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INVARIANT PROLONGATION OF THE KILLING TENSOR EQUATION

A. ROD GOVER AND THOMAS LEISTNER

Abstract. The Killing tensor equation is a first order differential equation on symmetric
covariant tensors that generalises to higher rank the usual Killing vector equation on Rie-
mannian manifolds. We view this more generally as an equation on any manifold equipped
with an affine connection, and in this setting derive its prolongation to a linear connection.
This connection has the property that parallel sections are in 1-1 correspondence with solu-
tions of the Killing equation. Moreover this connection is projectively invariant and is derived
entirely using the projectively invariant tractor calculus which reveals also further invariant
structures linked to the prolongation.

1. Introduction

On a Riemannian manifold (M, g) a tangent vector field k ∈ X(M) is an infinitesimal auto-
morphism (or symmetry) if the Lie derivative of the metric g in direction of k vanishes. In terms
of the Levi-Civita connection ∇ = ∇g, this may be written as

(1) ∇(akb) = 0

where we use an obvious abstract index notation, ka = gabk
b, and the (ab) indicates symmetri-

sation over the enclosed indices. This Killing equation is generalised to higher rank r ≥ 1 by the
Killing tensor equation equation

(2) ∇(akb···c) = 0

where kb···c is a symmetric tensor, that is k ∈ Γ(SrT ∗M) and again (ab · · · c) indicates symmetri-
sation over the enclosed indices. Solutions of this, so-called Killing tensors, are important for
treatment of separation of variables [2, 25, 30, 33], higher symmetries of the Laplacian and similar
operators [1, 14, 16, 22, 28, 29], and for the theory of integrable systems, and superintegrability
[11, 15, 13, 27, 26]. Partly these applications arise because a solution of (2) (for any r) provides
a first integral along geodesics: if γ : I → M is a geodesic (where I ⊂ R is an interval) and
u := γ̇ is the velocity of this then ∇uu = 0 and therefore by dint of (2) the function kb···cu

b · · ·uc

is constant along γ.
In dimensions n ≥ 2 (which we assume throughout) the equation (2) is an overdetermined

finite type linear partial differential equation. This means, in particular, that it is equivalent to
a linear connection on a system that involves the Killing tensor k but also additional variables,
the prolonged system [4, 34]. For example for equation (1) above this prolonged system is very
easily found to be

(3) ∇a

(

kc
µbc

)

=

(

∇akb − µab

∇aµbc − Rbc
d
akd,

)

where Rbc
d
a is the curvature of ∇ (see Section 4.2 below). In general such prolonged systems

are not unique, but for any such connection its parallel sections correspond 1-1 with solutions of
the original equation ((2) in this case). Thus, on connected manifolds, the rank of the prolonged
systems gives an upper bound on the dimension of the space of solutions and curvature of the
given connection can lead to obstructions to solving the equation, see e.g. [5, 20, 21].
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2 A. R. GOVER AND T. LEISTNER

Two affine connections ∇ and ∇′ are said to be projectively equivalent if they share the same
unparametrised geodesics. Connections differing only by torsion are projectively related, and we
will lose no generality in our work here if we restrict to torsion free connections, which we do
henceforth. An equivalence class of p = [∇] of such projectively related torsion-free connections
is called a projective structure and a manifold Mn≥2 equipped with such a structure is called a
projective manifold. An important but not fully exploited feature of the equation (2) is that it is
projectively invariant. This will be explained fully in Section 2.2, but at this stage it will suffice
to say the following. First when we introduced (2) above, ∇ denoted the Levi-Civita connection
of a metric, but the equation makes sense and is important for any affine connection ∇, and it is
in this setting that we now study it. Next the projective invariance means that the equation (2)
has a certain insensitivity and, in particular, descends to a well defined equation on a projective
manifold (M,p).

On a general projective manifold (M,p) there is no distinguished affine connection on TM .
However there is a distinguished projectively invariant connection ∇T on a vector bundle T that
extends (a density twisting of) the tangent bundle TM :

(4) 0 → E(−1)
X
→ T → TM ⊗ E(−1) → 0

where E(−1) is a natural real oriented line bundle defined in Section 2 below. This is the normal
projective tractor connection and it (or the equivalent Cartan connection) provides the basic
tool for invariant calculus on projective manifolds. An important feature of this connection is
that it is on a low rank bundle (i.e. dim(TM) + 1) that is simply related to the tangent bundle.
The tractor calculus is recalled in Section 2.2.

For most applications that one can imagine it makes sense then to seek a prolongation of
(2) that is itself a projectively invariant connection. For example, if this can be found, then its
curvature simultaneously constrains solutions for the entire class of projectively related connec-
tions. In fact such a connection exists. The equations (2) is an example of a first BGG equation
and arises as a special case of the very general theory of Hammerl et al. in [24] (see also [23]).
That theory describes an algorithm for producing an invariant connection giving the prolonged
system for any of the large class of BGG equations (and we refer the reader to that source for
the meaning of these terms) and in this sense is very powerful. Although the algorithm of [24]
produces in the end an invariant connection it proceeds through stages that break the invariance
of the given equation. For example in treating (2) the steps of the algorithm are not projectively
invariant. Moreover beyond the case of rank 1 the explicit treatment of (2) using this algorithm
seems practically intractible due to the number of steps involved. Finally although the construc-
tion of [24] is strongly linked to the calculus of the normal tractor connection (of [3, 6, 10]) the
connection finally obtained is not easily linked to the normal tractor connection.

The aim of this article is to produce an alternative invariant prolongation procedure that is
simple, conceptual, explicit, and that reflects the invariance properties of the original equations.
It is well known that for the projective BGG equations the normal tractor connection easily
recovers the required prolongation in the case that the structure is projectively flat (i.e., the
projective tractor/Cartan connection is flat). A motivation is to be able to produce the explicit
curvature correction terms that modify the normal tractor connection to deal with general solu-
tions on a projectively curved manifold. An explicit knowledge of these terms will enable us to
deduce properties of the prolongation and so properties of solutions in general. We develop here
a projectively invariant prolongation of the equation (2) for each r ≥ 1. This uses at all stages
the calculus of the normal projective tractor conection ∇T (as in [3]). The result is a connection
on a certain projective tractor bundle (a tensor part of a power of the dual T ∗ to T ) that differs
from the normal tractor connection by the algebraic action of a tractor field that is projectively
invariant and produced in a simple way from the curvature of the normal tractor connection and
iterations of a projectively invariant operator on this. An advantage is that the construction and
calculation uses projectively invariant tools, and at all stages the link to the very simple normal
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tractor connection is manifest. As an immediate application this approach typically simplifies
the computation of integrability conditions, see Remark 18 and in particular equation (56).

A tensorial approach to prolonging the Killing equation has been developed for arbitrary rank
in [35] (see also [12]). Concerning our results for the projectively flat case in Section 3.1 there
are necessarily some strong links to the prolongation approach of [29]. However our route to the
prolongation is very different and it is this that is important for the development of the curved
theory.

In fact there is considerable information in some of the preliminary results along the way in our
treatment. For example each Killing equation is captured in the very simple tractor equation of
Proposition 6. This is part of a rather general picture which suggests that the theory here should
generalise considerably. (In fact aspects of our treatment here were inspired by the conformally
invariant prolongation of the conformal Killing equation via tractors in [19, Proposition 2.2].)
This will be taken up in subsequent works. The Proposition 6 also may interpreted as showing
that solutions of the Killing tensor equation on (M,p) correspond in a simple way to Killing
tensors for the canonical affine connection on the Thomas cone over (M,p); the Thomas cone is
discussed in e.g. [7, 10].

Throughout we use Penrose’s abstract index notation. As mentioned above (ab · · · c) indicates
symmetrisation over the enclosed indices, while [ab · · · c] indicates skewing over the enclosed
indices. Then E is used to denote the trivial bundle, and for example E(abc) is the bundle of

covariant symmetric 3-tensors S3T ∗M .

2. Background

2.1. Conventions for affine geometry. Let (M,∇) be an affine manifold (of dimension n ≥ 2),
meaning that ∇ is a torsion-free affine connection. The curvature

Rab
c
d ∈ Γ(Λ2T ∗M ⊗ TM ⊗ T ∗M)

of the connection ∇ is given by

[∇a,∇b]v
c = Rab

c
dv

d, v ∈ Γ(TM).

The Ricci curvature is defined by Rbd = Rcb
c
d.

On an affine manifold the trace-free part Wab
c
d of the curvature Rab

c
d is called the projective

Weyl curvature and we have

(5) Rab
c
d = Wab

c
d + 2δc[aPb]d + βabδ

c
d,

where βab is skew and Pab is called the projective Schouten tensor. That Wab
c
d is trace-free

means exactly that Wab
a
d = 0 and Wab

d
d = 0. Since ∇ is torsion-free the Bianchi symmetry

R[ab
c
d] = 0 holds, whence

βab = −2P[ab] and (n− 1)Pab = Rab + βab.

As we shall see below the curvature decomposition (5) is useful in projective differential
geometry.

First some further notation. On a smooth n-manifold M the bundle K := (ΛnTM)2 is an
oriented line bundle and thus we can take correspondingly oriented roots of this. For projective
geometry a convenient notation for these is as follows: given w ∈ R we write

(6) E(w) := K
w

2n+2 .

Of course the affine connection ∇ acts on ΛnTM and hence on the projective density bundles
E(w). As a point of notation, given a vector bundle B we often write B(w) as a shorthand for
B ⊗ E(w).
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2.2. Projective geometry and tractor calculus. Two affine torsion-free connections ∇′ and
∇ are projectively equivalent, that is they share the same unparametrised geodesics, if and only
if there some Υ ∈ Γ(T ∗M) s.t.

(7) ∇′
av

b = ∇av
b +Υav

b +Υcv
cδba

for all v ∈ Γ(T ∗M). This implies that on sections of E(w) we have

∇′
aτ = ∇aτ + wΥaτ,

while on sections of T ∗M ,
∇′

aub = ∇aub −Υaub −Υbua

It follows at once that on ka1···ak
∈ SkT ∗M(2r) we have

∇′
(a0

ka1···ak) = ∇(a0
ka1···ak).

Thus for k ∈ SkT ∗M(2r) the Killing equation (2) is projectively invariant and descends to a well
defined equation on (M,p), where p = [∇] = [∇′], the projective equivalence class of ∇.

On a general projective n-manifold (M,p) there is no distinguished connection on TM . How-
ever there is a projectively invariant connection on a related rank (n+ 1) bundle T . This is the
projective tractor connection that we now describe.

Consider the first jet prolongation J1E(1) → M of the density bundle E(1). (See for example
[31] for a general development of jet bundles.) There is a canonical bundle map called the jet
projection map J1E(1) → E(1), which at each point is determined by the map from 1-jets of
densities to simply their evaluation at that point, and this map has kernel T ∗M(1). We write
T ∗, or an in an abstract index notation EA, for J

1E(1) and T or EA for the dual vector bundle.
Then we can view the jet projection as a canonical section XA of the bundle EA(1). Likewise, the
inclusion of the kernel of this projection can be viewed as a canonical bundle map Ea(1) → EA,
which we denote by ZA

a. Thus the jet exact sequence (at 1-jets) is written in this notation as

(8) 0 −→ Ea(1)
ZA

a

−→ EA
XA

−→ E(1) −→ 0.

We write EA = E(1) +
✞
✝ Ea(1) to summarise the composition structure in (8) and XA ∈ Γ(EA(1)),

as defined in (8), is called the canonical tractor or position tractor. Note the sequence (4) is
simply the dual to (8).

As mentioned above, any connection ∇ ∈ p determines a connection on E(1). On the other
hand, by definition, a connection on E(1) is precisely a splitting of the 1-jet sequence (8). Thus

given such a choice we have the direct sum decomposition EA
∇
= E(1)⊕ Ea(1) and we write

(9) YA : E(1) → EA and WA
a : EA → Ea(1),

for the bundle maps giving this splitting of (8); so

XAYA = 1, ZA
bWA

a = δba, and YAW
A
a = 0.

By definition X and Z are projectively invariant. The formulae for how YA and WA
a transform

when ∇ is replaced by ∇′, is in (7), is easily deduced and can be found in [3].
With respect to a splitting (9) we define a connection on T ∗ by

(10) ∇T ∗

a

(

σ

µb

)

:=

(

∇aσ − µa

∇aµb + Pabσ

)

.

Here Pab is the projective Schouten tensor of ∇ ∈ p, as introduced earlier. It turns out that
(10) is independent of the choice ∇ ∈ p, and so ∇T ∗

is determined canonically by the projective
structure p. We have followed the construction of [3, 9], but as mentioned in those sources this
cotractor connection is due to T.Y. Thomas. Thus we shall also term T ∗ = EA the cotractor
bundle, and we note the dual tractor bundle T = EA has canonically the dual tractor connection:
in terms of a splitting dual to that above this is given by

(11) ∇T
a

(

νb

ρ

)

=

(

∇aν
b + ρδba

∇aρ− Pabν
b

)

.
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Note that given a choice of ∇ ∈ p, by coupling with the tractor connection we can differentiate
tensors taking values in tractor bundles and also weighted tractors. In particular we have

(12) ∇aX
B = WB

a, ∇aW
B
b = −PabX

A, ∇aYB = PabZB
b, and ∇aZB

b = −δbaYB .

The curvature of the tractor connection is given by

(13) κab
C
D = Wab

c
dW

C
cZD

d − CabdZD
dXC ,

where Wab
c
d is the projective Weyl curvature, as above, and

(14) Cabc := ∇aPbc −∇bPac

is called the projective Cotton tensor.
The projective Thomas-D operator is a first order projectively invariant differential operator,

or more accurately family of such operators. Given any tractor bundle V (including the trivial
bundle E) and any w ∈ R it provides an operator on the weighted tractor bundle V(w)

D : V(w) → T ∗ ⊗ V(w − 1)

given by

(15) DAV = wYAV + ZA
a∇aV,

where ∇a is the connection induced on the weighted bundle V from the tractor connection ∇T ∗

a

and the connection on E(1) coming from a representative in p. Note that from this definition
and (12) follows

(16) DAX
B = δBA , and XA

DAV = wV,

for V ∈ Γ(V(w)). Also from the definition it follows that D satisfies a Leibniz rule, in that if U(w)
and V(w′) are tractor (or density) bundles of weights w and w′, respectively then for sections
U ∈ Γ(U(w)) and V ∈ V(w′) we have

D(U ⊗ V ) = (DU)⊗ V + U ⊗ DV.

Thus from (16), when commuting DA with the tensor product with XB, we get the commutator
identity

(17) [DA, X
B] = δA

B.

In view of the last property, as an operator on weighted tractor fields, the commutator [DA,DB]
is a “curvature” in that it acts algebraically. We will treat it this way by writing,

(18) [DA,DB]V
C = WAB

C
DV D

for its action on V ∈ γ(T (w)). For this reason and for convenience we will refer to WAB
C
D

as the W -curvature. Investigating this, consider D on projective densities τ ∈ Γ(E(w)) to form
DBτ . Using (12) we have

DADBτ = (w − 1)YADBτ + ZA
a∇aDBτ

= w(w − 1)YAYBτ + 2(w − 1)Y(AZ
b
B)∇bτ + Za

AZ
b
B∇a∇bτ,

which we note is symmetric. Phrased alternatively, we have on sections of density bundles

(19) [DA,DB]τ = 0.

So D is “torsion free” in this sense, and from the Jacobi identity we have at once the Bianchi
identities

(20) W[AB
C
D] = 0 and D[AWBC]

E
F = 0.

To compute WAB
C
D it suffices to act on a section V ∈ Γ(T ). Note from (12)

DADBV
C = −YADBV

C − YBDAV
C + ZA

aZB
b∇a∇bV

C .

Thus

(21) WAB
C
D = ZA

aZB
bκab

C
D,
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where κ is the tractor curvature given above, and in particular

(22) XAWAB
C
D = XBWAB

C
D = XDWAB

C
D = 0,

as well as

(23) ZC
cWAB

C
D = ZA

aZB
bZD

dWab
c
d, YCWAB

C
D = −ZA

aZB
bZD

dCabd

The action of the W-tractor, as on the right hand side of (18), extends to tensor products of
T and T ∗ by the Leibniz rule and we use the shorthand WAB♯ for this. For example, for any
(possibly weighted) 2-cotractor field TCD we have

WAB♯TCD = −WAB
E
CTED −WAB

E
DTCE.

Remark 1. The W -curvature WAB
C
D satisfies, of course, stronger properties if the projective

structure includes the Levi-Civita connection of a metric. An interesting case is when, in par-
ticular, the metric is Einstein but not scalar flat, as in this case there there is a parallel (non-
degenerate) metric on the projective tractor bundle. This can be used to raise and lower tractor
indices [9] and it follows easily that that the W -curvature WAB

C
D has the same algebraic sym-

metries as a conformal Weyl tensor. This is potentially important for applications, but we will
not exploit these observations in the current work.

2.3. Young diagrams and some algebra. For a real vector space V of dimension N we
consider irreducible representations of SL(V) ∼= SL(N,R) within ⊗m

V
∗ for m ∈ Z≥0. Up to

isomorphism, these are classified by Young diagrams [17, 18] and we assume an elementary
familiarity with this notation. Each diagram is (equivalent to) a weight (a1, a2, · · · , aN ) where

m ≥ a1 ≥ . . . ≥ aN ≥ 0 with
∑k

i=1 ai = m. We usually omit terminal strings of 0, strictly
after a1, that is for s ≥ 2 we usually omit as from the list if as = 0. In particular the trivial
representation of SL(V) on R (so m = 0) will be denoted (0) rather than (0, · · · , 0) and the
dual of the defining (or fundamental) representation of SL(V) on V

∗ (so m = 1) will be denoted
(1) rather than (1, 0, · · · , 0). Given this notation for weights the representation space for the
representation (a1, · · · , ah) will usually be denoted V(a1,··· ,ah), or by the weight (a1, · · · , ah),
simply, if V is understood. We will term h the height of the diagram.

In fact for our current purposes we shall only need the Young diagrams of height at most 2, and
V will be R

n+1 with it standard representation of SL(n+ 1,R). The symmetric representations
Sm

V
∗ have the diagram (m), while (k, ℓ) with k + ℓ = m ≥ 1, k ≥ ℓ ≥ 1, can be realised by

tensors TB1...BkC1...Cℓ
on V which are symmetric in the Bi’s, also symmetric in the Ci’s, and

such that symmetrisation over the first (equivalently any) k + 1 indices vanishes:

(24) TB1...BkC1...Cℓ
= T(B1...Bk)(C1...Cℓ) and T(B1...BkC1)C2...Cℓ

= 0.

In this article we will call these particular realisations Young symmetries and V(k,ℓ) will mean
the SL(V)-submodule of ⊗m

V consisting of tensors on V with these Young symmetries.
The key algebraic fact we need is then the following.

Proposition 2. The map of SL(V) representations

(25) V(r+1) ⊗ V(r) → V(r) ⊗ V(r+1)

given by
TB1...BrBr+1C1...Cr

7→ TB1...Br(Br+1C1...Cr)

is an isomorphism.

Proof. This is an straightforward consequence of the well known Littlewood-Richardson rules
for decomposing the tensor product UC1···Cr

⊗ VB1···Br+1
∈ V(r) ⊗ V(r+1) into its direct sum of

irreducible parts, and then the properties of these irreducibles in terms of Young symmetries as
explained in [17, 18, 32]. Each of the summands is a representation equivalent to either V(2k+1)

or V(k,ℓ), with ℓ ≥ 1, k + ℓ = 2r + 1, and each projection to such a component may be factored
through the map (25). �

This yields the following consequence.
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Corollary 3. For r ∈ Z≥1 and k ≥ ℓ ≥ 1 with k + ℓ = r + 1,

(V(r+1) ⊗ V(r)) ∩ (V(r) ⊗ V(k,ℓ)) = {0}.

Proof. The irreducible components of ⊗r+1
V

∗ isomorphic to V(k,ℓ), with k ≥ ℓ ≥ 1 and k + ℓ =
r + 1 all lie in the kernel of the map

(26) ⊗r+1
V

∗ → V(r+1)

However from the Proposition 2 the kernel of the map (25) is trivial. �

In fact the kernel of (2) is spanned by the irreducible components of ⊗r+1
V

∗ isomorphic to
V(k,ℓ), with k ≥ ℓ ≥ 1 and k+ ℓ = r+1. Thus it is clear that in fact the Corollary 3 is equivalent
to the Proposition 2. Thus it is interesting to prove this directly. We present this here, since for
our later purposes this will be useful.

Another fact that will be useful is the following.

Lemma 4. Suppose that TB1···BrC1···Cr
= T(B1···Br)(C1···Cr) ∈ V(r,r). Then

(27) TB1···BrC1···Cr
= (−1)rTC1···CrB1···Br

.

Proof. The projector P(r,r) : ⊗
2r
V

∗ → V(r,r) is given by

(28) P(r,r)T = S(1,...,r) ◦ S(r+1,...,2r) ◦ S[1,r+1] ◦ · · · ◦ S[r,2r](T ),

where S(1...r) denotes symmetrisation over the first r indices, S(r+1,...,2r) denotes symmetrisation
over the last r indices, S[i,j] denotes anti-symmetrisation over the two indices in, respectively,

the ith and jth positions.
The claim in the Lemma is an immediate consequence. �

In the following we extend these conventions, notations, and definitions to vector bundles
(with fibre V) in the obvious way.

3. Killing equations: prolongation via the tractor connection

Here we treat the Killing type equations

(29) ∇(a0
ka1···ar) = 0,

on an affine manifold with an affine connection ∇. For simplicity we assume this is torsion free,
but this plays almost no role. There is such an equation for each r ∈ Z>0 and as discussed
above the equations are each projectively invariant if we take the symmetric rank r tensor to
have projective weight 2r, i.e. kb···c ∈ Γ(E(b···c)(2r)). In the following, we denote by T(k,ℓ) the

tractor bundle with fibre V(k,ℓ) where V = R
n+1 = T |p. Moreover we include the weight w in

the notation as T(k,ℓ)(w).
Via the cotractor filtration sequence (8) we evidently have the following.

Lemma 5. There is a projectively invariant bundle inclusion

SrT ∗M(2r) → SrT ∗(r) = T(r)(r)

given by

(30) SrT ∗M(2r) ∋ kb···c 7→ KB···C := ZB
b · · ·ZC

ckb···c ∈ T(r)(r).

Note that for K as here we have

(31) XBKB···C = 0.

Moreover if K ∈ T(r)(r) satisfies (31) then it is in the image of (30).
This enables a tractor interpretation of the Killing type equations, as follows.

Proposition 6. For each rank r the equation (29) is equivalent to the tractor equation

(32) D(AKB···C) = 0,

where KB···C is given by (30).
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Proof. From the tractor formulae (12) and (15) we have

DA0
KA1···Ar

= rYA0
KA1A2···Ar

− YA1
KA0A2···Ar

− · · · − YAr
KA1A2···Ar−1A0

+ ZA0

a0ZA1

a1 · · ·ZAr

ar∇a0
ka1···ar

,

which implies
D(A0

KA1···Ar) = Z(A0

a0ZA1

a1 · · ·ZAr)
ar∇a0

ka1···ar
,

from which the result follows immediately. �

In the following KA1···Ar
will always refer to a weight r symmetric tractor as given by by (30).

We now define a projectively invariant operator

(33) L : SrT ∗M(2r) → P(r,r)(⊗
2rT ∗) = T(r,r),

where P(r,r) is the (r, r) Young symmetry as described in expression (28), by applying the Young
projection P(r,r) to D

rK, as follows

kc1···cr 7→ P(r,r)(DB1
· · ·DBr

KC1···Cr
),

with KC1···Cr
= ZC1

c1 · · ·ZCr

crkc1···cr .

Proposition 7. The operator L : SrT ∗M(2r) → T(r,r) of (33) is a differential splitting operator.

Proof. We claim that

(34) XB1 · · ·XBrWC1
c1 · · ·W

C1
c1P(r,r)(DB1

· · ·DBr
KC1···Cr

) = ckc1···cr ,

where c is a non-zero constant. It clearly suffices to show that

(35) XB1 · · ·XBrP(r,r)(DB1
· · ·DBr

KC1···Cr
) = cKC1···Cr

.

ContractXB1 · · ·XBr into the explicit expansion of P(r,r)(DB1
· · ·DBr

KC1···Cr
). Use (i) [DA, X

B] =

δBA , (ii) XA
DAf = wf , for any tractor field V of weight w (see (16)), and that (iii) XAKA···C = 0,

to eliminate all occurrences of X . It follows easily that the result is cKC1···Cr
for some constant

c, since there is no way to include a term involving Ds that has the correct valence (i.e. the
tractor rank r). That c 6= 0 is found by explicit computation or more simply the fact that it is
not zero in the case that the affine connection ∇ is projectively flat, as we shall see below. �

The above definition is motivated by the projectively flat case where the situation is partic-
ularly elegant. (It is easily verified that the operator L above is a co-called first BGG splitting
operator, as discussed in e.g. [8], and see references therein. We will not use this fact however.)

We conclude this section with an observation. It shows, in particular, that sections of T(r,r)
that are parallel for the usual tractor connection determine solutions of (29). These are the
so-called normal solutions (see e.g. [8]):

Proposition 8. Let (M,p) be a projective manifold (not necessarily flat) and let L ∈ Γ(T(r,r))
such that

(36) 0 = XB1 · · ·XBrDALB1···BrC1···Cr
.

Then KC1···Cr
∈ Γ(T(r)) defined by KC1···Cr

= XB1 · · ·XBrLB1···BrC1···Cr
satisfies equation (32).

If we assume in addition that

(37) 0 = DALB1B2···BrC1···Cr
,

then L defines a rank r Killing tensor via (34) such that L is a constant multiple of L(k).

Proof. The proof is a direct rewriting of (36),

(38)
0 = XB1 · · ·XBrDA1

LB1···BrC1···Cr

= XB2 · · ·XBr

(

DA1
(XB1LB1,···BrC1···Cr

)− LA1B2···BrC1···Cr

)

= −rXB2 · · ·XBrLA1B2···BrC1···Cr
+ DA1

KC1···Cr
,

where we successively apply [DA, X
B] = δBA to commute and eliminate X ’s and D’s and use

the symmetries of L. Note that this computation does not require any mutual commutations of
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DA’s. Now since LB2···Br(AC1···Cr) = 0 this equation implies equation (32). Moreover, because
of the symmetries of L, we also have that

XCiKC1···Cr
= XCiXB1 · · ·XBrLB1···BrC1···Cr

= 0,

for each i = 1, . . . , r. This implies that K is given by a k as in relation (30).
Applying DAr

, . . . ,DA2
successively to equation (38), commuting with the X ’s successively by

[DA, X
B] = δBA and finally using the additional hypothesis (37), shows that DAr

· · ·DA1
KC1···Cr

is a nonzero constant multiple of LAr···A1C1···Cr
. Hence, L is a constant multiple of L(k). �

3.1. Projectively flat structures. In this subsection we restrict to affine (or projective) man-
ifolds that are projectively flat, i.e. where the projective tractor curvature vanishes. According
to equation (21) this also means that the Thomas-D operators mutually commute when acting
on weighted tractor sections.

In the projectively flat setting we obtain a nice characterisation of Killing tensors.

Proposition 9. Let (M,p) be a projectively flat manifold. Let kc1···cr ∈ Γ(SrT ∗M(2r)) and
define KC1···Cr

:= ZC1

c1 · · ·ZCr

crkc1···cr , as in (5). Then k satisfies the Killing equation (29) if
and only if

(39) DB1
· · ·DBr

KC1···Cr
∈ Γ(T(r,r)).

In particular, on a projectively flat manifold there is a non-zero constant c so that

L(k) = c DB1
· · ·DBr

KC1···Cr
,

if and only if k solves (29).

Proof. (⇒) Since we work in the projectively flat setting the Thomas-D operators commute. So

DB1
· · ·DBr

KC1···Cr
∈ Γ(T(r) ⊗ T(r))

Suppose that (29) holds. Then (32) holds, so symmetrising the left hand side of the display over
any r + 1 indices that include C1 · · ·Cr results in annihilation and so we conclude (39) from the
definition of V(r,r) and hence of T(r,r) in (24).

(⇐) If (39) holds then

DB1
· · ·DBr−1

D(Br
KC1···Cr) = 0

so

XB1 · · ·XBr−1DB1
· · ·DBr−1

D(Br
KC1···Cr) = (r − 1)! D(Br

KC1···Cr) = 0,

from (16), thus we obtain the result from Proposition 6. �

Here and throughout, as above, K ∈ Γ(T(r)(r)) is the image of some k ∈ Γ(SrT ∗M(2r)) as in
formula (30).

Proposition 10. The constant c in equation (34) is not 0.

Proof. In the case that the structure is projectively flat this is immediate from the Proposition 9,
since XB1 · · ·XBr contracted into DB1

· · ·DBr
KC1···Cr

gives r! KC1···Cr
. But it is clear from the

argument in the proof of Proposition 7 that c does not depend on curvature, as no commutation
of Ds is involved. �

Theorem 11. Let (M,p) be projectively flat manifold. Then the splitting operator L gives an
isomorphism between Killing tensors of rank r and sections of T(r,r) that are parallel for the
projective tractor connection.

Proof. Since L is a splitting operator, it does not have a kernel. Moreover, using that ∇aL = 0 is
equivalent to DAL = 0, Proposition 8 shows that every parallel section of T(r,r) arises as L(k) for
a Killing tensor k. So it remains to show that L(k) is a parallel section of the projective tractor
connection whenever k is a Killing tensor: Suppose that (29) holds. Then by Proposition 9,

DB1
· · ·DBr

KC1···Cr
= L(k),
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and L(k) has weight 0 so

DAL(k) = ZA
a∇aL(k).

Thus it suffices to show that DAL(k) = 0. But

DAL(k) = DADB1
· · ·DBr

KC1···Cr
= 0,

because of the identity [V(r+1) ⊗ V(r)] ∩ [V(r) ⊗ V(r,1)] = {0} from Corollary 3 (where we have
used (32) which implies that DK is a section of T(r,1)(2r − 1)). �

As a final note in this section we observe that it is easy to “discover” the projectively invariant
Killing equation using the tractor machinery, as follows. Consider a symmetric rank r covariant
tensor field kc1···cr of projective weight 2r. Form

KC1···Cr
∈ SrT ∗(r)

by Lemma 5. We wish to prolong this to a parallel tractor. This requires a tractor field of weight
0. Thus we apply the r-fold composition of D. Altogether we have the projectively invariant
operator

k 7→ DB1
· · ·DBr

ZC1

c1 · · ·ZCr

crkc1···cr = DB1
· · ·DBr

KC1···Cr
,

and the image has weight zero. Thus we can form

∇aDB1
· · ·DBr

ZC1

c1 · · ·ZCr

crkc1···cr ,

by construction it is projectively invariant and we can ask what it means for this to be zero.
Equivalently we seek the condition on k determined by

DADB1
· · ·DBr

KC1···Cr
= 0.

But this implies XC1 · · ·XCrDADB1
· · ·DBr

KC1···Cr
= 0 and from equation (36) in the proof of

Theorem 11 it follows that

D(AKB1···Br) = 0, implies ∇(akb1···br) = 0

where we again used Proposition 6.

3.2. Restoring curvature. We return now to the general curved case and seek the generalisa-
tions of the results in the previous subsection. First we observe the following first generalisation
of Proposition 9:

Proposition 12. Let k ∈ Γ(SrT ∗M(2r)) on a general affine manifold (M,∇) (or projective
manifold (M,p)) and K = K(k) ∈ Γ(T(r)(r)), as in (30). Then k is a Killing tensor, i.e., a
solution of (29), if and only if we have

(40) L(k) = DB1
· · ·DBr

KC1···Cr
+Kurv(K),

where Kurv is a specific projectively invariant linear differential operator on Γ(T(r)(r)), of order
at most (r − 2), constructed with the W -curvature and the Thomas-D operators and such that
the W -curvature and its D-derivatives appear in the coefficients of every term.

Proof. (⇒) Suppose that k solves (29). We have

L(k) = P(r,r)(DB1
· · ·DBr

KC1···Cr
).

We expand out this expression on the right hand side using the definition of the operator P(r,r)

in (28). We would like to show that the resulting terms can be combined and rearranged to
yield (40). We have the identity (32) available. In the projectively flat case we also have the
identity [DA,DB] = 0 as an operator on (weighted) tractors. In the flat case the two identities
are enough to conclude (40) (with Kurv(K) = 0), according to the proof of Proposition 9. In
the curved case we perform the same formal computation but keep track of the curvature, i.e.,
replace each [DA,DB] with WAB♯ (instead of 0). The order statement follows by construction (or
elementary weight arguments), so this proves the result in this direction and generates a specific
formula for Kurv(K).
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(⇐) Now we suppose that k ∈ Γ(SrT ∗M(2r)) is any section such that

DB1
· · ·DBr

KC1···Cr
+Kurv(K)B1···BrC1···Cr

is a section of T(r,r)(r). Then in particular

DB1
· · ·DBr−1

D(Br
KC1···Cr) +Kurv(K)B1···Br−1(BrC1···Cr) = 0,

according to (24). As in the proof of Proposition 9, we contract now with XB1 · · ·XBr−1 . This
contraction annihilates the second term in the display as follows. Each of the XBi ’s is contracted
into either a DBi

, into K, or into the curvature W . Thus every XBi can be eliminated using
the identities (16), that XBKB···C = 0, and that similarly XB contracted into any of the lower
indices of the curvature W is zero. But, by the construction of the operator Kurv, in any term
there are at most (r−2) D operators (either applied to the curvature or directly to the argument)
and so the identities (16) remove only (r− 2) of the (r − 1) X ’s. This means that in every term
produced we have a contraction of the form XBKB···C = 0, so that term vanishes, or X into W
so also that term vanishes. Thus we are left with

0 = XB1 · · ·XBr−1DB1
· · ·DBr−1

D(Br
KC1···Cr) = (r − 1)! D(Br

KC1···Cr),

as in the proof of Proposition 9. �

Proposition 13. Let k ∈ Γ(SrT ∗M(2r)) on a general affine manifold (M,∇) (or projective
manifold (M,p)) and K = K(k) ∈ Γ(T(r)(r)), as in (30). Then k is a solution of (29) if and
only if we have

(41) DL(k) = Curv(K),

where Curv is a projectively invariant linear differential operator, of order at most (r − 1), on
Γ(T(r,r)(r)) given by a specific formula constructed with the W -curvature, and the Thomas-D
operator such that the W -curvature and its derivatives appear in the coefficients of every term.
Moreover, if L(k) satisfies equation (41), then

(42) XB1 · · ·XBrDAL(k)B1···Br
C1···Cr

= 0.

Proof. (⇒) Suppose that k solves (29). We apply DA to both sides of (40). This yields

(43) DAL(k) = DADB1
· · ·DBr

KC1···Cr
+ DA Kurv(K)B1···BrC1···Br

.

In the case when ∇ is projectively flat the first term on the right can be shown to be zero
by a formal calculation using just the identities [DA,DB] = 0 and D(A0

KA1···Ar) = 0. This
follows from the proof of Theorem 11. Performing the same formal calculation, but now instead
replacing the commutator of D’s with [DA,DB] = WAB♯ and combining the result with the
second term on the right hand side yields the result: DL(k) is equal to a specific formula for a
linear differential operator Curv on K that is constructed polynomially, and with usual tensor
operations, involving just the W -curvature, and the Thomas-D operator. Thus by construction it
is projectively invariant, and also by construction (or weight arguments) the order claim follows.

(⇐) We suppose now that (41) holds with k ∈ Γ(SrT ∗M(2r)), K as in (30) and with the
operator Curv given by the formula found the first part of the proof. So we have

DAL(k)B1···BrC1···Cr
= Curv(K)AB1···BrC1···Cr

.

Note that contraction of XC1 · · ·XCr annihilates the right hand side by an easy analogue of the
argument used in the second part of the proof of the Proposition 12 above: in this case there
are at most (r − 1) many D operators in any term but we are contracting in ⊗rX , so in each
term an X is contracted directly into and undifferentiated K or W . The result now follows by
the argument used in second part of the proof of Theorem 11 for the projectively flat case. Thus
we have just shown that we have the equation (42). Then the result follows from the first part
of Proposition 8. �

For the proof of the main theorem we recall the following fact, which follows from the theory
of overdetermined systems of PDE.
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Lemma 14. For every T ∈ T(r,r)|x, where x ∈ M , there is a local section k ∈ Γ(SrT ∗M |U ),
such that T = L(k)|x.

Proof. In the case of (projectively) flat (M,p) this follows at once from the fact that in the flat
case for L ∈ Γ(T(r,r)) we have shown that ∇L = 0 implies L = L(k).

For the general case the result then follows as the formula for the operator L(k) generalises
that from the flat case by the simply the addition (at each order) of lower order curvature
terms. �

Now we state and prove the main results of the paper.

Theorem 15. Let (M,p) be a projective manifold. Then there is a specific section RA♯ ∈
T ∗M ⊗ End(T(r,r)) (where we suppress the endomorphism indices) such that XARA♯ = 0 and
such that the differential splitting operator L : Γ(SrT ∗M(2r)) → Γ(T(r,r)) gives an isomorphism
between Killing tensors of rank r and sections L of the bundle T(r,r) that satisfy the the equation

(44) DAL = RA♯L.

Proof. Again, the splitting operator L is injective. Hence, we have to show the following:

(A) For every Killing tensor k the image L(k) satisfies equation (44) with a specific RA♯ ∈
T ∗M ⊗ End(T(r,r)) that will be determined;

(B) L restricted to Killing tensors (i.e. the solutions of (29)) is surjective onto the sections
L that satisfy equation (44), where the right hand side is as determined in (A).

We prove (A): Assume that k solves (29). Then we have equation (41),

DL(k) = Curv(K).

from Proposition 13. The operator Curv is given by a formula polynomial in the W -curvature,
its D derivatives, and the Thomas-D operators up to order (r − 1). Now observe that each term
of the form DB1

· · ·DBs
KC1···Cr

, for 0 ≤ s < r can be replaced using (40) from Proposition 12,

DB1
· · ·DBs

KC1···Cr
= c Xs+1 · · ·XrL(k)B1···BrC1···Cr

+Curv(s)(K),

where Curv(s) is a differential operator is given by a formula polynomial in the W -curvature, its
D derivatives, and the Thomas-D operators up to order (s− 2). In this way we can successively
eliminate all applications of D to K by terms algebraic in L(k) arriving at an equation of the
form

(45) DAL(k) = RA♯L(k), with RA ∈ Γ(T ∗ ⊗ End(⊗2rT ∗)),

given by a polynomial in the W -curvature and its D-derivatives. Now we have to verify:

(i) that RA♯ is indeed a section of T ∗ ⊗ End(T(r,r)), and

(ii) that for every L ∈ T(r,r), the contraction of RA♯L with XA is equal to zero.

In order to verify (i) and (ii) we have to make a key observation: Although we phrased the
discussion above in a naive way that supposes there is a solution to (29), in fact to derive (45)
we do not actually require that there exist solutions, even locally, to the equation (29). Equation
(45) simply expresses relations on the jets, of a section k ∈ Γ(SrT ∗M(2r)) that are formally
determined by a finite jet prolongation of the Killing equation (29). It is clear that we can derive
(45) at any point x ∈ M by working with just the r + 1-jet, jr+1

x k, of k at x. Following the
argument as above, but working formally with such jets and assuming (29) holds to order r at
x, we come to

(46) DAL|x = RA♯L(k)|x

where all curvatures and their derivatives are evaluated at x. From the results in the projectively
flat case we know that this is exactly the point where the prolongation of the finite type PDE
(29) has closed: The prolongation up to order r may be viewed as simply the introduction of
new variables labelling the part of the jet that is not constrained by the equation, and these are
exactly parametrised by the elements in the fibre T(r,r)(x). At the next order the derivative of
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these variables is expressed algebraically in terms of the variables from T(r,r)(x). That is (a key
part of) the content of (46). Viewing this as a computation in slots (via a choice of ∇ ∈ p) the
computation is the same in the curved case as in the projectively flat case except that additional
curvature terms may enter when derivatives are commuted. It follows that L(k)(x) may be an
arbitrary element L of T(r,r)(x). Using this, and since contraction with XA annihilates the left
hand side of (46) it follows that it annihilates the right hand side for any L ∈ Tr,r(x). Similarly
since the left hand side of (46) is a section of (T ∗⊗Tr,r)(x) so is the right hand side, for arbitrary
L = L(k)(x) and thus (ii) also follows.

Now we prove (B): Suppose that L ∈ Γ(T(r,r)) satisfies (44) for the specific RA ∈ Γ(T ∗⊗T(r,r))
obtained from the argument above. We now claim that

(47) XB1 · · ·XBr(RC♯L)B1···BrC1···Cr
= 0.

Indeed, in the case that L = L(k) for a tensor k that solves (29), we know from Proposition 13
that XC1 · · ·XCr annihilates the right hand side of equation (44) for L(k), because then it is
simply a rewriting of the right hand side of (41). However, as mentioned above, at a point x ∈ M
and for k satisfying (29) to order r at x, any element of T(r,r)|x can arise as L(k)|x because this

is the full prolonged system for the overdetermined PDE (29). Thus it follows that XC1 · · ·XCr

must annihilate the right hand side of (44) for L even if L is not L(k) for a k ∈ Γ(SrT ∗M(2r))
satisfying (29).

Having established equation (47), we can apply the first part of Proposition 8 to ensure that
L determines a Killing tensor k. Then we have that L = L(k) unless the map

LB1···BrC1···Cr
7→ KB1···Br

= XC1 · · ·XCrLB1···BrC1···Cr
∈ T(r)(r).

has a kernel. To exclude this possibility, assume there is a section L of T(r,r) that satisfies (44)
and such that

(48) XC1 · · ·XCrLB1···BrC1···Cr
= 0.

The following lemma shows that this implies the vanishing of L.

Lemma 16. Let LB1···BrC1···Cr
be a section of T(r,r) that satisfies equation (44) for the specific

RA♯ ∈ Γ(T ∗ ⊗ T(r,r)). Then we have the following implication: if

(49) XB1 · · ·XBkLB1···Bk···BrC1···Cr
= 0 for a k ∈ {1, . . . , r},

then

XB1 · · ·XBk−1LB1···Bk−1···BrC1···Cr
= 0,

and hence LB1···BrC1···Cr
= 0.

Proof. Assume that equation (49) holds. Applying DA, the Leibniz rule for DA gives

(50) 0 = c XB1 · · ·XBk−1LB1···Bk−1ABk+1···BrC1···Cr
+XB1 · · ·XBkDALB1···BrC1···Cr

,

with a nonzero constant c. Hence, we have to show that equation (49) implies

(51) XB1 · · ·XBkDALB1···Bk···BrC1···Cr
= 0,

by using equation (44) and the specific form of RA♯. The proofs of the previous propositions
and of (A) provide us with the following information about RA♯: In Proposition 13 we have seen
that the expression Curv(K) was of order at most (r − 1) in D and is a linear combination of
in terms of the form A(s−1) ⊗ D

r−sK for 1 ≤ s ≤ r and where A(s−1) is a tractor of valence s
containing at most s−1 applications of D to the tractor curvature W . Then in (A) of the present
proof we have expressed the terms Dr−sK by an s-fold contraction of L(k) with X . Hence RA♯L
is a linear combination of terms of the form

(52) A(s−1) ⊗ B(s),

where B(s) is of the form XE1 · · ·XEsLE1···EsEs+1···ErC1 ···Cr
. Because of (49), the only terms

that are nonzero in RA♯L are those of the form (52) with s < k. Hence the terms A(s−1) contain
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at most (k − 2) D-derivatives of the tractor curvature. Now since XAWAB = 0 and therefore
XA

DBWAC = −WBC , each of the A(s−1) is annihilated by s contractions with X . Hence the
only terms of the form (52) that are non zero when contracted with k many X ’s must have at
least (k + 1− s) contractions with X at B(s), which already is obtained by s contractions with
X . Hence the only terms B(s) that may remain nonzero when contracted with (k + 1− s) many
X ’s are of the form

(53) XB1 · · ·XBsXC1 · · ·XCk+1−sLB1···Bs···BrC1···Ck+1−s···Cr
.

Now an induction over s shows that these terms are actually zero. In fact, for s = 1 this follows
from the assumpion (49). If s > 1 we use that L ∈ T(r,r) to get

XB1 · · ·XBsXC1 · · ·XCk+1−sLB1···BrC1···Cr
=

= −
r

∑

i=1

XB1 · · ·XBsXC1 · · ·XCk+1−sLB1···Bs−1CiBs+1···BrC1···Ci−1BsCi−1···Cr

= −(k + 1− s) XB1 · · ·XBsXC1 · · ·XCk+1−sLB1···BrC1···Cr

by the induction hypothesis. This shows that the terms in (53) are indeed zero and finishes the
proof of the lemma. �

This shows that every L ∈ Γ(T(r,r)) that satisfies equation (44) is the image of a Killing tensor
under the splitting operator L. This finishes the proof of (B) and hence of the theorem. �

Rewriting the result of this theorem in terms of the tractor connection gives:

Corollary 17. Let (M,p) be a projective manifold. Then there is a projectively invariant section
Qa♯ ∈ Γ(T ∗M ⊗ End(T(r,r)) such that the splitting operator L gives an isomorphism between
weighted Killing tensors of rank r and sections L ∈ Γ(T(r,r)) that satisfy satisfies the equation

(54) ∇T
a L = Qa♯L,

or equivalently, sections L that are parallel for connection

(55) ∇T
a −Qa♯.

Proof. This follows by contracting equation (44) with WA
a yielding equation (54) with some

Qa♯ ∈ Γ(T ∗M ⊗ End(T(r,r)). Moreover, since XARA♯ = 0, the resulting Qa is projectively
invariant. �

Remark 18. As a final remark we note that there is a considerable gain in understanding the
prolongation of (29) in the form (54) (or equivalently (55)), rather than simply as some (possible

invariant) connection ∇̃ on Tr,r without the structure (55) (or some equivalent) made explicit. An
obvious example of such a gain is for the explicit computation of integrability conditions. Given
such a connection the standard way to compute integrability conditions is via the curvature
of ∇̃, since this must annihilate any section of T(r,r) that corresponds to a solution of (29).

However, because the bundle T(r,r) has very high rank (e.g. for r = 2 it has rank n2(n2 − 1)/12)
and the prolongation connection is necessarily very complicated, computing such curvature is
typically out of reach without the development of specialised software. However given (54) we
obtain integrability conditions immediately from the curvature κ (see (13)) of the normal tractor
connection: Differentiating (54) with the latter and skewing in the obvious way we obtain

(56) 2∇T
[b∇

T
a]L = κba♯L = ∇[b(Qa]♯L).

Then using similar ideas to the treatments above, we can expand the (far) right hand side
by replacing any instance of ∇T

b L with Qb♯L and thus, by subtracting κba♯L, obtain at once
a projectively invariant 2-form with values in End(Tr,r), that must annihilate any L(k) for k
solving (29). Thus the existence of solutions 29 constrains the rank of this natural projective
invariant constructed from the tractor curvature and its derivatives. From there one can compute
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invariants that must vanish following standard ideas, as in e.g. [21, Section 3] (applied there to
a different problem).

4. Explicit results for low rank

4.1. The curved rank r = 1 case. The rank one case is well known and here we compare it
to our approach. We construct the connection corresponding to the equation

(57) ∇(akb) = 0 ∇ ∈ p

on kb ∈ Γ(T ∗M(2)) on a projective manifold (M,p). Following Lemma 5 we form KC = ZC
ckc ∈

T ∗(1), where kc is a solution of (29), and then according to the definition (33), set

L(k)BC := D[BKC].

Consider the case that k is a solution of (57). Then from Proposition 6,

DBKC ∈ Γ(Λ2T ∗),

and because the W -tractor satisfies the algebraic Bianchi identityWAB
E
C+WBC

E
A+WCA

E
B =

0 we have D[ADBKC] = 0, that is

DADBKC = [DC ,DB]KA = −WCB
E
AKE .

So for solutions k we have

DAD[BKC] −WBC
E
AX

F
D[FKE] = 0.

So ∇aL(k)BC +WBC
E
AW

A
a XFL(k)EF = 0. But for any k ∈ Γ(T ∗M(2))

XF
D[FKE] = XFL(k)FE = KE.

Thus the projectively invariant connection on Λ2T ∗ is given by

∇aVBC +WBC
E
AW

A
aX

FVEF .

It is easily checked that this agrees with the formula (3) from the introduction (and so that
connection ∇ is projectively invariant).

4.2. The curved rank r = 2 case. Here we consider the case r = 2. We will make the
computations in Section 3.2 explicit and in particular provide explicit formulae for the curvature
tractor fields fields RA♯ and Qa♯.

The first observation was established as part of a more involved argument in the second part
of the proof of Proposition 13:

Lemma 19. If KDE ∈ Γ(T(2)(2)), then

XDXE
DADBDCKDE = 6D(AKBC).

In particular, XEXD
DADBDCKDE is totally symmetric.

Proof. A direct computation using the relation (17) implies

(58) XC
DAVCB··· =

[

XC ,DA

]

VCB··· + DA(X
CVCB···) = −VAB··· + DA(X

CVCB···).

This can be used to commute XE and XD past the D’s until XEKEA = 0 can be applied. �

Now we study the projection P := P(2,2) from ⊗4T ∗ to T(2,2) defined in (28). If SBCDE is an

element in ⊗4T ∗ that is symmetric in D and E, i.e., SBCDE = SBC(DE), then a straightforward

computation shows that for SBCDE ∈ ⊗2T ∗ ⊗ T(2) we have

(59) (PS)BCDE = 1
4

(

S(BC)DE + S(DE)BC

)

− 1
8

(

S(DC)BE + S(EB)CD + S(DB)CE + S(EC)BD

)

.

This implies ideed that

(S(ijk)PS)BCDE = 0,

i.e., the symmetrisation of PS over any three indices 1 ≤ i < j < k ≤ 4 vanishes.
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Next, for a section KDE ∈ Γ(T(2)(2)) we set SBCDE := DBDCKDE . Note that the differential

splittig operator L is given by L(k)bd = (PD
2K)BCDE . We obtain the following statement,

which was already observed in the proof Theorem 11 and Proposition 15 for general rank:

Lemma 20. If KDE ∈ Γ(T(2)(2)), then

XEXD
DA(PD

2K)BCDE = 1
4X

EXD
DADBDCKDE

Proof. We use the formula (59) for SBCDE := DBDCKDE and apply DA to it. Using relation (58)
as well as XDKDB = 0 and equations (16), a direct computation shows that each of the last eight
terms in the right hand side of (59) vanishes when contracted with XD and XE . For example,

XEXD
DADDDCKBE = −DCKBA +XD

DADCKBD −XD
DADCKBE

= −DAX
D
DCKBD −XD

DADDKBC

= 2DAKBC − DAX
D
DDKBC

= 0.

A similar computation shows that

XEXD
DADDDEKBC = DAKBC + [XE,DA]DEKBC = 0.

Hence, equation (59) implies that

XEXD
DA(PD

2K)BCDE = 1
4X

EXD
DAD(BDC)KDE = 1

4X
EXD

DADBDCKDE ,

where the second equality follows from Lemma 19. �

The following lemma will give a formula for the projection P , when restricted to T ⊗ T(2,1),
i.e., applied to SBCDC ∈ T ∗ ⊗ T(2,1).

Lemma 21. Let P := P(2,2) be the projection of ⊗4T ∗ onto T(2,2) defined above and SBCDC ∈
T ∗ ⊗ T(2,1). Then

(60) (PS)BCDE = 3
4

(

SBCDE − S[BC]DE

)

− 3
8

(

S[DC]BE + S[EB]CD + S[DB]CE + S[EC]BD

)

.

Proof. We use equation (59) under the additional assumption that SBCDC ∈ V
∗ ⊗ V(2,1), i.e.,

(61) SB(CDE) = 0.

For the the third term on the right-hand-side in (59) we compute

S(DC)BE = SCDBE + S[DC]BE = −SCBDE − SCEBD + S[DC]BE,

where the last equation uses equation (61). This allows to compute the sum of the last four
terms in (59) as

(62)

S(DC)BE + S(EB)CD + S(DB)CE + S(EC)BD =
= −4S(CB)DE − SCEDB − SCDBE − SBEDC − SBDEC

+ S[DC]BE + S[EB]CD + S[DB]CE + S[EC]BD

= −2S(CB)DE + S[DC]BE + S[EB]CD + S[DB]CE + S[EC]BD,

where the last equation again follows from (61).
Now we look at the second term on the right-hand-side of (59): using (61) we get that

S(DE)BC = − 1
2 (SDBCE + SDCEB + SEBCD + SECDB)

= − 1
2 (SBDCE + SCDEB + SBECD + SCEDB)

−
(

S[DB]CE + S[DC]EB + S[EB]CD + S[EC]DB

)

= S(BC)DE −
(

S[DB]CE + S[DC]EB + S[EB]CD + S[EC]DB

)

.

Hence, equation (27) from the flat case generalises to

(63) S(BC)DE = S(DE)BC +
(

S[DB]CE + S[DC]EB + S[EB]CD + S[EC]DB

)

.

Then putting (62) and (63) together, for SBCDE ∈ V
∗ ⊗ V(2,1), finishes the proof. �
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Now assume that DC is the Thomas D-operator and KDE is symmetric such that

(64) D(CKDE) = 0.

Then set SBCDE := DBDCKDE in the above equations. Observe that

S[BC]DE = D[BDC]KDE = 1
2 (DBDCKDE − DCDBKDE)

= 1
2WBC ♯KDE = −WBC

F
(DKE)F .

Then, from Lemma 21 we get an explicit version of the curvature terms in Proposition 12:

Proposition 22. Let D be the Thomas D-operator for a projective structure with curvature
WAB

C
D and let P be the projection from T ∗ ⊗ T(2,1) to T(2,2). Then K ∈ Γ(T ∗

(2)) satisfies

D(AKBC) = 0, i.e., DAKBC ∈ T(2,1), if and only if

(65) (PD
2K)BCDE = 3

4DBDCKDE − 3
8

(

WBC♯KDE +WD(B♯KC)E +WE(B♯KC)D

)

that is

DBDCKDE + 1
2

(

WBC♯KDE +WD(B♯KC)E +WE(B♯KC)D

)

∈ V(2,2).

Proof. One direction immediately follows from Lemma 21 applied to SBCDE := DBDCKED.
For the other direction assume that equation (65) holds. Contracting with XB and noting

that XBWB··· = 0 as well as XBKBC = 0 implies that

(66) XB(PD
2K)BCDE = 3

4X
B
DBDCKDE = 3

4DCKDE

from the definition of DB. Hence, since PD
2K ∈ Γ(T(2,2)), the symmetrisation over CDE

vanishes. �

Note that, from equation (65) we obtain that

(67) XBXC(PD
2K)BCDE = 3

4X
BXC

DBDCKDE = 3
4X

C
DCKDE = 3

2KDE ,

because of (16) and (22).
Next we determine the connection for which (PD

2K)BCDE is going to be parallel, i.e., we
determine explicitly the curvature terms in Proposition 13, Theorem 15 and Corollary 17. To
get a formula for its covariant derivative with respect to the projective tractor connection, we
apply D to the equality in Proposition 22 to get

(68) 4DC(PD
2K)DEAB = 3DCDDDEKAB− 3

2DC

(

WDE♯KAB +WA(D♯KE)B +WB(D♯KE)A

)

.

We are now going to obtain a formula for TCDEAB = DCDDDEKAB ∈ ⊗5
V

∗. This is achieved
by the following lemmas.

Lemma 23. For every T ∈ ⊗5T ∗ it holds

TC(DE)AB + TD(EC)AB + TE(CD)AB

= 3TCDEAB + 3TC[ED]AB + TD[EC]AB + TE[DC]AB + 2T[EC]DAB + 2T[DC]EAB.

Proof. The poof is by inspection. �

Lemma 24. Let TABCDE ∈ ⊗2T ∗ ⊗ T(2,1), i.e., TAB(CDE) = 0. Then

−3TCDEAB = 2T[EC]DAB + 2T[DC]EAB + 2T[AC]BDE + 2T[AD]BEC + 2T[AE]BCD

+2TA[BC]DE + 2TA[BD]EC + 2TA[BE]CD

+3TC[ED]AB + TC[DA]BE + TC[DB]EA + TC[EA]BD + TC[EB]DA + TC[AB]DE

+TD[EC]AB + TD[EA]BC + TD[EB]CA + TD[CA]BE + TD[CB]EA + TD[AB]EC

+TE[DC]AB + TE[CA]BD + TE[CB]DA + TE[DA]BC + TE[DB]CA + TE[AB]CD.
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Proof. First we can swap the pair AB with DE by using (63) for the second equality in

TABCDE = TC(AB)DE + TC[AB]DE + 2T[AC]BDE + 2TA[BC]DE

= TC(DE)AB + TC[DA]BE + TC[DB]EA + TC[EA]BD + TC[EB]DA

+TC[AB]DE + 2T[AC]BDE + 2TA[BC]DE.

In an analogous computation as in the flat case, this can be used to evaluate

0 =3TAB(CDE)

=TC(DE)AB + TD(EC)AB + TE(CD)AB

+ TC[DA]BE + TC[DB]EA + TC[EA]BD + TC[EB]DA + TC[AB]DE + 2T[AC]BDE + 2TA[BC]DE

+ TD[EA]BC + TD[EB]CA + TD[CA]BE + TD[CB]EA + TD[AB]EC + 2T[AD]BEC + 2TA[BD]EC

+ TE[CA]BD + TE[CB]DA + TE[DA]BC + TE[DB]CA + TE[AB]CD + 2T[AE]BCD + 2TA[BE]CD

Now we apply Lemma 23 to the terms TC(DE)AB + TD(EC)AB + TE(CD)AB in this equation to
get to get

0 =3TCDEAB + 3TC[ED]AB + TD[EC]AB + TE[DC]AB + 2T[EC]DAB + 2T[DC]EAB

+ TC[DA]BE + TC[DB]EA + TC[EA]BD + TC[EB]DA + TC[AB]DE + 2T[AC]BDE + 2TA[BC]DE

+ TD[EA]BC + TD[EB]CA + TD[CA]BE + TD[CB]EA + TD[AB]EC + 2T[AD]BEC + 2TA[BD]EC

+ TE[CA]BD + TE[CB]DA + TE[DA]BC + TE[DB]CA + TE[AB]CD + 2T[AE]BCD + 2TA[BE]CD,

which implies the formula in the lemma. �

By applying this lemma to TCDEAB = DCDDDEKAB ∈ Γ(⊗2T ∗ ⊗ T(2,1)) for KAB ∈ Γ(T(2))
and by replacing skew-symmetrisations by curvature, for example,

T[EC]DAB = 1
2 (DEDCDDKAB − DCDEDDKAB) =

1
2WEC♯DDKAB

and

TA[BC]DE = 1
2 (DADBDCKDE − DADCDBKDE) =

1
2DA(WBC♯KDE),

we obtain the following result. Here and henceforth we use the following convention: the notation
|B| or |A · · ·B|means that the index B, or the indices A · · ·B, are excluded from any surrounding
symmetrisation.

Proposition 25. Let D be the Thomas D-operator for a projective structure with curvature
WAB

C
D and let P be the map from T ∗ ⊗T(2,1) to T(2,2) defined in (28). Then K ∈ T ∗

(2) satisfies

D(AKBC) = 0, i.e., DAKBC ∈ T(2,1), if and only if,
(69)
DC(PD

2K)DEAB = 1
2WC(D♯DE)KAB − 3

4WA(C♯D|B|KDE) −
3
4DA(WB(C♯KDE))

− 1
8DC

(

WAB♯KDE −WE(A♯KB)D −WD(A♯KB)E

)

− 1
8DD

(

WAB♯KEC +WEC♯KAB + 2WE(A♯KB)C + 2WC(A♯KB)E

)

− 1
8DE

(

WAB♯KDC +WDC♯KAB + 2WC(A♯KB)D + 2WD(A♯KB)C

)

.

Proof. First assume that equation (69) holds. We contract this equation with XA and XB.
It is a direct computation to see the then the right hand side is zero: to see this, recall that
XAWA··· = 0 and XAKAC = 0 and that equation (58) applied to VC··· with XCVC··· = 0 gives

(70) XC
DAVCB··· =

[

XC ,DA

]

VCB··· + DA(X
CVCB···) = −VAB···.

Then, from the obtained XAXB
DC(PD

2K)DEAB = 0 and from Lemmas 19 and 20 we obtain
the required symmetry of DCKED.



INVARIANT PROLONGATION OF THE KILLING TENSOR EQUATION 19

For the other direction we apply Lemma 24 to TCDEAB = DCDDDEKAB ∈ ⊗2T ∗ ⊗ T(2,1).
Equation in Lemma 24 then becomes

−3DCDDDEKAB = −2WC(E♯DD)KAB + 3WA(C♯D|B|KDE) + 3DA(WB(C♯KDE))

+ 1
2DC

(

3WED♯KAB +WAB♯KDE − 2WA(E♯KD)B − 2WB(D♯KE)A

)

+ 1
2DD

(

WAB♯KEC +WEC♯KAB + 2WE(A♯KB)C + 2WC(A♯KB)E

)

+ 1
2DE

(

WAB♯KDC +WDC♯KAB + 2WC(A♯KB)D + 2WD(A♯KB)C

)

.

Now we plug this in for the term DCDDDEKAB in (69) that was obtained by differentiating the
equality in 22:

4DC(PD
2K)BCDE = 3DCDDDEKAB − 3

2DC

(

WDE♯KAB +WA(D♯KE)B +WB(D♯KE)A

)

= 2WC(E♯DD)KAB − 3WA(C♯D|B|KDE) − 3DA(WB(C♯KDE))

− 1
2DC

(

WAB♯KDE +WA(E♯KD)B +WB(D♯KE)A

)

− 1
2DD

(

WAB♯KEC +WEC♯KAB + 2WE(A♯KB)C + 2WC(A♯KB)E

)

− 1
2DE

(

WAB♯KDC +WDC♯KAB + 2WC(A♯KB)D + 2WD(A♯KB)C

)

.

This finishes the proof. �

Now are going to expand the terms in (69) using the Leibniz rule

(71) DA(WBC♯KDE) = (DAWBC)♯KDE +WBC♯(DAKDE)) +WBC
H

ADHKDE ,

and then substitutingKDE and DAKDE terms by contractions ofXF with LFADE = (PD
2K)FADE

using relations (67) and (66):

KDE = 2
3X

FXGLFGDE , DAKDE = 4
3X

FLFADE.

To this end, first one checks that XFWFBCD = 0 and DAX
F = δA

F imply that

WBC♯(X
FQF ···) = XFWBC♯QF ···,

and
DAWBC♯(X

FQF ···) = XF
DAWBC♯QF ··· −WBC

H
AQH···,

for any tensor QF ···. For Q = L and Q = XFLF ··· this implies

WBC♯(DAKDE)) =
4
3WBC♯(X

FLFADE) =
4
3X

FWBC♯LFADE

and

(DAWBC)♯KDE = 2
3 (DAWBC)♯(X

FXGLFGDE)

= 2
3X

FXG
DAWBC♯LFGDE − 4

3X
FWBC

H
ALFHDE .

Substituting this into equation (71), the terms WBC
H

ADHKDE are cancelled and we get

(72) DA(WBC♯KDE) =
2
3X

FXG
DAWBC♯LFGDE + 4

3X
FWBC♯LFADE .

Then we compute step by step the terms in the right-hand-side of (69):

WC(D♯DE)KAB − 1
4 (DD (WEC♯KAB) + DE (WDC♯KAB)) =

= 2XFWC(D♯LE)FAB − 1
3X

FXG
D(DWE)C♯LFGAB.

Next we consider the terms that are not evidently symmetric in A and B: using LA(CDE) = 0
as well as the second Bianchi identity for the Weyl tensor we compute

− 3
4

(

DA(WB(C♯KDE)) +WA(C♯D|B|KDE)

)

− 1
8 (DC (WAB♯KDE) + DD (WAB♯KEC) + DE (WAB♯KCD)) =

= −2XFW(B|(C♯LDE)|A)F − 1
2X

FXG
D(AWB)(C♯LDE)FG

= 2
3X

F
(

WC(A♯LB)FED − 2W(A|(D♯LE)C|B)F

)

− 1
6X

FXG
(

D(AWB)C♯LDEFG + 2D(AWB)(D♯LE)CFG

)

,
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and

1
2DC

(

WE(A♯KB)D +WD(A♯KB)E

)

−DD

(

WE(A♯KB)C +WC(A♯KB)E

)

− DE

(

WC(A♯KB)D +WD(A♯KB)C

)

=

= 4
3X

F
(

WC(A♯LB)FED + 2W(D|(A♯LB)F |E)C + 3W(D|(A♯LB)|E)FC

)

− 2
3X

FXG
(

2D(DWE)(A♯LB)CFG + D(AW|C(D♯LE)|B)FG + D(DW|C(A♯LB)|E)FG

)

.

Now note that because of the pairwise symmetry of L and the skew symmetry of W , we have

W(A|(D♯LE)C|B)F = −W(D|(A♯LB)F |E)C .

This allows to collect some of the terms above as

2
3W(D|(A♯LB)F |E)C +W(D|(A♯LB)|E)FC − 4

3W(A|(D♯LE)C|B)F =

= 2W(D|(A♯LB)F |E)C +W(D|(A♯LB)|E)FC

= W(D|(A♯LB)F |E)C +W(A|(D♯LE)F |B)C ,

where the last equality follows from LECBF = LBFEC and LB(FEC) = 0. Hence, we we get the

following formula for DCLDEAB for L := P (D2K):

(73)

DCLDEAB = XF
(

WC(D♯LE)FAB +WC(A♯LB)FED

)

+XF
(

W(D|(A♯LB)F |E)C +W(A|(D♯LE)F |B)C

)

− 1
6X

FXG
(

D(DWE)C♯LABFG + D(AWB)C♯LDEFG

)

− 1
3X

FXG
(

D(DWE)(A♯LB)CFG + D(AWB)(D♯LE)CFG

)

− 1
6X

FXG
(

D(AW|C(D♯LE)|B)FG + D(DW|C(A♯LB)|E)FG

)

.

Having this formula, we can formulate the following result:

Theorem 26. Let (M,p) be an arbitrary projective manifold. Then the splitting operator L :
S2T ∗M(4) → T(2,2) gives an isomorphism between weighted Killing tensors of rank 2 and sections
LDEAB of the tractor bundle T(2,2) of weight zero that satisfy equation (73).

Proof. Given a rank 2 tensor kab we define LDEAB = DDDEKAB and LDEAB := (PD
2K)DEAB.

Then, if kab is Killing, it follows from Proposition 25 and the above computations that LDEAB

satisfies equation (73).
On the other hand, let LDEAB be a section of T(2,2) of weight zero that satisfies equation (73).

Contracting (73) with XD and XE, one can easily check, using the same arguments as before
and that L(DEF )B = 0, that the right-hand-side vanishes and thus

0 = XDXE
DCLDEAB

Then from Proposition 8 it follows that LDEAB defines a Killing tensor kab. Moreover we see
that LDEAB = L(k)DEAB unless the map

LDEAB 7→ KAB = XDXELDEAB ∈ T(2)(2).

has a kernel. So lets assume there is a section LDEAB of T(2,2) that satisfies (73) and such that

(74) XDXELDEAB = 0.

Applying DC to this and using 0 = XDXE
DCLDEAB implies that 0 = XDLDEAB. Applying

DC to this gives
0 = LCEAB +XD

DCLDEAB = LCEAB.

Here the second equality uses (73), which allows us to compute

XD
DCLDEAB = XDXF

(

WC(A♯LB)FED + 1
2WE(A♯LB)FDC

)

.

But now LB(FED) = 0 and (74) imply that

XDXFWC(A♯LB)FED = −XDXFWC(A♯LB)DEF = 0,
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which proves that XD
DCLDEAB = 0 and finishes the proof. �

Note that the right hand side of (73) indeed defines a section RC♯ of T
∗ ⊗ T(2,2) as claimed

in the proof of Theorem 15.
In order to extract a covariant derivative from this, we have to contract it with WC

c. In
general this contraction is not projectively invariant. However, since LDEAB has weight zero,
applying DC to it and contracting withXC gives zero,XC

DCLDEAB = 0. Hence, the contraction
WC

cDCLDEAB is also projectively invariant for sections LDEAB that satisfy equation (73).
However we need that the curvature term in right hand side of (73) is projectively invariant as
claimed in the proof of Theorem 15, i.e., that the right hand side of (73) is projectively invariant
for any LDEAB ∈ T(2,2) not only for solutions of (73). This is the statement of the following
lemma.

Lemma 27. For any LABDE ∈ T(2,2) the right hand side in equation (73) gives zero when

contracted with XC. In particular, the section of T ∗ ⊗End(T(2,2)) defined by the right hand side
in (73) is projectively invariant.

Proof. Clearly both of the terms of the form XCWC(D♯LE)FAB in the first line of (73) vanish

separately because XCWCABC = 0. Also both terms of the form XCXFXG
D(DWE)(A♯LB)CFG

in the fourth line of (73) vanish separately because LB(CFG) = 0. Similarly both terms of the form

XCXFXG
D(DWE)C♯LABFG in the third line of (73) vanish separately because XCWCABC = 0

and

XC
D(DWE)C♯LABFG = −δC(DWE)C♯LABFG = W(EC)♯LABFG = 0.

All the other terms in the second and fifth line of (73) do not vanish separately but cancel against
each other when contracted with XC . In fact we have

XC
(

D(AW|C(D♯LE)|B)FG + D(DW|C(A♯LB)|E)FG

)

= −W(A|(D♯LE)|B)FG−W(D|(A♯LB)|E)FG = 0,

and for the terms in the second line

XCXF
(

W(D|(A♯LB)F |E)C +W(A|(D♯LE)F |B)C

)

= 0,

because of the skew-symmetry of WDA. �

In order to obtain from equation (73) an equation involving the tractor derivative ∇c, we have
to contract it with WC

c. First we look at terms that for which the contracted index C is at
the curvature (or its derivative) WAC . These will turn out to be manifestly invariant as we can
eliminate WC

c: First we observe that

WC
cWCA♯LBFED = ZA

aκca♯LBFED,

where κca
H

G is the tractor curvature defined in (13). Hence, for the terms in the first line in
equation (73) we get

XF
(

WC(D♯LE)FAB +WC(A♯LB)FED

)

= XF
(

Z(A
aκ|ca|♯LB)FED + Z(D

aκ|ca|♯LE)FAB

)

,

which is manifestly invariant. Next we compute, using formulae (12) and that the weight of
WCD

H
F is −2, that

WC
cDAWBC = −2YAZB

bκbc + ZA
aWC

c∇aWBC

= −2YAZB
bκbc + ZA

a
(

∇a(W
C
cWBC)−∇aW

C
cWBC

)

= −2YAZB
bκbc + ZA

a∇a(ZB
bκbc)

= −(2YAZB
b + YBZA

b)κbc + ZA
aZB

b∇aκbc,

because ∇aW
C
cWBC = −PacX

CWBC = 0 and ∇aZB
b = −δbaYB. Hence, for the expressions in

the third line of (73) we get,

XFXG
D(AWB)C♯LDEFG = XFXG

(

−3Y(AZB)
bκbc + Z(A

aZB)
b∇aκbc

)

♯LDEFG
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and

XFXG
D(DWE)C♯LABFG = XFXG

(

−3Y(DZE)
bκbc + Z(D

aZE)
b∇aκbc

)

♯LABFG.

Similarly we get for the expressions in the fifth line of (73),
(

D(AW|C(D♯LE)|B)FG + D(DW|C(A♯LB)|E)FG

)

=

= − 1
2

(

D(AWD)C♯LBEFG + D(AWE)C♯LDBFG + D(BWD)C♯LAEFG + D(BWE)C♯LDAFG

)

= 1
2

(

3Y(AZD)
bκbc − Z(A

aZD)
b∇aκbc

)

♯LBEFG

+ 1
2

(

3Y(AZE)
bκbc − Z(A

aZE)
b∇aκbc

)

♯LBDFG

+ 1
2

(

3Y(BZD)
bκbc − Z(B

aZD)
b∇aκbc

)

♯LAEFG

+ 1
2

(

3Y(BZE)
bκbc − Z(B

aZE)
b∇aκbc

)

♯LADFG.

Finally, we compute

W(D|(A♯LB)F |E)C +W(A|(D♯LE)F |B)C = Z(A
aZ|(D

dκ|ad|♯
(

LE)F |B)C − LE)C|B)F

)

and

D(AWB)(D♯LE)CFG = −
(

3Y(AZB)
bZ(D

dκ|bd| − Z(A
aZB)

bZ(D
d∇|aκbd|

)

♯LE)CFG,

to rewrite equation (73) in terms of the tractor connection as
(75)

∇cLDEAB = XF
(

Z(A
aκ|ca|♯LB)FED + Z(D

aκ|ca|♯LE)FAB

)

+XFWC
cZ(A

aZ|(D
dκ|ad|♯

(

LE)F |B)C − LE)C|B)F

)

− 1
12X

FXG
(

3Y(AZD)
bκbc − Z(A

aZD)
b∇aκbc

)

♯LBEFG

− 1
12X

FXG
(

3Y(AZE)
bκbc − Z(A

aZE)
b∇aκbc

)

♯LBDFG

− 1
12X

FXG
(

3Y(BZD)
bκbc − Z(B

aZD)
b∇aκbc

)

♯LAEFG

− 1
12X

FXG
(

3Y(BZE)
bκbc − Z(B

aZE)
b∇aκbc

)

♯LADFG

+ 1
6X

FXG
(

3Y(AZB)
bκbc − Z(A

aZB)
b∇aκbc

)

♯LDEFG

+ 1
6X

FXG
(

3Y(DZE)
bκbc − Z(D

aZE)
b∇aκbc

)

♯LABFG

− 1
3X

FXGWC
c

(

3Y(AZB)
bZ(D

dκ|bd| − Z(A
aZB)

bZ(D
d∇|aκbd|

)

♯LE)CFG

− 1
3X

FXGWC
c

(

3Y(DZE)
bZ(A

dκ|bd| − Z(D
aZE)

bZ(A
d∇|aκbd|

)

♯LB)CFG,

where ∇c is the projective tractor connection and κbc its curvature. The right hand side of this
equation defines the section Qa♯ ∈ Γ(T ∗M ⊗ T(2,2)) in Corollary 17. Hence we arrive at:

Theorem 28. Let (M,p) be an arbitrary projective manifold. Then the splitting operator L :
S2T ∗M(4) → T(2,2) gives an isomorphism between weighted Killing tensors of rank 2 and sections
LDEAB of the tractor bundle T(2,2) of weight zero that satisfy equation (75) for the projective
tractor connection ∇a, or equivalently, parallel sections of the connection ∇a −Qa♯. Moreover,
the right hand side of (75) is projectively invariant.

Proof. The proof follows immediately from Theorem 26 and Lemma 27 and from the computa-
tions above. �
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