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Abstract

In airline scheduling a variety of planning and operational decision problems

have to be solved. In this thesis we consider the problems aircraft routing and

crew pairing: aircraft and crew must be allocated to flights of a schedule in a

minimal cost way.

Although these problems are not independent, they are usually formulated as

independent mathematical optimisation models and solved sequentially. This

approach might lead to a suboptimal allocation of aircraft and crew, since a

solution of one of the problems may restrict the set of feasible solutions of the

problem solved subsequently.

Also, in minimal cost solutions, aircraft and crew are highly utilised and short

turn around times are usually used for aircraft and crew. If such a solution is

used in operations, a short delay of one flight can cause very severe disruptions

of the schedule later in the day due to the lack of buffer times. We formulate an

integrated aircraft routing and crew pairing model that can generate solutions

that incur small costs and are also robust to typical stochastic variability in

airline operations.

We propose two new solution methods to solve the integrated model. The

first approach is an optimisation based heuristic approach that is capable of

generating good quality solutions quickly, the second approach can solve the

integrated model to optimality.

In an extension of the integrated model we allow the departure times of some

flights in the schedule to vary in some time window. This creates additional

flexibility that leads to aircraft routing and crew pairing solutions with im-

proved cost and robustness compared to the integrated model without time

windows.



iv Abstract

Using data from domestic Air New Zealand schedules, we evaluate the benefits

of the approaches on real world problem instances. Our solutions satisfy all

rules imposed for these problems and are ready to be implemented in practice.

We generate solutions that dramatically improve the cost and robustness of

solutions obtained by existing methods.
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