In fact, for this experi-

ment, all of the experimental group and seven of the control group had a preference for

pair programming and it is very likely that this would skew results. In addition, there may

have been some bias due to the researchers having an XP focus and being in positions of

power over the students. Any of these would probably affect motivation levels and cause

the results to be scaled towards supporting pair programming.

Contexts: The study does not consider any other contextual factors. The completeContextModel

thus includes onlyEngineercapabilities and expertise.

Discussion

This study presents results in an informal way and, because of this, I use the study mainly as a

means of exposing assumptions. In Section 8.3.1, I make decisions for some of the assumptions

in order to ‘fix’ models and include the study in a comparison between various collaborative

approaches.

8.2.7 Study 7: State-based simulation model

I next consider a simulation model created to provide a quantitative analysis of the results of

improving inspections in a company that implements a process based on a waterfall model. The

study addresses goals 1.2.1.1. (traditional process), 1.2.2.1.2 (state based simulation model),

1.2.3.3. (small-grained process), 1.2.4. (variations to base process), 1.2.5.1. (industry project),

1.2.6.3. (medium size project), 1.2.7.1. (CMM level 1), 1.2.8.2. (co-located project), 1.2.9.2.

(upgrade project) and 1.2.10.1) standard goals.

This proof-of-concept feasibility study is based on work byRaffo, Vandeville and Martin

[137] from the School of Business Administration, PortlandState University, Oregon, US. The

cited paper describes a simulation model developed for Northrop Grumman under sponsorship

of the Software Engineering Research Center (SERC). The model is one of a number of stochas-

tic models built to provide a quantitative understanding ofthe development process and support

the quantitative analysis of proposed process changes prior to implementation. The example
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presented in the paper examines quality outcomes when the review and inspection processes

are improved.

Some key aspects of the feasibility study are:

• The development process at Northrop Grumman’s Melbourne site comprises a number

of hierarchical process components and the portion modelled consists of four life cycle

phases - Preliminary Design, Detailed Design, Code And UnitTest, Computer Program

Engineering Test (CPET).

• Each lifecycle phase decomposes into a number of main tasks and sub-tasks. Each sub-

task is a distinct development step with associated processperformance data.

• There are five major product verification points. Three are product reviews (task archi-

tecture inspection, unit architecture inspection, code walkthrough) and two are testing

activities (unit test and process test).

• The data used to populate the model were taken from the various project teams on a large

upgrade project (200,000 lines of code, existing system 2 million lines of code).

• The target project uses a number of integrated development teams. The model simulates

a single development team executing the standard development process.

• The total lines of code for the project is 10,000 and the totalnumber of defects typically

produced for this amount of development is 500 defects.

• It is assumed that 20 percent of total errors are injected during task architecture, 30 per-

cent during unit architecture and 50 percent during coding.

• It is assumed that the cost of fixing defects is .5 hours per error for errors found during

task architecture inspection, 1 hour per error for errors found during unit architecture

inspection, and 2, 4 and 6 hours per error for those found during code walkthrough, unit

test and process test, respectively.

• The error detection capability is .3 of current product errors for the reviews and .75 for

the test activities. The purpose of the simulation is to examine the result on residual errors

when the review detection capability is raised to .7.

• The model provides the mean and variance on performance results i.e. the results are

stochastic.

The simulation model used is a state based model based on workby Kellner and others

at the Software Engineering Institute (SEI) in the mid-80s. The developed model uses cost,
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Table 8.14: State-based simulation Product Model (Raffo et. al.)

Perspective Partition Attribute Meaning
Content Definition Requirements % requirements defined

Architecture ContentComplete % requirements architected
Design ContentComplete % requirements designed
Source ContentComplete % requirements implemented
Integration ContentComplete % requirements integrated

Quality Architecture DefectsRemaining # known + # undiscovered arch defects
DefectsDetected # known architected defects

Design DefectsRemaining # known + # undiscovered desn defects
DefectsDetected # known designed defects

Source DefectsRemaining # known + # undiscovered impl defects
DefectsDetected # known implemented defects

Integration DefectsRemaining # known + # undiscovered integr defects
DefectsDetected # known integrated defects

Cost Architecture PersonHours Time to architect
Design PersonHours Time to design
Source PersonHours Time to implement
Integration PersonHours Time to integrate

schedule and quality data from past projects and applies statistical methods to analyse outputs.

The research goal of the feasibility study is to determine the most suitable statistical techniques

to deal with sparse and correlated data.

KiTe representation

Product The study focusses on software quality, and the quality focus is ‘number of remain-

ing errors’. There is also an interest in ‘number of discovered errors’. Definitions for the various

kinds of defects that occur in software products are provided by several authors (see [13, 71]),

and Basili and Rombach defineerror as “. . . defects in the human thought process made while

trying to understand given information, to solve problems,or to use methods and tools” [13]. As

it is not clear that this is the meaning intended by Raffo et. al., I use the more general ‘defects’.

The cost attribute described is effort measured in person hours. The target simulation appears

to assume 100 percent functionality is implemented throughout.

I defineContent, QualityandCost Perspectives. As the simulation assumes the existence of

functional requirements and implements a process from ‘task architecture’ through to ‘internal

integration and testing’,Productwill include thePartitions Definition, Architecture, Design,

SourceandIntegration. The model forProductis presented in Table 8.14.

Raffo et. al provide effort totals for each phase and rates for rework, but data is not provided
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for some tasks, for example, architecture and inspections.This means I do not have enough

information to represent project effort and so I focus belowonQuality only.

ContextModel In this study, no mention is made of any engineer characteristics or context

factors that might affect results.ContextModelthus does not modifyActivity’s transformation

and effects no change toEngineerES or ContextCS.

Methods From the paper, I identify the following Methods. In doing so, I identify some

instances of lack of clarity inMethoddescription. These involve theMethodsrelating to defect

resolution. As discussed in Section 8.2.1, the failure to state what is the policy for defect

resolution is a common problem with traditional software process descriptions. There are a

number of possibilities for such aMethod, for example, defects inSourceartifacts may be

resolved in code only, in designs and code, etc. In this paper, I capture the situation of local

resolution only e.g. defects found in designs are resolved in designs only. For the last step in the

process, resolution of integration defects, I assume defects in earlier phases are resolved. The

reason is one of pragmatism — the required data is not available, and so I choose the simplest

option.

DefineRequirementsNeeded only to give us an initial value for Definitions.

AnalysisAndHighLevelArchitectureAnalyse software requirements and architect at high level

(task architecture).

InspectArchitecturesTask architecture inspection.

ResolveArchitectureDefectsInArchitecturesResolve known defects in Architecture artifacts.

DetailedDesignsFromArchitecturesDetail design based on Architecture artifacts (architect at

software unit level).

InspectDesignsUnit architecture inspection.

ResolveDesignDefectsInDesignsResolve known defects in Design artifacts.

CodeFromDesignsCreate source code based on Design artifacts.

InspectCodeCode walkthrough.

ResolveCodeDefectsInSourcesResolve known defects in Source artifacts.

UnitTestCodeUnit test code.

ResolveCodeDefectsInSourcesResolve known defects in Source artifacts.

IntegrateAndTestInternal integration and test.

ResolveIntegrationDefectsResolve known defects in Integrations in Architecture, Design, Source

and Integration artifacts.
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Start 0 0 0 0 0 0 0 0

AnalysisAndHighLevelArch 100 0 0 0 0 0 0 0

InspectArchitectures 100 30 0 0 0 0 0 0

ResolveArchitectureDefectsInArchitectures 70 0 0 0 0 0 0 0

DetailedDesignsFromArchitectures 70 0 250 0 0 0 0 0

InspectDesigns 70 0 250 83 0 0 0 0

ResolveDesignDefectsInDesigns 70 0 167 0 0 0 0 0

CodeFromDesigns 70 0 167 0 500 0 0 0

InspectCode 70 0 167 0 500 167 0 0

ResolveCodeDefectsInSources 70 0 167 0 333 0 0 0

UnitTestCode 70 0 167 0 333 250 0 0

ResolveCodeDefectsInSources 70 0 167 0 83 0 0 0

IntegrateAndTest 70 0 167 0 83 62 83 62

ResolveIntegrationDefects 70 0 167 0 21 0 21 0

Figure 8.14: State-based simulation baseline

Because the number ofMethodsis large, I do not detail preconditions and effects for each

Method. Assuming a traditional waterfall, preconditions for ‘AnalysisAndHighLevelArchitec-

ture’ would be availability of completed requirements and for ‘InspectCode’ would be availabil-

ity of completed code.Methodeffects forMethodsare, for example, completed code and defect

injection for ‘CodeFromDesigns’. Assumptions have been made above forMethodsinvolving

defect resolution.

I note that another lack of clarity is uncovered when attempting to defineMethodsand

Method ordering. From the results presented in Fig. 4 in the target paper, I understand that

‘code walkthrough’ occurs before ‘unit test’. I implement ‘InspectCode’ for the walkthrough,

followed by ‘ResolveCodeDefects . . . ’. However, it would seem reasonable to assume that

‘ResolveCodeDefects . . . ’ is carried out after both ‘code walkthrough’ and ‘unit test’. Perhaps,

however, some other strategy is followed, for example, manyinstances of ‘walkthrough’ and

‘unit test’ intermingled as required. In any case, what actually takes place is not clear from the

paper and this is discussed further below.

The study involves implementing a single pass of theMethods. No specific techniques are

mentioned in the study. However, the aim of the simulation isto examine the impacts on process
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performance if review effectiveness is increased. This is synonymous with replacing one review

Techniquewith a ‘better’ one.

The baseline case for the simulation may be inferred from theassumptions about the ‘ex-

pected’ error injection rates for ‘design’ and ‘code’Methodsand about review effectiveness

rates for the ‘review’ and ‘test’Methods. As the study assumes all outcomes are a result of

the implementedMethodsandTechniques, these rates are a statement of the expected perfor-

mance of theseMethodsandTechniques. From Fig. 3 in the paper, I note that assumed error

injection rates are 20 percent for architecture, 30 percentfor design and 50 percent for coding,

and the total errors injected is 500. The baseline values arethus 100 errors for ‘AnalysisAnd-

HighLevelArchitecture’ (1 per percent requirements = 0.2 *500 = 100 errors), 150 errors for

‘DetailDesignsFromArchitectures’ and 250 for ‘CodeFromDesigns’. As-is detection capabil-

ities are assumed to be .3 for ‘InspectArchitectures’, ‘InspectDesigns’ and ‘InspectCode’ and

.75 for ‘UnitTestCode’ and ‘IntegrateAndTest’. It is assumed that errors injected during testing

are negligible. I illustrate the simulated process for the baseline case in Figure 8.14.

Defects are injected during architecture, design, etc., discovered by reviews and tests and

then resolved. As discussed above, I illustrate a situationwhere defects are resolved locally

only, with the exception of the final step, ‘ResolveIntegrationDefects’, where defects are re-

solved in earlier artifacts also.

Effectiveness I now use the data in Figs 4 and 5 in the paper to calculate effectiveness relative

to the baseline for eachMethodas implemented in the as-is and to-be simulations. Effectiveness

values for the as-is process are calculated in Table 8.15 andfor the to-be process in Table 8.16.

The calculated values describe the effectiveness of theActivities based on theMethods

presented above. Summaries ofActivity effectiveness values for the as-is and to-be simulations

are presented below in Table 8.17.

Discussion

Our aim was to capture the process by selectingMethodsand defining relativeMethod (and

Technique) performance values andContextModeladjustments representing project contexts.

Some questions and observations arise:

• It’s not clear why the rework rates for defects found during code walkthrough (2 hours

per error) and unit test (4 hours per error) are so different.Code walkthrough occurs

after coding is complete and then is immediately followed byunit testing. So why the

difference in rework rate? Presumably there is another process step between these? Or

some test-related procedures that are ‘expensive’?
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Table 8.15: State-based As-Is calculations

Method Defects Effectiveness
Analyse.... Errors injected 99 (27.3+71.7 - detected + escaped).

‘Quality DefectsRemaining’ 99.
100/99=1.01

InspectArchitectures Errors discovered 27.3. ‘Quality DefectsDiscovered’
27.3.

.276 (27.3/99)

ResolveArchDefects... ‘Quality DefectsRemaining’ 71.7. 1
DetailDesigns... On completion, 221.2 defects remain (61.4+159.8)

i.e. ‘Quality DefectsRemaining’ 221.2. We infer that
221.2-71.7 = 149.5 defects were injected

150/149.5 = 1.003

InspectDesigns Of the 221.2 defects remaining, 61.4 are detected. We
now have Remaining=221.4; Detected=61.4.

.278

ResolveDesnDefects... 61.4 defects resolved in Design documents leaving
221.2-61.4=159.8 remaining. We don’t have enough
information to know how many of those fixed origi-
nated in, and were fixed in, Architecture documents.
We will assume the Method fixes Design defects only.

1

Code... On completion, 409.3 defects remain (114.4+294.9)
i.e. ‘Quality DefectsRemaining’ 409.3. We infer that
409.3-159.8=249.5 were injected

1

InspectCode Of the 409.3 defects remaining, 114.4 are detected.
We now have Remaining=409.3; Detected=114.4.

.28 (114.4/409.3

ResolveCodeDefects... 114.4 defects are resolved in code, leaving 409.3-
114.4=294.9 remaining. We don’t know how many of
these originated in Architectures and Designs and so
we will assume the Method fixes code defects only.
We also see that from table 4 after test the number
is 304.2. 10.3 new errors were injected during fixing.
So this Activity resulted in 114.4 resolved errors, 10.3
new ones injected.

104.1/114.4=.91.

UnitTestCode Of the 304.2 defects remaining after unit test, 191.9
were detected

191.9/304.2=.63

ResolveCodeDefects....191.9 defects resolved in code, leaving 304.2-
191.9=112.3 remaining. Again, we don’t know how
many of these originated earlier on. However after
process test, 121.4 defects remained (81.6+39.8). So
this Method caused 9.1 defects to be injected. ‘De-
fectsRemaining‘= 121.4.

182.8/191.9=.95

IntegrateAndTest Of the 121.4 defects remaining, 81.6 were detected.67
ResolveIntegrnDefects 81.6 defects are resolved, leaving a DefectsRemain-

ing of 39.8. All fixed.
1
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Table 8.16: State-based To-Be calculations

Method Defects Effectiveness
Analyse... Errors injected 99 (64.2+34.8 - detected + escaped).

‘Quality DefectsRemaining’ 99..
100/99=1.01

InspectArchitectures Errors discovered 64.2. Quality DefectsDiscovered’
64.2.

.65 (64.2/99)

ResolveArchDefects... ‘Quality DefectsRemaining’ 34.8. 1
DetailDesigns... On completion, 184.3 defects remain (120.9+63.4)

i.e. ‘Quality DefectsRemaining’ 184.3. We infer that
184.3-34.8 = 149.5 defects were injected.

150/149.5 = 1.003

InspectDesigns Of the 184.3 defects remaining, 120.9 are detected.
We now have Remaining=184.3; Detected=120.9.

.66

ResolveDesnDefects...120.9 defects resolved in Design documents leaving
184.3-120.9=63.4 remaining. We don’t have enough
information to know how many of those fixed origi-
nated in, and were fixed in, Architecture documents.
We will assume the Method fixes Design defects only.
.

1

Code... On completion, 312.8 defects remain (205.2+107.6)
i.e. ‘Quality DefectsRemaining’ 312.8. We infer that
312.8-63.4=249.4 were injected

1

InspectCode Of the 312.8 defects remaining, 205.2 are detected.
We now have Remaining=312.8; Detected=205.2..

.66 (205.2/312.8)

ResolveCodeDefects...114.4 defects are resolved in code, leaving 409.3-
114.4=294.9 remaining. We don’t know how many of
these originated in Architectures and Designs and so
we will assume the Method fixes code defects only.
We also see that from table 4 after test the number
is 304.2. 10.3 new errors were injected during fixing.
So this Activity resulted in 114.4 resolved errors, 10.3
new ones injected.

104.1/114.4=.91.

UnitTestCode Of the 112.5 defects remaining after unit test, 70.5
were detected

70.5/112.5=.627

ResolveCodeDefects...70.7 defects resolved in code, leaving 112.5-70.5=42
remaining. Again, we don’t know how many of these
originated earlier on. However after process test, 49.6
defects remained (30.1+19.5). So this Method caused
7.6 defects to be injected, ie effectively fixed 42-7.6
corresponding to an Effectiveness of 36.4/42=.867
(instead of 1 for all fixed). So after this Method ‘De-
fectsRemaining‘= 49.6.

36.4/42=.867

IntegrateAndTest Of the 49.6 defects remaining, 30.1 were detected .607
ResolveIntegrnDefects30.1 defects are resolved, leaving a DefectsRemain-

ing of 19.5. All fixed.
1
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Table 8.17: State-based Activity effectiveness summary

Activity As-is To-be
Analysis 1.01 1.01
ArchitectureInspection .276 .65
ArchitectureRework 1 1
DetailDesign 1.003 1.003
DesignInspection .278 .66
ResolveDesignDefects1 1
Code 1 1
CodeWalkthrough .28 .66
WalkthroughRework .91 .976
UnitTest .63 .627
UnitTestRework .95 .867
Integration .67 .607
IntegrationRework 1 1

• There are some further issues around rework rates. Rework atthe end of a process is more

expensive because a larger number of documents must be changed. The cost will depend

upon the origination points of defects. For example, if 100 defects are found in code, how

many of these must be fixed in code only, how many in designs andhow many in designs

and architectures? Furthermore, if inspections are more effective, presumably a larger

percentage of code defects will originate ‘upstream’ i.e. the rework rate will drop. It is

possible that the rework rates used in the simulation are numbers obtained either from

the literature or from previous experiments. If this is the case, these potentially represent

hidden assumptions of the model.

• Method ‘ResolveCodeDefects . . . ’ after code walkthrough has relative effectiveness of

.91. This figure seems low, possibly due to stochastic natureof simulation. But in a real-

world situation it might indicate that the process is not fully understood. For example,

perhaps the engineers were rushed and so less effective, indicating that some of the value

ought to be attributed toContextModel.

• The variations in numbers of errors injected, detection capability etc. arise as a conse-

quence of the stochastic nature of the simulations. On data extracted from real projects,

this variation would appear as a variation inActivity effectiveness. In such cases, it might

be that the variation in values provide us with real information about what was going on

during the project i.e. howContextaffected the engineers’ ability to carry out theMethod.

• Thinking in phases is potentially misleading, as most phases result in change to docu-
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ments produced in prior phases.

The authors of the paper note that alternatives may be examined for the achievement of the

suggested improvement i.e. changing error detection capability of inspections from 30 percent

to 70 percent. Capturing the simulation in theKiTe framework provides a clearer understanding

of what these alternatives might be.Activity effectiveness is achieved as a result of a base

transformation defined byMethod andTechniquemodified according toContextModel. It is

clear that either or both may be varied to achieve the desiredvalue. I submit that that this

transparency supports any business case made as a result of the simulation experiment, because

the range of possible options becomes more obvious.

I also observe the need to truly understand what are theMethodsbeing implemented and

the source of the data being used. Some of the questions abovemay have straightforward an-

swers. However, issues such as knowing origination points of errors,Methodswith surprisingly

low performance values and apparently contiguous tasks varying widely in cost would, in real

projects, require attention. The use of a framework helps expose such issues.

8.2.8 Study 8: System dynamics simulation model

The next study concerns a system dynamics simulation model of a waterfall process. It involves

a feasibility study based on work by Pfahl and Lebsanft [129]from the Fraunhofer Institute

for Experimental Engineering (IESE) in Kaiserslautern, Germany. The cited paper describes a

software simulation model developed by the Fraunhofer IESEfor Siemens Corporate Technol-

ogy (Siemens CT) and reports on results obtained from simulations. The purpose of the model

was to demonstrate the impact of unstable software requirements on project performance and

to analyse how much effort would be required to stabilise requirements such as to achieve the

most cost-effective outcome.

The goals addressed by this study are 1.2.1.1. (traditionalprocess), 1.2.2.3. (system dy-

namics simulation model), 1.2.3.1. (large-grained process), 1.2.4. (variations to base process),

1.2.5.1. (industry project), 1.2.6.3. (medium size project), 1.2.7.1. (CMM level 1), 1.2.8.2.

(co-located project), 1.2.9.2. (upgrade project), 1.2.10.1 (standard goals).

Some key aspects of the environment are:

• Within one of Siemens CT business units, requirements for software projects are under the

direct control of a system engineering group (se). This group solicits requirements from

customers, and makes decisions about which parts of the solution are to be implemented

in software and which in hardware. Software requirements are then passed to the software

development group (dev) for implementation.
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• Software project deliveries generally comprise three increments. The first implements

base functionality and provides a prototype for customer feedback. The second im-

plements important requirements, and the third completes all requirements, including

customer-specific adaptations.

• There are three or four releases (I-cycles) during each increment. Generally, as a result of

these releases, new requirements are received from the customer. These are planned for

and included bydevin subsequent releases for the increment.

• In many cases,se chooses to change, replace or implement in hardware, software re-

quirements that have already been implemented bydev. This often happens late in the

project.

• The last item above is believed to be causing problems of project performance. Siemens

CT are interested in knowing how much additional effort by the segroup would be re-

quired to stabilise requirements such as to effect the most cost-effective outcome.

The simulation model developed by Fraunhofer IESE to provide the above information is

based on the system dynamics paradigm. The ‘causal’ relationships identified as most rele-

vant imply that increasing the number of already-implemented software requirements that are

replaced during the project results in a longer project duration. Simulations imply that an in-

crease inseeffort from 10 to 42 person weeks (representing an increase in percentage total

effort from 1.7 percent to 9.1 percent) results in an optimalsolution, with a total effort decrease

from 596 person weeks to 462 person weeks.

KiTe representation

I now work through the recreation of the above with theKiTe model. As our current aim is to

show model feasibility, we need in the first instance to demonstrate that we can ‘plug in’ a set

of Activities that results in the same outputs as the system dynamics model. The end result will

be to show that a simulation based on system dynamics can be captured withKITE, and to gain

a greater understanding of what might be assumptions inherent in the two model types.

Activities I list the Activities that form the Process. For eachActivity , I then identify its

Methodalong with relative effectiveness values for the associated Technique. No details of the

Techniquesimplemented are given and so I assume these remain constant between simulation

runs. From the paper, the assumption is that all outcomes result from theMethodandTechnique

only and so I assume the effect ofContextModelis negligible. I show the results for each of

the six simulation runs described in the paper (see Table 3 ofthe paper).
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The target process has three increments and each increment has a number of releases ( [129]

Fig. 1). For each release, there is a ‘gather requirements’ and ‘develop from requirements’

Activity . The process thus comprises one such cycle for each release.From Figs. 1 and 6 of the

paper, I infer four releases for increments 1 and 2, and threefor increment 3, making a total of

11 releases. From Fig. 6 of the paper, I also infer that a release spans 10 weeks.

The process comprises the followingActivities.

• DefineForPrototype

• DevelopPrototype

• DefineFromPrototype

• DevelopRequirements

• DefineLastRequirements

• DevelopRemainingRequirements

Product The study focusses on software content and effort, and the quality focus is ‘correct-

ness of requirements’. The latter must capture both requirements that are removed (for example,

to be replaced with hardware) and requirements that are changed (presumably as a result of fail-

ure to capture functionality correctly). The first is a case of ‘they did the wrong thing’ i.e. were

ineffective in initial capture. The second could imply the same thing, or could be a result of

capturing the right thing, but doing it badly (‘they did it wrong’). The target study does not

differentiate between the two cases (there is a single ‘weekly replacement factor’), but as the

focus of the study is requirements that are replaced, removed and changed, I model the incor-

rect requirements as failure to capture the right thing. I can model this as aQuality attribute

i.e. view as errors in requirements. However, I prefer to view the failure to correctly capture

requirements as a lack of effectiveness in buildingContentand model as aContentattribute

rather than aQuality one. I note that thePerspectivesapplied represent views on the attributes

only and so the choice does not affect model outcomes. Cost ismeasured in ‘person weeks’. I

thus include Content and Cost perspectives, and apply, for eachProduct Partition(Definition,

Architecture, Design, Source, Integration, Packaged), the elements:

Content Total The total number of requirements collected or implemented.This includes re-

moved requirements, replaced requirements, and requirements in final form.

Content Correct The number of collected or implemented requirements in finalform i.e. re-

quiring no change.

Cost ActualHours The time cost of collecting or implementing ‘Content Total’requirements.
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For the recreation, as in the original study,Quality elements are ignored, presumably be-

cause these remain constant across process comparisons. I assume there is noProductat process

start. For this study, the software is finally delivered whenall requirements have been correctly

implemented. With theProductmodel above, this occurs when the ‘Content Correct’ value is

equal to its maximum value i.e. the value targeted for ‘Content Total’.

From the target study ‘Reproduction of the reference mode’ (Fig. 6 in the paper), I infer that

the total number of delivered requirements is 2,000 i.e. ‘Content Correct’ must reach this total.

Methods EachActivity above is based on aMethod. TheMethodsare all different as regards

effect onProduct. For example, ‘DefineFromPrototype’ captures requirements based on a pro-

totype and there is an expectation that the requirements will not be complete at the end of the

Activity . For ‘DefineLastRequirements’, on the other hand, it is expected that requirements will

be finalised. TheMethodsfor increments A, B and C are:

• CaptureRequirementsForPrototype (A)

• ImplementPrototype (A)

• CaptureRequirementsFromPrototype (B)

• ImplementRequirements (B)

• CaptureFinalRequirements (C)

• ImplementFinalRequirements (C)

However, because of the feedback-based structure of a system dynamics model, theMethod-

related differences between the three increments is not captured. I thus implement twoMethods

only, ‘CaptureRequirements’ and ‘DevelopFromRequirements’. For the same reasons, i.e. it

is not possible to distinguish between the three incrementsas regards the effect of contexts, I

work with only twoActivities, ‘Requirements’ and ‘Develop’. I note a limitation in the system

dynamics approach.

From [129] Table 2 in the paper, I see that the number of requirements at project start is

1000. I can not understand how to use the ‘Initial requirements fraction for increment B/C’,

but from Fig. 6, I infer ‘R(A)’ 1200, R(B) 500 and ‘R(C)’ 300. The ‘New requirements

fraction’ in Table 2 of .15 implies that .15 of the requirements for an increment are received

after the increment start. The values I will work with are :

R(A) 1200 (60 percent): R(A0) 1020 (51 percent); R(ANew) 180 (9 percent)

R(B) 500 (25 percent): R(B0) 420 (21 percent); R(BNew) 80 (4 percent)

R(C) 300 (15 percent): R(C0) 260 (13 percent); R(CNew) 40 (2 percent)
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As Figure 5 in the paper indicates most new requirements in anincrement are received

during the first five weeks i.e. during the first release, I willallocate these to the second release

for each increment (the base requirements for the incrementare allocated to the first release).

I now need to decide how to handle the changed, replaced and removed requirements. From

Table 3 in the paper I learn that the ‘actual average requirements replacement per week’ (AARR)

is 0.73 percent for the baseline case. In section 5.1., I learn that “the number of replacing re-

quirements per week is proportional to the number of requirements known at project start”.

With an initial requirements count of 1000 and an AARR of .73 percent, I calculate 7.3 require-

ments replaced per week, 73 per release (10 weeks) and 730 over the course of the project. This

seems consistent with Fig. 8.

The natural way to do this is to assign a non-unit effectiveness to the requirements gathering

Activities. As I have no information to the contrary, I assume this effectiveness is the same for

each increment and choose a value for ‘Content effectiveness’ that results in actual number of

2730 over 2000 total requirements. I thus work with a Contenteffectiveness value of 2000/2730

= .733. I will implement this number for each release other than the last for each increment. For

the last releases, I will implement a Content effectivenessof 1. The reason for this is that, at

the end of each iteration, all requirements for the iteration are delivered and this means that the

last releases must effectively deal with getting things right i.e. all recaptured requirements are

correctly recaptured. Note that, if at project end I had requirement errors, a differentMethod

would be required — perhaps one without the word ‘correctly’. For the ‘develop’ effectiveness

values, I assign a value 1 as it is inferred in the paper that the ‘Develop’Activities introduce no

problems.

I now examine the ‘Cost ActualHours’ associated with eachMethod. For the ‘develop’Ac-

tivity , I require some idea of the baseline cost in person weeks to implement a requirement, in

order that I can see a greater cost resulting when the number of requirements being replaced

increases (more requirements are implemented). There is mention in section 5.1 in the paper

that, because “each increment is different in nature, thereis a dedicated level of productivity

assigned to each level”. Table 2 contains ‘Nominal average productivity - functional unit per

person week’ for the three increments. However, it isn’t clear what is a ‘functional unit’, or

whether the productivity difference between iterations isdue to the different number of require-

ments for each iteration (1200, 500, 300), rework, a different development method, or different

contexts resulting in different effectiveness values.

For a first pass, I will assume the variation is due to requirements rework. This is taken care

of already (difference between ‘Content Total’ and ‘Content Complete’). Thus I assume a ‘flat’

cost per requirement. From Table 3 in the paper, I see that a software development effort of

586 weeks was required to implement 2730 requirements and this gives a cost of .21465 person

weeks per requirement.
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However, if I carry out the same exercise for the other simulation runs, I find the cost per

requirement varies.

• Case 1: 875 person weeks / 3830 requirements = .22846 person weeks per requirement.

• Case Baseline: 586 person weeks / 2730 requirements = .21465person weeks per re-

quirement.

• Case 3: 499 person weeks / 2400 requirements = .20792 person weeks per requirement.

• Case 5: 452 person weeks / 2140 requirements = .21121 person weeks per requirement.

• Case Optimal: 420 person weeks / 2080 requirements = .20192 person weeks per require-

ment.

• Case 6: 416 person weeks / 2060 requirements = .20194 person weeks per requirement.

It’s not clear what is happening during the various runs to effect this difference. For the

baseline case I work with a cost of .21465 person weeks per requirement, and consider this as

equating to a baseline cost effectiveness of 1.

It remains to calculate the ‘cost per requirement’ for systems engineering baseline require-

ments gatheringMethods. This doesn’t seem to be so easy, because it’s not clear why the

assumption that more time taken (lowerCost effectiveness) will result in better results (higher

Contenteffectiveness). Fig. 4 in the paper gives us a relationship between ‘weekly replace

factor’ and systems engineering effort. But this really is astatement about the effectiveness of

the requirements gathering exercise and would seem to be a model assumption that taking more

time results in fewer requirements needing replaced. Therecould be many ways to achieve this

result, for example, using more expert engineers, better tools, more planning.

However, as I am attempting to reproduce the results presented, I do not need to worry about

what is the basis for the above assumption. I simply accept that the relationship holds and use

the results of the relationship to calculate what was theContentandCost effectiveness for the

requirements gathering activity.

For the baseline case, the ‘weeklyReplaceFactor’ (see Fig.4) is Min(.05, 1/x) where x =

(2+effort)pow1.7 = (2+10)pow1.7 = 17.694. So ‘weeklyReplaceFactor’ = Min(.05, .0565) =

.05. Applying this weekly increase to a base number of requirements 1000, over a period of 200

weeks yields a final number of requirements 1,729. This number, of course, corresponds to the

‘AARR per week’ of .73 (see Table 3). For the baseline case, total requirements is thus 1729 +

1000 (new).

For all simulations I will work from the ‘AARR’ for systems engineering, rather than calcu-

late this from the equation, as my interest is in findingContentandCosteffectiveness values.
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Baseline Simulation

Table 8.18: System dynamics Baseline - Incr A Activities

Activity Characteristics Effectiveness
Requirements 1020 .0037 .733, 1
Development .25 .21465 1, 1
Requirements 1200 .0037 .733, 1
Development .5 .21465 1, 1
Requirements 1200 .0037 .733, 1
Development .75 .21465 1, 1
Requirements 1200 .0037 1, 1
Development 1 .21465 1, 1

The cost that is the baseline case is 10 person weeks for 2730 requirements i.e. aCost

effectiveness of 1 results in a cost of 10/2730 = .0037 personweeks per requirement. I will

work with this baseline value. For Content effectiveness I have 2000/2730 = .733.

Table 8.19: System dynamics Baseline - Incr B Activities

Activity Characteristics Effectiveness
Requirements 1620 .0037 .733, 1
Development .25 .21465 1, 1
Requirements 1700 .0037 .733, 1
Development .5 .21465 1, 1
Requirements 1700 .0037 .733, 1
Development .75 .21465 1, 1
Requirements 1700 .0037 1, 1
Development 1 .21465 1, 1

Summaries of baseline simulation values for increments A, Band C are presented in Tables

8.18, 8.19 and 8.20. Column 1 lists theActivities, column 2 the characteristic values, for

example, ‘number of requirements gathered’, and ‘person hours per requirement’ and Column

3 lists the Content and Cost effectiveness for theActivity . I include the ‘person weeks per

requirement’ value from which theContentandCost effectiveness values are calculated. For

reasons of simplicity and limited space, I decribeActivities from now as simply ‘Requirements’

and ‘Develop’.

Result is Total req. 2728; SysEng effort 10.1 ActualHours; Development effort 585.6 Actu-

alHours; Total effort 595.6 ActualHours.
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Table 8.20: System dynamics Baseline - Incr C Activities

Activity Characteristics Effectiveness
Requirements 1960 .0037 .733, 1
Development .34 .21465 1, 1
Requirements 2000 .0037 .733, 1
Development .67 .21465 1, 1
Requirements 2000 .0037 1, 1
Development 1 .21465 1, 1

Case 1

We now adjust the effectiveness of the requirements gatheringActivities to give results compli-

ant with Table 3 in the paper.

For each case, I calculate the new systems engineeringContentandCosteffectiveness val-

ues and create a new input process with the new numbers.

AARR is 1.83 and systems engineering effort is 5 person weeks.

Case 1 results in 3830 requirements in 5 person weeks i.e. 766requirements per person

week. Cost effectiveness relative to the baseline case is 766/273 = 2.806.

For Content effectiveness we have 2000/3830 = .522. This value is approximate due to the

fact that it is applied to all releases other than the last in each increment, where I assume they

‘do the right thing right’. Experimentation found .47 to give the correct result.

Development cost is .22846 person weeks per requirement. This equates to a relativeCost

effectiveness of .21465/.22846 = .94.

Results for increment A are shown in Table 8.21.

Table 8.21: System dynamics Case n1 - Increment A Activities

Activity Characteristics Effectiveness
Requirements 1020 .0037 2.806, .47
Development .25 .21465 .939, 1
Requirements 1200 .0037 2.806, .47
Development .5 .21465 .939, 1
Requirements 1200 .0037 2.806, .47
Development .75 .21465 .939, 1
Requirements 1200 .0037 2.806, 1
Development 1 .21465 .939, 1

Result is Total req. 3825; SysEng effort 5.04 ActualHours; Development effort 871.2 Actu-
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alHours; Total effort 876.24 ActualHours.

Case 3

Case 3 results in 2400 requirements in 15 person weeks i.e. 160 requirements per person week.

Cost effectiveness relative to the baseline case is 160/273= .586.

For Content effectiveness we have 2000/2400 .833. Experimentation found .832 to give

correct result.

Development cost is .20792 person weeks per requirement. This equates to a relative Effi-

ciency of .21465/.20792 = 1.032.

Results for increment A are shown in Table 8.22.

Table 8.22: System dynamics Case n3 - Increment A Activities

Activity Characteristics Effectiveness
Requirements 1020 .0037 .586, .832
Development .25 .21465 1.032, 1
Requirements 1200 .0037 .586, .832
Development .5 .21465 1.032, 1
Requirements 1200 .0037 .586, .832
Development .75 .21465 1.032, 1
Requirements 1200 .0037 .586, 1
Development 1 .21465 1.032, 1

Result is Total req. 2398.12; SysEng effort 15.14 ActualHours; Development effort 499.4

ActualHours; Total effort 514.54 ActualHours.

Case 5

Case 5 results in 2140 requirements in 30 person weeks i.e. 71.33 requirements per person

week. Cost effectiveness relative to the baseline case is 71.33/273 = .2613. Experimentation

found .262 to give better result.

For Content effectiveness we have 2000/2140 .935. Experimentation found .9345 to give

correct result.

Development cost is .21121 person weeks per requirement. This equates to a relative cost

effectiveness of .21465/.21121 = 1.016.

Results for increment A are shown in Table 8.23.

Result is Total req. 2139.8; SysEng effort 30.22 ActualHours; Development effort 453.22

ActualHours; Total effort 483.44 ActualHours.
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Table 8.23: System dynamics Case n5 - Increment A Activities

Activity Characteristics Effectiveness
Requirements 1020 .0037 .262, .935
Development .25 .21465 1.016, 1
Requirements 1200 .0037 .262, .935
Development .5 .21465 1.016, 1
Requirements 1200 .0037 .262, .935
Development .75 .21465 1.016, 1
Requirements 1200 .0037 .262, 1
Development 1 .21465 1.016, 1

Case Optimal (based on total effort)

AARR is 0.08 and systems engineering effort is 42 person weeks.

Case Optimal results in 2080 requirements in 42 person weeksi.e. 49.52 requirements per

person week. Cost effectiveness relative to the baseline case is 49.52/273 = .1814.

For Content effectiveness we have 2000/2080 .9615.

Development cost is .20192 person weeks per requirement. This equates to a relative Cost

effectiveness of .21465/.20192 = 1.064.

Results for increment A are shown in Table 8.24.

Table 8.24: System dynamics Case Optimal - Increment A Activities

Activity Characteristics Effectiveness
Requirements 1020 .0037 .1814, .9615
Development .25 .21465 1.064, 1
Requirements 1200 .0037 .1814, .9615
Development .5 .21465 1.064, 1
Requirements 1200 .0037 .1814, .9615
Development .75 .21465 1.064, 1
Requirements 1200 .0037 .1814, 1
Development 1 .21465 1.064, 1

Result is Total req. 2080; SysEng effort 42.42 ActualHours;Development effort 420.43

ActualHours; Total effort 462.85 ActualHours.

Case 6

AARR is 0.06 and systems engineering effort is 50 person weeks.
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Case 6 results in 2060 requirements in 50 person weeks i.e. 41.2 requirements per person

week. Cost effectiveness relative to the baseline case is 41.2/273 = .151.

For Content effectiveness we have 2000/2060 = .9709.

Development cost is .20194 person weeks per requirement. This equates to a relative Cost

effectiveness of .21465/.20194 = 1.063.

Results for increment A are shown in Table 8.25.

Table 8.25: System dynamics Case n6 - Increment A Activities

Activity Characteristics Effectiveness
Requirements 1020 .0037 .151, .9709
Development .25 .21465 1.063, 1
Requirements 1200 .0037 .151, .9709
Development .5 .21465 1.063, 1
Requirements 1200 .0037 .151, .9709
Development .75 .21465 1.063, 1
Requirements 1200 .0037 .151, 1
Development 1 .21465 1.063, 1

Result is Total req. 2059.9; SysEng effort 50.47 ActualHours; Development effort 416.75

ActualHours; Total effort 467.22 ActualHours.

Discussion

Although I have found values that comply with the reported results i.e. I have successfully

represented the study inKiTe, a couple of questions and observations arise:

• It’s not clear what the relationship between ‘weeklyReplaceFactor’ and system engineer-

ing effort (Fig. 4) is based on. The Systems Engineering effectiveness values are an

alternate way of defining this relationship. It would be interesting to know what is the

underlying change inMethodor Contextthat provides the different simulation values.

• The figure for developmentCost effectiveness has been inferred by averaging across the

process. I assumed no inherent difference between the threeiterations. This may be

incorrect and I may need to redo with different values for each iteration.

• I note that the developmentCost effectiveness seems to vary according to the number

of requirements and I am not really sure what is the mechanismthat underlies this. Is

the dip at ‘n5’ meaningful? Perhaps additional manpower causes a drop in effectiveness?

Or there is a penalty for changing requirements i.e. a changed requirements costs more
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than a new one. This highlights some assumptions of the studyor some inadequacy in

reporting study details.

• Because of the application of a system dynamics approach, itis not possible to differenti-

ate between increments. However, from aKiTe perspective, the increments are different

because, for example, each has different preconditions forrequirements. I have exposed

what is arguably a limitation of the system dynamics approach.

8.2.9 Study 9: Concurrent programming field study

This study re-examines data from an industrial field study byParrish et. al. carried out to exam-

ine programmer productivity as team size varies [126]. Goals addressed are 1.2.1.1. (traditional

process), 1.2.2.4. (quantitative study), 1.2.3.3. (smallgrained), 1.2.5.1. (industry project),

1.2.6.4. (small project), 1.2.7.1. (CMM level 1), 1.2.8.2.(co-located project), 1.2.10.1. (stan-

dard goals).

The original study showed productivity for teams working oncommon code to be much

lower than for individuals. This result is in direct contrast with results reported for pair pro-

gramming experiments. The study re-examines the data for team size two i.e. for two devel-

opers working concurrently on the same code module and aims to find out if the role-based

protocol characteristic of pair programming, for example,use of the same computer, regular

switching of roles, is the reason for such differing results. There were 48 modules with devel-

opment teams of size 2. Aconcurrencymetric is used — this is defined as the degree to which

programmers reported working on the same module during the same day. The authors acknowl-

edged that, although this measure does not perfectly measure the degree ofcollaboration, it is

a necessary precursor and positively correlated with collaboration. Pairs were categorised as

‘high-concurrency’ or ‘low-concurrency’ and the number ofunadjusted function points (UFPs)

completed per unit of time measured.

Table 8.26: Productivity v. concurrency level (Parrish et. al.)

Concurrency level Mean productivity Standard deviation
Low 4.709 3.973
High 1.125 0.726

The contracted project was to rehost a legacy time accounting system to a distributed envi-

ronment. The product had over 3,000 screens and approximately a million lines of code. The

new system supports over 400 distributed users.

T-test results of productivity versus concurrency level are shown in Table 8.26.
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Results showed that the mean productivity of individuals was about four times higher than

that of pairs. The authors believe it is unlikely that the lack of productivity was due to duplicated

or conflicting work because the developers worked at the samelocation and used a good version

control system. They conclude that the role-based protocolof pair programming combats the

natural productivity loss of collaborative efforts.

Table 8.27: Concurrency Product Model

Perspective Partition Attribute Meaning
Content Design UFPs # unadjusted function points

Source UFPs # unadjusted function points
Cost Source TimeUnits # 15 minute intervals

KiTe representation

As for other studies, I capture mean results and discuss the statistical nature of the study in

Section 10.5.

The first task is to define an appropriateProductmodel. The study measures the number

of unadjusted function points (UFPs) per hour and names this‘Productivity’. I implement a

Productmodel as in Table 8.27. I choose to separate ‘UFP’s and ‘TimeUnits’ because I expect

that working with simple units will provide aProductmodel that will facilitate comparisons

with other models and in any case the compound values are easily derived from the simple

ones.

I next identify Method and Techniqueand again find some lack of clarity in the study

description.

Method

Preconditions: There is no mention of what the developers are working from i.e. what are the

inputs toMethod. The study mentions that the UFPs were measured “from preliminary

design information”. As the study relates to a large-scale,more traditional project, it is

likely that full and detailed design documents are available, but we do not know this for

sure. This is important information, because ‘coding from designs’ and ‘coding from

requirements’ represent differentMethodsin KiTe.

Transformation: We do not know what is being created by the developers. Unit-tested code?

Built and integrated modules? If the latter, we are dealing with integration of individual

modules into a large system and the cost of integration may behigh. This cost will
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effectively be a ‘hidden cost’ if we treat thisMethod as one that producesSourceonly,

and the result will be that the cost of producingSourceappears to be very high.

Technique The factor that is the focus of the study, i.e. level of concurrency, I treat asTech-

nique. The reasons for this as as presented in Section 8.2.4 and relate to the possibility that

individual engineer attributes, for example, ability to work with others, might affect the impor-

tance of this factor. I thus have twoActivities, both withMethod ‘CodeFromDesigns’ and with

Techniques‘LowConcurrency’ and ‘HighConcurrency’. The relative performance values for

the twoActivities are shown in Figure 8.15.

Activity Product
Source

U
F

P

T
im

e
U

n
it
s

Code (CodeFromDesigns:LowConcurrency) 4.71 1.00

Code (CodeFromDesignsHighConcurrency) 1.13 1.00

Figure 8.15: Concurrency Technique relative performance

This Figure is a direct representation of the results in Table 8.26 from the paper.

I now capture context-related attributes. TheEngineerattribute ‘Professionalism’ is men-

tioned and the authors believe this is held constant. The authors also report that the developers

used a “fourth-generation tool, a modern relational database” and a development environment

with “report generators, COTS libraries, database systems, and other new components”. I in-

clude these in the model forContext. As these are also held constant, relative effectiveness is

the same for both low and high concurrency i.e. the authors believe the difference in perfor-

mance is due only to the differentTechniquesi.e. to the different levels of concurrency. The

models forEngineerandContextare presented in Table 8.28.

Discussion

As a result of trying to represent this study inKiTe, I uncovered some areas of uncertainty re-

lating toMethod andProductdefinition, because it is not clear whatProduct Partitionis input

to Methodand what is delivered. This means I cannot represent the study without first making

some assumptions. I also notice a possible problem when trying to define what isTechnique.

The authors claim that ‘concurrency’ is a reasonable measure for ‘collaboration’, as they are

positively correlated and version control decreases the likelihood of conflict and duplication.
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Table 8.28: Concurrency Engineer and Context Model

Attribute Measure
Engineer Professionalism No measure given
Context FourthGenerationTool

RelationalDatabase
WindowsDevelopmentEnvironment
ReportGenerators

But this is an unsubstantiated claim and it would seem likelythat developers working on code

at the same time will produce a different result than developers working on the same code at

different times as the first would presumably force more communication. Although the two ap-

pear to be positively correlated, this might not be the case onceEngineerattributes are taken into

account. In any case, inKiTe we would handle these as two potentially differentTechniques.

The authors report that programmers were “professional” but this term is not described fur-

ther. It provides contextual information and so is important for study duplication. I include it

in the model forEngineer, noting that any realisticContextModelwould be unlikely to be able

to work with such a term, as it says little about the developers’ capability to work withProduct

andTechnique. Some interesting thoughts about the context factors mentioned, for example,

‘FourthGenerationTool’, involve the realisation that these alone are not particularly useful when

trying to determine how well developers work. In aKiTe system, such context factors matter

only in as much as these support developers and the use of ‘modern’ and ‘new’ tools could

in fact cause problems for developers unfamiliar with them.A more completeContextModel

would include someEngineerattributes describing familiarity with environment. Another pos-

sible Engineerattribute suggested by the study description is ‘familiarity with subject area’

because the fact that a contract situation is involved wouldtend to imply that developers might

not be familiar with the subject area.

8.2.10 Study 10: Variations in XP process

In Section 8.2.3, I captured a ‘typical’ XPprocessin KiTe and illustrated howProductand

Engineermight change during a single iteration. In this study, I consider some variations and

illustrate how these might affect outcomes. For this study,I first vary some of theEngineer

attribute values at the start of the iteration. I then consider the possible situation of failure to

quickly resolve build defects and examine how this might affect choice ofMethodsand out-

comes. Goals addressed are 1.2.1.2. (agile process), 1.2.3.3. (small grained), 1.2.4. (variations

to base process) and 2.2. (compare process variations).



164 Evidence

KiTe representation

For the first part of this study, I apply the same models forProduct, EngineerandContext,

and implement the sameActivities, MethodsandTechniques. However, I now assume that the

Engineer‘Technical Skills’ and ‘Product Area Knowledge’ are lower at iteration start than as

for the illustration in Section 8.2.3.

For the second part of the study, I return to the decision to ‘wrap up’ build and build defect

resolution into a ‘BuildAndTestAndFixDefects’Method, and consider the situation where build

defects are not resolved quickly. For this case,Product, EngineerandContextmodels remain

unchanged, but now the ‘Integration’Activity is separated into ‘Build’ and ‘ResolveDefects’

Activities, with associatedMethods‘BuildAndUnitTest’ and ‘FixBuildProblems’. TheseAc-

tivities iterate until the build is ‘clean’ i.e. we have a ‘local’ iteration. I illustrate this case

with both sets ofEngineeri.e. those with high and low ‘Technical Skills’ and ‘ProductArea

Knowledge’.

I reproduce Figure 8.10 from Section 8.2.3 below in Figure 8.16.
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PlanningGame 10 3 0 5 2 3 2 3 2 3 3 2 3 2 3 2 3 1 2 3 2 3 2 3 0 6 3 5 8 6

ReleasesMetaphor 7 1 0 5 2 3 2 3 2 3 3 2 3 2 3 2 3 1 2 3 2 3 2 3 0 6 5 5 8 6

PP 7 1 0 5 7 3 7 5 2 5 8 2 3 2 3 2 3 1 2 3 2 3 2 3 0 6 5 5 9 8

PPRefactor 7 1 0 5 7 2 7 5 2 3 9 2 3 2 3 2 3 1 2 3 2 3 2 3 0 6 5 5 9 8

PPRefactorCollective 7 1 0 5 6 2 7 5 2 2 9 2 3 2 3 2 3 1 2 3 2 3 2 3 0 6 6 5 9 8

CodeIntegrate 7 1 0 5 6 2 7 5 2 2 9 6 2 7 5 2 2 3 6 2 7 5 2 2 0 6 7 5 10 9

FunctionalTest 7 1 1 5 6 2 7 5 4 2 9 6 2 7 5 4 2 3 6 2 7 5 4 2 2 6 7 5 10 9

Finish 7 1 1 5 6 2 7 5 4 2 9 6 2 7 5 4 2 3 6 2 7 5 4 2 2 8 9 5 10 9

Figure 8.16: XP process iteration

Labels along the top represent the models forProductandEngineerand labels on the ver-

tical axis represent XP Practices. The values in the table depict values for the model attributes

after implementation of the Practices.

In Figure 8.17, I show a possible alternative outcome when the starting values forEngi-

neer‘SubjectAreaKnowledge’ and ‘TechnicalSkills’ are changed from ‘5’ to ‘1’ and ‘5’ to ‘2’,
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Finish 7 1 1 5 4 7 4 9 4 7 9 4 7 4 9 4 7 3 4 7 4 9 4 7 2 4 9 2 10 9

Figure 8.17: XP - Engineers with low skill levels

respectively. In the new scenario, The result of the ‘PairProgramming’ Practice (row 4) is an

increased ‘Infrastructure’ (from 3-8), ‘RemainingDefects’ (from 5-9) and ‘Complexity’ (from

5-9). ‘Refactoring’ and ‘Collective Ownership’ do not improve the situation, because of the

low technical skills. These skills do not improve throughout the iteration, because there are no

developers who are highly skilled to act as mentors. However, ‘SubjectAreaKnowledge’ has

increased. The high ‘Infrastructure’ and code ‘Complexity’ are ‘invisible’, as ‘Stories’ have

been implemented as required and defects found at ‘FunctionalTest’ are reasonable in number.

The result of the iteration is a code base that is complex and likely to cause velocity to de-

crease in subsequent iterations. Engineers are unaware of any problem and so ‘Satisfaction’

and ‘Confidence’ are high.

I now consider the possibility that build defects are not resolved immediately. Such a sit-

uation may occur in a number of contexts. The XP team might comprise two persons only,

one experienced and one inexperienced, and the more experienced of the two is sick. The team

might be located in different locations and problems in the communications link may occur.

To capture these situations inKiTe, it is helpful to decompose the ‘BuildAndUnitTestAndFix-

Problems’Method into two Methods, ‘BuildAndUnitTest’ and ‘FixBuildProblems’. These are

applied iteratively until build defects are resolved. Thismodel enables us to examine where

in the process possible bottlenecks may occur. For example,if our ContextModelconsiders

attributes such as ‘experience’ and ‘communication’ to be of relevance, and ourContext is

‘only one experienced engineer’ and ‘automated integration system’, it is likely that ‘BuildAn-
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dUnitTest’ will expose little risk but ‘FixBuildProblems’is risky. On the other hand, if our

Context is ‘developers in different locations’, ‘communications channels of poor quality’ and

‘automated integration system’, then ‘BuildAndUnitTest’is seen to be of high risk due to the

possibility of the remote build being unavailable.

Discussion

In the first case above, I illustrated an extreme scenario in order to both show that capture of

such a scenario is straightforward and expose some possibleproblems with the XP process

model. The attribute values were selected to serve these purposes and were not based on any

formal ContextModel, rather were based on a subjective ‘what if’ reasoning.

In the second case also, I selected scenarios specifically tohelp illustrate how different

ContextandMethodselection might be applied when modelling inKiTe.

The key idea from this Section is that the ability to captureMethodsat different levels of

granularity and different attributes forContext, EngineerandProductis necessary if we are to

model the large range of possibilities for aRealisedProcess.

8.2.11 Study A-H: Miscellaneous process elements

In this Section, I show how some miscellaneous process elements would be represented inKiTe.

A: Developers have a discussion

Productis not changed and soMethodaccepts allProductstates and effects no change toProd-

uct. Techniqueis ‘Discussion’ withTechnique CapabilitySpecnaming the relevant attributes,

for example, ‘Subject Area Knowledge’, ‘Product Knowledge’, ‘Java’.

The model forEngineerincludes skill values for relevant attributes. These are increased ac-

cording toContextModel, for example, all values increase, with values for low skilled engineers

increasing more.

B: Coding standards

Context includes an attribute relating to the existence of coding standards.ContextModeluses

this as input when ‘matching’Engineer, TechniqueandProduct CapabilitySpecs. If Technique

relates to coding, it is likely that the size ofProducttransformation due toTechniquewill be

higher as a result of the coding support.



8.2 Capture all Processes and Process Models 167

C: Add developers late to a project

The result depends upon the details ofContextModel. For example, it might be thatCon-

textModel returns a higher value if the addition of the new engineers increases the general

experience and skill level. It might return a lower value if the addition takes the number of

engineers above some limit that is believed to be an upper limit for effective communications.

D: Developers happier and more confident doing XP

‘Happiness’ and ‘Confidence’ may be included asEngineerattributes,Technique‘XP’ an at-

tribute that denotes working in pairs andContextModelinclude a matching that working in

pairs makes people happier etc. A more sophisticated model might involveEngineercharac-

teristics, for example, ‘likes working with people’ being included andTechnique Capability

‘PairProgramming’ including ‘People work together’. Thiswould produce a different result

from ContextModeldepending uponEngineerattribute value.

E: Parallel tasks

In a ‘real’ project, parallel tasks are always followed by some kind of merging procedure. For

tasks that relate to different areas of the product, the procedure may be conceptual only. For

example, outputs of ‘Create test plans’ and ‘Design’ may be merged simply by placing outputs

in a target location. Possibilities include no conflicts (i.e. changes to different parts of the

product that do not affect each other), no apparent conflicts, but problems because of couplings

between the changed parts of the product and conflict i.e. theproduct has been changed in

the same place by more than one task. It is the job of the merging procedure to resolve any

problems.

One way to represent the above inKiTe is to remain true to real life and apply a ‘Merge’

Activity after the parallelActivities have been applied one after the other.Techniquemight be

‘PutInLocation’ or ‘Automated’ if no conflicts are expectedor ‘ResolveConflicts’ if they are.

For Method ‘MergeCode’,Method precondition would be the existence ofSourceand results

are changedSource. As always,ContextModel‘matches’Engineerskills with theTechnique

requirements to modify the effectiveness of the baseTechniquei.e. how well the merging is

carried out.

F: Advertise milestone release contents to open source community

In KiTe, each project is associated with a singleRealisedProcessand eachRealisedProcessis

associated with a singleProductIdentifier. A delivery to any stakeholder implies some kind of
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versioning i.e. each delivery is associated with a different RealisedProcess. A delivery is the

final state for theRealisedProcess.

G: Project retrospective

Product is not changed and soMethod accepts allProduct states and effects no change to

Product. Techniqueis ‘Retrospective’ withTechnique CapabilitySpecincluding attributes such

as ‘Brainstorming’ or ‘DiscussingProblems’.

ContextModelmight represent a belief that talking about problems makes people happier.

The model forEngineerincludes, for example, ‘Satisfaction’.ContextModelincreases this as

a result ofTechnique‘Brainstorming’ or ‘DiscussingProblems’.

H: Technology transfer

This is similar to A.Productis not changed and soMethod accepts allProductstates and ef-

fects no change toProduct. Techniqueis ‘TechnologyTransfer’ withTechnique CapabilitySpec

naming the relevant attributes, for example, ‘Computer Telephony’.

The model forEngineerincludes skill values for relevant attributes. These are increased

according toContextModel, for example, only values for low skilled engineers increase.

I: Disturb a task

RealisedProcessis defined as a state machine and the events that cause change to states are

defined as ‘StartActivity’, ‘ChangeContext’ and ‘EndActivity’ (see Section 7.2.14). AMethod

is disturbed by ‘ChangeContext’ and the resulting state change illustrated in Figure 7.6.

8.3 Compare Processes and Process Models

8.3.1 Study 11: Developer collaboration

In Sections 8.2.4, 8.2.5, 8.2.6 and 8.2.9, I presented four studies involving pairs of develop-

ers creating code. Two studies [120, 169] present results that indicate that developers work-

ing collaboratively produce better quality code with very little loss in productivity. Another

study [109] uses this result in a model for simulating XP projects. A fourth shows that col-

laboration is about one quarter as productive as solo programming and concludes that it is pair

programming’s role-based protocol that is the cause of the good results [126]. However, the

second study [120] produces good results forcollaboration(not pair programming) and this is

in direct contrast with results of the last study.
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In this Section, I show how representation inKiTe provides a means of knowing when it is

appropriate to compare studies and a mechanism for effecting comparison. In order to illustrate

comparison, I first ‘fix’ some of the ambiguities and assumptions uncovered during the attempt

to represent the studies (see Sections 8.2.4, 8.2.5, 8.2.6 and 8.2.9). I first focus onMethodand

illustrate the results ofMethodon Productfor the four studies in Figure 8.18.
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Figure 8.18: Case study overview

For each pair of diagrams, the ‘before’ state is depicted on the left and the ‘after’ state on the

right. Each x-axis is divided into six — these are theProduct Partitions. In eachPartition, there

are three bars. The left blue bar depicts the value of theContentattributes for thePartition, the

middle green bar the value for theQuality attributes and the right red bar the values of theCost

attributes.

For the Williams study, I apply documented stories asMethod inputs and code executables

as deliverables. Integrations are not applicable and thereis zero cost for packaging. For the

Nosek study, I assume inputs are documented requirements and deliverables are stand-alone

executable scripts. Again, integration is not applicable and there is zero cost for packaging.
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For the Melis study, I assume a larger product with documented stories as inputs and delivery

including integrated and executable code with non-zero cost for integrating and packaging. For

the Parrish study, I assume developers worked from completed designs and deliverables were

source modules, built locally only i.e. not formally integrated or packaged. I have omitted the

y-axis values. These are values forProductattributes, but in the first instance I focus on the

‘shape’ of theMethods i.e. whichProduct Partitionsare involved and so the actualProduct

attribute values are not helpful.

Comparing

The first interesting observation concerns the ‘shape’ ofProductfor each case. Cases 1 (Williams)

and 2 (Nosek) haveDefinitionsas inputs and result in changedSourceandPackaged Content,

with zeroCost applied to the last. Case 3 (Melis) also hasDefinitions as inputs but produces

Source, IntegrationandPackaged, with someCost applied to all three. The last case (Parrish)

hasDesignsas inputs and results inSourcedeliverables only. I immediately understand that

theMethodsfor the studies 3 and 4 are quite different to theMethodsfor the first two studies,

and so studies 3 and 4 cannot be compared with studies 1 and 2 orwith each other. Studies 1

and 2 are candidates for comparison and aggregation as theMethodsfor both are compatible.

The key point is that, ifMethodschangeProductin different ways, for example, one produces

Sourceand another producesSource, IntegrationsandPackaged, it is not appropriate to directly

compare studies based on them.

If Methodsare compatible, I next considerProduct. The Williams study measures comple-

tion times and successful test cases as percentages and the Nosek study measures ‘functionality’

and ‘readability’ on a number scale. TheQuality aspect appears to be quite different in each

case. Is it appropriate to considerQuality metric ‘readability’ to be synonymous with ‘percent-

age of test cases passed’ for the purpose of comparison? Thiswould seem to be a hypothesis

for study in its own right.

Once I have compatibility in bothProductandMethod, I then considerContextModel. The

ContextModelfor a study represents what the researcher believes about context-related con-

founding factors i.e. context factors that might affect results. It is thus a vehicle for com-

municating with other researchers what was considered and what was accounted for. The

Williams study holds constantEngineercapability and expertise and size of task i.e. works

with a ContextModelthat contains these factors only. The NosekContextModelincludes and

holds constant experience, motivation, size of task and familiarity with environment and tools.

Experience levels in the two studies were different. Even ifwe were sure that the sameMethod

applied in both studies, it is quite premature to assume thata similar performance outcome is the

result of theMethod Techniqueonly, as I have no idea what might be the effects of capability
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versus experience, fixed versus different motivation levels, etc.

To recap, if I am to aggregate and compare results from different studies, I must work with

an abstraction that helps me know when it is appropriate to compare directly and when other,

more sophisticated, mechanisms for evidence accumulationare indicated [131, 133]. Using the

KiTe abstraction, I am able to check each possible problem area ina controlled and orderly

way.

8.4 Discussion

In this Chapter, I have discussed the use of an approach called argumentationfor collating and

presenting evidence, and have introduced different kinds of evidence to support the thesis that

the KiTe framework meets the objectives identified in Section 5.3.1.The attempt to provide

this evidence has brought to light some interesting points.

The first relates to the importance of being able to selectMethodsat different granularities,

in order that we might uncover possible assumptions when modelling a process. For example,

in Section 8.2.3 I first applied aMethod ‘BuildAndUnitTestAndFixProblems’, which appears

to be compliant with descriptions in the XP literature, and then observed that greater insight into

possible assumptions might be gained if theMethod is decomposed into ‘BuildAndUnitTest’

and ‘FixBuildProblems’. A similar situation occurred in Section 8.2.1, where I noted that the

many possibilities for defect resolution policy are simplynot noticed if a large-grained ‘Design’

Method is applied and we need to be able to drill down more deeply if weare to understand

what is really going on. The selection of appropriateMethods is not directly supported by

the use ofKiTe — rather the modeller must apply his or her own thought processes and real-

life experience. However, as a result of the definition of aKiTe Method, the ability to work

at any granularity is a feature ofKiTe and so, once a particular process has been captured,

experimentation with different granularities may be carried out.

The second point relates to the importance of selecting an appropriate model forProduct.

Choosing a model that is too restrictive results in study results that appear positive but, in fact,

do not tell the whole story. For example, the XP researchers’tendency to examine cost in

terms of ‘person hours’, presumably because iterations arefixed in length, leads to a failure to

more closely examine the integration task. Researchers assume that build defects are resolved

‘immediately’, but this is certainly not the case in many projects. For example, if the product

is large and complex, or constituent parts developed in different timezones, it is possible that

the build might remain ‘broken’ for several days. A consideration of a ‘Duration’ attribute

might very well have brought such possibilities to light. Ofcourse, the proponents of XP

claim that, by ‘growing’ the product slowly and integratingfrequently, the risk is minimal.
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However, if we are to understand how to apply various Practices in different contexts, we must

decouple the Practices and examine each separately and considering how a Practice might affect

different kinds of product-related attributes is part of this examination. Again,KiTe does not

directly support such efforts, but does so indirectly by forcing researchers to give consideration

to attributes forProduct.



9
Identifying Process Risks

In Chapter 5, I made a case for a return to the search for a theoretical model of the software

process and in Chapter 7, I proposed a candidate framework,KiTe. One interesting side-effect

of applying a model is that the model may be used to solve problems other that those for which

it was created. An example of this is illustrated in Chapter 8, in which I showed that the attempt

to capture various processes and process models resulted inexposure of many assumptions.

Another example of this kind of side-effect relates to the subject of process risk. In Section

2.3, I discussed the need to move discussion focus away from the level of ‘agile versus tradi-

tional’ and towards the characteristics of the various solution elements that make up any process.

I suggested that such a focus might facilitate the identification of risk conditions inherent in the

elements and support the building of process-specific risk profiles.

In this Chapter, I expand on this idea and show how a frameworksuch asKiTe might be

applied as an aid to risk identification. In the next Section,I overview the area of project risk and

in Section 9.2, I show howKiTe is used to identify risk conditions inherent in an XP process.

9.1 Overview of Risk Management

The idea of managing project risks is not new. The Project Management Institute’s “Guide to the

Project Management Body of Knowledge (PMBOK Guide)” [135] includes risk management as

173
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one of nine key knowledge areas. The Guide defines risk management as “. . . the systematic pro-

cess of identifying, analysing, and responding to project risk” with the aim of “. . . minimizing

the probability and consequences of adverse events to project objectives.” Project risk has

origins in the uncertainty that is present in all projects i.e. the possibility of occurrence of un-

planned or uncertain events or conditions that have a negative effect on project outcomes. The

PMBOK Guide cites six major risk processes, including Risk Identification, Analysis and Re-

sponse Planning. Risk identification is to a large extent subjective in nature. The Guide suggests

a number of techniques, for example, brainstorming and assumptions analysis, along with a list

of risk categories appropriate to the application area, forexample, technical, organisational,

project management risks.

The Software Engineering Institute (SEI) supports a taxonomy-based approach to risk iden-

tification [26]. Possible risks are categorised as ‘ProductEngineering’, ‘Development Envi-

ronment’ and ‘Program Constraints’. Each category contains a list of factors and an associ-

ated questionnaire contains a numbered list of questions asguidance for risk elicitation. The

SEI also approaches the issue of software project risk by proposing a construct for describing

risks [56]. A software-dependent development effort is represented as a complex system with

an n-dimensional space, with each dimension relating to a project characteristic that is agreed

to be of relevance. Cited examples of characteristics include ‘program staff size’, ‘number of

lines of code’, ‘requirements stability’ and ‘developmentmodel’. The project at any given time

is represented as a fuzzy point in the space, and risk is viewed as a potential state-space tran-

sition from an acceptable state to an unacceptable one. A risk is thus expressed as a construct,

theCondition-Transition-Consequence (CTC) Constructcomprising a description of the initial

state (the “condition”), the potential change to the system(the “transition”) and the potential fi-

nal state (the “consequence”). One of the consequences of use of the CTC construct is a change

in emphasis from consideration of ‘what might happen’ to ‘what are the system conditions that

might equate to a risk’. A cited example is ‘the graphical user interface (GUI) must be coded

using X Windows and we do not have expertise in X Windows’ (Condition); ‘there is a con-

cern that the GUI code will be late and inefficient’ (Consequence). The emphasis is away from

root cause analysis of possible impact and towards consideration of project current conditions

coupled with concerns about these conditions.

Indirectly related research is provided by Curtis et. al. asa result of a field study of the

software process for large systems [36]. The authors propose a behavioural model of the soft-

ware development process and present the results of the study in terms of the model. The main

findings of the study are that project problems are overwhelmingly caused by a small number

of human-related factors. Curtis summarises these in a later paper as relating to lack of shared

vision and domain knowledge, requirements uncertainty andissues of communication [34] and

presents a case for a ‘behavioural model’ of the software development process that gives due
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weight to the importance of the human element to project success.

The approaches presented above provide different kinds of guidance for identifying project

risks. The PMI processes for risk identification include application of techniques, such as brain-

storming, and use of tools, such as categories. This approach is applicable to all projects. The

SEI approach involves examination of current project conditions for conditions that might con-

tribute to unwanted project states. Identification is supported by a checklist, but this checklist is

really aimed at large, traditional projects. For example, most of the questions under ‘code and

unit test’ assume completed designs. The Curtis field study supported by other research [157]

raises the possibility that a small number of factors createthe greatest risk and exposes the dan-

ger in an over-emphasis on the technological aspects of a project. The implication is that risk

identification would be better based on a more ‘behavioural’process model.

The process modelling framework,KiTe, is an example of a behavioural model of the soft-

ware development process in that both human and technological aspects are accounted for. As

it represents a model of ‘how things are’, it also provides a framework for identifying project

conditions that may be used to establishCTC risk constructs.

From a project perspective, risk management is concerned with the possibility of failing to

meet project objectives. InKiTe, the project product-related objectives, for example specific

values relating to quality and cost, are captured in theGoalsBenchmark. The consequence of

any risk that eventuates equates to a failure of the delivered product to reach its expected values

as defined in theGoalsBenchmark. Attribute values are achieved as a result of theRealisedPro-

cessthat is implemented i.e. to application ofKiTe Activities. If the GoalsBenchmarkchanges

during the project as a result of an agreement with stakeholders to, for example, lower quality

expectations or include additional content, some existingrisks may disappear or some new ones

may appear.

I note that risk is also present if the meaning of aProductattribute is unclear, or the attribute

is an inappropriate measure for the factor-of-interest. For reasons of practicality, I assume

measurement risks are minimal.

I can thus useKiTe to identify project risks by first capturing a process inKiTe and then

asking specific questions about the captured process by considering each framework component

in turn. This is equivalent to identifying theCTC conditionsfor the elements. A captured

process comprises a number ofActivities, each of which comprises aMethod, its associated

Techniqueand aContextModel, comprisingEngineerandContext. I may considerActivities

at any level of granularity i.e. I may view the whole process as a high-levelActivity , then

view each next-levelActivity , and so on. When I perform a risk assessment, I first consider the

process-levelActivity and then eachActivity at the next level. I may then further decompose

Activities if required. For eachActivity I ask the relevant questions. I may then wish to consider

iterations, as these often serve to reduce risk factors. Thequestions are specific and reflect the
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underlyingKiTe model. For example, I first consider the precondition expectation forMethod

and ask if the required artifacts are available and of sufficient quality. Questions relating to

Techniqueinvolve clarity of definition and availability and quality of required resources.

As illustration, I carry out an initial assessment of a project that will use a custom iterative

process to create software that must run securely on a numberof different platforms. The

Activity is theRealisedProcessitself. The steps, with questions to be asked and possible risk

conditions for the process-level evaluation, are:

1. Method precondition:Are the relevant product artifacts available and of sufficient qual-

ity? Input to theRealisedProcessis theGoalsBenchmark. Risk condition might be ‘se-

curity attributes not clearly defined or agreed’.

2. Method: Are the tools required to transform inputs to outputs available and of sufficient

quality? ‘Unable to procure required development platforms and sufficient number of test

rigs’.

3. Technique: Is the Technique sufficiently defined and available and are required resources

available and of sufficient quality?‘Process definition unavailable or unclear’.

4. Engineers: Is there a skill match between engineers and relevant product artifacts and

between engineers and techniques?‘No engineers with experience in security software

or Linux’; ‘engineers new to process’.

5. Contexts- certainty:Are engineers certain about what they are doing?‘Objectives and

scope not clearly captured inGoalsBenchmark’; ‘communications issues on large, dis-

tributed project’.

6. Contexts- support:Are engineers supported in what they are doing?‘Management not

fully supportive because of pending restructure’; ‘poor support systems because relatively

new company’.

I note that application to theRealisedProcesstends to expose lack of clarity in scope and

objectives (MethodPrecondition),RealisedProcess(MethodandTechnique), manpower issues

(Engineer), clarity of vision and potential communications issues (Context).

I now evaluate a single inspectionActivity that involves reviewing design documents for

design correctness and producing review reports. A company-wide on-line review system is

used. A formal inspectionTechniqueis to be used with four reviewers from the development

group and an ‘inspection facilitator’ from a remote qualitydepartment.

1. Method precondition:Are the relevant product artifacts available and of sufficient qual-

ity? For the example, inputs are design documents and so risk conditions could be ‘de-

signs unavailable’ and ‘designs not ready for inspection’.
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2. Method: Are the tools required to transform inputs to outputs available and of sufficient

quality? For the example, outputs are design review artifacts. Risk conditions could be

‘on-line review system unavailable’ and ‘on-line review system buggy’.

3. Technique: Is the Technique sufficiently defined and available and are required resources

available and of sufficient quality?For the example, risks conditions could be ‘procedure

definition unavailable’, ‘procedure definition unclear’, ‘inspector might not be available’,

‘inspector inexperienced’, ‘no office available’ and ‘office too small and dark’.

4. Engineer: Is there a skill match between engineers and relevant product artifacts and be-

tween engineers and techniques?For the example, the inputProductartifacts are designs

and so risk conditions could be ‘skills mismatch between reviewers and design language’

and ‘skills mismatch between reviewers and formal review procedure’.

5. Context - certainty: Are engineers certain about what they are doing?For the exam-

ple, risk conditions could be ‘design documents incompleteor do not fully capture re-

quirements’, ‘poor communications between reviewers’, ‘poor communications between

reviewers and inspector’.

6. Context - support:Are engineers supported in what they are doing?For the example,

risk conditions could be ‘management not supportive’ and ‘poor tool support’.

In the above risk identification example, the questions relating toEngineerandContextare

specific in that they address skills, certainty and support.These questions reflect the use of a

particularContextModel, one that is based on the stated characteristics. I used thismodel be-

cause it encapsulates the most persistent ideas from the literature. Of course, once more sound

evidence is accumulated, the questions will change to reflect the greater knowledge. For exam-

ple, Acuna and Juristo’s ‘Human Competencies’ model [3] suggests personal characteristics, for

example, ‘Privateness’, are key in matchingEngineerandTechnique, and use of such a model

would result in theEngineer‘matching’ question having a slightly different form. I also note

that such a change inContextModelwould result in identification of different risk conditions.

For example, in an XP process (see Section 9.2), an engineer with such a ‘Privateness’ char-

acteristic would, according to Acuna and Juristo [3], have low ‘Negotiating Skills’ and might

thus be ill-suited to a pair programming situation.

The list of questions based onKiTe elements is similar to the kinds of checklist described

at the beginning of the Section, but based on current projectconditions rather than possible

risk outcomes. The SEI’s CTC approach is to identify projectcharacteristics of relevance on

a project-by-project basis. I submit that the use ofKiTe as a framework for organising these

characteristics may help risk engineers be more thorough and relevant in identification.

I note that the above approach may be applied for any softwareprocess. Initial capture of

the process inKiTe requires the expertise of someone familiar withKiTe and perhaps some
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‘real-world’ experience. However, once a process is captured, the questions are the same for

any specific instance of the process i.e. the risk assessmentprocess is generic. I also note

that the questions relating toEngineerandContext reflect a particularContextModeli.e. one

that represents the belief that ‘skills’, ‘certainty’ and ‘support’ are key for a successful project

outcome. As the industry accumulates evidence in the areas of EngineerandContext factors,

an appropriateContextModelmay be inserted into theKiTe framework and a set of questions

introduced that reflect the new understanding. The aim is, ofcourse, that risk identification

identifies those factors that are known to have greatest impact i.e. those represented by the

ContextModel.

9.2 Risks in XP Process

We now analyse the XP process as captured inKiTe with a view to uncovering areas of potential

risk in such a process [85]. Steps and questions are as described in Section 9. The first analysis

views the whole XP process as anActivity . The associatedMethodrequires aGoalsBenchmark

as input and outputs a developedProduct. This transformation is constrained to follow XP

Practices i.e. theTechniqueis XP.

Project start

1. Methodprecondition (DeliveryBenchmark): Are the relevant product artifacts available

and of sufficient quality?Objectives and scope are discussed during the PlanningGame

and are generally not available at project start. This constitutes a risk condition, as there

is no agreed ‘understanding’ between developer and customer about expectations.

2. Method: Are the tools required to transform inputs to outputs available and of sufficient

quality?As objectives have not been defined, it is not possible to identify additional tools,

for example special test rigs, that might be required.

3. Technique: Is the Technique sufficiently defined and available and are required resources

available and of sufficient quality?There is a risk condition if there is any lack of clarity

about any of the XP Practices. There is a risk condition if required resources are not

understood or available, for example, the specific seating arrangements required for Pair

Programming, common wall space, etc. The XPTechniquerequires the participation

of a customer representative (external resource) as mitigation for the lack of pre-defined

scope definition. There is a risk condition if there is any uncertainty about the authority,

capability or availability of the customer representative.

4. Engineer: Is there a skill match between engineers and relevant product artifacts and

between engineers and techniques?As scope and objectives have not been defined, it is
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not possible to identify special engineer skills that mightbe required. It is possible that

a skills mis-match will occur. A second risk condition wouldoccur if engineers believe

they understand XP but do not.

5. Context - certainty: Are engineers certain about what they are doing?There is uncer-

tainty about scope and requirements.

6. Context - support: Are engineers supported in what they are doing?Risk conditions

would be failure of management to understand the XP paradigmand lack of appropriate

environments to support development.

Many of the above risk conditions are similar to those that might be identified for other

kinds of process, for example, the lack of management support and development environments

and lack of clarity about the process. Risk conditions specific to XP projects include a lack of

up-front agreement about scope and objectives, the need forspecific physical resources and the

need for customer participation. Consequences would include lack of knowledge about required

resources and developer skills, an inability to carry out the process and dependence upon the

authority, capability and availability of the customer representative.

9.2.1 Single iteration

An iteration comprises a single ‘Planning’Activity , several cycles of ‘PairProgramming’ and

‘Integration’ Activities and a single ‘CustomerTest’Activity . We identify risk conditions for

eachActivity .

Planning

Method is ‘PlanningGame’.Techniquesare ‘Metaphor’, ‘SmallReleases’ and ‘40 Hour Week’.

1. Method (PlanningGame) precondition: There is no precondition onProductand so no

risk condition.

2. Method: Methodoutputs are informally captured Stories. Risks relate to availability and

quality of tools required to produce these i.e. availability of notepads, pens and a suitable

wall. Risk conditions would include ‘paperless office’, ‘noappropriate common wall

area’ and ‘common wall area also used for other purposes’.

3. Technique(Metaphor, SmallReleases): ‘Metaphor’ is a somewhat abstract idea i.e. it is

not clearly defined at all. However the customer representative is required to participate

and create a suitable Metaphor. Risk conditions relate to his availability and understand-

ing of the Metaphor concept and the required application. SmallReleases ensures that

any decisions made in the form of Stories are small in number and unlikely to change
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i.e. Method outputs are certain. A perceived lack of progress may also emerge from

SmallReleases.

4. Engineer: Risk conditions occur when developers do not have the required product-

related skills (Story capture) or do not understand the relevance of the MetaphorTech-

nique. Risk conditions include ‘developers unskilled at capturing the essence of Stories’

and ‘developers unfamiliar with the idea of shared vision’.

5. Context - certainty: Certainty relates to shared vision and domain knowledge, require-

ments certainty and communications. As scope and objectives have not been defined,

risk conditions are ‘customer is unavailable’, ‘customer does not have required knowl-

edge’, ‘customer does not have product vision’, ‘customer and developers have different

understanding of Metaphor’. However, any Stories agreed are fixed and certain.

6. Contexts- support: Again, risk conditions occur when there is lack ofmanagement sup-

port.

Risk conditions inherent in the ‘Planning’Activity relate to availability of appropriate space

for Stories and capability of customer.

PairProgramming

Method is ‘DesignCodeAndUnitTest’.Techniquesare ‘PairProgramming’, ‘SimpleDesign’,

‘Metaphor’, ‘Refactor’, ‘CollectiveOwnership’, ‘CodingStandards’, ‘OnSiteCustomer’ and ‘Test-

FirstDesign’.

1. Method (DesignCodeAndUnitTest) precondition: Risks relate to availability and quality

of inputs (Stories). Risk conditions are ‘Stories and prioritisations not available where

expected’ and ‘Stories or prioritisations unclear’.

2. Method: Risks relate to availability and quality of tools requiredto produce outputs.

Outputs are unit test and source code. Risk conditions relate to availability and quality of

development environment.

3. Technique: Risk conditions occur when any of theTechniquesis not clearly defined or

when required resources are unavailable. Examples of risk conditions include ‘physical

layout not conducive to ‘PairProgramming’, ‘source control system doesn’t support free

access to all code’, ‘coding standards unavailable or out ofdate’, ‘customer unavailable

for problem solution’.

4. Engineer: Risk conditions occur when there is a skill mis-match between developers

andProductand developers andTechnique. If the Techniques‘PairProgramming’ and

‘SimpleDesign’ are not carried out properly, the resultingcode may implement Stories
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incorrectly, be badly structured or contain excess defects. If ‘Refactor’ is badly executed,

code will be badly structured. If at the same time ‘CollectiveOwnership’ either does not

happen, or is carried out by unskilled developers, code willremain badly structured. The

risk conditions occur if the developers are unskilled or under pressure. ‘OnSiteCustomer’

and ‘Metaphor’ mitigate incorrect implementation of Stories only if developers ask for

help or understand ‘Metaphor’ concept.

5. Context- certainty: Risk conditions occur when developers have incorrect understanding

(and so do not ask the customer) or when the customer is unavailable. Both conditions

will result in incorrect implementation of Stories.

6. Context- support: Developers are supported by the presence of the customer representa-

tive. Risk conditions occur when he is not available.

Risk conditions inherent in the ‘PairProgramming’Activity relate to physical layout and

source control setup, unskilled developers, customer availability and understanding of Metaphor.

Integration

Method is ‘BuildAndUnitTestAndFixProblems’.Method outputs are integrated and packaged

Stories. TheTechniquesare ‘DeveloperBuilds’, ‘ImmediateProblemFix’ and ‘IntegrateToPack-

aged’.

1. Methodprecondition: Risks relate to availability and quality of code and unit tests. Risk

conditions are ‘Code untested or likely to break the build’.

2. Method: Outputs include integrated and packaged Stories. Risks relate to availability and

quality of tools required to produce outputs i.e. build environment.

3. Technique: Risk conditions relate to availability and quality of required resources. As

developers themselves perform the integration and resolvedefects, the resources include

a build setup that enables developers to easily work on- or off-line. TheIntegrateToPack-

aged Techniquecaptures the expectation that there is no separate task required to package

integrated modules (see Section 8.2.3). There is a risk condition if this is not feasible, for

example, if packaging results in a large overhead due to the need for copying of large data

files, inclusion of user documents, stamping of user interfaces with build numbers, etc.

4. Engineer: Risk conditions occur when there is a skill mis-match withProductandTech-

niques i.e. if the developers are unskilled with the use of the buildsetup or unable to

isolate and quickly resolve build problems.

5. Context- certainty: Risk conditions occur when there is any uncertainty. As developers

carry out the whole procedure, there is little risk other than that relating to confidence in

the build setup.
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6. Context - support: A risk conditions occurs if developers are not supported in immedi-

ately resolving defects found. No specific risk.

Risk conditions inherent in the ‘Integration’Activity relate to developers failing to imme-

diately resolve problems i.e. to developer capability, thesupport provided by the build environ-

ment and the ability to package the application with minimaloverhead.

CustomerTest

Method is FunctionalTesting.

1. Methodprecondition: Risks relate to availability and quality of integrated code.

2. Method: Risks relate to availability and quality of tools requiredto produce outputs. As

the customer is responsible for test programs and rigs, these are out of the control of the

development group. This is a high-risk situation.

3. Technique: Inapplicable.

4. Engineer: Inapplicable.

5. Context- certainty: Risk condition would involve some mis-communication between de-

velopers and customers i.e. if customer tests test something different to what is delivered.

6. Context- support: Inapplicable.

Risk conditions inherent in ‘FunctionalTesting’ relate tocustomer ability to implement high

quality tests and understanding between customer and developers.

Iteration summary

Major risk conditions for an XP iteration include a physicalsetup not appropriate for an XP pro-

cess, a dependence upon the authority, capability and availability of the customer representative,

inadequate customer testing, developers who lack the appropriate skills or are under pressure

and the infeasibility of packaging the application with minimal overhead. The consequences of

these risks are poor communication (physical setup and customer availability), lack of clarity

about scope and objectives (customer authority, capability and availability), untested product

(customer testing), badly structured code containing manydefects and incorrectly implemented

Stories (developer skills and pressure) and slow progress (developer skills and packaging).

9.2.2 Process

XP is a highly iterative process and it is claimed that this provides mitigation for inherent risks.

There are two kinds of iteration. The first is captured in the ‘Continuous Integration’ Practice
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the second in the ‘Small Releases’ Practice. These Practices, along with ‘40-Hour Week’ appear

in the ‘Process’ column of Table 8.6. We now examine these Practices with view to identifying

new risk conditions.

40-Hour Week

This Practice really defines a resourcing policy and the claim is that policy application reduces

pressure on developers. The risk condition of ‘developer pressure’ identified in Section 9.2.1 is

removed.

Continuous Integration

This Practice involves developers integrating code every couple of hours. In ourKiTe represen-

tation, the result is to effectively tightly-couple the ‘PairProgramming’ and ‘Integration’Activ-

ities. Remembering that we are able to viewActivites at any level of granularity, we introduce a

‘PairProgramAndIntegrate’Activity i.e. we now have a ‘PlanningGame’Activity followed by

a number of ‘PairProgramAndIntegrate’Activities and finally a single ‘CustomerTest’Activ-

ity. The relatedMethod is ‘DesignCodeUnitTestBuildAndUnitTestAndFixProblems’ and the

Techniquesnow include an additional ‘Build2Hourly’Technique.

1. Methodprecondition: As forPairProgramming.

2. Method: As for ‘PairProgramming’ and ‘Integration’.

3. Technique: As for ‘PairProgramming’ and ‘Integration’. Additional risks that occur as

a result of the ‘Build2Hourly’Techniquerelate to the resources required to effect the

Technique. These include a build setup that supports a ‘build-and-test’ cycle of less than

two hours. A risk condition occurs if the setup is too slow or if it is not possible to

complete integration in the required timeframe.

4. Engineer: As for ‘PairProgramming’ and ‘Integration’ and includingconditions relating

to developers’ failure to understand the requirement.

5. Context- certainty: As for ‘PairProgramming’ and ‘Integration’.

6. Context- support: As for ‘PairProgramming’ and ‘Integration’.

Risk conditions inherent in the ‘ContinuousIntegration’Activity relate to the ability to com-

plete the integration in the required timeframe. Possible consequences of this risk are slow

progress and increased defect rate due to the inability of developers to submit Stories immedi-

ately on completion.
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Small Releases

This Practice captures a policy of defining only a small amount of work (number of Stories) at

a time. One of the aims is to identify any misunderstandings and defects before these become

embedded in the application. The single iteration of ‘Planning’, the PairProgrammingAndIn-

tegratecycle and ‘CustomerTest’ are repeated many times. No new risks are inherent in the

‘SmallReleases’ policy.

9.2.3 Discussion

Risk conditions identified above that are inherent in the application of an XP process are:

• Lack of up-front knowledge about required resources and developer skills.

• Dependence upon the authority, capability and availability of the customer representative.

• Physical setup not appropriate for an XP process.

• Developers who lack the appropriate skills.

• Inability to complete build-and-test in under two hours.

• The non-feasibility of packaging the application with minimal overhead.

• Inability of the customer to provide good tests.

Some of the above are acknowledged by Beck, who states XP is for “small-to-medium”

projects and “it would not be possible to work in this style” if integration took a couple of

hours [15]. However, with the latter, the implication is that a result of the Continuous Integration

Practice combined with Refactoring is that only small numbers of modules will be built at any

one time and so the 2-hour goal is achievable. This may work for many projects, but there

are also many projects for whom the expectation is that delivery will be based on a full build,

or where the packaging requirement is time-consuming (for example, user documents must be

included, deliverables must be build-stamped). ‘Pure’ XP may not be a suitable approach for

such projects and in fact some current research considers how to extend XP to address issues

relevant to large systems [101].



10
Evaluation

I have proposed a model,KiTe, and claimed that the model is holistic and based on understand-

ing. In this Chapter, I evaluate this dissertation in the following way. I first checkKiTe for

compliance with the properties defined in Chapter 6. These properties describe various process,

model and real-world characteristics that are desirable and may be used as criteria against which

to judge any candidate model. Satisfaction of the criteria provides some measure of confidence

that the proposed model will successfully represent different kinds of process and real world sit-

uations and will solve some problems exhibited by existing process models. I then confirm that

KiTe provides a solution that solves some of the problems I uncovered in the various attempts

to model the software process in a flexible way (see Chapter 4).

I next overview the evidence presented in Chapter 8 in support of the ability ofKiTe to meet

two of the objectives defined in Section 5.3.1 and discuss thestrengths and weaknesses of this

evidence. I finally discuss the general approach taken in this dissertation and discuss strengths

and limitations with the approach and with the model.

10.1 Evaluation against Criteria

In Section 6.2, I proposed some properties that any model should exhibit. I suggested that these

properties might be used as criteria against which to judge acandidate model. The aim is to
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provide some degree of confidence that the candidate model will address some of the issues with

current processes and models and thus be more likely to succeed during the evidence gathering

phase. In this Section, I evaluate the properties selected as criteria and evaluateKiTe in relation

to the identified properties. I address each in turn and arguethatKiTe exhibits the property.

Properties were identified from three different kinds of source. I first examined different

kinds of process and identified characteristics that shouldbe included in a holistic model. I

then examined the problems with existing predictive modelsthat rendered tham inappropriate

for general prediction and extracted suitable properties.I finally considered some real-life situ-

ations and again extracted some characteristics. From all of these, I extracted a set of properties

that should be included in a suitable model (see Chapter 6). Because properties have been ex-

tracted from such different sources, I am confident that manyof the characteristics that are key

for holism and understanding have been addressed. However,the approach is ad-hoc and so it

is possible that some essential properties have been missed.

I now evaluateKiTe’s ability to meet the criteria.

P1 Software processes only are represented. In particular, project management processes as

defined inPMBOK are not included.There is noKiTe component for planning, schedul-

ing, risk management, scope management, etc. TheRealisedProcessstate space does not

include states relating to these activities. AlthoughProductmay be extended to include

attributes-of-interest to different researchers, the extension is to product-related attributes

only, not management-related attributes.

P2 Product represents all descriptions of the artifacts that are delivered to the end customer.

This includes problem descriptions, for example, requirements, and solution descriptions,

for example, designs.Partitionsare pre-defined and relate to all possible descriptions of a

product.Definition attributes relate to problem descriptions,Architectureto the results of

analysis and architectural decisions,Designto product designs,Sourceto code, product

data, help files, text files, etc.Integrationattributes relate to all build descriptions and

Packagedto descriptions of the ‘ready-to-deliver’ product.

P3 Product may be represented by a number of different measures. For example, representation

might be ‘lines of code’ or ‘number of requirements’.Productis abstracted as a model.

The form of the model is defined but the actual attributes included are not. Different

models for content, quality, cost, etc. may be used.

P4 Product may be represented by more than one measure. For example, representation might

include all of ‘number of requirements’, ‘number of defects’ and ‘number of person

hours’. This allows representation of, for example, both quality- and cost-related at-

tributes.Productattributes are not constrained to any set. It is expected that Productwill
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be viewed as a number ofPerspectivesand each provides a view on different kinds of

attribute, for example, relating to quality or cost.

P5 Product attributes should be extensible in that new attributes can be included.Product is

a model and, if new attributes are required, the model may be expanded to include these.

Perspectivesprovide a convenient way of organising attributes in a meaningful way.

P6 Processes may be represented at any level of granularity. For example, ‘create product’ or

‘carry out code inspection’.MethodandTechniqueare abstracted as transformations on

Productand start and end states are not constrained in any way.Any transformation on

Productis thus legitimate.

P7 Task definition is unambiguous. For example, for a task ‘design’, it is clear what the task

changes and how it performs the change.Techniqueis a definition ofProducttransforma-

tion. Because allPartitionsare involved, it is very specific about which attributes change.

Methodprovides a mechanism for comparingTechniquesasTechniquesthat apply to the

sameMethodchangeProductin the same way and so may be compared.

P8 A task may result in change to the humans carrying out the taskand some tasks result in

change to humans only. For example, developers become more satisfied as a result of

participation in an XP project and design discussions do notchange the product.Peo-

ple who change the product are represented inEngineerstates which contain attributes

that characterise the individual people, for example, skills. Activity is the component

responsible for change toRealisedProcessstate and changes all ofProduct, Engineerand

Context. Activity may apply aMethod that causes no change toProduct.

P9 Different beliefs about how human factors affect project outcomes may be represented.Con-

textModeluses information about characteristics of engineers, context, product and tech-

niques to modify the changes toProductfrom MethodsandTechniques. ContextModel

is a model and its form may be selected according to the beliefs of the researcher or

practitioner.

P10 Some notion of ‘readiness for delivery’ is represented and its use optional.GoalsBench-

mark captures the expected state of the product at process completion. The state machine

that describesRealisedProcesshasGoalsBenchmarkstates as final states, but it is not

required in the state machine representation that these states be reached.

P11 The model should account for product line processes, where asingle conceptual product

is changed by several projects and projects often deliver a product in more than one

state.Productis modelled as a set of states in some global product state space, with all
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states particular to a specificRealisedProcesshaving a commonProductIdentifierthat

is unique to theRealisedProcess. This allows a product, for example, ‘MyWebApp’,

to be changed by several projects. For example, one project may have states identified

as ‘MyWebApp Prototype’ and another as ‘MyWebApp version 2.1’. I restrict aKiTe

Project to have a singleRealisedProcessand aRealisedProcessto haveProduct in a

single state at any given time. This means that, for projectsdelivering, for example, both

an early adopter version and a formal version of a product, itnow becomes clear that the

engineers involved in the real ‘single project’ are actually working on twoKiTe projects

in parallel. This relates to a change incontextand corresponding change in how well the

engineers are able to complete their assigned tasks. I submit that this provides an effective

mirror on what is actually happening and exposes potentially ‘hidden’ situations.

P12 Task parallelism should be supported.The formal model specifies thatProductmay be in

a single state at any point in time. This would indicate that parallel Activities may not

occur. However, the model also specifies thatProductstate changes only on completion

of Activities. If the Activities result in change to different parts of the product, for exam-

ple, designs and integration tests, there is no conflict. As ‘Design’ Activity completes,

Productstate changes to reflect this and remains in this new state until some otherActiv-

ity, for example, ‘IntegrationTests’ completes. If the parallel work affects the same part

of the product, for example, developers changing a module atthe same time, theKiTe

representation must reflect what happens in the real world. As developer A completes,

Productstate changes to reflect this. When developer B then completes, someone must

decide what is the ‘real’ state ofProduct, for example, by resolving conflicts when the

module is committed to the source control system. This meansthat, until conflicts have

been resolved, the source is in an ‘undefined’ state, both in the real world and in the

KiTe representation. A possibleKiTe representation would be to implement aTechnique

that accounted for the conflict situation (for example, ‘CodeWithConflict’). Such aTech-

niquewould concern a transformation onProductwith lower cost-effectiveness than for

a simple ‘Code’Technique.

P13 Model should be technology-independent.Techniquerepresents details about required

technologies and is not constrained. Support for differenttechnologies is provided via

CapabilitySpecwhich allows specification of attributes working with the technology and

matching of these withEngineercapabilities.

P14 The model should represent the uncertain nature of the process by providing some way of

capturing output ranges. At present,KiTe does not possess this capability. I discuss this

in Section 10.5.
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10.2 Evaluation against Related Work

In this Section, I return to the studies presented in Chapter4. These studies all relate in some

way to the problem of comparing and synthesising processes.I compare theKiTe solution with

those presented.

I first consider process frameworks, including Spiral, OPENand RUP. I then discuss the

approaches to process tailoring proposed by Basili and Rombach (‘tailoring to project goals’)

and Boehm and Turner (‘balancing agility and discipline’).I next address some simulation

models for which claims of flexibility are made. I then discuss the experimental frameworks

proposed by Kitchenham et. al., Basili et. al. and Williams et. al. and show howKiTe

provides support for experimentation. I finally discuss howKiTe supports the representation of

the various proposed models for people-related factors in the software process.

One observation relevant to this Section concerns the valueof different abstractions of the

software development process. Many abstractions are possible and useful in different circum-

stances. However, for an abstraction that will support general prediction, it is crucial that the

right abstraction be applied. For many of the studies in thisSection, the underlying abstrac-

tion did not support such generality, resulting in the limitations and assumptions described in

Chapter 4.

10.2.1 Process frameworks

In Section 4.1, I introduced some frameworks whose purpose is to support project planners

in the selection of appropriate process elements accordingto specific project contexts. These

were the Spiral Model, the OPEN Process and the Rational Unified Process (RUP). All three

frameworks provide a solution that includes both project planning and product creation. The

planning component varies from mandatory inclusion of scope definition and risk management

at each phase (Spiral) to the availability of support for some planning practices (OPEN and

RUP). Limitations of these frameworks relate to the lack of guidance about which software

processes to select and the lack of support for including human factors whan selecting elements.

Two of the frameworks, OPEN and RUP, also are specific to OO technologies and mandate these

technologies at all points in the software process.

For the reasons given in Section 5.3.2,KiTe does not include direct support for project

planning. For example, models for scope and risk planning are not included. However,KiTe

provides a means of predicting the outcomes onProductof different choices of software pro-

cess elements. AsProductabstracts attributes of interest relating toContent, Quality andCost,

KiTe is effectively a tool to be used during planning and risk identification. I illustrate this

by comparing the spiral andKiTe approaches. Spiral ‘objectives’, for example, ‘functionality’
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and ‘performance’, define what is the expected state of the product at time of delivery. Spiral

‘constraints’ are either product-related, for example, ‘cost’ and ‘schedule’, or context-related,

for example, ‘developers are inexperienced’ or ‘test software is out-of-date’. From aKiTe

perspective, there is no difference between product-related objectives and product-related con-

straints. Both describe what is the expected state of the product at time of delivery. These may

be represented in aKiTe GoalsBenchmark. The task is now to find which choice ofMethod

andTechniquebringsProduct‘closest to’GoalsBenchmark. I observe that the results of some

Techniquesare affected by the context-related contraints (for example, a testingTechniquemay

require specific test software). InKiTe, such constraints are represented asContextattributes.

Techniqueoutcomes are automatically modified depending upon the value of these attributes

and the model forContextModel. Thus, because relevant project factors are already represented

in theKiTe model, some product-related risks are effectively accommodated inKiTe’s predic-

tions.

The limitations of the studied frameworks included lack of guidance for process selection,

lack of support for human factors and technology specificity. With KiTe, the restriction to a

particular technology does not exist and the human-relatedaspect is provided byContextModel.

KiTe Activities may be selected according toProductstate and changeProductstate in a defined

way. This means that, at any point in aRealisedProcess, the selection of a ‘next’Activity is

constrained and its outcomes defined, thus providing a mechanism for self-guidance.

10.2.2 Process tailoring

In Section 4.2, I overviewed two approaches to tailoring thesoftware process according to

project environments. The first is an approach proposed by Basili and Rombach and involves

improving a company process by selecting a specific goal for improvement, for example, de-

fect numbers, and measuring the effects on this goal when various methods and tools are ap-

plied [13]. The second approach is proposed by Boehm and Turner and involves categorising a

project along a traditional-agile scale as a means of selecting an appropriate kind of process for

the project [22]. In both cases, the aim is to select a ‘best’ process according to project contexts.

In the Basili and Rombach approach, a major limitation was the constraining of the goal-

setting to a single outcome. The example in the study relatedto ‘defect data’ with another

possibility given as ‘customer satisfaction’. The use of a single goal is pragmatic. As the

authors point out, the data required to support tailoring isnot available and they view the ap-

proach as a way of acquiring this data by limiting the study toinclude a single outcome in the

context of a single organisation. TheKiTe solution encompasses this approach by allowing

consideration of a single product-related outcome captured as an attribute ofProduct. It also

provides a suitable framework for accumulation of study results becauseProductmodels may
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be extended as required. However,KiTe goals are product-related and so, for representation

in KiTe, an attribute such as ‘customer satisfaction’ would need tobe operationalised into a

number of product-related attributes, for example, quality- and cost-related. This may represent

a limitation ofKiTe.

The second limitation in this approach involved the variation in the list of factors that might

affect outcomes. I noted that these covered a range of different kinds of factors, including some

that represent product-related goals and some that represent engineer characteristics. InKiTe,

factors such as ‘reliability requirements’ or ‘portability requirements’ are captured as ‘Quality’

attributes inProductandGoalsBenchmark. ‘Budget’ and ‘deadlines’ are also captured asProd-

uct andGoalsBenchmarkattributes. ‘People factors’, for example, expertise and experience,

are captured as attributes ofEngineeri.e. in Engineer CapabilitySpec. Some factors noted in

the authors’ list are captured asContextattributes that will be ‘matched’ byContextModel, for

example, ‘machine availability’. Some factors are not captured directly inKiTe. For example,

‘newness to the state of the art’ would be represented as one or more capabilities required by

Product(say, a new technology, ‘x’), to be matched up withEngineercapability (say, ‘no ex-

perience with technology ‘x”). This more specific approach enablesContextModelto provide

results based on matching and also to increase theEngineeercapability value as a result of

working with technology ‘x’. ‘Programming languages’ are handled in the same way.

KiTe does not handle factors like ‘susceptibility to change’. This is a statement aboutProd-

uct, but not one that can be used to set goals or to matchEngineercapabilities with required

ones. It is a viewpoint that the likelihood of change to requirements belongs in the area of risk

management. However, it is also a viewpoint that the inability to capture this as a product-

related attribute exposes a limitation ofKiTe.

Boehm and Turner examine the issues relating to ‘agile versus plan-driven’ process selection

and believe that tailoring can be achieved by charting projects according to their ‘traditional

versus agile’ characteristics and basing risk management strategies on the result. The approach

is also a pragmatic one in that it provides an immediate way ofapproaching the problem of

what kind of process to use. However, there is no further support in process selection other than

the identification of risks.

In KiTe, the ‘home’ areas for traditional and agile projects would be represented in various

models. For example, ‘criticality’ represents a product-related goal and would be modelled as a

Productattribute and ‘culture’ as aContextattribute. TheKiTe approach would also require the

beliefs to be represented. For example, what exactly is the source of the belief that traditional

processes are ‘better’ for criticality? Representation inKiTe would require statements about

the effects of specificTechniqueson a specificProductattribute, ‘criticality’.
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10.2.3 Process modelling

In Section 4.3, I discussed a number of simulation models that exhibit characteristics of flexi-

bility. In this Section, I show howKiTe addresses some of the limitations in these models.

Drappa and Ludewig created a simulation model for the purpose of project management

training [46]. The model exhibited flexibility within certain limits (see Section 4.3.1). I noted

that one limitation related to the lack of scalability of themodel as a result of its rule-based

nature with lack of any structure. I also noted that, becauseall model effects are captured as

rules, beliefs about all aspects of the process are buried inthe rule-base and effectively are

hidden model assumptions. The abstraction of the process asa number of rules renders model

extension impractical. For example, for the two contextualfactors mentioned, ‘team size’ and

‘developer experience’, each rule relating some task to some outcome must be repeated four

times to cover all context combinations. For three context factors, eight rules will be required,

etc.

TheKiTe abstraction mitigates the above problems. For example, instead of a large num-

ber of rules that represent an outcome value according to different combinations of input val-

ues,KiTe appliesTechniques, each of which contains its effect onProductoutcomes, and a

ContextModel that ‘wraps up’ human-related factors according to a particular belief. New

Techniquesmay be added to the system and will automatically be available for selection when

Productis in one of the required precondition states. New contextual beliefs will be included in

ContextModel. Scalability is addressed by the ability to work at any levelof granularity when

consideringTechniquesand by a suitable abstraction forContextModel.

Lakey proposed a theoretical framework for project management (see Section 4.3.2). His

framework comprises a number of building blocks and customisation is achieved by copying

and renaming blocks and providing input values appropriatefor specific projects [93]. Limita-

tions included the pre-definition of both block function andkey factors for affecting outcomes.

In KiTe, tasks are abstracted asMethodsand these are not constrained in how they effect

change toProduct. The limitation of predefinition of block function is overcome. In Lakey’s

model, the key factors include factors from all of process, product and project. Customisation

is limited to selection of values that represent the environment for the project being modelled.

In KiTe, factors are associated with different models. For example, process-related factors such

as ‘defects injected’ are inherent in theTechniquethat represents a task and project-related

factors, for example, ‘tool support’ and ‘skill level’ are represented in models ofContextand

Engineer. The relevant factors are defined byContextModeland may be changed or extended

by substitution of a new model.

In Section 4.3.3, I overviewed a model created by Munch for customising software devel-

opment processes based on the concept of process patterns [115]. I note that Munch’s ‘char-
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acterization vector’ captures attributes whose values arechanged as a result of transformations

and his ‘goal’ is a restriction on these attribute values. The KiTe Productcaptures attributes

that are changed as a result of application ofMethodsandTechniquesand theKiTe Goals-

Benchmarkis a restriction onProductvalues. It would appear that ‘characterization vector’

is synonymous withProduct, ‘goal’ with GoalsBenchmarkand ‘attribute transformation’ with

Method. Munch’s model also has a ‘quality model’ that describes a cause-effect relation and

this is consistent with the idea of theKiTe Technique.

Munch’s model does not appear to include an abstraction of human-related factors andKiTe

provides such an abstraction withEngineer, ContextandContextModel. I also noted a possible

scalability problem due to capturing transformations as rules. KiTe addresses with a structur-

ing of transfomations intoMethod (families ofTechnique), Technique(may transform several

attributes) andContextModel(adds the human element).

10.2.4 Experimental frameworks

In Section 4.4, I described three frameworks for supportingresearchers carrying out empirical

studies on software processes. These were Kitchenham et. al.’s preliminary guidelines for re-

searchers, Basili et. al.’s framework for families of experiments and Williams et. al’s framework

for XP studies.

Kitchenham et. al. note problems with defining contexts for studies and suggest some

guidelines for recording contexts [90]. TheKiTe framework demands an explicit capture dur-

ing observational studies of both developer- and context-related information (inEngineerand

Context). While this does not, at the present time, help us with establishing which factors are

important, it does provide a means of recording which factors were taken into account and how

these were believed to have affected outcomes. This transparency facilitates the comparison of

studies because researchers can see at a glance which factors were considered for a study. Some

evidence to support the notion thatKiTe is useful for comparing studies is presented in Section

8.3.

Basili et. al. have the vision of a software engineering bodyof evidence to assist project

managers in selecting processes for specific environments [14]. In Section 4.4, I identified the

danger of introducing assumptions in the proposed framework. One problem is in the defining

of ‘Process’ by the kind of task to be carried out, for example, ‘Inspection’ or ‘Walkthrough’. I

noted that an abstraction that allows a stricter definition of ‘Process’ is required. InKiTe, tasks

are represented byMethodandTechniqueand these are defined as transformations onProduct.

Such an abstraction means that tasks must be defined in a very specific way and the problem of

introducing assumptions is minimised. The authors also note that much of software engineering

experimentation involves tradeoffs, and so a common strategy is to assess, say, a technique in
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comparison to a similar one. I note thatKiTe allows such relative comparisons.

Williams et. al. propose a framework, XP-EF, for helping researchers establish compliance

to an XP process. This framework does not support flexibilityas it refers to XP processes only

and predefines a set of relevant context factors.KiTe is not restricted to specific processes and

different context factors may be included by changingContextModel.

10.2.5 People factors

In Section 4.5, I presented three models that address the human-related aspects of software

development. These were the ‘layered behavioural model’ ofCurtis and associates [37], the

‘human competencies model’ of Acuna et.al. [3] and Acuna’s ‘team behaviour approach’ [4].

In KiTe these models represent ideas backed by empirical studies about the way in which human

factors affect software process outcomes. Such studies would form the basis of aContextModel.

For example, for team formation, Acuna et. al. present models for ‘people’, ‘task’ and ‘team

behaviour’. These map directly on toKiTe Engineer, TechniqueandContextModel.

10.3 Evaluation against Research Objectives

In Section 5.3.2, I proposed that suitable objectives for a model of the software development

process are that the model is able to capture any software process or process model, compare

processes and process models and create a new process by combining elements from different

processes. In Chapter 8, I presented evidence to support twoof these objectives.

Bell reminds us that, to corroborate a theory, we must subject it to tests that could have

shown it to be wrong. The aim is to increase the likelihood that the tests will reveal flaws [17].

The evidence presented in Chapter 8 provides some corroboration of the claim that theKiTe

framework is successful in achieving the goals of process capture and comparison i.e. of two

of the three stated objectives. The strengths of various pieces of evidence vary but, as a result

of the transparent nature of the evidence map, can be easily assessed by interested parties. The

objective of combining process elements has not yet been addressed i.e. there is, as yet, no

corroborating evidence.

One key aspect of the provided evidence concerns the abilityto represent both a Waterfall

and an XP process inKiTe (see Sections 8.2.1 and 8.2.3). Such evidence is interesting because

these two processes represent what are commonly believed tobe incompatible approaches to

developing software products. In Section 2.3, I suggested that discussions that categorise pro-

cesses in a polarising way are unhelpful and that focus needsto be on understanding what are

the key characteristics common to all software processes. The fact that I can represent both
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in a common framework gives a clear indication that further investigation into the essential

similarities and differences between apparently ‘opposite’ processes is possible.

The ability ofKiTe to represent apparently different simulation modelling studies has also

been demonstrated. In Sections 8.2.8, 8.2.7 and 8.2.5, I represented studies based on system

dynamics, event-based and state-based models. Again, the ability to represent different kinds

of models in a common framework is a first step towards greaterunderstanding of the essential

similarities and differences between models.

Another key aspect of the evidence is the ability to represent process varations (see Sections

8.2.2 and 8.2.10). In the study on Waterfall variations, I presented some alternatives for the

coding phase in a waterfall model that arguably capture in a more realistic way what actually

takes place. In the study on XP variations, I showed what might be the outcomes if less capable

developers were involved. This evidence is important because it provides an indication that

KiTe is able to describe slight changes in both task- and human-related elements of the process.

Related to the ability to represent varations is the abilityto represent some miscellaneous

processes that commonly occur in real life. Some evidence relating to such processes was

presented in Section 8.2.11.

One important observation is that the act of representing processes and process models in

KiTe gives rise to the exposure of many ambiguities and assumptions in the target processes

and models. This was demonstrated in most of the studies provided as evidence. Before pro-

viding evidence to support the idea that use ofKiTe facilitates comparison between processes,

I had to first expose such ambiguities and assumptions and then choose an interpretation for

each process. I was then able to show that some of the candidate processes could be directly

compared and others could not (see Section 8.3.1).

Although an attempt was made to address ‘risky’ areas, it is clear that many areas of po-

tential risk have not yet been tested. For example, attemptsto represent processes have not

included open source or distributed processes. Controlledexperiments and qualitative studies

have not been represented, nor have the various predictive cost and defect models.

A most important point is that all studies have been based on the existing literature. Al-

though many studies reported ‘real’ projects, both large and small, it is likely that a ‘live’ study

on a real project might display characteristics and suffer from problems not obvious from re-

ported studies. This first seems more likely to be true for very large projects, where size con-

tributes to greater complexity. However, it is possible that studies of relatively small projects

would uncover issues, as people-related problems are equally likely although perhaps take a

different form. Some evidence to support comparison existsbut no evidence as yet exists to

support combination.

As a side-effect resulting from evidence accumulation, I was able to make some interesting

observations. When attempting to represent a ‘standard’ Waterfall process, I realised that the
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process is not defined and depends upon the existence of localpolicies for defect resolution (see

Section 8.2.1). When attempting to represent an XP process,I learned that many XP Practices

represent instructions on how to carry out the design-and-code task (see Section 8.2.3).

A second side-effect is the observation thatKiTe can be effectively used as a risk-identification

tool. This was illustrated in Chapter 9. An interesting and practical area for future research is

exposed.

I conclude by noting that I have successfully captured processes of varying kinds and gran-

ularities, models built using different technologies and anumber of ad-hoc tasks that appear in

real projects but are generally not included in process definitions and that, thus far, no counter-

evidence has been discovered. This provides some confidencethat a framework such asKiTe

may be used to capture and compare different kinds of processand process models.

10.4 Evaluation of Approach

In Chapter 5, I identified a problem of a lack of a theoretical model of the software develop-

ment process that will support the establishment of cause-and-effect relationships and provide a

means of predicting process outcomes. I observed that such amodel might not be possible and

that substantial progress will depend on much research effort and collaboration.

In this dissertation, I have taken various approaches that serve to support such a research

effort. These include:

• The provision of an initial framework allows immediate support for research with a long

term goal of providing a theoretical model for prediction.

• Consideration of all groups currently involved in modelling for prediction has enabled

me to understand limitations and strengths and made it more likely I have provided a

solution that is useful for all processes and process models. The framework approach has

provided an immediate way for researchers from different groups working with different

paradigms and with different beliefs to represent their models in a common format with

a view to better understanding essential similarities and differences.

• The use of an argumentation approach to capture evidence further supports the possibilty

of collaboration as strengths and weaknesses of evidence are transparent.

One possible limitation of the approach lies in the assumption that researchers in the field of

software engineering are in a position, and have the desire to, collaborate towards the achieve-

ment of such a theoretical model. The field is characterised by fragmentation and a desire to

produce results that are immediately useful to industry. Pleas for collaboration towards some
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larger goal have been made by a number of researchers and havegone largely unheeded. The

KiTe approach spawns several areas for different kinds of research, each of which may con-

tribute to the long-term goal of flexible representation forthe purpose of prediction. However,

the field may not yet be ready for such a holistic approach.

10.5 Discussion

From Section 10.1, I note thatKiTe meets all model criteria except that relating to the uncertain

nature of the process. There are two aspects for discussion.The first relates to the infinite

nature of theKiTe state space that is a result of the need to include ‘all possible values of all

possible combinations of all possible attributes’ for products, engineers and contexts. TheKiTe

model describes an infinite state machine.RealisedProcessconstrains the possible states to

include those that describe the product, engineers and context that apply in theRealisedProcess.

Activities further constrain the state space viaMethod, Techniqueand ContextModel. The

result is still potentially infinite, in that the domain for an Activity includes a possibly infinite

number of states. The second aspect for discussion relates to the deterministic nature ofKiTe.

EachActivity transforms each of its allowed start states to a specific end state depending upon

Method, Techniqueand ContextModel. It is possible, perhaps likely, that such a model is

overly simplistic for a human-intensive process. Evidencepresented above did not include

any that closely examined either the infinite or the deterministic aspect of the model. Possible

alternatives for the nature of the elements that compriseActivity are sources of future study and

are overviewed in Section 11.3.

From Section 10.2, I conclude thatKiTe effectively encompasses and addresses the prob-

lems exhibited by existing solutions towards flexibility. One possible limitation is the inability

to represent inKiTe a product attribute such as ‘susceptibility to change’. It is not clear at this

stage whether such an attribute is best handled as a possibleproject risk or whether aKiTe lim-

itation is exposed. In Section 10.2.2, I observed that contexts such as ‘newness to the state of

the art’ can not directly be represented inKiTe but must be represented as specificProductand

Engineercapabilities. This represents a benefit of theKiTe approach, in that what is meant by

the ‘state of the art’ is explicitly defined thus removing possible sources of ambiguity.

From Section 10.3, I conclude that sufficient evidence exists to provide some confidence

that a model for representing and comparing processes and process models is possible. The

lack of any conflicting evidence supports such a confidence and indicates thatKiTe represents

a possible candidate model. I also note that some side-effects of a model such asKiTe include

support for risk management and for exposure of ambiguitiesand assumptions. A side-effect of

this ability to expose problems is the realisation that manyproblems might be mitigated ifKiTe
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is used to support the study design. For example, the need to define what is theContextModel

for the study leads to consideration of engineer- and context-related factors and of how engineer

characteristics affect the way the engineers work with product and techniques. These represent

possible confounding factors for experiments and factors that must be recorded for other kinds

of study.

An interesting observation was made in Section 8.2.4, whereI discussed some alternatives

when representing ‘collaboration’. One way is to representas aContext, for example, ‘de-

velopers work together’.ContextModelthen applies the effect of ‘working together’. For this

representation, all developers are equal in that there is no‘matching’ taking place and individual

developer characteristics are not relevant. A second possible way is to represent ‘collaboration’

as aTechnique. In this case,ContextModelis able to directly match engineer capabilities (for

example, ‘introverted’) withTechniquerequirements (for example, ‘extroversion’) to effect a

more accurate result that depends upon which engineers are involved. This example represents

a subtlety of the model that contributes to its usefulness and power.

In Section 10.4, I outlined some strengths of the approach taken in this dissertation. I also

noted that the industry may not be in a position to effectively rise to the challenges of a collabo-

rative approach to a model to serve as a basis for establishment of cause-and-effect relationships

and prediction.

KiTe is not an implementation model and does not aim to represent all entities that would

be required for model execution. For example, the model describes howActivity changes

Engineercharacteristics, but there is no element that acts as a datastore for engineer capabilities

at different points in time i.e. the model does not allow for ‘managing’ engineers. It is likely that

any implementation ofKiTe for execution would include such an entity. A second issue relating

to implementation involves the close-coupling betweenContextModeland the models from

which it sources its information i.e.Context, Product, EngineerandTechnique. For example,

if ContextModelrequires knowledge about certain contexts and engineer characteristics, these

must be provided. This may be a limitation as regards model usage.

A related discussion involves the form of the models that make upKiTe. For example, I note

that, becauseKiTe Methodsare defined as howProduct is changed, it is possible to abstract

at several levels and work in a hierarchical way. I also note that the form ofContextModelis

not defined and a set of rules is one possible option. Such a choice would lead to the problems

of scalability discussed in Section 4.3.1. However, the intention is that the models that make

up KiTe represent theoretical abstractions rather than practicalapplications. It is appropriate to

implementContextModelas a rule base during early stages of exploration, but the expectation

would be that the final model would represent a more theoretical abstraction. For example, as

ContextModelrepresents engineer effectiveness, it is appropriate to identify an orthogonal set

of ‘engineer effectiveness’ factors and all map all contextfactors on to this set. A suggested
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set for preliminary exploration is the set ‘capability’, ‘certainty’ and ‘motivation’ (see Section

7.1). Such an abstraction means that we do not have to deal with large numbers of contexts but

rather with a small set of factors. Indeed, it is likely that research from the social sciences might

be leveraged for both identification of, and evidence to support, key factors for effectiveness. I

note also that one outcome of the change in focus to effectiveness is that we can postulate that

the factors under investigation are the same, regardless ofproject or task size. The problem

of large numbers of factors has been ‘moved one step back’ i.e. once we understand that, for

example, ‘certainty’ is key, we might then investigate whataffects ‘certainty’ in large and small

projects.

There is a possible limitation in the definition ofTechniquepreconditions. For example, a

Techniquemight define its preconditions in terms of both ‘LOC’ and ‘Function points’ butProd-

uct has only ‘LOC’. It appears that the precondition is not met. The solution is to expand the

definition of precondition to include alternatives. For example, the precondition might be ‘size’

and may be actualised by either ‘Function points’ or ‘LOC’. The structuring of preconditions is

another area for future research.

KiTe is a framework into which models are inserted. Each model represents a theory in

its own right, and may be used to generate hypotheses to be tested in the normal way [151].

A current limitation is that the form of constituent models is not known and this means that

predicting withKiTe suffers from the same problems of lack of support data as other predictive

models. For example, there is no model for ‘matching’ of engineer capabilities with those

required for working with a given product and techniques andso ContextModelrepresents

beliefs. It is possible that the complexity of the sofware development process will render it

impossible to successfully abstract all possible human-related factors into aContextModelthat

successfully represents the human effects. It is also possible that the issue of measurement is

insoluble and this would render it impossible to create valid models that are internally consistent

and can be successfully manipulated.

Kitchenham et.al. remind us that, although researchers have a responsibility to “provide

some preliminary validation of their results, they are not the best people to form objective,

rigorous evaluations of their own technologies” [90]. The evaluation presented in this Section

is subjective and therefore biased. I have, however, structured the discussion in an attempt to

ensure that all relevant aspects have been considered. I have shown thatKiTe may be used to

represent very different kinds of process and process modeland that it may be used to support

research and risk identification. In the next Chapter, I identify areas for future research.
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11
Conclusions

11.1 Summary

In this dissertation, I considered some viewpoints about the nature of software development and

overviewed some of the processes used at the present time to produce software products. I sug-

gested that the tendency to categorise these processes in a polarising way removes focus from

the important task of understanding what are the essential characteristics of all software devel-

opment processes. I then presented some of the work of researchers who model the software

process with a view to understanding and predicting outcomes. I showed that existing models

contain ambiguities and assumptions about process, product or contexts and this renders them

unsuitable for representing and comparing processes in a general way. The motivation for the

thesis is this lack of holism in existing processes and the inability of current models to represent

any process and support comparison and combination of processes.

I then presented some perspectives on modelling and research data accumulation from fields

other than software engineering. I concluded that existingmodels of the software development

process are not based on cause-and-effect relationships and so cannot be used for predicting

in a general way. I made a case for a theoretical model of the process and proposed that a

candidate model should support the objectives of representation, comparison and combination

of processes and process models. I examined existing processes, process models and some

201
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real-life situations to derive some desirable model properties.

Using the desired properties as a basis for model structure,I introduced a candidate model,

KiTe, and presented evidence to support the claim thatKiTe meets the objectives of represen-

tation, comparison and combination. I discussed the use ofKiTe for identifying process risks.

Finally, I presented an evaluation of the dissertation by evaluatingKiTe against properties and

objectives and by discussing the approach taken.

In this Chapter, I summarise the contributions made and present some areas for future re-

search.

11.2 Contributions

Despite many technological advances that support the production and maintenance of software-

intensive products, “a body of evidence has not yet been built that enables a project manager

to know with great confidence what software processes produce what product characteristics

and under what conditions” [14]. The major contribution of this thesis is to identify the need

for a holistic model of the software development process that will support researchers in their

quest to accumulate such a body of evidence and to present a candidate modelling framework,

KiTe. KiTe supports research by providing an abstraction that facilitates identification and rep-

resentation of the various factors that affect process outcomes. As such, it represents a holistic

and theoretical approach to software process modelling. Each framework element is a model

that may be instantiated in the short term with models representing the beliefs of individual

researchers and in the long term with models representing evidence-based theories.

Three contributions result from the understanding that theexistence of a suitable framework

gives rise to a number of unplanned research directions. Thefirst concerns the use ofKiTe for

identifying process-specific risks. In Chapter 9.2, I presented a preliminary study on the use

of KiTe to identify risks specific to XP processes. The use ofKiTe is this way is immediately

useful from an industry perspective. A second direction concerns the use ofKiTe to help with

understanding research results. In Section 8.2, I showed that, when representing studies in

KiTe, many ambiguities and assumptions are exposed. This leads to a better understanding of

study results. A related direction involves the possibility of usingKiTe to help mitigate the

introduction of such ambiguities and assumptions when designing new experiments. I discuss

these directions in the next Section.

Another major contribution of this dissertation is the identification of the various research

groups that model the software development process to predict outcomes and the understanding

of how these groups differ in approach and what are the limitations inherent in the work of

each. The contribution also includes a realisation that thenarrow approach taken by each of
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the groups is a symptom of lack of real understanding and is the basis for the case for a more

holistic approach.

A final contribution is the establishment of an approach for developing and evaluating mod-

els that claim to describe systems in a holistic and explanatory way. The strategy is to first

establish model objectives and identify a comprehensive range of example systems to be de-

scribed by the model. In this dissertation, objectives wereidentified as ‘capture’, ‘compare’ and

‘combine’ software process elements and example systems included various kinds of process

and process model. The next step is to examine the characteristics of, and problems with, the

example systems to help identify key model properties. These provide some basis for estab-

lishment of a suitable model structure and may be used as criteria against which to evaluate

candidate models in a preliminary evaluation step. Suitable properties forKiTe were sourced

from process characteristics, process model limitations and real-world examples. Next, the

ability of the candidate model to satisfy objectives is established by accumulating a portfolio

of different kinds of evidence relating to the example systems. In this dissertation, evidence in-

cluded representing and comparing various processes and process models. Finally, evaluation of

a candidate model is performed by evaluating both the model’s compliance with property-based

criteria and its ability to meet stated objectives.

11.3 Future Work

Because this thesis presents a modelling framework comprising models representing different

aspects of the software development process, there are manypossible areas for future investiga-

tion. These mostly involve attempts to acquire further evidence to support the claims forKiTe,

as such activity will inevitably expose limitations and inconsistencies in the current model. One

approach would be to effect an ad-hoc approach to the accumulation of further evidence. How-

ever, because the required evidence is partitioned into a small number of goals, and evidence in

each partition potentially provides a different kind of benefit to modellers, I suggest that future

work is best organised as a number ofKiTe research programs, each with its specific goals. I

overview some possible programs below.

11.3.1 Model foundation

The currentKiTe model was presented formally in Section 7. If this model, or another like it,

is to be used as a basis for hypotheses, it is necessary that itis sound and consistent. Model

checking activity is indicated and some work in this area is under discussion at the current time.

In Section 10.5, I discussed the possible problem of a deterministic model to represent the

software process with all its complexity. Once the model elements are defined the outcome is
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known. The majority of the models presented in Chapter 4 manage the uncertainty inherent in

real-world projects by applying some statistical mechanism. For example, a common approach

is to use a probability distribution from which values for some input variables are chosen at

random. TheKiTe elements that affect transformation details, for example,Techniqueand

ContextModelare defined as causing definitive change. This does not preclude the possibility

of values being selected from a distribution, or indeed, being ‘fuzzy’ in the first place. An-

other possible alternative is to treatTechniqueas a ‘fuzzy’ functional mapping and the effects

of ContextModelas fuzzy values. The outcome for any product attribute wouldthen also be

fuzzy in nature. A third possibility for future research would examine the possibility of mod-

elling Activity as a Bayesian belief net [48]. According to Fenton, this approach deals with

uncertainty, incomplete information and diversity of evidence. It might, however, involve ‘col-

lapsing’ ofTechniqueandContextModeland so might be useful more as a possible simulation

implementation than as model definition.

11.3.2 Process representation

A second possible program involves further representationof processes. In this thesis I success-

fully represented a number of different kinds of processes,for example, Waterfall and XP, and

made a case for the inability to fully represent others, for example, Spiral. However, all case

studies were from the literature and many assumptions had tobe made. Focus must move to

industry, and some ‘live’ projects, both large and small, studied. This will mean that questions

can be asked in real time when any aspects of the process are unclear, and the need for mak-

ing assumptions removed. The result should be either the provision of further evidence or the

unmasking of model limitations and inconsistencies.

In addition to ‘live’ projects, a fruitful area for researchis the representation of different

kinds of process. For example, theCleanroomapproach to software development is viewed

by some as “. . . not a strict methodology but a philosophical approach that guides the selec-

tion of practices” [40]. It would be interesting to know if Cleanroom is easily represented in

KiTe. Other potentially fruitful processes include open sourceprojects and Web-based virtual

workspaces.

11.3.3 Process risk

It is claimed in this thesis thatKiTe provides a framework to support risk identification. We

have a powerful means of both supporting this claim and providing an immediate benefit to

industry at the same time. I suggest a collaboration with industry projects that have strong risk

management practices. Researcher and project manager separately identify risks, the project
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manager using his normal approach and the researcher usingKiTe, and then the two compare

results. If theKiTe approach correctly identifies risks not identified by project management, we

have some further supportive evidence. Risks identified only by project management may signal

some possible need to modify theKiTe framework or may contribute to our understanding of

one of the component models. For example, if the researcher is working with aContextModel

that includes aspects of uncertainty and support, and project management identifies a risk ‘the

company is about to be bought over and developers may become demotivated’, there is an op-

portunity to rethink theContextModelfor possible inclusion of some ‘motivation’ factor. This

approach of ‘comparing identified risks’ may be a powerful way for the research community to

investigate the problem of developer efficacy whilst at the same time providing real benefits to

industry.

11.3.4 Assumptions

The activity of representing different kinds of process models resulted in exposure of many

assumptions made by modellers (see Section 8.2). These assumptions related to policies about

what parts of the product are being changed, equivalence of product measures and the way

that human factors influence results. I suggest that useful future work in this area would be

to investigate ways of propagating this information withinthe various research groups. Until

assumptions are understood and removed, it will not be possible to fulfil Basili et. al.’s vision

of ‘families of experiments’ [14] and so not possible to use these models to progress software

engineering research by providing empirical data.

11.3.5 Evidence

Yet another area for research is the comparing of different studies in order to find if results

may be combined in some way. I presented one example of this inSection 8.3.1, where I

attempted to examine three studies frequently cited as ‘pair programming’ studies and found

that Techniques, ProductandContextModelfor the studies varied so much that any kind of

comparison or results accumulation was not possible. One potentially interesting subject for

this research is inspections, as there are several different kinds of study available on this topic. A

related area is that of support for formal experimentation,by using theKiTe models to capture

experimental environments. For example, inKiTe, the focus is on identifying how contexts

change peoples’ ability to carry out tasks. This means that,rather than identifying a myriad of

factors that might affect outcomes, focus is on identifyinghow these factors affect humans and

in turn how characteristics of humans affect outcomes. Thischange in focus has already been

suggested by Curtis et. al. [37] (see Section 4.5). I suggestthatKiTe may provide a suitable



206 Conclusions

framework for further research of this kind, asActivities can be defined with any granularity and

experiments may thus focus on very small tasks carried out under many different circumstances.

The long-term goal would be to spawn and examine hypotheses relating to the use of a single

ContextModelfor Activities of all kinds and granularity.

11.3.6 Product model

In Section 10.5, I noted a possible limitation in the currentdefinition of Techniqueprecondi-

tions. The problem is one of understanding when product-related attributes are ‘equivalent’.

For example, if aTechniqueexpects as input ‘number of requirements’, is it valid to apply

theTechniqueto aProductmodel with ‘number of stories’? This suggests a possible research

program based onKiTe to further investigate such ‘families’ ofProductattributes.

11.3.7 Process customisation

Another research opportunity concerns the use ofKiTe for customising processes. In theory,

KiTe supports this. However, as yet there is no evidence to support combination of process

elements, i.e. the third objective forKiTe has not been tested, and this is key to customisation.

In addition, attempts at customisation based onKiTe may raise issues and points for further

investigation.

11.3.8 Predictive tool

A final interesting activity would be to commence implementation of the framework with the

aim of understanding how construction of such a complex system might be supported in an

open source environment. For example, stores ofMethodandTechniquemust be accumulated,

each supported with existing evidence that provides the basis for the transformation size.Con-

textModelsmust be proposed and ‘evidence’ and ‘counterexamples’ uncovered. In the spirit of

‘evidence-based software engineering’, where large quantities of different kinds of weak evi-

dence may provide confidence, it is possible that polling forsuch evidence via the web would

obtain a good result.

11.4 And Finally

There are several interesting areas for future work based onthe idea of a theoretical model for

the software development process in general andKiTe in particular. Some of the programs

suggested above aim to provide immediate benefits whilst improving the model in parallel. An
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example, is the use of the model for risk identification. Others have less immediate practical

use but are necessary if the model is to be used as a basis for theoretical studies, for example,

the introduction of ‘fuzziness’ into the model. Kitchenhamet. al., when discussing the need for

a framework for validating software measurements [89], remind us that “A full, practical frame-

work is an ambitious goal that requires input from practitioners and the research community”.

This statement applies also to a framework for the software development process.

This thesis presents a framework that comprises a first step towards an ambitious goal. It

represents an acknowledgement that there is insufficient data at the present time for process

synthesis and prediction and provides a mechanism to support accumulation of such data by

supporting comparison of processes and process elements. The thesis acknowledges a long

term goal that is to provide a mangement tool for a software engineering ‘body-of-knowledge’

by providing a mechanism for comparing and predicting process outcomes based on evidence

and where all evidence is transparent.
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Glossary

For this document, the following terms have meanings as defined below.

Alphabet “An alphabetis a finite set of symbols.” [62].

Argumentation “. . . an approach which can be used for describing how evidence satisfies re-

quirements and objectives” [160].

Capability [3].

Chief programmer A centralised organisation for programming teams, designed by Mills and

Baker, that placed primary responsibility for design, programming, testing and installa-

tion on a single individual, the ‘chief programmer’ [33].

Construct validity “. . . the extent to which the variables successfully measurethe theoretical

constructs in the hypothesis.” [14].

Context The set of factors that affect how wellengineersare able to carry outtasks.

Correctness “. . . the degree to which a system or component is free from faults in its specifi-

cation, design, and implementation” [71].

209
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Correlation study “Usually synonymous with nonexperimentalor observational study; a study

that simply observes the size and direction of a relationship among variables” [149] quot-

ing Shadish et. al.

Defect A generic term to mean any one oferror, fault or failure [13].

Design entity “An element (component) of a design that is structurally andfunctionally distinct

from other elements and that is separately named and referenced” [73].

EffectivenessA measure of how wellengineerscompletetasks.

Efficiency A measure of outputs (change to aproduct from engineerscompleting atask) to

inputs (some measure of time or cost).

Egoless teamA decentralised team structure proposed by Weinberg [161] in which different

team members take responsibility for those project tasks that amatch their skills [33].

Engineer Any individual involved in changing any artifacts that describe some aspect of a

product.

Engineering “The application of scientific and mathematical principlesto practical ends such

as the design, manufacture, and operation of efficient and economical structures, ma-

chines, processes, and systems” [63]. “Engineering applies scientific and technical knowl-

edge to solve human problems. Engineers use imagination, judgment, reasoning and ex-

perience to apply science, technology, mathematics, and practical experience. The result

is the design, production, and operation of useful objects or processes” [163]. “. . . the

systematic application of scientific knowledge in creatingand building cost-effective so-

lutions to practical problems” [43].

Entity attribute “A named characteristic or property of a design entity. It provides a statement

of fact about the entity” [73].

Error “. . . defects in the human thought process made while trying to understand given infor-

mation, to solve problems, or to use methods and tools” [13].

Evidence “A thing or things helpful in forming a conclusion or judgement” [64].

Experiment “A study in which an intervention is deliberately introduced to observe its ef-

fects” [149] quoting Shadish et. al.

External validity “. . . defines the extent to which the conclusions from the experimental con-

text can be generalized to the context specified in the research hypothesis.” [14].
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Failure “. . . the departures of the software system from software requirements (or intended

use). A particularfailure may be caused by severalfaults together; a particularfailure

may be caused by differentfaults alternatively; somefaults may never cause afailure

(difference between reliability and correctness)” [13].

Fault “. . . the concrete manifestation oferrors within the software. Oneerror may cause sev-

eral faults; variouserrorsmay cause identicalfaults” [13].

Finite automaton “A finite automatonconsists of a finite set of states and a set of transitions

from state to state that occur on input symbols chosen from analphabetσ. For each input

symbol there is exactly one transition out of each state (possible back to the state itself).

One state, usually denotedq0, is the initial state, in which the automaton starts. Some

states are designated as final or accepting states.” [62].

GQM Goal/Question/Metric represents an approach to assist researchers in planning and cate-

gorising empirical studies. In this approach, researchersidentify the object of study (for

example, a process or product), the purpose of the experiment (for example, evaluation,

prediction, etc.), the focus i.e. the aspect of interest of the object of study (for exam-

ple, product reliability, process effectiveness), the perspective (for example, researcher or

developer) and the context in which the measurement takes place [11].

Hypothesis “A hypothesis is a suggested explanation of a phenomenon or reasoned proposal

suggesting a possible correlation between multiple phenomena” [166]. “A tentative ex-

planation for an observation, phenomenon, or scientific problem that can be tested by

further investigation [65].

Incremental development “A software development technique in which requirements defini-

tion, design, implementation and testing occur in an overlapping (rather than sequential)

manner, resulting in incremental completion of the overallsoftware product” [71].

Internal validity “. . . defines the degree of confidence in a cause-effect relationship between

factors of interest and the observed results” [14].

Interpretivist “. . . believe all research must be interpreted within the context in which it takes

place . . . ” [38]. Compare withpositivist.

Interval scale “. . . defines a distance from one point to another, so that there are equal intervals

between consecutive numbers. This property permits computations not available with the

ordinal scale, such as calculating the mean. However, thereis no absolute zero point in

an interval scale, and thus ratios do not make sense. Care is thus needed when you make
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comparisons.” “. . . we cannot say that today’s 30-degree Celsius temperature is twice as

hot as yesterday’s 15 degrees” [132].

KiTe The name of the model presented in this thesis.

Language “A (formal) languageis a set of strings from some onealphabet.” [62].

Measurement “a figure, extent or amount obtained by measuring” [70].

NASA/SEL “The Software Engineering Laboratory (SEL) is an organization sponsored by the

National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC)

and created to investigate the effectiveness of software engineering technologies when ap-

plied to the development of applications software” [117].

NATO North Atlantic Treaty Organisation. “. . . an internationalorganisation for defense col-

laboration established in 1949, in support of theNorth Atlantic Treaty. . . ” [164].

Nominal scale “. . . puts items into categories, such as when we identify a programming lan-

guage as Ada, Cobol, Fortran, or C++” [132].

Object In the context of this document,objectdenotes a person or thing in the real-world i.e. a

material thing. The term is required to distinguish betweenabstract ideas e.g. state spaces

and the ‘real’ objects which the spaces describe.

Ontology “An explicit formal specification of how to represent the objects, concepts and other

entities that are assumed to exist in some area of interest and the relationships that hold

among them.” “A set of agents that share the same ontology will be able to communicate

about a domain of discourse without necessarily operating on a globally shared theory.

We say that an agent commits to an ontology if its observable actions are consistent with

the definitions in the ontology” [68].

Ordinal scale “. . . ranks items in an order, such as when we assign failures aprogressive sever-

ity like minor, major and catastrophic” [132].

PMBOK Guide Guide to the Project Management Body of Knowledge. An “inclusive term

that describes the sum of knowledge within the profession ofproject management” [135].

Positivist “. . . looks for irrefutable facts and fundamental laws that can be shown to be true

regardless of the researcher and the occasion” [38]. Compare with interpretivist.

Prescriptive processA description of aprocessthat takes into account only technical aspects

and implicitely makes assumptions that human factors do notaffect processoutcomes.

Compare withrealised process.
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Process “The sequence of activities, people, and systems involved in carrying out some busi-

ness or achieving some desired result” [69]. “A series of actions, changes, or functions

bringing about a result” [66].

Product The artifacts that implement a software-intensive system and are the deliverables from

aproject.

Product engineering “The technical processes to define, design, and construct orassemble a

product“ [71].

Project “.. a temporary endeavour to create a unique service or product and with a definite

beginning and end” [135].

Randomized experiment “An experimentin which units are assigned to receive the treatment

or an alternative condition by a random process . . . ” [149] quoting Shadish et. al.

Quasi-Experiment “An experimentin which units are not assigned to conditions randomly” [149]

quoting Shadish et. al.

Ratio scale “. . . incorporates an absolute zero, preserves ratios, and permits the most sophisti-

cated analysis. Measure such as lines of code or numbers of defects are ratio measures.

It is for this scale that we can say that A is twice the size of B”[132].

Realised processA description of aprocessas it really happens i.e. that takes into account

how all factors relevant toprocessoutcomes, for example, the people involved andproject

contexts, affect these outcomes. Compare withprescriptive process.

Reliability “. . . the ability of a system or component to perform its required functions under

stated conditions for a specified period of time” [71].

SCM Software Configuration Management [72].

Software design description (SDD)“A representation of a software system created to facili-

tate analysis, planning, implementation, and decision making. A blueprint or model of the

software system. The SDD is used as the primary medium for communicating software

design information” [73].

Software development“Any activity related to the production or modification of software pur-

suing some goal(s) beyond the software itself” [104]. This definition is broader than that

given by IEEE [71], which states a systematic and quantifiable approach. The broader

definition enables us to include more flexible and informal approaches.
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Software development cycle“The period of time that begins with the decision to develop a

software product and ends when the software is delivered“ [71].

Software development processThe set of all activities that affect some representation ofa

software product.

Software life cycle “The period of time that begins when a software product is conceived and

ends when the software is no longer available for use“ [71].

Software process“. . . the set of all activities which are carried out in the context of a concrete

software development project. It usually covers aspects ofsoftware development, quality

management, configuration management and project management” [59].

Task A piece of work carried out by one or moreengineers.

Theory “. . . a theory is a proposed description, explanation, or model of the manner of inter-

action of a set of natural phenomena, capable of predicting future occurrences or obser-

vations of the same kind, and capable of being tested throughexperiment or otherwise

falsified through empirical observation.” “A theory is a logically self-consistent model

or framework for describing the behavior of a related set of natural or social phenom-

ena.” [167].

Understandability “. . . the degree to which the purpose of the system or component is clear to

the evaluator” [150].
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