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Abstract. Semi-stream processing, the operation of joining a stream of
data with non-stream disk-based master data, is a crucial component
of near real-time data warehousing. The requirements for semi-stream
joins are fast, accurate processing and the ability to function well with
limited memory. Currently, semi-stream algorithms presented in the lit-
erature such as MeshJoin, Semi-Stream Index Join and CacheJoin can
join only one foreign key in the stream data with one table in the mas-
ter data. However, it is quite likely that stream data have multiple for-
eign keys that need to join with multiple tables in the master data. We
extend CacheJoin to form three new possibilities for multi-way semi-
stream joins, namely Sequential, Semi-concurrent, and Concurrent joins.
Initially, the new algorithms can join two foreign keys in the stream
data with two tables in the master data. However, these algorithms can
be easily generalized to join with any number of tables in the master
data. We evaluated the performance of all three algorithms, and our re-
sults show that the semi-concurrent architecture performs best under the
same scenario.

Keywords: Multi-Way Stream Processing, Join Operator, Near-Real-
Time Data Warehouse

1 Introduction

Near-real-time data warehousing (RDW), with its ability to process and analyze
data nearly instantly, is increasingly adopted by the business world. Among
several approaches to RDW, Data Stream Processing is a crucial component,
handling the continuous incoming information - a stream of data, from multiple
sources [1]. One method of stream processing is a join operation which combines
the streaming data with the slowly changing disk-based master data (denoted
as R) [1,2]. As the join deals with two sources, one being a stream, and the
other being fairly stable data stored in a disk, such as master data, the join is
considered “semi-stream”.

With the rapid development of new technologies, the large capacity of cur-
rent main memories as well as the availability of powerful cloud computing plat-
forms can be utilized to execute stream-based operations [3]. However, to enable



the efficient use of ICT infrastructure, semi-stream joins that can process the
streaming data in a near-real-time manner while requiring minimum resource
consumption, are still of interest. Several semi-stream joining methods have been
proposed so far. The authors of the MeshJoin algorithm [8] argued for the need
to support streaming updates in RDW [4]. Since then, many other join operators
have been developed by improving or adding more features to MeshJoin, such
as R-MeshJoin [5], Partition-based Join [6], HybridJoin [7], Semi-Stream Index
Join (SSIJ) [2] and CacheJoin [3], to name a few. The authors of the MeshJoin
operator suggest that one of the most important research topics in the field
that need to be examined next is multi-way semi-stream joins between a stream
(whose tuples have two or more foreign keys) and many relations [8]. Indeed, it
would be quite practical to process stream data with multiple foreign keys to
join with multiple tables in R.

In this paper, we address the problem by developing a multi-way semi-stream
join. We propose three different approaches to the joins namely Sequential, Semi-
concurrent and Concurrent. The joins are developed by extending CacheJoin
(CJ), one of the most advanced semi-stream joins proposed in the field [3]. The
advantage of CJ is that it requires very little in the way of computing resources
while its service rate is higher than other joins such as MeshJoin, R-MeshJoin
and HybridJoin [3]. As extended versions of CJ, the new multi-way joins inherit
the main characteristics of their precursor. For example, as CJ performs well
with skewed, non-uniformly distributed data, such as the Zipfian distribution
of foreign keys in the stream data [3], the newly developed multi-way joins are
expected to have the same characteristics.

In this paper, we first develop new multi-way joins which can match a stream
data having two foreign keys with two tables in R. The joins then can be general-
ized to join more tables. To test the new algorithms, we apply them to a scenario
where a stream tuple includes customer and product foreign keys which need to
join with customer and product tables in R. In the Sequential approach, there
are two CJs running concurrently where the first CJ joins customer keys and pro-
duces output as the input for the second CJ. After this, the second CJ processes
the product foreign key and produces output for the whole multi-way join. In
Semi-concurrent, only part of the stream tuples are processed in sequence, and
the rest are processed concurrently by two separate CJs. In Concurrent, there
are also two CJs running concurrently, but they match the two foreign keys of
a tuple at the same time, and the tuple will be sent to output only when both
keys are matched. After testing the new joins with different datasets, results
show that Semi-concurrent performs best under the same memory setting.

The rest of this paper is organized as follows. Section 2 presents a review of
the available semi-stream joins in the academic literature, which focuses on the
architecture of the CJ algorithm. This is expected to provide the background
theory required to comprehend the new multi-way join algorithms. Section 3
describes the architectures of the Sequential, Semi-Concurrent and Concurrent
joins in detail. In Section 4 we present a cost model to measure the performance
of the new joins. Section 5 presents the performance evaluation and, from the



experimental data, it is concluded that the Semi-concurrent performs best while
Concurrent performs worst among the three. In Section 6 we explain our expla-
nation for this order. Finally Section 7 concludes the paper.

2 Related Work

This section presents an overview of some of the semi-stream joins available and
then examines in detail the architecture and characteristics of CJ, which is the
antecedent of our multi-way semi-stream joins.

In the past, the algorithm MeshJoin was proposed for joining a data stream
with a slowly changing table under limited main memory conditions [8,9]. The
two fundamental features of MeshJoin are: (1) accessing the disk-based R with
fast sequential scans, and (2) armotizing the cost of I/O operations over a large
number of stream tuples.The features, therefore, can help MeshJoin reduce costly
disk access. Other advantages of MeshJoin are: (1) it can work well with limited
main memory and, (2) the organization of R has hardly any effect on its perfor-
mance. However, the join operation has some limitations. The first limitation is
caused by the fact that MeshJoin does not consider the distribution of the in-
coming stream data as well as the organization of R. Therefore its performance
on skewed data is inferior [10]. Also, the performance of MeshJoin is inversely
proportional to the size of R. Thus this algorithm does not perform well with
large Rs[3].

To improve the MeshJoin algorithm, R-MeshJoin (Reduced MeshJoin) was
developed in 2010 [5].R-MeshJoin improves the MeshJoin operator by clearly
defining the dependent relationships between its antecedent’s components. There-
fore, R-MeshJoin is simpler and obtains slightly better performance than MeshJoin.

We presented another improved version named HybridJoin in the past [7].The
main goals of HybridJoin are: (1) to amortize the fast-coming data stream with
slow disk access using limited computer memory, and (2), to deal with an input
data stream sent in small and sporadic groups [10]. The main technique used by
HybridJoin to amortize the fast-coming data stream is an index-based approach
to access R, which is quite efficient. However, like MeshJoin, HybridJoin does
not take data distribution of the streaming data into consideration.

CJ is an improved HybridJoin operator that inherits the advantages and
solves the limitation of its former algorithms [3]. The architecture of CJ is pre-
sented in Figure 1. The main improvement of CJ is an additional hash table
stored in computer memory, which stores the most frequent tuples coming from
the stream (denoted as Hr). When tuples from the stream arrive, they enter the
cache phase first where they are matched with Hg. In this way more frequent
tuples can be processed faster as memory access is faster than disk access. If
a tuple is not matched in the cache phase, it will be sent to disk phase which
is basically a HybridJoin. In disk phase, stream tuples are stored in a hash ta-
ble named Hg and their foreign keys are also added to a queue. To minimize
expensive disk access, a few disk pages of R are loaded to a Disk-Buffer (DB)
whenever the join conducts a database query. The oldest tuple in the queue is
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Fig.1. CACHEJOIN Architecture

used to determine the partition of R which will be loaded in each probing itera-
tion. More specifically, after probing the foreign key of a tuple into R, a few disk
pages starting from the matching page in R will be put into DB. All these tuples
will be matched with Hg, in order to amortize the seek and disk access time.
Thus, the higher the number of tuples in Hg, the higher the probability that
some tuples in Hg can be matched with DB, which leads to the faster service
rate of CJ’s Disk Phase. Another important component of CJ is the frequency
detector whose algorithm is as follows: In each matching iteration between DB
and Hg, rows that have the number of matches above a certain threshold will
be considered as frequent tuples and added to Hg.

A comparison between CJ and MeshJoin shows that CJ outperforms MeshJoin
in many cases, such as with different settings of R, under different memory condi-
tions and when stream data is skewed [3]. The only situation where CJ processes
slower than MeshJoin is when the distribution of stream data is completely uni-
form, which hardly ever happens in practice. Of the algorithms described above,
CJ is the only one which considers the distribution of the stream data, while
still including the positive features of the others.

All of the above algorithms can join only one-foreign-key stream data with a
single table in the master data, but in business there is a need of joining multiple
foreign keys with multiple tables in R. The review of current literature shows
that not much research has been carried out in this direction.

3 Multi-way Semi-Stream Joins

In this paper, we developed three different multi-way semi-stream joins extended
from CJ and named them Sequential, Semi-concurrent and Concurrent. As men-
tioned above, in our experiment presented here, the joins were applied to match
two foreign keys of stream tuples with two tables in R. As there are two keys



that need to be joined with two tables, our approach is to process each key using
a CJ. Thus, we need to organize the process of the two CJs in a suitable order
to optimize the multi-way joins’ performance in regard to both service rate and
resource consumption. The first decision was whether we should create two CJ
threads executing the two keys concurrently, or only one thread which processes
one key at a time. The two-thread approach was our preference for the following
reasons:

- Both approaches require the same level of memory: as both of them contain
two CJs, they have similar objects.

- The two-thread approach is feasible. Although running two threads concur-
rently means doubling the CPU calculation, this approach is still feasible as
CJ consumes few resources [3].

- Utilizing multiple threads may improve the applications’ performance [11].

Another advantage of the two-thread approach is that it reduces the idle
time of the join operator. In CJ, after sending a SQL query to a Database
Management System (DBMS) such as MySQL, the join is idle as it waits for the
DBMS to execute the query and return the results. Similarly, the DBMS sleeps
when the CJ is processing the data returned from the queries. By running two
CJs concurrently, the idle time of the both systems (CJs and DBMS) will be
reduced as one thread may be working while the other is idling. Therefore, we
expect that the time required to process two keys will be less than double the
time required to match only one key of the stream tuples.

3.1 Sequential Multi-Way Semi-Stream Join
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Figure 2 presents the simplified architecture of the sequential join, which
abstracts CJ to the cache and disk phase level (The cache phase and disk phase
boxes are referred to in more detail in Figure 1). Basically, the sequential join
contains two CJs running in sequence, i.e. a tuple is firstly joined with the
Customer table by the Customer CJ. Then the matched tuple taken from the
Customer table is attached to the stream tuple to form the input for the second
CJ, which is the secondary stream buffer (SB). The second CJ takes tuples
from SB and processes the other key of the tuples (Product key) and adds the



probed product tuple to the stream tuple to form the final join’s output. It is
worth noting that, although the two keys of a stream tuple are processed in
sequence, the two CJs are running concurrently. In Figure 2, we use a visual
metaphor where the water is the stream of data, and the two funnels depict the
two CJs running concurrently while the tuples are processed in sequence. With
this architecture, we may expect that, although Sequential matches two keys of
a tuple, its service rate is equal to the service rate of the slower of the two ClJs.

3.2 The Semi-concurrent Approach
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Fig. 3. Simplified Architecture Architecture of the Semi-concurrent Approach

Figure 3 presents the simplified architecture of the semi-concurrent algo-
rithm. Similar to CJ, the semi-concurrent join has a cache phase and a disk
phase. When a tuple first enters Semi-concurrent, both of its keys are matched
with two hash tables Hr_¢ and Hg_p, which retain the most frequent tuples of
the customer and product tables in cache respectively. If both keys of a stream
tuple are matched, the tuple will be ready for output. In all other cases, the
tuple will be sent to the disk phase. Semi-concurrent’s disk phase has two CJ
disk phases running concurrently, processing tuples in sequence, which is quite
similar to the sequential process. In Figure 3, we use the same visual metaphor
as the sequential join, but the two funnels are only disk phases instead of com-
plete CJs. If only one key of a tuple is matched in the cache phase, the tuple will
be sent to the relevant CJ disk phase to be joined with the other key, e.g. if the
product key of a tuple is matched in cache, the tuple will be sent to the customer
disk phase. After the second key is processed, the disk phases will produce the
final output for the join. With this architecture, only tuples having both keys
unmatched within cache go through both customer and product disk phases.

3.3 The Concurrent Approach

Figure 4 presents the simplified architecture of the concurrent join. The cache
phase of the concurrent system is very similar to that of the semi-concurrent
system, while its disk phase has a new processing method. The concurrent sys-
tem stores stream, customer and product tuples in its queue, which makes the
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queue the largest component of the join with regard to memory consumption.
At each queue node, its customer/product tuple will be set to null if its cus-
tomer/product key has not been matched, otherwise the customer/product tuple
will store the matched item. During the disk phase, there are two CJ disk phase
threads simultaneously executing the unmatched customer and product keys in
the queue, which are called customer and product disk phases. The disk phases
are supported by two hash tables Hs_ ¢ and Hg_p, whose key/value pairs are
an unmatched key and its associated queue node. In this architecture, a queue
node will be sent to output only when both customer and product tuples are
not null.

For example, if the customer key of a stream tuple is matched in the cache
phase, this partially matched stream tuple will be added to a queue where the
product key will be matched. At the same time, as only its product key has not
been found in cache, the product key is put to Hg_p. In another instance, if
neither key of a tuple is matched with the cache, the tuple will be added to a
queue node where both customer and product items are null, and the customer
and product keys are put to Hg_¢ and Hg_p respectively.

As opposed to its predecessor CJ, the number of queue nodes in the concur-
rent system is not equal to the numbers of tuples in Hg_¢ and Hg_p. Rather,
the numbers of unmatched customer and product keys in the queue are equal to
the sizes of Hs_¢ and Hg_p, respectively.

4 Cost Model

To evaluate the new multi-way joins, we developed a cost model to measure
critical factors of their performance. In the case of CJ, the factors are classified
into two main groups being memory cost and processing cost. As these multi-
way joins are developed from CJ, we have adopted the notations used in the
cost estimation of CJ to the new joins. Unfortunately, the processing cost in the
cost model is not meaningful when applied to multi-way joins. For example, for



each CJ run, processing costs such as; costs to conduct a database query and
read disk pages to the DB, cost to look up one tuple in the hash table Hpr can
be recorded and added together to get the total processing cost. However, we
cannot simply sum the processing costs of the two CJs to calculate the cost of the
whole multi-way join as the CJ threads run concurrently and the costs overlap.
Furthermore, as the two CJ threads execute independently, the multi-way joins
do not have a common iteration. Thus multi-way joins do not have a total cost
for one loop iteration as in CJ. To this end we have chosen one processing cost
factor for evaluating multi-way joins, which is service rate. The service rates of
the new joins are calculated as follows:

total_processing_time

1)

In regard to memory cost, we used the total runtime memory required by
the Java programs to operate the multi-way joins in order to compare their
performance. The runtime memory of a Java program includes both used and free
memory, which are the memory allocated for currently used objects and possible
new objects respectively [12]. In this way runtime memory may best reflect the
memory cost of each semi-stream join. In our research, we use the memory cost
objects adopted from CJ to calculate the memory required by all objects of the
joins, but it is only an estimation because sizes of some objects change overtime.
For example, the size of Concurrent’s queue depends on the number of matched
tuples in its nodes, but the number changes overtime. Another example is the
secondary SB of Sequential and Concurrent, whose memory size is also not stable.
By having the estimations, we adjust the setting of each multi-way join, so that
the three joins have the same memory setting.

~ total_number-o ftuples_processed

5 Evaluation

5.1 Experimental Setup

Testing Environment We ran our experiments on an Core i3-2310 CPUQ
2.10GHz with Solid State Drive (SSD). We implemented our experiments in
Java, using FEclipse Java Neon 4.6.3. Measurements were taken with Apache
plug ins and nanoTime() from Java API The R is stored on a disk using a
MySQL database, the fetch size for the result set was set to be equal to the
disk buffer size. Synthetic data, the stream data, was generated with a Zipfian
distribution of the foreign key. The detailed specifications of the data set used
for analysis are shown in Table 1.

Memory Setting In the concurrent join, the largest component in terms of
memory use is the queue. Indeed, each node of the queue stores the stream,
product and customer objects, where customer and product objects are null
if the objects have not been matched. To avoid memory consumption of the
join becoming too high, there is a fixed maximum number of queue nodes. The



Table 1. Data Specifications

Object Value

Stream tuple size 20 bytes

Size of customer disk tuple |120 bytes

Size of product disk tuple 120 bytes

Data set based on Zipf’s law (exponent is set to 1)

Case 1: Both customer and product tables have 1 mil-
lion tuples

Case 2: Customer table: 1 million tuples, product ta-
ble: 300,000 tuples

memory size of the queue, therefore, will reach its maximum when all nodes are
half-matched (either the customer or the product object is matched). We used
Ncq to denote the number of nodes in the concurrent queue.

In the Sequential and Semi-concurrent joins, the largest components in term
of memory use are their two hash tables Hg_¢ and Hg_p and these hash tables’
sizes also need to be fixed. In both joins, we set the same size for both Customer
and Product Hash tables, and used Nsg and Ngcg to denote the size of the
sequential and semi-sequential hash tables respectively.

To test the performance of each join, we attempted to allocate the same
amount of memory for each multi-way join. For our test dataset, the size of each
customer and product object are the same (120 bytes), and the size of a stream
object is 20 bytes. With this setting, to allocate the same amount of memory to
all the joins, Ngg and Ngcq are set to equal to around 2/3 of N¢g.

5.2 Comparison of the three Multi-Way Joins
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Figures 5 and 6 show comparisons between the three approaches and a single
CJ in two different cases as stated in Table 1. It must be remembered that, while
the multi-way joins match two keys of a stream tuple with two tables in R, CJ
joins only one. It can be observed that the time required to join two keys in the
newly developed multi-way joins is less than double the time of a single CJ to
process one key. In regard to the memory cost, these three new joins consume a
similar level of memory, around 600MB and is three times more than CJ.

In both cases, the semi-concurrent join is the best performer, and Concur-
rent is the slowest multi-way join. The average time Semi-concurrent requires
to process 1000 tuples in Case 1 is 7.5 seconds, while the single CJ requires 5.5
seconds, and, in Case 2, the difference is only one second.

Memory Consumption Comparison
(Sizes of Master Data tables are not equal)
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Fig. 6. Comparison of the three multi-way joins and the original CJ
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6 Discussion

The reason why Concurrent is slower than Semi-concurrent is as follows. Since
both joins have the same cache phase, their disk phases cause the difference. As
mentioned above, a node in concurrent process’s queue will be moved to output
only when both its customer and product keys are matched. While the concurrent
process progresses, the number of half-matched nodes increases, which leads to
the numbers of unmatched customer and product keys decreasing (because the
total number of queue nodes is fixed to N¢g). However, a characteristic of the
CJ algorithm mentioned above is that the fewer unmatched items there are,
the slower the join performs. In our experiment, after the join runs for a while,
the number of unmatched customer and product keys is around 60% of N¢g,
which is smaller than in Ngcg (which is equal to 2/3 of N¢g). As a result,
the concurrent system becomes slower than the semi-concurrent system because
the number of unmatched keys in the semi-concurrent join is always fixed at
Nscq- Figure 7 simulates the concurrent join’s queue status while the join is in
operation.
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There are several reasons to explain why the sequential join’s service rate
is lower than that of the semi-concurrent join. First, in a case where both keys
of a tuple are recognized as frequent keys, the semi-concurrent join will send
the tuple direct to output after matching it with the cache phase. However, the
sequential join requires more steps in processing the tuple as, after matching the
first key, the sequential join puts the tuple into a secondary stream buffer, and
the tuple must wait for the second CJ to be executed. Second, if the product
key of a tuple is matched with the semi-concurrent join’s cache, the tuple will
go to the customer disk phase, and this phase may directly send the tuple to
output. However, after processing this tuple’s customer key, sequential join also
needs to put it in the secondary stream buffer, and again the tuple must wait
for the second CJ to be executed.

Although Sequential has some weaknesses when compared with Semi-concurrent,
the two joins have quite similar architecture. Basically, the two joins have two
CJ disk phase threads running concurrently and processing tuples in sequence,
and this architecture has been proved to be more effective than the concurrent
architecture. This provides an answer as to why the concurrent join performs
the least well of the three.

Another advantage of the semi-concurrent architecture is that the join is quite
flexible. Depending on the case we can adjust its components to achieve better
performance. For example, if the size of the product disk tuple is smaller than the
customer disk tuple, we can put the product disk phase first in the architecture
to save memory. In the semi-concurrent join, after we match a stream tuple with
the second CJ, the tuple will be sent to output. Therefore, we do not keep the
disk tuple of the second CJ in memory. However, after matching a stream tuple
with the first CJ, we need to put keep the matched tuples for the other key to
be matched. Hence, by putting the disk tuple which has a smaller memory first
in the processing order, the memory required to store the tuples will decrease.

The semi-concurrent join can also be generalized to match more keys by
adding more Hp tables to its cache phase and more CJ disk phase threads to
its disk phase. The main problem with generalization is that the more keys the
join needs to match, the more memory the join requires. Even so, the multi-way
join is still expected to be more efficient than other approaches.
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7 Conclusion

In this paper, we proposed three different multi-way join architectures called
Sequential, Semi-concurrent and Concurrent. Initially, we developed new joins
to match two-foreign keys in stream data with two tables in the master data.
We also developed a cost model to measure the joins’ performance. We com-
pared the performance of the all three newly developed joins with the original
CJ. Our results show that Semi-concurrent performed best among the three ap-
proaches. In future we aim to generalize our multi-way semi-concurrent approach
to join with n number of tables in the master data. Also we will optimize Semi-
concurrent by making some adjustments on the algorithm such as the frequency
detector and allocating different memories to different CJs in accordance with
the distributions of each streaming tuple’s foreign key.
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