

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

The Evolution of Cooperation: Insights from Experimental Populations of *Pseudomonas fluorescens*

Peter L. Meintjes

A thesis submitted in partial fulfilment of the requirements of the degree of Doctor of Philosophy in Biological Sciences The University of Auckland New Zealand March 2009

0.1 Abstract

The field of experimental evolution is burgeoning under the power of microbial systems. Our ability to manipulate experimental design for use with microbes is only limited by our imagination. This thesis is a study that uses *Pseudomonas fluorescens*, a soil dwelling bacterium, as an experimental tool for understanding evolutionary processes. The evolution of cooperation has been a thorny issue for many years, because it initially seems to contradict the intrinsically selfish concepts established in Darwin's theory of evolution by natural selection. Advances in microbiology and the ability to test important evolutionary theories using microbes, provides an exciting opportunity for those working in the field of experimental evolution.

This thesis uses P. fluorescens to investigate four aspects of the evolution of cooperative behaviour organised into four results chapters (Chapters 2-5). The first describes the genotypic and phenotypic diversity of 26 independently derived 'wrinkly spreader' genotypes in order to analyse the genetic and phenotypic variation among morphotypes. Mutations were identified in 25 of the 26 wrinkly spreaders including a new locus mws and three new genes of known loci wspE, awsR and awsO. This new genetic information provided additional insight into the molecular causes of the wrinkly spreader phenotype. Multivariate analysis of the phenotypic traits revealed that wspF mutants were phenotypically distinct from other morphotypes at a level below the ecological niche. The second chapter extended existing studies on the evolution of wrinkly spreader genotypes within the wellknown Haystack model for evolution in group-structured populations, by studying the population dynamics of cooperative genotypes with and without group structure, in a multi-level selection one framework. It was shown that the time spent in a haystack affects the fitness of cooperators, because the longer group-generation treatment conformed to the predictions of the Haystack model, while the shorter groupgeneration treatment did not. The third chapter was an investigation into how the fitness of the emergent group-level phenotype formed by cooperating wrinkly spreader cells was dependent on the density of wrinkly spreader cells. Contrary to prediction, no density dependence was observed when calculated in a multi-level selection one framework, but rather it was determined that the emergent fitness was dependent on time, implicating a role for a development-like process. The final

results chapter of this thesis incorporated the hypothesised role for a developmentlike process into a novel theoretical model for the evolution of multicellularity in which fitness would be determined in a multi-level selection two framework. Novel apparatus and experimental design were developed to determine if it were possible to observe a response to a selective regime that selected simultaneously at the level of the individual cell and the level of the group of cells. A significant response was shown after only six group-generation cycles.

In summary, this thesis exploits *P. fluorescens* as an experimental tool to gain insight into complex ecological and evolutionary phenomena such as cooperation, biofilm formation and the evolution of multicellularity, and provides insight into the molecular causes of the cooperation among wrinkly spreader genotypes.

0.2 ACKNOWLEDGEMENTS

This thesis is dedicated to those who have assisted me in achieving my goal of completing a PhD thesis, for it bares no thought as to how such an undertaking may have played out without it.

For supervising me in the official capacity of completing this thesis, I thank Professor Paul B. Rainey, Dr. Tim F. Cooper and Professor Allen G. Rodrigo.

For supervising me in an unofficial capacity by providing me with endless professional and social support, and improving me as an academic and a person, I thank Dr. Hubertus J. E. Beaumont and Dr. Christian Kost.

For providing the ongoing parental support and unyielding belief in my ability, I thank my parents, Elsie and Liston Meintjes.

For providing me with extra statistical assistance, I thank Professor Allen G. Rodrigo and Dr. Tim F. Cooper.

For providing assistance in achieving wet-lab experimental success, I thank, Dr. Bertus Beaumont, Dr. Xue-Xian Zhang, Dr. Dominik Refardt, Dr. Darby Brown, Dr. Christian Kost, Michael McDonald, Jenna Gallie, Jeremy Gray, Annabel Gunn, Dr. Tim Cooper and Professor Paul B. Rainey.

For reading this thesis before it was good enough to hand to my supervisors, I thank Mara Mulrooney, Jenna Gallie, Lisa Meintjes and particularly Christian Kost whose constructive criticism was highly significant in allowing me to complete ($F_{1,1} = 42.23, p < 0.0001$).

For the supply of photographic equipment, I thank Iain McDonald.

For making the flatting environment a sanctuary of good times at "Carlton L. Gore" and No.1 Ireland Street, I thank Nicholas Mabey, James Coe, Tim Elliot, Mara Mulrooney and Nick Gow.

For being part of my on campus distraction team, I thank Matt Barrett, Sean Tobin, Stu Preece, Hayden Smith, James Coe, Nicholas Mabey, Lincoln Colling, Alistair Law, Joshua Bradley, Richard Bunker, Aashish Patel, Manea Sweeney, Michelle Fox and Mara Mulrooney.

For organising netball games, I thank Michelle Fox, Julie Harper, Rachael Fullard, Jessica Chaston and Richard Bunker.

For teaching me to juggle, I thank Bertus Beaumont.

For making post-graduate functions the most successful functions at the University of Auckland, I thank Hayden Smith, Aashish Patel and Sean Tobin.

For providing me with a Bright Futures Top Achiever Doctoral Scholarship, I thank the Tertiary Education Commission (TEC).

For providing me with a University of Auckland Doctoral Scholarship extension, I thank the University of Auckland Research Committee.

For taking excellent and efficient care of all my scholarship-associated finances, I thank Angela Pearse.

For providing me with extra funding to attend conferences and workshops I thank the committee of the SBS contestable travel fund, the graduate research fund of the UARC and the PReSS funding scheme.

For providing me with the opportunity to tutor and demonstrate various undergraduate courses, I thank Professor Allen Rodrigo, Associate Professor Don Love, Dr. Howard Ross, Dr. Marti Anderson and Dr. Mat Goddard.

0.3 TABLE OF CONTENTS

1

0.1 Abstract	Ι
0.2 ACKNOWLEDGEMENTS	III
0.3 TABLE OF CONTENTS	v
0.4 GLOSSARY AND TERMS	IX
0.5 ABBREVIATIONS	XIV
0.6 LIST OF TABLES	XVI
0.7 LIST OF FIGURES	XVII
INTRODUCTION	1
1.1 EVOLUTION: THE UNITY OF LIFE	2
1.1.1 Darwin's Legacy	2
1.2 COOPERATION	7
1.2.1 A Brief History of Cooperation	7
1.2.2 Definitions of Cooperation	10
1.2.2.1 By-products	14
1.2.2.2 Public Goods	15
1.2.2.3 Summary – Cooperation and Microbes 1.2.3 Explanations of Cooperation	17 18
1.2.3 Explanations of Cooperation 1.2.3.1 Shared Genes	18
1.2.3.2 Reciprocity	20
1.2.3.3 Group Selection	22
1.2.3.4 Empirical Evidence of Group Selection	23
1.2.3.5 Criticism of Group Selection	25
1.2.4 Multi-level Selection Theory	26
1.2.4.1 Multi-level Selection 1	27
1.2.4.2 Multi-level Selection 2	27
1.2.4.3 Using MLS 1 and MLS 21.2.4.4 Emergence and the Expansion of the Biological Hierarchy	28 30
1.3 THE POWER OF MICROBIAL MODEL SYSTEMS	32
1.4 THE P. FLUORESCENS EXPERIMENTAL SYSTEMS	34
1.4.1 Diversification in a Microcosm	34
1.4.1.1 WS Mat Formation is Cooperative	35
1.4.2 The Independent Wrinkly Spreaders	37
1.5 <i>P. FLUORESCENS</i> EVOLUTIONARY GENETICS	39
1.5.1 The wss Locus	39
1.5.2 The <i>wsp</i> Locus	41
1.5.2.1 The Wsp Pathway	42
1.5.3 The aws Locus	43
1.5.4 The <i>mws</i> Locus	45
1.6 SUMMARY	48

2 VARIATION AMONG INDEPENDENT WRINKLY SPREADER GENOTYPES 50

51
52
52
59
60
60

	2.2.2.2 Variation in Mat Strength2.2.2.3 Variation in Congo Red Binding	64 65
	2.2.2.4 Variation in Fitness	66
	2.2.3 Correlations between Genotype and Phenotype	70
	2.2.3.1 Principal Components Analysis	71
	2.2.3.2 Multivariate Analyses of Similarity	74
	2.3 DISCUSSION	78
	2.3.1 Complementary Strategies Confirm Three Genetic routes to WS2.3.2 Alternate Routes to WS	78 79
	2.3.2 Antennate Routes to WS 2.3.3 Location of Mutations in <i>MwsR</i>	80
	2.3.4 The Significance of Mutations in <i>wspE</i>	82
	2.3.5 Phenotypic Parallelism among the WS Genotypes	84
	2.3.6 Refining the Genotype-phenotype Map of the WS Phenotype	86
	2.3.6.1 Problems with Measuring Wrinkliness	89
	2.3.6.2 Fitness in Two Environments	90
3	A TEST OF WS COOPERATION USING THE HAYSTACK MODEL	91
	3.1 INTRODUCTION	92
	3.2 Results	95
	3.2.1 The Diversification of Neutrally Marked SBW25- <i>lacZ</i> is Congruent with Wi	
	type SBW25	95
	3.2.2 MLS 1 with 72-h Group-generation Time 3.2.2.1 Fitness of Each Derived WS after 36 days	97 100
	3.2.3 MLS 1 with a 24-hour Group-generation Time	100
	3.3 DISCUSSION	108
	3.3.1 Adaptive Radiation is Conserved in the Marked Strain SBW25- <i>lacZ</i>	108
	3.3.2 72-h Group-generation Supports the Haystack Model	108
	3.3.3 24-h Group-generation and the Super-smooth Hypothesis	111
	3.3.4 The Limitations of MLS 1 with Respect to the Emergence of Higher Levels	113
4	THE ECOLOGY OF WS COOPERATION: AN EMERGENT GROUP-LEVEL	
	PHENOTYPE	115
	4.1 INTRODUCTION	116
	4.2 RESULTS	121
	4.2.1 Neutral Marking of Strains	121
	4.2.2 Restricting Growth to the Niche at the Air-liquid Interface	122
	4.2.3 The Fitness Dynamics of LSWS with Respect to Density and Time	126
	4.3 DISCUSSION	130
	4.3.1 The Emergent Phenotype from WS Cooperation is the Product of a Development-like Process	130
	4.3.2 Inadequacies about Current Cooperation Theory for Microbes	130
	4.3.3 Concluding Remarks	135
5	SELECTION FOR GROUP REPRODUCTION VIA A DEVELOPMENT-LIKE	5
C	PROCESS	137
	5.1 INTRODUCTION	138
	5.1.1 Preamble	138
	5.1.2 A Novel Perspective – Development of Higher Levels of the Biological Hierarchy	139
	5.1.3 <i>P. fluorescens</i> is a Suitable System	139
	5.1.4 Aims and Results	141
	5.2 RESULTS	143

	5.2.1 The Novel Apparatus	143
	5.2.2 Diversification in a Modified Petri Dish	145
	5.2.3 Selection at the Level of the Group and the level of the Individual	146
	5.3 DISCUSSION	151
	5.3.1 Selection for a Development-like Process Leads to a Higher MLS 2 Group	
	Fitness	151
6	FINAL DISCUSSION	153
	6.1 OVERVIEW OF MAIN RESULTS	154
	6.2 FUTURE DIRECTIONS	157
	6.3 FINAL COMMENT	159
7	MATERIALS AND METHODS	160
	7.1 MATERIALS	161
	7.1.1 Media and Growth Conditions	161
	7.1.2 Bacterial Strains	161
	7.1.2 Plasmids and Transposons	163
	7.1.4 Primers	163
	7.1.5 Strain Storage	164
	7.1.6 Antibiotics and Markers	164
	7.2 METHODS	165
	7.2.1 Dilutions	165
	7.2.2 DNA preparation	165
	7.2.3 Polymerase Chain Reaction (PCR)	165
	7.2.4 Arbitrary Primed PCR (AP-PCR)	166
	7.2.5 Electrophoresis	167
	7.2.6 DNA Extraction	167
	7.2.7 DNA Sequencing	167
	7.2.8 Allelic Replacement	168
	7.2.9 Transformation	169
	7.2.10 Restriction Enzyme Cleavage	169
	7.2.11 Bi-Parental Conjugation	169
	7.2.12 Tri-Parental Conjugation	170
	7.2.13 Enrichment	170
	7.2.14 Transposon mutagenesis	171
	7.2.15 Fitness Assays	171
	7.2.15.1 Two Competitor Fitness Assays7.2.15.2 3-way Static Competition Assays	172 172
	7.2.15.2 5-way state competition Assays 7.2.15.3 Long-Term Fitness Assays	172
	7.2.15.4 Broth-saturated Competitions	173
	7.2.16 MLS 1 Selection Experiments	174
	7.2.17 Congo Red Binding Assay	174
	7.2.18 Photographic Analysis	175
	7.2.19 Mat Strength Assay	176
	7.2.20 Artemis	176
	7.2.21 Sequencher	176
	7.2.22 Geneious	177
	7.2.23 Statistics	177
	7.2.23.1 Randomisation Test for a Difference between Curves	177
	7.2.23.2 Randomisation Test for a Difference between Straight Lines	177
	7.2.24 Experiments in a Modified Petri Dish	178
	7.2.24.1 Diversification in a Modified Petri Dish	178
	7.2.24.2 A Multi-Level Selection Experiment	178
	7.2.24.3 Measuring a response to multi-level selection	179

8 REFERENCES

9

APPENDICES	196
9.1 APPENDIX ITEMS FROM CHAPTER 1	197
9.1.1 Chapter 1.3 The Power of Microbial Model Systems	197
9.1.1.1 SBW25-lacZ is Neutrally Marked in Long-term Experiments	197
9.1.2 Chapter 1.4.1.1 Diversification in a Microcosm	198
9.1.2.1 Fine-scale Fitness Dynamics of LSWS in Competition with SBW25 in a Static Environm	ent
	198
9.1.3 Chapter 1.5.3 The Aws Locus	199
9.2 APPENDIX ITEMS FROM CHAPTER 2	200
9.2.1 Chapter 2.2.1 Identifying the Mutational Routes to WS	200
9.2.2 Chapter 2.2.1.1 Genetic Reconstruction of a <i>wspE</i> Mutation	208
9.2.3 Chapter 2.2.2.1 Variation in Colony Size and Wrinkliness	208
9.2.3.1 Variation in Colony Size and Wrinkliness	212
9.2.3.2 Variation in Mat Strength	213
9.2.3.3 Variation in Congo Red Binding	213
9.2.3.4 Variation in Fitness	214
9.2.4 Chapter 2.2.3.2 Multivariate Analyses of Similarity	215
9.3 APPENDIX ITEMS FROM CHAPTER 3	216
9.4 APPENDIX ITEMS FROM CHAPTER 4	216
9.4.1 Chapter 4.3.2 Inadequacies about Current Cooperation Theory for Microbes	216
9.4.1.1 Tracing the Evidence for Siderophore Excretion as a Cooperative Trait	216
9.5 APPENDIX ITEMS FROM CHAPTER 5	219
9.6 APPENDIX ITEMS FROM CHAPTER 6	219

0.4 GLOSSARY AND TERMS

Actor: The focal individual that performs a behaviour (West et al., 2007b).

- Adaptation: A process of genetic change of a population, owing to natural selection, whereby the average state of a character becomes improved with reference to a specific function, or whereby a population is thought to have become better suited to some feature of its environment (Futuyma, 1998).
- Adaptive Radiation: The evolution of ecological diversity within a rapidly multiplying lineage characterised by phenotypic divergence and speciation due to the availability of environments, resources and resource competition (Schluter, 2000).
- Altruism: A behaviour that is costly to the actor and beneficial to the recipient(s) where these costs and benefits are defined by the consequences on the lifetime fitness of the actor and the recipient, *i.e.* –/+ (West *et al.*, 2007b).
- Cheater: An individual that does not cooperate (or contributes less than its 'fair share'), and gains the benefit of others cooperating (Velicer, 2003; West *et al.*, 2007b).
- **Cheating:** Obtaining benefits from a collectively produced public good that are disproportionately large relative to a cheater's own contribution to that good (Velicer, 2003).
- **Coevolution:** Evolution in two or more species in which the evolutionary changes of each species influence the evolution of the other species (Ridley, 2004).
- **Cooperation:** Any action *selected to enhance* the fitness of others at a relative cost to the acting individual (West *et al.*, 2006). Cooperation includes all behaviours that are altruistic (–/+) and some mutually beneficial (+/+) behaviours.
- **Cooperator:** An individual that provides a benefit that increases the fitness of another individual (other individuals) at a relative cost to itself (West *et al.*, 2006).
- **Defector:** An individual that does not cooperate, but may or may not benefit from the cooperative benefits of others. Therefore, biologically not all defectors are cheats (Velicer, 2003).

- **Deme:** A group of individuals that readily intermix during some point in their life cycle, giving any two an equal probability of becoming neighbours (Wilson, 1977).
- **Direct fitness:** The component of fitness gained through the impact of an individual's behaviour on the production of [their own] offspring (Hamilton, 1964a; West *et al.*, 2007b).
- **Emergence:** The appearance of emergent properties. *See also* Emergent property.
- **Emergent character:** An emergent property in which any character of groups originating from non-additive interaction among lower-level units that do not exist at the lower level (Gould, 2002 p.657).
- **Emergent fitness:** Any trait that characterises or influences the differential rate of proliferation of groups in interaction with the environment (Gould, 2002 p.659).
- **Emergent property:** Any property arising from an interaction among individuals that is 'not otherwise attainable' (Corning, 2002), because the effect is qualitatively or quantitatively 'greater than the sum of the parts' (Gould, 2002).
- **Exaptation:** A character previously evolved for one reason (whether or not as an adaptation), and then coopted for utility in another role (Gould and Vrba, 1982).
- **Fitness:** The average number of offspring produced by individuals with a certain genotype relative to the number produced by individuals with other genotypes (Ridley, 2004).
- **Focal individual (FI):** The focal individual is the individual for whom fitness is evaluated in mathematical calculation and is also the conceptual individual for the description of the model.
- **Gene flow:** The movement of genes into, or through, a population by interbreeding or by migration and interbreeding (Ridley, 2004).
- Genetic drift: Random changes in gene frequencies in a population (Ridley, 2004).
- **Group-generation:** In MLS 1, the period of time between successive formations of groups, *i.e.* the period of time spent within a group. In MLS 2, the period of time between the reproduction of successive group offspring.

- Group selection: The process of genetic change caused by the differential proliferation and extinction of groups of organisms (Wright, 1945; Wynne-Edwards, 1962; Maynard Smith, 1964; Williams, 1966; Lewontin, 1970; Wade, 1977). See also trait-group selection.
- **Kin selection:** The process of selection by which traits are favoured because of their beneficial effects on the fitness of relatives (West *et al.*, 2007b).
- **Inclusive fitness:** The combination of an individual's direct fitness plus the indirect fitness of that individual's effect on all other individuals (Grafen, 1984).
- **Indirect fitness:** The component of fitness gained from aiding the reproduction of related individuals (Hamilton, 1964a; West *et al.*, 2007b).
- **Individual:** A physiologically discrete organism (Buss, 1987) that satisfies Lewontin's conditions for a unit of selection (Lewontin, 1970). *See also* Unit of selection.
- **Individual Selection:** Selection that favours the spread of a trait through a population based only on the number of offspring left by that individual (Grafen, 1984).
- Individuality: The properties of an individual. See also Individual.
- **Interdemic group selection:** Selection between groups where group membership is defined by interactions between individuals and not by all individuals in the vicinity (Wilson, D.S., 1975).
- Iterated Prisoner's Dilemma: A successively repeated version of the Prisoner's Dilemma.
- **Local group:** A subset of the population that interact with one another; the local group may vary from the perspective of different behaviours or traits (West *et al.*, 2007b).
- Malthusian parameter: The ratio of final to initial population density after bacterial growth (Lenski *et al.*, 1991).
- **Malthusian ratio:** The relative fitness of a strain compared to a competitor calculated by taking the ratio of Malthusian parameters (Lenski *et al.*, 1991).
- **Multi-level selection 1:** Multi-level selection 1 is said to occur whenever an individual's expected viability, mating success, and/or fertility cannot be accounted for solely on the basis of that individual's phenotype, but rather additional information is required about properties of the group or groups of which the individual is a member (Heisler and Damuth, 1987).

- **Multi-level selection 2:** Multi-level selection 2 occurs whenever any group properties co-vary with group-level fitness, implying that the proportions of different kinds of gorups will change in the population (and noting that group characters may change as a result of lower-level selection among the individuals that the groups comprise) (Heisler and Damuth, 1987).
- **Multicellularity:** The property of an individual that spends part of its life cycle as an entity consisting of more than a single cell (Michod and Roze, 1997; Michod and Roze, 2001; Michod *et al.*, 2005).
- **Mutual benefit:** A behaviour which is beneficial to both the actor and the recipient, *i.e.* +/+ (West *et al.*, 2007b).
- Mutualism: Cooperation between species (West et al., 2007b).
- **Natural selection:** The differential reproductive success of evolutionary individuals based on the fitnesses of their traits in interaction with the environment (Gould, 2002).
- **Phenotype:** Any observable physical manifestation of an organism, such as its morphology, development, biochemical or physiological properties, function or behaviour.
- **Prisoner's Dilemma (PD):** A popular non-zero sum game theory approach to analysing cooperation in which cooperation by two individuals generates the highest average payoff, but unilateral defection gives the greatest individual advantage regardless of the choice of the other prisoner.
- **Public good:** Any fitness-enhancing resource that is accessible to multiple individuals within a local group (Velicer, 2003).
- **Recipient:** Any individual receiving the benefit of a cooperative behaviour (West *et al.*, 2007b). Recipients may be cooperators or defectors.
- Trait-group selection: See interdemic group selection.
- **Trait-groups:** Populations enclosed in areas smaller than the boundaries of the deme (Wilson 1975).
- **Unit of selection:** Any physical entity in nature that has variation, reproduction, and heritability (Lewontin, 1970).
- Weak altruism: any action that provides a benefit to others that leads to a decrease in the fitness of the focal individual, relative to the other members of its group (Wilson, D.S., 1975; Wilson, 1977; West *et al.*, 2007b).

Wild-type: The normal or ancestral form of members of a species, as distinct from derived mutant forms (Ridley, 2004).

0.5 ABBREVIATIONS

aa: <u>A</u>mino <u>a</u>cid

ANOSIM: <u>An</u>alysis <u>of sim</u>ilarity

ANOVA: Analysis of variance

BLAST: Basic local alignment search tool

c-di-GMP: Cyclic-di-guanosine monophosphate

CDD: Conserved domain database

CR: Congo red

DGC: <u>D</u>i-guanylate cyclase

DMF: Dimethyl Formamide

EPS: Exopolysaccharide

FI: Focal individual

GLS: Group level selection

IPD: Iterated Prisoner's Dilemma

IWS: Independent wrinkly spreader isolates

KB: King's medium B (King et al., 1954)

LB: Lysogeny broth (Bertani, 1951; Bertani, 2004)

LSWS: Large spreading wrinkly spreader

MLS 1: <u>Multi-level selection 1</u> (Heisler and Damuth, 1987; Damuth and Heisler, 1988)

MLS 2: <u>Multi-level selection 2</u> (Heisler and Damuth, 1987; Damuth and Heisler, 1988)

MPD: Modified Petri dish

NCBI: National Centre for Biotechnology Information

NF: Nitrofurontoin

OD: Optical density

PDE: Phosphodiesterase

PTFE: Poly-tetrafluoroethene

REC: Signal receiver domain

SM: Smooth colony morphotype of P. fluorescens (Rainey and Travisano, 1998)

SNP: Single nucleotide polymorphism

SRC: Selection rate constant (Lenski et al., 1991)

TMHHM: <u>Transmembrane hidden Markov model</u>

WS: <u>W</u>rinkly <u>spreader colony morphotype of *P.fluorescens* (Rainey and Travisano, 1998)</u>

0.6 LIST OF TABLES

Table 1-1: The levels of the biological hierarchy	5
Table 1-2: Conceptual differences between MLS 1 and MLS 2.	29
Table 1-3: Predicted function of the proteins in the wss operon.	
Table 1-4: Predicted function of proteins in the wsp locus.	
Table 2-1: Results of the transposon-mediated mutagenesis of 11/12 unknown IV	
genotypes.	
Table 2-2: All IWS mutations.	55
Table 2-3: Multiple univariate analyses of effects on phenotypic characteristics	71
Table 2-4: Coefficients of the first three principal components	73
Table 2-5: Multiple univariate analyses of principal components	74
Table 2-6: Pair-wise ANOSIM comparisons for gene	75
Table 2-7: Pair-wise ANOSIM comparisons for locus.	76
Table 3-1: Tukey's Test for differences among proportions of WS types for durin	ıg
SSM evolution	. 106
Table 7-1: Pseudomonas fluorescens strains used in this study	. 161
Table 7-2: Escherichia coli strains used in this study	. 162
Table 7-3: Names and characteristics of plasmids and transposons	. 163
Table 7-4: Primer names, sequences and targets	. 163
Table 9-1: Ten-day competition assay between SBW25 and SBW25-lacZ.	
Table 9-2: NCBI BlastP hits for awsX on 11.10.2007	. 199
Table 9-3: List of GGDEF/GGEEF domain proteins (PF009900) in P. fluorescen	S
SBW25	. 200
Table 9-4: IWS _D transposon insertion sequence data	. 201
Table 9-5: IWS _H transposon insertion sequence data	. 201
Table 9-6: IWS _I transposon insertion sequence data	. 202
Table 9-7: IWS _K transposon insertion sequence data	. 202
Table 9-8: IWS _M transposon insertion sequence data	. 202
Table 9-9: IWS _P transposon insertion sequence data	. 203
Table 9-10: IWS _Q transposon insertion sequence data	. 203
Table 9-11: IWS _R transposon insertion sequence data.	. 204
Table 9-12: IWS _S transposon insertion sequence data	. 204
Table 9-13: IWS _V transposon insertion sequence data	. 205
Table 9-14: IWS _x transposon insertion sequence data	. 205
Table 9-15: Tukey's pair-wise comparison for Area	
Table 9-16: Tukey's pair-wise comparison for Circularity.	. 212
Table 9-17: Tukey's pair-wise comparison for Mat Strength	
Table 9-18: Tukey's pair-wise comparison for Congo Red binding	
Table 9-19: Tukey's pair-wise comparison for Fitness in a shaking environment.	
Table 9-20: Tukey's pair-wise comparison for fitness in a static environment	. 215

0.7 LIST OF FIGURES

Figure 1-1: Classification of social interactions in terms of absolute fitness	. 11
Figure 1-2: Types of by-products.	. 15
Figure 1-3: The mean number of adult <i>T. casteneum</i> from three group selection	
treatments	. 24
Figure 1-4: The major morphotypes of P. fluorescens on KB agar	. 35
Figure 1-5: Niche specificity of the wrinkly spreader (WS) and the ancestral smoot	
(SM)	. 36
Figure 1-6: Depletion of oxygen in a statically incubated microcosm.	. 36
Figure 1-7: Partially collapsed mats	. 37
Figure 1-8: The ten genes of the wss locus.	. 39
Figure 1-9: The seven genes of the <i>wsp</i> locus	. 41
Figure 1-10: The Wsp pathway.	
Figure 1-11: The <i>aws</i> locus.	
Figure 1-12: A model for the Aws protein interaction	
Figure 1-13: The predicted protein domain structures of MwsR (predicted by CDD	
Figure 1-14: TMHMM posterior probabilities of Sequence.	
Figure 1-15: Working model for Mws function.	
Figure 2-1: Domain structure of <i>mwsR</i> showing known mutations	
Figure 2-2: Domain structure of WspE showing the known mutations	
Figure 2-3: Alignment of REC domains.	
Figure 2-4: Relative fitness of IWS _H and the reconstructed genotype	
Figure 2-5: Comparison of the colony morphology of IWS _H and the reconstructed	
genotype	
Figure 2-6: Image overlaying in Sigmascan Pro for an SBW25- $\Delta wspF$ colony	
Figure 2-7: Variation in colony area for all IWS genotypes.	
Figure 2-8: Size difference in wrinkly spreader colonies.	
Figure 2-9: Variation in colony circularity for all IWS genotypes	
Figure 2-10: Variation in mat strength for all IWS genotypes	
Figure 2-11: Variation in Congo red binding for all IWS genotypes	
Figure 2-12: Variation in the fitness of each IWS genotype in a shaking environme	
Figure 2-13: Variation in fitness of each IWS genotypes in a static environment	
Figure 2-14: Predictions for fitness in different environments	
Figure 2-15: Contrast of Shaking Fitness and 3-way Static Fitness for the IWS	
genotypes.	. 70
Figure 2-16: Scatter plot of PC1 against PC2 coloured by locus.	
Figure 2-17: Scatter plot of PC1 against PC2, coloured by gene	
Figure 2-18: ANOSIM for the IWS genotypes grouped by gene	
Figure 2-19: ANOSIM for the IWS genotypes grouped by locus	
Figure 2-20: ANOSIM for the IWS genotypes grouped as <i>wspF</i> and non- <i>wspF</i>	
Figure 2-21: Position of the <i>mws</i> mutations from McDonald <i>et al.</i> (2008)	
Figure 2-22: The Wsp pathway.	

Figure 3-1: Diversification of SBW25 and SBW25- <i>lacZ</i> in a spatially structured	
microcosm	96
Figure 3-2: Sixth degree polynomial fit to the data	97
Figure 3-3: The four stages in the MLS 1 experimental treatment	98
Figure 3-4: The four stages in the control treatment	
Figure 3-5: MLS 1 experiment with 72-h transfer	
Figure 3-6: Sixth degree polynomial fit to the combined experimental and control	
data	
Figure 3-7: Relative fitness of day-36 WS types for a 3-way static competition	
Figure 3-8: Relative fitness of day 36 WS types for a 24 h competition under shak	
conditions.	
Figure 3-9: Contrast of Shaking Fitness and 3-way Static Fitness for day-36 WS	102
types	103
Figure 3-10: Proportion of WS types in each of the 24-h control lines	
Figure 3-11: MLS 1 Experiment with 24-h transfer.	
Figure 3-12: Evolution of WS types from SSM genotypes during five days of stat	
incubation.	
Figure 3-13: SSM competitions in a static environment against the ancestor.	
Figure 4-1: Expectations of relative fitness as a function of initial cooperator dens	
for different types of cooperation	-
Figure 4-2: Results of the fitness assays among the genotypes used in Chapter 4	11)
relative to SBW25- <i>lacZ</i> .	121
Figure 4-3: Change in the proportion of SBW25-Gm with respect to time at multi	
densities.	-
Figure 4-4: Change in the proportion of LSWS-Gm with respect to time at multip	
densities.	
Figure 4-5: Fitness of SBW25-Gm control and LSWS-Gm treatment in broth-	123
saturated microcosms.	127
Figure 4-6: SRC for LSWS-Gm at multiple densities for the time intervals 0-24 at	
24-48 h	
Figure 4-7: Fitness of LSWS-Gm treatment and LSWS-Gm[interrupted] treatmen	
broth-saturated microcosms.	
Figure 5-1: Schematic diagram of the Petri dish adaptor and the modified Petri dis	
(MPD)	
Figure 5-2: A Petri dish lid adaptor showing mat growth	
Figure 5-3: Mats removed from the holes of the Petri dish lid adaptor	
Figure 5-4: Adaptive radiation in a modified Petri dish.	
Figure 5-5: Experimental design for the MLS and GLS treatments	
Figure 5-6: Change in proportion of derived groups over time for the GLS and MI	
treatments.	
Figure 5-7: Comparison of group fitness between the MLS and the GLS treatment	
Figure 7-1: Calibration curve for cell density from optical density at 600nm	
Figure 9-1: Fine-scale fitness (SRC) dynamics for LSWS compared to SBW25 ov	
48 h	
Figure 9-2: Alignment of PF0090 and cd01949.	200

Figure 9-3: Alignment of PF00563 and cd01948	201
Figure 9-4: Mutation in IWS _D .	206
Figure 9-5: Mutation in IWS _H .	206
Figure 9-6: Mutation in IWS _I .	206
Figure 9-7: Mutation in IWS _K .	
Figure 9-8: Mutation in IWS _M	
Figure 9-9: Mutation in IWS _P	207
Figure 9-10: Mutation in IWS _Q .	
Figure 9-11: Mutation in IWS _R	207
Figure 9-12: Mutation in IWS ₈	207
Figure 9-13: Mutation in IWS _v .	208
Figure 9-14: Mutation in IWS _x .	208
Figure 9-15: Allelic replacement mutation confirmed in SBW25	