
 

 

http://researchspace.auckland.ac.nz
 

ResearchSpace@Auckland 
 

Copyright Statement 
 
The digital copy of this thesis is protected by the Copyright Act 1994 (New 
Zealand).  
 
This thesis may be consulted by you, provided you comply with the 
provisions of the Act and the following conditions of use: 
 

• Any use you make of these documents or images must be for 
research or private study purposes only, and you may not make 
them available to any other person. 

• Authors control the copyright of their thesis. You will recognise the 
author's right to be identified as the author of this thesis, and due 
acknowledgement will be made to the author where appropriate. 

• You will obtain the author's permission before publishing any 
material from their thesis. 

 
To request permissions please use the Feedback form on our webpage. 
http://researchspace.auckland.ac.nz/feedback
 

General copyright and disclaimer 
 
In addition to the above conditions, authors give their consent for the 
digital copy of their work to be used subject to the conditions specified on 
the Library Thesis Consent Form. 

http://researchspace.auckland.ac.nz/
http://researchspace.auckland.ac.nz/feedback


.

Robust and Integrated

Airline Scheduling

A thesis submitted in partial fulfilment of the requirements

for the Degree of Doctor of Philosophy

Oliver Weide

Supervised by Professor David Ryan

and Associate Professor Matthias Ehrgott

Department of Engineering Science

School of Engineering

The University of Auckland

New Zealand

2009





Abstract

In airline scheduling a variety of planning and operational decision problems

have to be solved. In this thesis we consider the problems aircraft routing and

crew pairing: aircraft and crew must be allocated to flights of a schedule in a

minimal cost way.

Although these problems are not independent, they are usually formulated as

independent mathematical optimisation models and solved sequentially. This

approach might lead to a suboptimal allocation of aircraft and crew, since a

solution of one of the problems may restrict the set of feasible solutions of the

problem solved subsequently.

Also, in minimal cost solutions, aircraft and crew are highly utilised and short

turn around times are usually used for aircraft and crew. If such a solution is

used in operations, a short delay of one flight can cause very severe disruptions

of the schedule later in the day due to the lack of buffer times. We formulate an

integrated aircraft routing and crew pairing model that can generate solutions

that incur small costs and are also robust to typical stochastic variability in

airline operations.

We propose two new solution methods to solve the integrated model. The

first approach is an optimisation based heuristic approach that is capable of

generating good quality solutions quickly, the second approach can solve the

integrated model to optimality.

In an extension of the integrated model we allow the departure times of some

flights in the schedule to vary in some time window. This creates additional

flexibility that leads to aircraft routing and crew pairing solutions with im-

proved cost and robustness compared to the integrated model without time

windows.
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Using data from domestic Air New Zealand schedules, we evaluate the benefits

of the approaches on real world problem instances. Our solutions satisfy all

rules imposed for these problems and are ready to be implemented in practice.

We generate solutions that dramatically improve the cost and robustness of

solutions obtained by existing methods.
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Introduction

The area of research addressed in this thesis is airline scheduling. Airline

scheduling traditionally consists of solving the following five planning problems

one after the other. First, marketing decisions in the schedule design problem

determine the schedule of flights the airline operates. Given the set of flights in

a schedule, the solution of the fleet assignment model determines which flight

is operated by which aircraft type. Next, the aircraft routing problem seeks a

minimal cost assignment of available aircraft to the flights. Similarly, the crew

pairing problem (or tour of duty problem) allocates generic crew to flights in

a minimal cost way. A set of generic crew pairings is constructed subject to

many rules to ensure that each flight is covered by the correct number of crew

members. The last of the planning problems is the crew rostering problem.

Based on the constructed crew pairings, a line of work is assigned to each

individual crew member.

Traditionally, all five scheduling problems are solved in sequence although the

problems are interdependent. Clearly, all subsequently solved problems must

assign aircraft types, aircraft, and crew to the flights that are determined in

the schedule design problem. Once the fleet assignment problem is solved, one

aircraft routing problem is solved for each fleet type. The crew pairing problem

depends on the aircraft routing problem, since the connection time between

two flights a crew is allowed to operate can differ depending on whether the

crew stays on the same aircraft or not. Finally, individual crew members are

assigned to generic crew pairings in the crew rostering problem. Since airlines

operate in a highly competitive market, the main goal of most of these prob-

lems is the minimisation of a cost objective. The decline in airline passengers

following the events of September 2001, rising fuel prices, and competitive

pressure from low-cost airlines increase the need for traditional airlines to op-
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erate as efficiently as possible. Solving the five problems sequentially can lead

to a suboptimal solution due to the interdependencies between the problems.

Once one problem is solved, the solution of this problem may restrict the

feasible solutions of all subsequently solved problems resulting in an overall

suboptimal solution. Additionally, a large percentage of the variable costs of

airline operations occurs in the crew pairing problem which is solved late in

the sequence.

The minimisation of planned costs alone to create a highly efficient schedule

neglects the characteristics of the environment in which such a schedule is

operated. A highly efficient schedule usually features very short ground times

between flights for aircraft and crew to keep aircraft utilisation high and crew

costs low. During airline operations, however, disruptions are likely to occur

because of delayed passengers, aircraft malfunction, or weather conditions, to

name just a few. Once disruptions occur and ground times between flights

of one aircraft are minimal, the flights operated subsequently by the same

aircraft will also depart late. If, additionally, crew are changing aircraft on a

connection with short ground time after a delayed flight, the flight operated

subsequently by the crew will most likely also depart late. Such a propagation

of delay can quickly cause serious disruptions of wide parts of the schedule.

We refer to a schedule where the effects of an initial disruption on other flights

in the schedule are minimal as operationally robust. A schedule that is not

robust can cause large additional costs for an airline, for example requiring

reserve crews and passenger re-accommodation, and resulting in damage to

reputation.

A famous example of the effects of operating a non-robust schedule was pro-

vided - not intentionally - by the UK based low-cost airline Easyjet in August

2002. Many flights were delayed or cancelled and thousands of passengers had

to be re-accommodated all over Europe. The airline was operating highly cost

efficient crew pairings together with very short connection times:

Many budget airlines have fast turnarounds, with airlines unload-

ing their passengers and quickly re-boarding.

This allows them to make the maximum use of their small fleets.

While the strategy is cost effective, it also increases the likelihood
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of cancellations when technical or staffing problems arise.1

Delays on a Saturday morning propagated throughout the day and became so

severe that crew reached their maximum working hours and it became illegal

for them to continue operating:

Crews caught up in the delays worked up to their maximum hours

and then had to be allowed home to rest.2

The reasons for the accumulation of delays were described by a spokesperson

of Easyjet:

We thought the new rostering system would be more efficient and

better. It proved to be anything but that. [...]

The system was “splitting up” crews, meaning that a re-fuelled

plane and a pilot could be waiting at Luton airport but the cabin

crew would be stuck in Barcelona. It [Easyjet] plans to return to

its old rostering system next month.3

It took the airline several days to recover from this operational disaster until all

flights were departing as scheduled. The airline subsequently removed some of

the flights from their schedule to allow for more buffer time during operations.

Ehrgott and Ryan [2002] and Yen and Birge [2006] have shown that the robust-

ness of crew pairing solutions can be significantly improved if aircraft changes

are only made when ground time between the incoming and outgoing flights

is much greater than the minimum ground time. This can be achieved in the

crew pairing problem by penalising aircraft changes when ground time is short.

Robust crew pairing solutions then have “crew following the same aircraft” as

much as possible and changing aircraft only when ground time between flights

is much longer than the minimum. In this sense, the robust crew pairing

solution depends on the given aircraft routing solution. Again, a sequential

solution method may result in a suboptimal solution compared to a solution

method that considers both problems simultaneously.

1http://news.bbc.co.uk/2/hi/business/2182650.stm (14/05/2008)
2http://news.bbc.co.uk/2/hi/uk news/2172537.stm (14/05/2008)
3http://www.telegraph.co.uk/news/uknews/1404034/Easyjet-cancels-flights-as-rota-
fails.html (14/05/2008)
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Clearly, there exists a trade-off between minimal planned cost and operational

robustness. Ideally, we would like to solve a bicriterion problem with the two

objectives of cost and robustness considering all airline scheduling problem

simultaneously in one integrated model replacing the traditional sequential

approach. Such a formulation to integrate all airline scheduling problems is

currently intractable. All individual problems are already hard to solve and

integration increases the complexity of the formulation.

As a step towards integration of all airline scheduling problems, three of the

problems are considered in this thesis: schedule design, aircraft routing, and

crew pairing. We investigate whether it is possible to reduce the cost of the

sequential approach solution and simultaneously increase its robustness by

considering the three problems simultaneously rather than sequentially. We

expect the largest gain in cost and robustness by considering these three prob-

lems and do not include the fleet assignment and crew rostering problems in

our formulation. The fleet assignment model is important for large airlines

with multiple aircraft types. In the context relevant for this thesis, the fleet

can be regarded as homogeneous and fleet assignment can be omitted. The

main objective of the crew rostering problem is maximising crew satisfaction

rather than minimising cost. The crew rostering problem has therefore no

influence on the cost of the overall solution and is also not considered.

In the first part of the thesis we only consider two of the problems: aircraft

routing and crew pairing. We formulate the robust and integrated aircraft

routing and crew pairing problem in one integrated model. This model yields

one optimal solution for the two problems where the objective function is

a weighted sum of cost and a robustness measure, penalising crew changing

aircraft in the objective function. Because the problem is hard to solve, decom-

position methods are proposed in the literature to solve the integrated problem

(see for example Mercier et al. [2005]), but excessive computation times are

necessary to solve the model to optimality. We propose two novel solution

methods for the integrated model: an iterative approach and a Dantzig-Wolfe

decomposition approach.

The iterative approach is an optimisation-based heuristic approach: instead of

solving the integrated model, the two original problems are solved iteratively.

Starting with a cost minimal crew pairing solution, in each iteration we solve
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the aircraft routing problem first, taking into account the current crew pairing

solution, i.e. encouraging aircraft to follow the crew. Then, given the aircraft

routing solution we re-solve the crew pairing problem and this time encourage

the crew to follow the aircraft. We only use the objective functions in both

problems to pass information from the problem solved previously to generate

more and more robust solutions. Hence, the constraints of the models are unal-

tered and the complexity of the two problems is not increased. This procedure

generates a series of feasible solutions for the integrated model with varying

costs and robustness measures. The airline is not required to associate a mon-

etary value with robustness a priori but can observe the trade-off between cost

and robustness and then choose a solution they prefer to operate.

Various crew groups such as captains, first officers, and flight attendants are

required to operate an aircraft. We therefore extend the iterative approach

and consider multiple crew groups at the same time.

While the iterative approach generates feasible solutions very quickly, it cannot

guarantee to find a solution of a certain quality specified beforehand. Neverthe-

less, a (possibly infeasible) lower bound on the crew pairing cost is provided by

the algorithm so that the worst case solution quality can be observed. To ob-

tain feasible lower bounds on the solution quality, we propose a Dantzig-Wolfe

decomposition approach capable of solving the integrated model to optimality

for a weighted sum objective function of crew pairing cost and robustness mea-

sure. Again, both problems are solved individually and the original structures

of the problems are preserved. Aircraft routing problem and crew pairing prob-

lem each form one subproblem of the decomposition approach. The approach

iterates between a master problem and both subproblems until an optimal

solution to the integrated model is found.

In an extension, the schedule design problem is partially integrated into the

formulation. We do not consider constructing a schedule from scratch because

this problem is passenger demand driven and very complex. Also, a high degree

of consistency is required between successive schedules. The departure times of

some flights in the schedule are allowed to vary in some interval, which is why

the problem is called the time window problem. We investigate whether such

flexibility can further increase robustness and decrease crew pairing costs. The

problem is difficult since we consider weekly scheduling periods and all flights
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with the same flight number and same origin and destination must depart at

the same time on all weekdays. Therefore, constraints must be included in

the model to synchronise departure times for such flights over multiple days.

We propose a model for the robust and integrated aircraft routing and crew

pairing problem with time windows and propose two solution methods for this

problem. The first method uses an aircraft routing solution and a crew pairing

solution as input. The sequences of flights included in routings and pairings

of the solutions remain fixed. We find re-timings of the departure times for

the fixed sequences such that robustness is maximised. In a second method

we allow time windows within the iterative approach. A branch-and-bound

algorithm that enforces branches on the time windows is used to synchronise

the departure times.

In order to verify the performance of our solution approaches, we apply all so-

lution methods to various domestic airline schedules of Air New Zealand. The

iterative approach yields low cost solutions which are highly robust compared

to the traditional sequential approach. We compare the quality of the solutions

of the iterative approach with optimal solutions obtained by the Dantzig-Wolfe

decomposition approach. We also compare the performance of the Dantzig-

Wolfe decomposition approach with that of Benders decomposition which is

currently known as the most successful approach in the literature. However,

the approach has the disadvantage of adding constraints to the original for-

mulations which can cause computational difficulties. By applying both time

window solution methods, we demonstrate significant further savings in crew

pairing cost and robustness. Often, the departure times of only very few flights

are changed to achieve the improvements.

The main contributions of this thesis can be divided into two parts. Firstly,

from a theoretical point of view, we want to answer the question whether it

is possible to solve the integrated aircraft routing and crew pairing problem

(with and without time windows) by a decomposition method that does not

add constraints to the individual models of aircraft routing and crew pairing

problems. This enables us to use existing efficient solution methods to solve

each individual problem. All solution methods we propose preserve the original

structures of aircraft routing and crew pairing problems. Secondly, the main

focus of this thesis is to solve a practical problem. This poses additional chal-

lenges compared to solving a simplified mathematical model that only partially
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reflects reality. All rules and requirements of the Air New Zealand problem

are considered in our solution approaches. We do not make any simplifications

and the solutions we generate are ready to be operated in practice.

The thesis is organised as follows. In Chapter 1 we discuss mathematical mod-

els and solution methods that are commonly used in airline scheduling and

for other operations research problems. The concepts are used throughout the

thesis and being familiar with them is helpful to understand the motivation

behind our methodology. We describe operations research problems in the

airline industry and review the most relevant approaches in the literature in

Chapter 2. The chapter provides detailed information on the problems we are

interested in as well as on the planning process of airline scheduling in general.

In Chapters 3 and 4 we describe in detail our solution approach for the aircraft

routing and crew pairing problems, respectively. We list details on the particu-

lar problem instances and the specialised solution techniques that are tailored

to address the specific problems. While the production crew pairing solver was

provided by Air New Zealand to be used for the computational experiments,

an aircraft routing algorithm and algorithms to solve all integrated problems

were implemented from scratch. In Chapter 5 we describe the integrated and

robust aircraft routing and crew pairing problem. We present a model and

various solution approaches. These approaches are compared in an extensive

computational experiment section. In Chapter 6 we enhance the model by

also considering time windows. We again present computational experiments

before we summarise our experiences and results in the Conclusion.





Chapter 1

Mathematical Background

In this thesis a number of different airline optimisation problems are addressed.

Many of these problems can be formulated as mathematical optimisation mod-

els that have similar structures and many properties in common. Hence, the

solution techniques to solve the various problems also have many similarities.

In this chapter, we review the most popular models and solution techniques

used for airline optimisation problems.

A linear optimisation model where all of the solution variables are required to

be integer valued is called integer program (IP):

Minimise cT x

subject to Ax = b

x ∈ Zn
+.

(1.1)

The integer matrix A is of size m × n, c and b are integer vectors of size n

and m, respectively, and x is required to be integer. If only some (or none) of

the variables x are required to be integer (1.1) is called mixed integer program

(or linear program (LP)). In this thesis, variables x are also assumed to be

non-negative unless stated otherwise. To solve (1.1), usually the linear relax-

ation (or LP-relaxation) of problem (1.1) is solved first, where the integrality
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conditions on the x variables are relaxed:

Minimise cT x

subject to Ax = b

x ≥ 0.

(1.2)

Column generation techniques (see Section 1.3) are often used to solve the

LP-relaxation. Once problem (1.2) is solved, a branch-and-bound method (see

Section 1.4) can be used to solve the original problem (1.1). Many airline op-

timisation problems can be formulated as large scale set partitioning or multi-

commodity flow problems which are special cases of (1.1). In the subsequent

sections we describe these two problems.

1.1 Set Partitioning Problem

The set partitioning problem (SPP) (see Wolsey [1998]) can be formulated as

follows:

Minimise cT x

subject to Ax = 1

x ∈ {0, 1}n.

(1.3)

The set S we want to partition contains m elements and matrix A is a m× n

binary matrix. Each column aj , 1 ≤ j ≤ n, of A represents a subset of S and

contains a 1 in row i if element i ∈ S is an element of this subset and a 0

otherwise. Value cj ∈ R represents the cost of column aj . The solution of

(1.3) is a cost minimal partition of the set S.

An example in airline scheduling where the set partitioning model can be used,

is assigning crew members to operate flights of a schedule. All flights in the

schedule form the set S and the columns of A represent subsets in the form

of sequences of flights a single crew member can operate. All flights of the

schedule must be partitioned so that each flight is operated by some crew

member.

Sometimes additional constraints are used to model the consumption of limited
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resources. When these constraints with non-unit right-hand sides are added

to problem (1.3) the resulting problem is called a generalised set partitioning

problem. These constraints may for example limit the number of crew available

at a particular crew base.

A special form of the set partitioning problem is the so-called rostering problem.

For the rostering problem the matrix A can be written as A =
(

A′

A′′

)
. A subset of

rows (denoted by A′) of matrix A forms the following block-diagonal structure:

A′ :=


1 1 · · · 1

0 0 · · · 0
...

...

0 0 · · · 0

0 0 · · · 0

1 1 · · · 1
...

...

0 0 · · · 0

. . .

0 0 · · · 0
...

...

0 0 · · · 0

1 1 · · · 1

 .

For example, if a task requires to assign sequences of jobs to a number of

employees then the constraints formed by A′ ensure (together with the right

hand side equal to 1) that exactly one sequence of jobs is assigned to each

employee while the remaining constraints formed by A′′ ensure that each job

is assigned exactly once.

The constraints represented by A′ are called convexity or generalised upper

bound (GUB) constraints.

If we replace the = sign in (1.3) with ≤ (or ≥), the corresponding formulation

is called set packing problem (or set covering problem).

Zero-One Matrices with Integer Property

Three classes of zero-one matrices are known to ensure that all extreme points

of the LP relaxation of (1.3) are integer and are referred to as matrices with the

integer property. This means we can replace the binary conditions x ∈ {0, 1}n

with lower and upper bounds 0 ≤ x ≤ 1 and are still guaranteed to find

an integer optimal solution. This greatly simplifies the solution procedure of

(1.3), see Sections 1.3 and 1.4 below. The three classes known are totally

unimodular [Hoffmann and Kruskal, 1956], balanced [Berge, 1961], and perfect

[Padberg, 1974]. A matrix is called totally unimodular, if the determinant

of every square submatrix is -1, 0, or 1. A matrix is balanced if it does



12 1.2 Multi-Commodity Flow Problem

not contain any square odd submatrix with row and column sums equal to

2, i.e. the submatrix does not contain an odd order 2-cycle. We explain the

structure of perfect matrices in Section 3.3.4 where we see that the class of

perfect matrices is useful for rostering problems. The class of perfect matrices

is the largest class and contains the class of balanced matrices which in turn

contains the class of totally unimodular matrices.

1.2 Multi-Commodity Flow Problem

Another common formulation frequently used to solve airline optimisation

problems is the multi-commodity flow problem (MCF) (see Ahuja et al. [1993]).

A network G(V, A) with nodes V and directed arcs A linking the nodes is given.

Each arc a(u, v) ∈ A has a capacity c(a(u, v)). Note that multiple arcs may

connect nodes u and v. A total of k commodities K1, K2, . . . , Kk are defined

by Ki(si, ti, di) where si and ti are source and sink nodes of commodity i and

di is the demand. The non-negative value of variable fi(a(u, v)) represents the

flow of commodity i along arc a(u, v). The minimum cost multi-commodity

flow problem can be stated as follows:

Minimise
∑

a(u,v)∈A

(
k∑

i=1

pi(a(u, v))fi(a(u, v))

)
(1.4)

subject to
k∑

i=1

fi(a(u, v)) ≤ c(a(u, v)), for all a(u, v) ∈ A,∑
w∈V

fi(a(w, v))−
∑
w∈V

fi(a(v, w)) = bi
v, for all v ∈ V, 1 ≤ i ≤ k,

where pi(a(u, v)) is equal to the cost of sending one unit of flow of commodity

i along arc a(u, v) and bi
v =


−di, if v = si

di, if v = ti

0, otherwise.

The first set of constraints models capacities on the edges. The second set

ensures flow conservation at each node: for each node that is not a source or

a sink of commodity i, the amount of commodity i that enters the node must

also leave the node. Also, the flow of commodity i that leaves the source node
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and enters the sink node must be equal to di, respectively. Constraints can be

added to ensure that a certain amount of a commodity flows through a node.

Model (1.4) assumes a single source and sink node for each commodity. If

multiple source or sink nodes are required, artificial super source or sink nodes

can be added. Super source and sink nodes are only linked to the original

source and sink nodes, respectively. The capacities on the arcs linking super

nodes and original nodes are set to the original supply and demand of the

commodity, respectively.

The aircraft routing problem (see Chapter 3) can be formulated as a multi-

commodity flow problem. A network representation of the flight schedule is

used where flights are represented by nodes and two nodes are joined by an arc

if an aircraft can operate these two flights in sequence. Commodities (i.e. air-

craft) are shipped through this network such that the number of commodities

arriving at an airport, is also departing from this airport (flow conservation).

A capacity constraint on the source node can ensure that only the number

of available aircraft is used. Additional constraints ensure that each flight is

operated by exactly one aircraft.

1.3 Column Generation

The simplex algorithm is commonly used to find a cost minimal solution to a

linear program (1.2). A minimal cost solution x∗ of (1.2) is attained at one

of the extreme points of the set X = {x : Ax = b, x ≥ 0}. The simplex

algorithm iterates from one extreme point to an adjacent extreme point until

a cost minimal solution is found. Each extreme point is represented by a

set of m linearly independent columns of A, the so called basis. An adjacent

extreme point is reached by swapping exactly one basic column with one non-

basic column of A. As the basis entering column (pricing step of the simplex

algorithm), the column with minimal reduced cost over all non-basic columns

is chosen if this cost is negative. Otherwise, optimality of the current solution

(extreme point) is guaranteed and the algorithm stops. The reduced cost of a

non-basic column as of matrix A is calculated as follows:

rs =
(
cs − cT

BA−1
B as

)
.
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Costs cs and cB are associated with columns as and the basis matrix AB,

respectively. The vector π = cT
BA−1

B is the dual vector of solution x. For a

detailed description of the simplex algorithm see for example Chvátal [1983]

or Schrijver [1986].

For practical problems in the airline industry the matrix A in problem (1.2) can

contain a very large number of columns. In fact this number can be so large

that it may take a very long time to even construct the matrix and the simplex

algorithm may not be able to find the optimal solution within reasonable time.

Ford and Fulkerson [1958] and Dantzig and Wolfe [1960] introduced the idea of

only implicitly considering all variables. The method is called delayed column

generation (see Lübbecke and Desrosiers [2004] for more details) and works

as follows. Instead of problem (1.2) the so called restricted master problem is

solved with the simplex method:

Minimise c′T x

subject to A′x = b

x ≥ 0.

(1.5)

Matrix A′ initially only consist of a small (possibly empty) subset of all columns

contained in A and c′ contains the costs accordingly. To guarantee feasibility of

(1.5), an artificial identity matrix is appended to A′. In the pricing step of the

simplex algorithm a column with negative reduced cost which enters the basis

must be found. Not only all non-basic columns of A′ are checked for negative

reduced cost but also all columns of the original matrix A not yet contained in

A′. For the latter part the so-called column generation subproblem is solved. If

π is the dual vector of the current basic solution the subproblem must identify

a column as of A with negative reduced costs rs = (cs−πT as) < 0 or guarantee

that no such column exists.

The method is particularly beneficial whenever the column generation subprob-

lem can be solved efficiently, e.g. as a combinatorial optimisation problem. In

this case it may not be necessary to know all columns of matrix A explicitly to

solve the original problem (1.2). The negative reduced cost columns and cor-

responding variables and costs are added to the restricted master problem and

the simplex algorithm continues. Once no negative reduced cost column can
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be found, the current solution of (1.5) is an optimal solution for the original

problem (1.2).

1.4 Branch-and-Price

Once the LP-relaxation of (1.1) is solved it is likely that some variables of x will

have non-integer values. Most applications in airline scheduling require integer

solutions. For example, it does not make sense to operate a single flight by

two halves of an aircraft. A technique called branch-and-bound (see Barnhart

et al. [1998b] for a survey) is then used to obtain integer solutions. The current

fractional solution is stored as the root node of the branch-and-bound tree. In

the branching step two nodes are added to the tree. At each node only a subset

of all variables is considered. Depending on some properties of the fractional

variables, we divide the variables into two (not necessarily disjoint) sets. At

one node only the first subset of variables is considered while at the other node

the second subset is considered. The variables are divided in such a way that

the previous fractional solution is infeasible at either node. At both nodes the

LP relaxation of (1.1) must be solved again where, additionally, all branching

decisions for the node must be satisfied. We choose a node to be solved first. If

the solution again contains fractional values the branching step is repeated on

the current node, otherwise an integer solution of (1.1) is found. Note that the

addition of two nodes at each branching step is the most common branching

procedure and called binary search. Other branching strategies, adding more

than two branches at each branching decision, can be used in a similar fashion.

At each node where an integer solution is found, the solution value is compared

to the LP-relaxation solution value and if the gap between both values is small

enough we terminate and return the integer solution. Otherwise, we store the

solution and continue to explore the branch-and-bound tree. Once we find

an integer solution we can stop branching on nodes that have a fractional

solution with larger objective value (bounding) than the best integer solution

found. The part of the tree below such a node cannot yield a better integer

solution. When solving the LP-relaxation at each node, we can also use the

column generation technique (pricing). The overall process of obtaining integer

solutions is then called branch-and-price. If we do not generate new columns
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in the branch-and-bound tree we cannot guarantee to find an optimal or even

feasible integer solution.

The branching decisions that are made are incorporated into the simplex algo-

rithm by removing variables that violate the current branching decisions. Vari-

ables can be removed by setting their upper bound to 0. The decisions must

also be obeyed in the column generation problem. Specially tailored branching

rules exist for many airline scheduling problems. These are described in more

detail in the model and solution sections.

Another technique to obtain integer solutions is to add constraints that cut

off the current fractional solutions and is called cutting plane method. This

method can be combined with the methods described above to branch-and-cut

and branch-and-price-and-cut, respectively.

1.5 Linear Program Decomposition Principles

In this section common decomposition principles for large scale linear programs

are described and compared, namely Dantzig-Wolfe decomposition, Benders

decomposition, and Lagrangian relaxation. The common idea of decomposition

principles is to decompose the original problem into smaller problems that can

be solved more efficiently. These problems are then solved iteratively and

information is passed from one to another until an optimal solution for the

original problem is found. Similarly, in a relaxation method the difficult part

of the problem is relaxed and its violation is penalised in the objective function.

1.5.1 Dantzig-Wolfe Decomposition

In this section we describe the Dantzig-Wolfe decomposition principle. An

original LP is decomposed into an LP master problem and an LP subproblem

and both are solved by LP techniques. This is a special case of the column

generation principle (see Section 1.3) where the subproblem can have a more

general form and can also be solved by combinatorial optimisation or enu-

meration algorithms for example. The goal is to solve the following linear
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problem:

Minimise cT x

subject to Ax ≥ b

x ≥ 0,

(1.6)

with A ∈ Rm×n, b ∈ Rm, c ∈ Rn and x ∈ Rn.

We can rewrite this problem by splitting A and b into A =

(
A1

A2

)
and b =(

b1

b2

)
:

Minimise cT x

subject to A1x ≥ b1

A2x ≥ b2

x ≥ 0,

(1.7)

where all A1, A2, c, b1, b2 are real valued with appropriate dimensions.

If at least one of the sets of constraints is very large or hard to solve we can

decompose problem (1.7) into two smaller and thus easier to solve problems.

We reformulate problem (1.7) as the equivalent so-called Dantzig-Wolfe master

problem (see Dantzig and Wolfe [1960]):

Minimise cT (V λ + Wµ) (dual)

subject to A2(V λ + Wµ) ≥ b2 → π

1
T λ = 1 → πc

λ, µ ≥ 0.

(1.8)

We define a polyhedron P = {x ∈ Rn
+|A1x ≥ b1}, P = conv ({v1, . . . ,vk}) ∪

cone ({w1, . . . ,wl}) and sets V = {v1, v2, · · · , vk} and W = {w1, w2, · · · , wl}.
Set V contains the extreme points of polyhedron P and set W contains the

extreme rays of P . The set of constraints A1x ≥ b1 is implicitly satisfied by

the construction of V and W and x ∈ P is represented as a sum of a convex

combination of extreme points and a conical combination of extreme rays of

P .
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As in Section 1.3, V and W are not needed to be known a priori but can

be constructed during the solution process of the master problem (1.8). To

solve the master problem, we start with initially empty matrices V and W

and solve this restricted master problem. To guarantee feasibility, an artificial

identity matrix is added to formulation (1.8). A phase I/II approach is used

or large costs are associated with the artificial variables to ensure that no

artificial variable has positive value in an optimal solution. We obtain a dual

vector π associated with constraints A2(V λ + Wµ) ≥ b2 and a dual value

πc associated with the convexity constraint 1T λ. We solve a pricing Dantzig-

Wolfe subproblem to check if a column with negative reduced costs exists:

Minimise (cT − πT A2)x− πc

subject to A1x ≥ b1

x ≥ 0.

(1.9)

There are three possible outcomes for problem (1.9):

1. An optimal extreme point solution v exists with (cT −πT A2)v−πc < 0.

In this case we add the negative reduced cost vector v to matrix V of

the master problem.

2. Problem (1.9) is unbounded. Here, we obtain an extreme ray w with

(cT − πT A2)w < 0 and add w to matrix W of the master problem.

3. The optimal solution x̃ has non-negative reduced cost (cT − πT A2)x̃ −
πc ≥ 0.

In cases (1) and (2) we add a negative reduced cost column to the master prob-

lem and re-solve the master problem and continue iterating between master

and subproblem. In the last case optimality of the master problem is guaran-

teed, or the problem is infeasible if artificial variables with positive value are

part of the solution. The optimal solution of the master problem is also an

optimal solution of the original problem (1.7).

In each iteration, a bound on the solution quality can be calculated. Suppose

ζ = min(cT −πT A2)x is the optimal solution value of the current subproblem

(1.9) without constant πc and π the associated dual of the optimal solution

of the current restricted Dantzig-Wolfe master problem. We can show that
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vector
(π

ζ

)
is a feasible solution to the dual problem of (the unrestricted)

master problem (1.8) (see Wolsey [1998]). The value (bT
2 π + ζ) is a lower

bound for the optimal solution value of (1.8) and hence (1.7). Combined with

the upper bound available from the optimal solution of the restricted Dantzig-

Wolfe master problem, we obtain an optimality gap for the solution and can

stop the algorithm once this gap is sufficiently small.

1.5.2 Benders Decomposition

Another frequently used decomposition technique is Benders decomposition

(Benders [1962], Minoux [1986]). Benders decomposition also iterates between

a master problem and a subproblem but here constraints are generated by the

subproblem and added to the master problem instead of variables as in the

Dantzig-Wolfe decomposition.

We now consider the following LP:

Maximise cT
1 x1 + cT

2 x2

subject to A1x1 + A2x2 ≤ b

x1, x2 ≥ 0,

(1.10)

where A1, A2, b, c1, c2 all take real values and x1 and x2 are non-negative real

variables.

We want to eliminate variables x2. This can be achieved via projection. To

use projection we need to reformulate (1.10):

Maximise z

subject to z − cT
1 x1 − cT

2 x2 ≤ 0

A1x1 + A2x2 ≤ b

x1, x2 ≥ 0.

(1.11)

Using Fourier-Motzkin elimination (see e.g. Schrijver [1986]) this is equivalent
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to:

Maximise z

subject to uz − ucT
1 x1 + vT A1x1 ≤ vT b(

u

v

)
∈ C,

(1.12)

with C = {
(

u
v
)
∈ Rm+1 : vT A2 − ucT

2 = 0, u ≥ 0, v ≥ 0}. We can represent

the polyhedral cone C as a conical combination: C = cone{
(

u1

v1

)
, . . . ,

(
us

vs

)
}

and we can rescale these extreme rays such that ui equals either 0 or 1. We

can write C = cone({
(

0
vk

)
: k ∈ K}) + cone({

(
1
vj

)
: j ∈ J}) with K ∪ J =

{1, . . . , s}, K ∩ J = ∅. With this representation of C we can rewrite 1.12 as

the so-called Benders master problem:

Maximise z

subject to z ≤ cT
1 x1 − vT

j (A1x1 − b) j ∈ J

0 ≤ − vT
k (A1x1 − b) k ∈ K.

(1.13)

Similarly to the Dantzig-Wolfe decomposition approach, not all constraints are

considered from the start. We start solving the restricted master problem with

a small set (possibly empty in which case the optimal value of (1.13) z∗ equals

∞) C and populate C during the algorithm by constructing constraints with a

subproblem. Each time the restricted master problem is solved, we check if any

constraint of the original problem is violated. Suppose the optimal solution

of the current restricted master problem is z∗, x∗
1. The check for violated

constraints can be achieved by solving the following Benders subproblem:

Minimise vT (b− A1x
∗
1) + u(−z∗ + cT

1 x∗
1)

subject to
(

u
v
)
∈ C.

(1.14)

The subproblem is feasible since
(
0
0

)
∈ C is a solution. If

(
0
0

)
is the optimal

solution then the master and the original problem is solved to optimality.

Otherwise we identified an extreme ray
(

u∗

v∗

)
with v∗T (b − A1x

∗
1) + u(−z∗ +

cT
1 x∗

1) < 0. After rescaling, the ray will yield a constraint that is violated by

the current master problem solution. We add this constraint to the master

problem and re-solve.
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1.5.3 Lagrangian Relaxation

Lagrangian decomposition (Geoffrion [1974], Fisher [1981], Fisher [1985], Mar-

tin [1999]) is also successfully applied to a number of airline scheduling prob-

lems.

Again, we consider problem (1.7) and reduce the problem to include only one

part of the constraints. In contrast to Dantzig-Wolfe decomposition we now

add the second set of constraints to the objective function together with a

penalty for violation of the constraints.

This results in the Lagrangian relaxation of (1.7) for any given λ ≥ 0:

L(λ) = Minimise cT x − λT (A2x− b2)

subject to A1x ≥ b1

x ≥ 0.

(1.15)

The solution value to (1.15) is a lower bound for the solution value of (1.7)

because for any feasible solution x̃ of (1.7) the following equation holds:

cT x̃ ≥ cT x̃− λT (A2x̃− b2) ≥ min
x≥0,A1x≥b1

cT x− λT (A2x− b2) = L(λ).

To solve (1.7) we maximise problem (1.15) over all λ ≥ 0. This is called the

Lagrangian Dual Problem:

Maximise L(λ)

subject to λ ≥ 0.
(1.16)

The solution to (1.16) can be found with a subgradient method (see Schrijver

[1986]) which is easy to implement. We start solving (1.15) for a given λ0 and

obtain a solution x0, then update λk+1 = λk − γk(A2xk − b2), and re-solve

(1.15). The value γk is a specified step length and vector A2xk − b2 is called

the subgradient. This process continues until a stopping criterion is fulfilled,

e.g. the gap between a feasible solution of (1.7) and the lower bound obtained

by (1.16) is sufficiently small. If the solution of (1.16) is infeasible for (1.7), a

heuristic method can be used to obtain a solution for (1.7).

An alternative way to solve the Lagrangian dual problem is to reformulate the
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Figure 1.1. Block-diagonal matrix structure.

problem as a linear program with a large number of constraints (see Wolsey

[1998]). The LP can then be solved with a branch-and-cut method, which is

equivalent to applying Dantzig-Wolfe decomposition to the dual of the LP.

Other methods to solve the Lagrangian dual problem include bundle meth-

ods based on quadratic programming (Hiriart-Urruty and Lemaréchal [1993]),

analytic centre cutting plane methods based on an interior point algorithm

(Goffin and Vial [2002]), or ellipsoid methods (Khachian [1979]).

1.5.4 Comparison of Decomposition Methods

Although the three decomposition methods seem to be very different they

are closely related to each other. Problem (1.10) is the dual problem of (1.7).

Equivalently, the Dantzig-Wolfe master problem and the Benders master prob-

lem are duals of each other. Benders decomposition is therefore equivalent to

applying Dantzig-Wolfe decomposition to the dual problem.

Additionally, the following equation holds:

min
x≥0,A1x≥b1

(cT−πT A2)x = min
x≥0,A1x≥b1

cT x−πT (A2x−b2)−πT b2 = L(π)−πT b2.

Therefore, the Dantzig-Wolfe subproblem and the Lagrangian relaxation prob-

lem yield the same lower bound on the solution value of the original problem.

In a particular case when the matrix structure is block-diagonal (Figure 1.1),

decomposition methods are used very successfully in many applications. When
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solving practical applications, the problems can be very large and a standard

simplex method cannot be applied because of performance and memory issues.

Decomposition methods perform well if it is possible to decompose the matrix

into several subproblems that are much smaller than the original problem. In

the example in Figure 1.1, only the coupling constraints in matrix B are kept

in the master problem while the problems with matrices A1 and A2 can be

solved separately in two different subproblems, often even in parallel. This

can enable very fast solution times.

Other methods to solve large-scale linear or integer programs include bundle

methods (Hiriart-Urruty and Lemaréchal [1993]), Wedelin’s algorithm (Wedelin

[1995]), and cross decomposition methods (van Roy [1986]).

Integer Program Decomposition

All decomposition methods described can also be applied to general mixed in-

teger problems. Some care must be taken when conical or convex combinations

are computed to ensure integrality of the resulting vector. Which decomposi-

tion method is chosen to solve a problem depends on the particular structure

of the problem. Often the integer requirements or particular parts of the vari-

ables or constraints cause difficulties in which case these should be relaxed.

We consider a more general case than (1.7):

Minimise cT x

subject to Ax ≥ b

x ∈ X

(1.17)

X = P ∩ Z+ and P ∈ Rn a polyhedron. Relaxing constraints Ax ≥ b with

Dantzig-Wolfe decomposition or Lagrangian relaxation again yields the same

bounds. By replacing X with conv(X) in formulation (1.17) both methods

can be solved by linear programming, the Lagrangian relaxation with a large

number of constraints, the Dantzig-Wolfe decomposition with a large num-

ber of variables. These constraints and columns are formed by sets V and

W of extreme points and extreme rays of the set conv(X). The Lagrangian

relaxation approach yields multipliers for the problem while Dantzig-Wolfe de-

composition yields a feasible solution x where the integrality of x remains to
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be checked. It is not sufficient to use integer convex/conical combinations of

elements of sets V and W for x to be integer. However, in the important

special case of a binary linear program when X ∈ {0, 1}n, all integral points

of a bounded set X are already vertices of conv(X) and each x is the trivial

convex combination of a single element of V . Note that in the integer case, the

primal dual relationship between the master problems of Dantzig-Wolfe and

Benders decomposition does not hold any longer but depends on the structure

of conv(X).

Which solution approach is used depends on the model and the specific problem

instance. Quite often, different solution techniques must be compared on a

particular problem in order to verify the best approach. In some cases some

models are better suited than others. In case of primal degeneracy for example,

dual methods are usually preferred. However, if primal feasible solutions are

required throughout the solution phase, e.g. for early termination, a primal

method may be the only choice. The choice of a solution method also depends

on how fast a solution must be found and how accurate the solution needs

to be. A Lagrangian relaxation approach may quickly result in good lower

bounds but only a heuristic primal solution. Dantzig-Wolfe decomposition on

the other hand may result in a primal feasible solution but the simplex method

may require a long time to converge.

Finally, characteristics of the model are also important. It is desirable to obtain

subproblems that can be solved quickly. If the subproblems are naturally

integer, however, the LP relaxation of the Dantzig-Wolfe master problem is

not tighter than the LP relaxation of the original formulation and therefore

does not yield an improved lower bound. Hence, the integrality property of the

subproblems may be undesirable if the integrality gap of the original problem is

large (see Desrosiers et al. [1995]). For further and more in-depth discussion on

the topic we refer to Nemhauser and Wolsey [1988], Lübbecke and Desrosiers

[2004], and Ralphs and Galati [2006].

1.6 Multiobjective Optimisation

An increasingly important concept in airline scheduling problems as well as

in many other areas of operations research is multiobjective optimisation (or
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multicriteria optimisation). In all formulations presented in this chapter so far,

only a single objective is considered. In practical applications often multiple

objectives must be optimised simultaneously. In most cases these objectives

contradict each other. In this brief overview we consider an integer program

with two objectives (1.18). We refer to Ehrgott [2005] for more details. A

biobjective integer program is defined as:

Minimise z(x) =

 z1(x)

z2(x)

subject to Ax = b

x ∈ Zn.

(1.18)

The feasible set is called X. Its image under the objective function is called

Z := z(X). We define the following order on the objective space R2:

y1 � y2 ⇔ y1
k ≤ y2

k, k = 1, 2; y1 6= y2; y1, y2 ∈ R2.

Our goal when solving the biobjective problem is to find feasible solutions

such that no other feasible solutions exist that are better with respect to one

component of the objective vector z(x) and not worse with respect to the

second component.

Definition 1 A feasible solution x̂ ∈ X is called efficient or Pareto optimal

if there does not exist any x′ ∈ X with (z1(x
′), z2(x

′)) � (z1(x̂), z2(x̂)). The

image z(x̂) = (z1(x̂), z2(x̂)) of x̂ is called non-dominated. We distinguish

different types of efficient solutions:

• Supported efficient solutions are those efficient solutions that can be ob-

tained as optimal solutions to a (single objective) weighted sum problem:

Minimise λ1z1(x) + λ2z2(x)

subject to x ∈ X,
(1.19)

for some λ1 > 0, λ2 > 0. The supported non-dominated points lie on

the boundary of the convex hull conv(Z) of the feasible set in objective

space.
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• Supported efficient solutions which define an extreme point of conv(Z)

are called extreme supported efficient solutions.

• The remaining efficient solutions are called non-supported efficient solu-

tions. They cannot be obtained as solutions of a weighted sum problem

as their image lies in the interior of conv(Z).

An example of all non-dominated points of a problem is given in Figure 1.2.

b

b

b

b

×
×

×
conv(Z)

bsupp. non-dom.

× nonsupp. non-dom.

Figure 1.2. Supported and non-supported non-dominated points.



Chapter 2

Airline Scheduling Background

and Literature

The operation of an airline requires a large number of decision making and

optimisation problems to be solved. An airline needs to solve problems as

diverse as forecasting passenger demand, assigning aircraft and crew to all

flights they operate, purchasing and maintaining aircraft, handling luggage and

cargo, organising catering, handling passengers at check-in and the gate, and

taking care of re-accommodation of passengers and crew in case of disruptions.

The complexity of the problems but also the need for finding cost optimal

solutions in order to be competitive have motivated a large amount of research

in airline optimisation problems over the last 50 years. Optimisation models,

heuristics, and simulations are among the Operations Research (OR) methods

that have been specifically developed or adapted to efficiently solve large scale

problems in the airline industry.

The problems can generally be classified into strategic and tactical planning

problems and operational (or day-of-operations) problems.

Strategic problems include decisions about the size and composition of the fleet

of the airline, e.g. how many new aircraft of which size should be acquired.

Another strategic problem is to decide where to locate crew bases in the flight

network and how many crew members are needed at each crew base. The

decision to enter a new origin-destination market is also a strategic decision

problem.
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Among the tactical planning problems are airline scheduling, pricing, and rev-

enue management problems, see van Ryzin and Talluri [2002] for a survey on

the latter two. The scheduling process usually starts about 12 months before

the schedule is operated and lasts until the day-of-operations. The airline

scheduling problem is usually decomposed into five planning problems and tra-

ditionally these problems are solved sequentially. First, marketing decisions in

the schedule design problem determine which flights the airline operates. Given

the set of flights in a schedule the solution of the fleet assignment problem de-

termines which flight is operated by which aircraft type. Next, a minimal

cost assignment of available aircraft to flights is found in the aircraft routing

problem. The last of the tactical planning problems is crew scheduling, usually

decomposed into two consecutive stages, namely crew pairing and crew ros-

tering problems. Crew members must be assigned to operate all flights in the

schedule. Firstly, the crew pairing problem (or tour of duty problem) allocates

generic crews to flights in a minimal cost way. Secondly, in the crew rostering

problem, monthly or fortnightly work rosters (or lines of work) are constructed

based on the cost minimal crew pairings and assigned to each individual crew

member.

On the day-of-operations a large number of additional operational problems

must be solved. On one hand the planned schedule must be executed. On the

other hand disruptions occur frequently, which makes it necessary to change

the planned schedule during operations. Among sources of disruptions are un-

foreseen maintenance tasks, late passengers, late crew, or bad weather. The

execution of the schedule as well as the disruption management usually takes

place in the airline operations control centre. If disruptions occur, flights must

be delayed or cancelled, aircraft and crew must be re-scheduled and passen-

gers must be re-accommodated. The resulting models are similar to their

planning counterparts but usually span a smaller time horizon and must be

solved much faster, often in a matter of minutes. Hence, special techniques,

such as heuristics, to obtain good solutions quickly are often utilised to solve

the operational problems. For many airlines, disruption recovery is a mostly

manual process relying on the experience of their schedulers rather than the

utilisation of mathematical models. We refer to the following recent contribu-

tions for a description of airline operations and recovery procedures: Stojković

et al. [1998], Lettovský et al. [2000], Filar et al. [2001], Stojković et al. [2002],
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Rosenberger et al. [2003], Yu et al. [2003], and Ball et al. [2007].

We describe the airline scheduling process and contributions in the literature in

more detail in the following sections. We do not address revenue management,

cargo, or passenger aspects of airline operations in this review.

2.1 Airline Scheduling Problems

Airline scheduling consists of five different types of planning problems: sched-

ule design, fleet assignment, aircraft routing, crew pairing, and crew rostering.

In this section we summarise each of these problems and describe the liter-

ature on solution approaches for each of the problems. We further present

approaches in which some of the individual problems are integrated into more

comprehensive models. We conclude with formulations that include robustness

measures. A planned solution is understood to be operationally robust if dis-

ruptions of some flights in the schedule have a minimal effect on other flights

in the schedule. Recent surveys on airline scheduling problems are provided

by Gopalan and Talluri [1998b], Barnhart et al. [2003a], Barnhart and Cohn

[2004], and Klabjan [2005]. In the sections that describe the individual prob-

lems, only contributions are cited that address a single problem. Contributions

addressing multiple problems are listed in Section 2.2.

2.1.1 Problem Characteristics

In this section we present important problem characteristics that are common

among many airline scheduling problems.

The literature distinguishes between daily, weekly, and dated scheduling prob-

lems.

In the daily problem it is assumed that the schedule repeats every day, i.e. the

same flights are operated on each day. This is the most common approach

described in the literature. Many airlines in North-America operate the same

schedule on each weekday and a subset of flights on the weekend. For other

airlines the schedule may vary on a day to day basis.

After solving the daily problem the generated solutions for crew and aircraft
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are repeated every day to obtain a solution for a week. The weekly exception

problem is then solved to eliminate infeasibilities on the weekends. Alterna-

tively, a weekly problem can be solved where it is assumed that the schedule

repeats every week but may vary on different days of the week. The solution

for a single week is then repeated to obtain a solution for a longer period.

Restricting the aircraft or crew solutions to repeat daily can cause suboptimal

solutions even if the schedule repeats daily as shown in Andersson et al. [1998].

A more general approach is to solve a fully dated problem where no restrictions

are imposed between solutions on different days. This problem must be solved

when there is a transition from one schedule to another for solutions that

span both (different) schedules. Here, specific start and end dates are given

for which the problem must be solved. This version of the problem is also

commonly solved by airlines where the schedule varies frequently from day to

day or week to week. Because of the longer time horizon this problem is much

harder to solve than daily or weekly problems and may be intractable for large

schedules containing many flights.

With respect to the flight network structure two different models are common.

The hub-and-spoke network is widely used among airlines in North-America.

In this network only large airports (hubs) are linked by direct flights and all

smaller airports (spokes) are only connected to a single hub. Many aircraft

meet at a hub at the same time ensuring the existence of many feasible con-

nections. This property leads to a very large number of feasible solutions.

A second type of network is the point-to-point (or inter-connected) network.

In contrast to the hub-and-spoke network, in a point-to-point network many

airports are linked with multiple other airports by direct flights.

From a modelling point of view the following two different network types are

distinguished: connection networks and time-line networks.

In a connection network the nodes represent arrivals or departures of flights.

Flight arcs represent the flights and connection arcs link the arrival of an

incoming flight with the departure of an outgoing flight if it is possible to

operate these two flights in sequence with the same aircraft. This is the case

if the destination of the incoming flight is the origin of the outgoing flight and

sufficient time between arrival and departure allows to disembark and embark

passengers and to clean, refuel, and reload the aircraft. This minimal required
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wrap-around arcs

flight arcs

connection arcs

Figure 2.1. Connection network with
5 flight arcs.

wrap-around arc

arriving flight arcs

ground arcs

departing flight arcs

Figure 2.2. Time-line network for a
single airport.

time between arrival of the first and departure of the second flight is called

minimal turn-time for aircraft and minimal sit-time for crew.

The time-line network consists of nodes for time and location of each departure

and each arrival of all flights. The arrival time is hereby adjusted by adding

the minimal turn-time (or sit-time). The two types of arcs are flight arcs (as in

the connection network) and ground arcs. A ground arc links two consecutive

activity nodes (departures or arrivals) at the same airport. The flow on a

ground arc represents all aircraft or crew on the ground at a particular airport

and time.

The time-line network consists of many fewer arcs than the connection network

but the model does not distinguish between individual aircraft or crew on

ground arcs. If a daily or weekly problem is solved, both networks are extended

by wrap-around arcs that link the last flights in the schedule with the first

flights and link the airport at the end of the horizon with the start, respectively.

Wrap-around arcs are needed so that an aircraft routing or a crew pairing can

span multiple days in a daily problem. Figures 2.1 and 2.2 show small examples

of each network type. A final differentiation between network models can be

made depending on the activity represented by an arc. In the flight based model

an arc represents exactly one flight while in the duty-period based model (see

Section 2.1.5) an arc can comprise multiple flights that result in a feasible

work day. In the second model more feasibility constraints can be included

implicitly in the network but many more arcs may exist. We also use the term

duty-period based for aircraft networks if an arc models a sequence of flights

an aircraft can operate.
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2.1.2 Schedule Design

The most important decisions for an airline involve the schedule design. These

decisions determine the profit an airline will achieve and determine the input

data for all other airline scheduling problems. The airline must decide in what

markets to operate. This includes determining city (or airport, port, station)

pairs to connect with direct flights (or sectors, legs), how frequently the flights

are offered, at which times of the day, and on which days of the week. These

decisions are influenced by demand forecasts for itineraries, the resources the

airline has available, and competitor behaviour. The schedule also needs to

be operated by crew and aircraft and time slots must be available at airports.

Considering all these aspects and solving the schedule design problem to op-

timality therefore requires us to consider all schedule planning problems and

solve them in a single integrated model. This is currently intractable due to

the complexity of each individual problem and the large size of the problem.

Another difficulty when constructing a schedule from scratch is that the neces-

sary data is usually not fully available to an airline. Data required includes un-

constrained demand for all possible origin-destination itineraries for any point

in time, which is the largest possible demand without taking actual fares and

capacities of origin-destination pairs into account and cannot be observed. The

actual demand for flights with given capacity depends on the airline’s schedule

as well as schedules of other airlines while the airline’s schedule depends on

the demand. Fares must also be assigned to each itinerary and are difficult

to estimate. Again, fares are depending on the schedule and also on fares a

competitor may introduce in the same market.

From a practical point of view many changes to the airline’s airport infrastruc-

tures may be necessary if the network structure changes and for operational

reasons the airline prefers a high level of consistency from one schedule to the

next. This is also important for the loyalty of frequently travelling business

customers.

For these reasons, a schedule is usually not constructed from scratch but by

adapting a schedule from a previous period. This is usually a manual process

driven by marketing decisions. In the literature the schedule design problem

is not discussed as a separate optimisation problem. Since other resources,

e.g. available aircraft or crew, must be taken into account schedule design is
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discussed in combination with other airline scheduling problems such as fleet

assignment. We describe various approaches that integrate schedule design

with other airline scheduling problems in Section 2.2. An exemption is on-

demand airline scheduling where a new schedule is constructed each day for a

fleet of small jet planes for the following day based on demand. Usually, small

regional airports are connected by such a service, allowing the flexibility needed

for short-term realisation. Recent contributions can be found in Espinoza et al.

[2008a] and Espinoza et al. [2008b].

Instead of constructing a schedule from scratch, a common approach described

in the literature is to solve a schedule augmentation problem. Here, the original

schedule is given and only small deviations from that schedule are permitted.

These deviations may be the addition or deletion of sets of flights to or from the

schedule (Lohatepanont and Barnhart [2004]) or small deviations in departure

times of some flights in the schedule. The latter case is called time window

(or re-timing) problem. In this problem the flights of the schedule are fixed

but departure times vary in some interval around the originally scheduled

departure time (Klabjan et al. [2002]).

Recent contributions describing schedule design problems include Büdenbender

et al. [2000], Erdmann et al. [2001], Barnhart et al. [2002b], and Armacost et al.

[2002].

2.1.3 Fleet Assignment

The fleet of an airline consists of all aircraft the airline has available to operate

the schedule. These aircraft are usually varying in type, e.g. Boeing 737 or

Airbus 320. The type of aircraft determines its capacity and the cost for oper-

ating a particular flight. The fleet assignment problem decides which aircraft

type operates which flight. The objective is to maximise profit while allocating

exactly one aircraft type to each flight in the schedule and respect the number

of available aircraft of each type.

Profit is usually modelled as the difference between unconstrained revenue

and assignment costs. Unconstrained revenue of a schedule is the maximum

possible revenue regardless of the capacity of the aircraft type assigned to each

flight. Assignment costs include flight operating costs, passenger carrying costs
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and spill costs. Spill costs arise if demand for a flight exceeds the capacity of

the aircraft assigned to that flight and not all passengers can be carried. This

results in loss of revenue and passengers get spilled onto the flight network.

These passengers are either re-captured by the same airline or lost to some

other airline. Since empty seats would be “wasted” if the capacity exceeds the

demand for a flight, the airline must carefully assign aircraft types to flights

in order to maximise profit.

Abara [1989] and Hane et al. [1995] propose a basic fleet assignment model

(FAM) to solve the problem. FAM is a multi-commodity flow problem with

additional constraints. Abara [1989] use a connection network to model the

flight network while Hane et al. [1995] base the model on a time-line network.

As described in Section 2.1.1, the second network consists of fewer arcs than the

first one but it is impossible to distinguish between specific aircraft on ground

arcs. For this reason, maintenance requirements for an individual aircraft can-

not be guaranteed in time-line networks (see Section 2.1.4 for a description

of maintenance requirements). It is possible to add constraints such that the

aggregated maintenance requirements over all aircraft are satisfied by the so-

lution. In the connection network each individual aircraft can be modelled but

the formulation contains many more variables and may be intractable.

The flow conservation constraints in FAM ensure that each aircraft arriving at

an airport is departing from that airport at some later time. Additional con-

straints ensure that each flight is assigned to exactly one aircraft type and that

not more aircraft than available are used of each type. The objective function

is a sum of flight and aircraft type specific operating costs (independent of

the number of passengers carried), carrying costs depending on the number of

passengers on board, spill costs (the sum of all itineraries that could not be

carried due to capacity) and recaptured revenue (spilled passengers recaptured

on other itineraries).

Hane et al. [1995] consider the daily problem. The model is also called flight-

based fleet assignment model because spill and re-capture costs are calculated

for each flight independently. Since passengers may travel on multi-flight

itineraries this method cannot estimate spill accurately because passengers

that are spilled from one flight must also be spilled from the other flights

of the itinerary. Hane et al. [1995] solve the formulation with an LP based
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branch-and-bound method.

In all daily models the schedule and demand is assumed to be independent

of the weekday which is often not true in practice. Also, the fleet assignment

solution is required to be equal on every day which can lead to suboptimal

solutions. Solving problems with a large time horizon is currently intractable

for fleets of large size.

Barnhart et al. [2002a] describe an enhanced fleet assignment model. When

passengers are spilled from one flight in an itinerary the model takes into ac-

count effects on demand of other flights in the itinerary. A so called passenger

mix model is added to the basic FAM formulation. For a schedule with given

fleet assignment the passenger mix model determines the minimal cost (carry-

ing cost plus spill cost) flow of passengers through the network such that the

capacity of each flight is not exceeded and the unconstrained demand is not

violated on any itinerary. This enables more accurate estimation of spill and

re-capture costs which leads to improved solutions compared to basic FAM.

The enhanced problem is called itinerary-based fleet assignment model and is

solved with LP based column generation and branch-and-bound techniques.

The resulting problem formulation contains many variables and is hard to

solve. Barnhart et al. [2006] improve the formulation and its computational

tractability.

Kliewer [1996], Belobaba and Farkas [1999], and Yan and Tseng [2002] also

describe enhanced demand and revenue models in combination with fleet as-

signment. The concept of demand driven dispatch is introduced by Berge

and Hopperstad [1993]. Here, the original assignment of aircraft types can be

changed closer to the date of departure once demand forecasts have become

more accurate.

Barnhart et al. [1998a], Jarrah and Strehler [2000], and Ahuja et al. [2001]

consider the maximisation of through benefits. A through connection contains

two flights operated by the same aircraft. Passengers prefer direct flights from

the origin to the destination of their journey. If no direct flight exists, pas-

sengers prefer to stay on the same aircraft during their itinerary. This saves

transferring in a terminal and possibly missing a connection as well as possible

baggage loss. The additional amount passengers are willing to pay for this

convenience is called through benefit. If the same aircraft type is assigned to
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both flights of a connection this benefit is added to the objective value of the

fleet assignment problem.

Other contributions towards the fleet assignment problem include Gu et al.

[1994], Subramanian et al. [1994], Talluri [1996], and Rushmeier and Konto-

giorgis [1997]. For more detailed information on the fleet assignment problem

we refer to the recent overview of concepts, models, and algorithms by Sherali

et al. [2006].

2.1.4 Aircraft Routing

In the aircraft (or maintenance) routing problem one needs to find sequences

of flights, called routings (or rotations), operated consecutively by a single air-

craft. A rotation is an aircraft routing that starts and ends at the same airport.

Each aircraft regularly needs to undergo different maintenance checks. These

need to be performed at a maintenance station before some maximal time be-

tween maintenance checks elapses. The goal of the aircraft routing problem is

to assign each flight in the schedule to exactly one maintenance feasible aircraft

routing. Additionally, one cannot use more aircraft than available.

The required maintenance checks vary in duration and frequency in which they

must occur. Only a certain amount of time, flying time and number of take-

offs are allowed to elapse between two consecutive checks. Basic checks such as

visual inspections must occur frequently, for example every 36 hours, and last

from one to several hours. Other, less frequent but much more thorough checks

may disassemble and reassemble the aircraft. For this kind of check the aircraft

is taken out of service for several weeks. In aircraft routing formulations usually

only the short and medium length checks are considered that occur on a basis

of one to several days.

If a fleet assignment problem has been solved prior to the aircraft routing

problem, the latter can be solved for each aircraft type separately, as only the

flights in the schedule operated by this particular type must be included in

the problem formulation. This can reduce the problem size significantly and

enable fast solution times. Most of the subsequently described models can be

applied to a single or multiple fleet problem. When applied to multiple fleet

types, the aircraft routing problem also solves the fleet assignment problem
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since together with the aircraft also the aircraft type is assigned to each flight.

Some airlines impose the additional condition that each aircraft must fly all

flights in the schedule within some certain amount of time, the so called big-

cycle constraint. This condition is equivalent to finding an Euler-tour in the

underlying network (e.g. Clarke et al. [1997]).

The aircraft routing problem can be extended from only finding a feasible

solution to finding a solution that maximises through revenue. As in the fleet

assignment problem, through revenue is generated if two flights are operated

in sequence by the same aircraft (a through connection). Other costs that can

be considered are operating costs (e.g. fuel consumption), if these are variable

between aircraft of the same type, or costs to increase the robustness of the

solutions (see Section 2.3).

The aircraft routing problem is described in detail in Clarke et al. [1997] and

Gopalan and Talluri [1998a].

Daskin and Panayotopoulos [1989] consider the problem of assigning routes

to aircraft in a hub-and-spoke network. They do not consider maintenance

restrictions. The problem is formulated as a set packing formulation and solved

with Lagrangian relaxation. Two sets of constraints ensure that each route is

assigned to at most one aircraft and that each aircraft is assigned to at most

one route for each time period. The second set of constraints is relaxed in the

Lagrangian approach which is embedded into a heuristic in order to obtain a

feasible solution.

Feo and Bard [1989] combine the aircraft routing problem with the mainte-

nance base location problem. The minimal number of maintenance bases that

are needed to satisfy four day maintenance requirements for a given schedule

is determined. The problem is modelled as a minimal cost multi-commodity

network flow problem. The aircraft routings for each day are given as input

and must be connected to form maintenance feasible multiple day routings.

Because of the size of the problem a two phase heuristic method is used to

solve the problem. In the first phase, good routing solutions for independent

aircraft are obtained. In the second phase the best routing solutions from

phase one are used to determine minimal cost maintenance locations subject

to maintenance feasibility. The second phase is modelled as a set covering

problem and solved with a greedy heuristic.
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Clarke et al. [1997] consider through revenue and two different maintenance

checks, a routine check that lasts 4 hours and must be performed every three

days and an avionics check that includes the routine check and some addi-

tional checks. The avionics check must be performed every four days and

lasts five hours. Also, the big-cycle constraint is imposed, which is why the

problem is modelled as an Euler-tour problem with side constraints. The side

constraints ensure that no maintenance requirement is violated. The formu-

lation is equivalent to an asymmetric travelling salesman problem with side

constraints. Clarke et al. [1997] solve the problem with Lagrangian relax-

ation by relaxing sub-tour elimination constraints and maintenance feasibility

constraints and adding them dynamically once they are violated. To prove

optimality the procedure is embedded in a computationally expensive branch-

and-bound method.

Gopalan and Talluri [1998a] and Talluri [1998] consider daily maintenance

routing with a maintenance check required every three or four days and a

periodically required balance-check, resulting in an Euler-tour problem. All

maintenance occurs at night when all aircraft are grounded. As a first step

of the solution process the feasible connections of the network during the day

between non-overnight stations are limited by applying first-in-first-out or last-

in-first-out heuristics. The resulting network contains one arc for each sequence

of flights between overnight stations and nodes for overnight stations. In a

second step the maintenance routing problem is solved on this reduced network

where the three day maintenance requirement is taken into account. Fixing

connections can cause the existence of sub-tours called locked rotations. A

heuristic is used to swap flights to unlock those rotations and improve the

maintenance routing.

Sriram and Haghani [2003] consider a weekly maintenance routing problem

with two different maintenance checks. It is modelled as a multi-commodity

network flow problem where the routings during each day are required as input.

The model results in a complex linear formulation and is solved by heuristic

local search.

Grönkvist [2006] combines constraint programming and column generation

techniques to solve the tail assignment problem. In tail assignment individ-

ual aircraft are considered rather than generic maintenance feasible aircraft
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routings. Usually this problem is only solved a few days prior to the day of

operation. The flight network is modelled as a connection network where arcs

represent connections between flights. The tail assignment problem is mod-

elled as a set partitioning formulation (see Chapter 3) where the constraints

ensure that each flight is operated by exactly one aircraft. Constraint pro-

gramming is used in a preprocessing step in order to reduce the number of

arcs. Connection arcs violating the number of available aircraft and arcs that

cannot be part of any feasible solution are removed. Grönkvist [2006] achieves

a significant reduction in the number of arcs. After the preprocessing step,

column generation and a heuristic fixing process are used to obtain integer

solutions for the simplified problem.

Sarac et al. [2006] consider the aircraft routing problem on an operational

level rather than a planning level. The model is a set partitioning formula-

tion with additional constraints to ensure sufficient maintenance capacity at

the maintenance bases and is solved via branch-and-price. The set partition-

ing constraints ensure that each aircraft is assigned to exactly one routing

and each flight is operated by exactly one aircraft. The additional constraints

ensure the availability of maintenance slots and man power to carry out the

required maintenance checks. Due to these additional constraints the branch-

ing strategy described in Section 3.3.4 must be altered. Sarac et al. [2006]

use a combination of follow-on (see Section 4.4.3) and aircraft-flight pair (see

Section 3.3.4) branching to obtain integer solutions.

2.1.5 Crew Pairing

Similar to aircraft routings, crew pairings (or tours-of-duty) are sets of flights

which can be operated in sequence by the same crew. Additionally, the pair-

ings must start and end at the same crew base and satisfy all sorts of work

regulations. The goal of the crew pairing problem is to find a minimal cost

set of crew pairings such that each flight is contained in exactly one pairing.

Usually crew pairings are divided into duty periods. A duty period spans one

or multiple flights on a single workday. A crew pairing consists of one or

multiple duty periods which are separated by (over-night) rest periods. The

construction of legal pairings is subject to a large number of rules imposed by

civil aviation regulation authorities, employment contracts, and agreements.
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Rules include maximal allowed flying time per duty period, maximal allowed

flying time in a rolling time window, minimal rest requirements, or meal break

requirements. “The maximum allowed duty time is 8 hours for any rolling 24

hour time period” is an explicit example of such a rule.

After fuel costs, crew salary is the second largest operational cost an airline

has to account for. Therefore finding a minimal cost solution to the crew

pairing problem is very important for an airline. Cost is usually a nonlinear

function of flying time, total elapsed work time, and time away from the home

base. Besides paid hours (productive and unproductive), costs can be included

for ground transport, meals, accommodation, and the cost of passengering

crew within the pairing. A transfer of crew is referred to as passengering or

deadheading if crew are travelling as passengers. This is necessary if crew are

required to operate a flight that does not depart at their current location or

to return to their home base.

The problem can be solved separately for different crew types. Different

rules apply to technical crew (i.e. captains and first officers) and cabin crew

(i.e. flight attendants) and while technical crew usually stay together during a

duty period it is possible to split up cabin crew after a flight and rejoin them

with other crew members to operate subsequent flights. Also, most crew are

only qualified to operate a particular aircraft type (especially technical crew)

or a family of very similar aircraft types. In this case the crew pairing prob-

lem can be solved for each aircraft type or family separately. For cabin crew,

multiple crew members are required on each flight depending on the size of

aircraft and possibly the number of passengers transported. Although cabin

crew can be split up after operating on a large aircraft to operate on different

smaller aircraft subsequently, from an operational as well as a robustness (see

Section 2.3) point of view it is desirable to keep crew together as much as

possible which is referred to as unit crewing. It is also possible to replace a

crew member with a higher ranked crew member, e.g. replace a first officer

with a captain, which is called rank over-covering.

The literature focuses on the technical crew problem because potential cost

savings are much higher than for cabin crew. The flight attendant problem is

for example considered in Kwok and Wu [1996]. Wallace [2001] considers the

international (long-haul) flight attendant crew pairing problem for schedules
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from Air New Zealand. Flight attendants are usually qualified to operate on

several different aircraft types (of the same family) and the number of flight

attendants required depends on the aircraft type. Additional complexity arises

from the possibility to split up a crew and re-join the crew members with

members from another crew. Wallace [2001] uses a combination of column

and row generation to solve the problem.

An airline usually operates out of a number of different crew bases located in

cities within the airline’s flight network. At each crew base a certain number

of crew members is available in any time interval. The required crew members

of the crew pairing solution must meet the available resources for each crew

base.

The crew pairing problem is computationally challenging for two reasons. Each

pairing has a very complicated rule and cost structure. Additionally, a very

large number of feasible pairings exist. For large schedules the total enumera-

tion of all possible pairings is therefore often intractable. It is also important

to find good quality solutions to the problem since a few percent improvement

in cost can yield multi million dollar savings in crew salaries over the year.

For these reasons the crew pairing problem has received a lot of attention

in the literature. Here we review some of the most important formulations.

Desaulniers et al. [1998] and Barnhart et al. [2003b] describe the crew pair-

ing problem and related literature in detail and Gopalakrishnan and Johnson

[2005] give a comprehensive overview of state-of-the-art solution methods.

In order to simplify the problem, often a daily optimisation problem is solved

first (see Section 2.1.1). The daily solution is then repeated to cover the sched-

ule of the whole week. Since the schedule is usually different on the weekend

some pairings will be infeasible during the weekend and are called broken pair-

ings. These infeasibilities are resolved in the weekly exception problem.

A further classification of standard approaches can be made by the network

type that is used to model the flight network. We distinguish flight networks,

(e.g. Graves et al. [1993]) and duty period networks (e.g. Lavoie et al. [1988]

and Barnhart et al. [1994]). The flight network consists of nodes for each de-

parture and arrival as well as flight and connection arcs linking the nodes. The

duty period network contains arcs for duty periods and for overnight rests. The

nodes in this network represent the start or the end of duty periods, respec-



42 2.1 Airline Scheduling Problems

tively. The duty period network contains many arcs but all duty legality rules

can be embedded in the network. In both networks pairings are represented

as paths in the network. The choice of the network depends on the problem

structure. As a general rule of thumb, duty period networks are preferable

whenever the total number of feasible duty periods does not exceed the total

number of flights in the schedule by more than a small factor. Since in inter-

national schedules duty periods rarely consist of more than one flight, these

schedules are often modelled as duty period networks. For domestic schedules

on the other hand, where duty periods can contain several flights, the flight

network is generally used because the total number of feasible duties is very

large.

Until the 1990s, local improvement heuristics were mainly used to solve the

crew pairing problem due to the lack in computational power and because

heuristics are relatively easy to implement. In general, heuristics are not able

to provide a bound on the quality of the solution and are unable to guarantee

to find a feasible solution even if such a solution exists. Because of these draw-

backs, today the use of optimisation methods or optimisation based methods

is clearly favoured when solving the crew pairing problem.

The crew pairing problem is most commonly modelled as a set partitioning

problem where the constraints ensure that each flight is operated by exactly

one crew. Resource limitations at the crew bases can be included by adding

two-sided knapsack constraints (called base constraints) to the formulation.

The set partitioning model is usually solved with LP based branch-and-bound

methods and column generation techniques (see Chapter 1).

When deadheading is allowed, the formulation can be changed to a set covering

formulation requiring each flight to be covered at least once. This formulation

has the drawback that pairing rules that are different for passengering on a

flight instead of operating the flight cannot be modelled. In a set partitioning

formulation, deadheading can be considered in the column generation process

but without including the passengering flight in the column of the matrix.

Two pairings that are identical except for an additional deadhead flight that is

contained in only one of the pairings result in identical columns of the matrix.

The two columns can be distinguished by their costs.

When modelled as a set partitioning problem, two individual problems must
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be solved. The first is to construct feasible pairings and the second is to solve

the IP formulation.

Enumerating all pairings a priori is intractable for medium or large sized sched-

ules because of the large number of feasible pairings. One historic approach is

to only generate all pairings over a subset of flights (Anbil et al. [1991], Ger-

shkoff [1989]). This approach is called local search row approach because in

each iteration only a subset of all rows (constraints) of the formulation is con-

sidered. Starting from a feasible solution, a small number of pairings is chosen

by some heuristic rule. The set of flights contained in the chosen pairings form

a subproblem of the original set partitioning problem. All feasible pairings

are generated for the flights contained in the subproblem and the subproblem

is then solved to optimality. The columns in the original problem that are

covering the flights of the subproblem are replaced with the optimal pairings.

Then, another set of pairings is chosen and a new subproblem is solved. Many

iterations are needed to find good solutions and the procedure can get stuck

in local optima.

To avoid local optima and the enumeration of all pairings, the set partition-

ing formulation is nowadays usually solved by column generation methods.

Here, the IP forms the master problem and in a column generation subprob-

lem pairings with negative reduced costs are generated. The solution process

iteratively solves both problems until no pairings with negative reduced cost

can be found.

Pairing generation can be achieved in flight or duty period networks. Crew

pairings are represented as paths in both networks. Three common approaches

exist to find pairings with low reduced costs:

Using resource constrained shortest path, a label must be maintained for each

feasibility rule and each nonlinear cost component as in Desrochers and Soumis

[1989], Barnhart et al. [1994], Vance et al. [1997a] and Desaulniers et al. [1997a].

See also Section 3.3.3 for details.

Galia and Hjörring [2003] describe a k-shortest path approach. They first find

a shortest path. If the path is feasible and has negative reduced cost it is

returned, if it is infeasible the second shortest path is considered. This process

continues as long as the k-shortest path incurs negative reduced cost.
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A third approach is to perform depth first search enumeration of the pairings,

e.g. Anbil et al. [1998], Andersson et al. [1998], Klabjan et al. [2001a], and

Makri and Klabjan [2004]. Andersson et al. [1998] describe how pairing gener-

ation is performed at Carmen Systems. This approach separates the algorithm

from the rules that are applicable to the pairings. All rules can be defined by

the user in a specialised rule language. The pairings can then be checked by

the rule system for feasibility.

Klabjan et al. [2001a] describe the generation of random pairings which they

add to a set of pairings with low reduced costs. Connections for the pairings are

picked randomly in such a way that the probability of selecting a connection

increases with shorter sit-time.

Solving the IP formulation is decomposed into two phases. First the LP relax-

ation is solved with the simplex method. Pairings can either be generated a

priori or during the algorithm with column generation. In the second phase a

branching scheme is used to obtain an integer solution to the problem. Pair-

ings can be generated only during the LP phase and the IP is solved for this

fixed set of pairings. This procedure is called branch-and-bound. If instead,

pairings are also generated during the branching process in the IP phase, the

method is referred to as branch-and-price.

In the IP phase a constraint branching rule should be used instead of a vari-

able branching rule. The latter will either force the existence or non-existence

of a particular variable in the solution. This is difficult and time consum-

ing to enforce inside the column generation procedure. It also does not yield

a balanced branch-and-bound tree since forcing a variable into the solution

eliminates all other variables with entries in common rows, but forbidding a

variable does not restrict the solution space significantly. A constraint branch-

ing rule that is particularly well suited for crew-pairing-like set partitioning

problems is branching on follow-on sector pairs (Ryan and Foster [1981]). Two

flights must be covered by the same crew in sequence or are not permitted to be

covered in sequence. This rule is used for example in Anbil et al. [1992], Anbil

et al. [1998], Barnhart et al. [1994], Vance et al. [1997a], and Desaulniers et al.

[1997a]. The rule can easily be enforced in the column generation network by

removing arcs. Another constraint branching rule is called time-line branching

and is proposed by Klabjan et al. [2001a]. In one branch the connection time
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between a particular flight and the next flight must be below some threshold

and in the other branch it must be above the threshold. If all flights in the

schedule depart at different times, time-line branching is a valid branching

rule. This can be achieved by slightly perturbing the departure times.

Alternative approaches to solve the crew pairing problem include Vance et al.

[1997b], Desaulniers et al. [1997a], and Andersson et al. [1998]. Vance et al.

[1997b] decompose the problem into two stages, first partitioning the flights by

duty periods and then the duty periods by pairings. They use Dantzig-Wolfe

decomposition to solve the problem, the flight set partitioning constraints are

forming the subproblem. This formulation yields a tighter LP bound but is

harder to solve than the standard set partitioning formulation. Desaulniers

et al. [1997a] use a nonlinear multi-commodity network flow formulation and

solve it with a Dantzig-Wolfe decomposition method. The master problem

becomes a set partitioning problem for the flights and the subproblems are

resource constrained shortest path problems that determine feasible crew pair-

ings. Andersson et al. [1998] formulate the crew pairing problem as a set

covering problem. Wedelins algorithm (Wedelin [1995]) is used to solve the

resulting optimisation problem.

Further references addressing the crew pairing problem include Hoffman and

Padberg [1993], Barnhart et al. [1995], Chu et al. [1997], Barnhart and Shenoi

[1998], Butchers et al. [2001], and Klabjan et al. [2001b]. Hoffman and Padberg

[1993] use a branch-and-cut approach to solve the crew pairing problem. The

long-haul problem is addressed in Barnhart et al. [1995] and Barnhart and

Shenoi [1998], Barnhart et al. [1995] focusing on the assignment of passengering

flights. Butchers et al. [2001] give details on the crew pairing solution methods

at Air New Zealand. A weekly crew pairing problem is solved in Klabjan et al.

[2001b]. Next to cost, a second objective is introduced ensuring that the

pairings are as similar as possible on each day of the week.

2.1.6 Crew Rostering

The last of the planning problems is crew rostering. Monthly (or fortnightly)

work schedules (also called line-of-work) must be assigned to each individual

crew member. These are constructed by concatenating the pairings from the
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previous problem. Aside from pairings, the work schedules contain activities

such as reserve duties, days off, leave, and training periods. Again, many work

regulations such as rest time requirements and time limits on the working

periods have to be satisfied. The objective is again to minimise cost but more

importantly to maximise crew satisfaction by constructing high quality rosters

with respect to crew preferences.

In North-America rostering is usually a two phase process. In the first phase

generic rosters, called bidlines, are constructed (see e.g. Christou et al. [1999]).

Then, individual crew members bid on the published rosters and the assign-

ment is based on crew priority, often seniority. An advantage is, that the crew

member knows exactly what work to expect if the bid is successful. But con-

flicts can occur between the assigned rosters and pre-assigned tasks such as

vacation or training periods. In that case some rosters can only be partially

assigned and additional crew is required causing a more expensive solution.

This approach is called bidline approach.

Outside of North-America it is common that schedules are constructed and

assigned directly to each crew member individually, which is called personalised

rostering (see e.g. Kohl and Karisch [2004]). Here, the crew members express

preferences for certain attributes of the roster without knowing the exact line-

of-work they will be assigned to. In this approach either certain quality criteria

are maximised for each roster or individual preferences of each crew member are

considered. The preferences can either be assigned with respect to seniority,

the most senior crew members get as many of their preferences awarded as

possible, or on an equal share basis.

The solution method for both types of rostering problems is very similar. As

the crew pairing problem, the crew rostering problem is most commonly solved

as a set partitioning problem. Constraints ensure that each activity is assigned

to some crew member. Additional GUB-constraints (see Section 1.1) ensure

that each individual crew member is assigned to exactly one roster. Ryan

[1992] first models the rostering problem as a set partitioning problem. To

decrease the problem size, not all possible columns are considered but only a

precomputed subset. For a given duty a limited number of duties is chosen

that can be operated next by any crew member. Also, a number of activities

such as desired days off or training tasks are preassigned to crew members.
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These techniques ensure that no line-of-works are constructed with unwanted

characteristics such as too many days off between tasks or undesired sequences

of duties. The techniques also result in a matrix which is more balanced (see

Section 1.1) and, hence, the solution is expected to contain fewer fractions

simplifying the IP solution process.

There are two versions of the crew rostering problem, the short-haul and the

long-haul problem which are structurally very different. In the short-haul

problem each work period consists of many short duties which implies that the

columns in the set partitioning formulation contain many ones. The long-haul

problem contains much fewer longer duties per work period and hence the

columns are less dense. For this reason the short-haul problem is much harder

to solve than the long haul problem.

Gamache and Soumis [1998] describe an optimality approach for the roster-

ing problem. This approach is based on a set partitioning formulation and

solved by column generation and branch-and-price. They do not pre-assign

any activity. The subproblem is a resource constrained shortest path problem

modelled on a connection network with work-patterns (pairings) represented

as nodes and arcs connecting two nodes if it is possible to work both pairings

in sequence. They use constraint branching and a disjoint column generation

strategy to speed up the solution process. One subproblem is solved for each

employee and, in order to prevent identical columns in different subproblems,

all nodes contained in a negative reduced cost column, obtained from a previ-

ously solved subproblem, are removed.

Further contributions that address the crew rostering problem include Day

and Ryan [1997], Gamache et al. [1998], Gamache et al. [1999], Cappanera

and Gallo [2001], and Kohl and Karisch [2004].

Day and Ryan [1997] describe the rostering process for the short-haul problem

at Air New Zealand. Rostering is decomposed into two phases. In the first

phase off days are assigned and in the second phase pairings and other activ-

ities are assigned between the off days. Both problems are solved by column

generation.

Gamache et al. [1998] describe the preferential bidding system at Air Canada.

Because of a strict seniority principle one crew member can be considered at

a time and the assigned pairings are eliminated for subsequent problems when
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less senior crew members are considered. Column generation and branch-and-

bound is used to solve the IP formulations. Also, Gamache et al. [1999] report

results from Air France.

Cappanera and Gallo [2001] formulate the problem as a multi-commodity net-

work flow problem. They tighten the formulation with valid inequalities and

use an exact IP solution approach.

Kohl and Karisch [2004] give a comprehensive overview on the aircrew ros-

tering problem. They also give some details on the rostering procedure at

Carmen Systems. Depth first search is used to generate rosters on a graph

that contains nodes for activities and an arc between two nodes if it is possible

to assign both activities in sequence. During the construction of a roster a rule

evaluation algorithm is called that verifies if a partial roster can be extended

to a feasible roster. This procedure is chosen rather than standard column

generation methods to separate the rules from the optimisation algorithm.

Recently, Ernst et al. [2004a] provide an extensive annotated bibliography

of rostering problems. Other recent contributions that address the rostering

problem include Dawid et al. [2001], Sellmann et al. [2002], and Thiel [2005].

2.2 Integration of Airline Scheduling Problems

Traditionally, airline scheduling problems have been solved sequentially al-

though all five scheduling problems are interdependent. Among others the

following dependencies exist in the sequential solution approach. The schedule

design problem determines the set of flights that must be considered by all

subsequent problems. But cheaper fleet assignment or crew pairing solutions

might exist if the schedule could be altered slightly. In the aircraft routing

problem a subset of flights, determined in the fleet assignment problem, is

considered. Rules in the crew pairing problem depend on the underlying air-

craft routing solution. And finally, the crew pairings are combined to rosters

in the crew rostering problem.

Ideally, all airline scheduling problems should be considered in one integrated
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model. It is also desirable to include revenue management decisions and pas-

senger aspects into the formulation. Currently, however, such a total integra-

tion of all problems is computationally intractable. Each single problem is

already hard to solve and requires specialised solution techniques as described

in the previous sections. Combining two or more problems in one integrated

formulation usually increases the complexity of the problem and often makes

it impossible to solve the problem efficiently.

Considerable progress has been made in the past 10 years to integrate two or

more problems into tractable models. As first steps towards total integration,

two problems are considered either in an integrated model or by solving one

problem while considering important aspects of another one. In the following

we describe such integration approaches. We conclude with the description of

recent formulations that integrate aspects of three of the original problems.

Integration of Fleet Assignment and Schedule Design

Early approaches integrating FAM and schedule design work iteratively (see

Etschmaier and Mathaisel [1985] for a survey). Demands for a given schedule

are evaluated first. Then, FAM is solved and in the resulting schedule flights

for addition and deletion are identified. With this new set of flights the demand

for the schedule is evaluated again.

Rexing et al. [2000] integrate the basic FAM problem and the time window

problem with the goal of increasing revenue. Their model uses the time-line

network. They discretise the time windows and add copies of flight arcs for

each possible departure time. Additional constraints ensure that exactly one

copy of each flight is operated. Preprocessing of the network is necessary before

the problem can be solved for realistic sized problems. To avoid solving the

large LP formulation, they introduce an iterative approach. First, all multiple

copies of flight arcs are replaced by a single flight arc with reduced duration.

This flight arc departs at the end of the departure time window and arrives

at the beginning of the arrival time window. This network contains as many

arcs as the basic FAM formulation. If the solution is feasible for the original

problem the algorithm terminates with an optimal solution. Otherwise flight

pairs are identified for which the minimal connection time is violated. For these

flight pairs the real duration flight arcs (one copy for each departure time) are
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re-introduced in the model and the problem is re-solved. Many iterations may

be necessary if time windows are large.

Another integrated model for schedule design and fleet assignment is presented

by Lohatepanont and Barnhart [2004]. They use the origin-destination fleet

assignment model. They distinguish between a mandatory set of flights that

must be assigned to aircraft types and optional flights that can or can not be

included in the solution in order to maximise profit. They use column and

row generation and branch-and-bound to solve the model. As an additional

difficulty that needs to be taken into account, removing or adding flights to

the schedule can change the demand on other flights.

Other recent approaches that integrate FAM and schedule design include Yan

and Tseng [2002], Ahuja et al. [2004], and Bélanger et al. [2006].

Integration of Fleet Assignment and Aircraft Routing

A weekly aircraft routing problem is modelled as a set partitioning problem

using a string formulation by Barnhart et al. [1998a]. A string is a maintenance

feasible sequence of flights that starts and ends at a maintenance base. The

set of flights is partitioned by maintenance feasible strings and the aircraft can

be of different fleet types. The big-cycle constraint can be modelled similar

to sub-tour elimination constraints in the travelling salesman problem. The

authors solve the model by branch-and-price. The subproblem is a resource

constrained shortest path problem on a connection network with labels for

each maintenance type and for each nonlinear cost component.

Integration of Fleet Assignment and Crew Pairing

Barnhart et al. [1998c] partially integrate fleet assignment and crew pairing in

a multi-commodity flow formulation. They enhance the basic FAM model by

adding an approximation of the crew pairing problem based on a duty period

formulation. Not all constraints of the original crew pairing model are consid-

ered and costs are underestimated. After this enhanced FAM model is solved

crew pairing problems are solved for each fleet type. They report considerable

savings in cost caused by making (slightly more expensive) decisions in the

fleet assignment problem that enable much cheaper crew pairing solutions.
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Integration of Aircraft Routing and Crew Pairing

The pairings generated in the crew pairing problem depend on the aircraft

routings as follows. A pair of flights form a connection if both can be operated

in sequence by the same crew or aircraft. The turn-time (for aircraft) or

sit-time (for crew) is the time between the arrival of the inbound flight and

the departure of the outbound flight of a connection. All turn/sit-times must

exceed a lower bound for the routing or pairing to be feasible. This lower

bound is called minimal turn-time for aircraft and minimal sit-time for crew

(see Section 2.1.1). The minimal sit-time can exceed the minimal turn-time but

when crew stay on the same aircraft, the minimal turn-time applies to both,

aircraft and crew. The feasible solution space of the crew pairing problem is

therefore limited by the previously solved aircraft routing problem leading to

a suboptimal solution from a more comprehensive point of view.

A model to integrate aircraft routing and crew pairing is proposed by Cordeau

et al. [2001] and also by Mercier et al. [2005]. They use Benders decomposition

(Benders [1962]) and branch-and-price to solve the model. Cordeau et al. [2001]

model the aircraft routing problem as the master problem while Mercier et al.

[2005] employ the crew pairing problem as the master problem. Since most of

the cost is originating from crew, in the second approach the aircraft routing

problem only transfers feasibility information back to the master problem,

while in the first approach also optimality information must be transferred

to the master problem. For this reason the latter approach can solve larger

problems in less computation time. Both approaches add inequalities with

highly fractional coefficients to the set partitioning polytopes of the problems

which causes slow convergence towards an optimal solution.

Cohn and Barnhart [2003] also integrate aircraft routing and crew pairing

problems. They extend the crew pairing problem by using the aircraft routing

problem as a second column generator next to the crew pairing generator. For

each solution of the aircraft routing problem, one variable is added to the crew

pairing problem and a convexity constraint ensures the selection of exactly one

of the aircraft routing solutions in the final solution of the problem. LP based

branch-and-price is used in this computationally expensive solution method.

Mercier et al. [2005] report that their Benders decomposition approach yields

better solutions in less computation time than the extended crew pairing model
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of Cohn and Barnhart [2003].

Integration of Fleet Assignment, Aircraft Routing, and Crew Pairing

Clarke et al. [1996] include maintenance and crew considerations into FAM.

Overall maintenance requirement constraints for all aircraft of the same fleet

are added to the basic FAM. Base constraints are added to fulfil crew flying

time requirements. They use the dual steepest edge simplex to solve the LP

relaxation and a fixing procedure and branch-and-bound algorithm to obtain

integer solutions. In the fixing step, variables with a fractional value close to

1 are set to 1, before continuing with the branch-and-bound process. This

approach does not guarantee the feasibility or optimality of the subsequently

solved aircraft routing or crew pairing problem.

Rushmeier and Kontogiorgis [1997] also include aggregated aircraft mainte-

nance and crew considerations into the basic FAM model. First the LP relax-

ation of the multi-commodity flow formulation is solved. Integer solutions are

obtained with a fixing heuristic and a branch-and-bound procedure.

Recently, Papadakos [2007] fully integrate the fleet assignment, aircraft rout-

ing, and crew pairing problems as an extension of the model of Mercier et al.

[2005]. They use simplified crew pairing costs and rules. They use Benders

decomposition to solve the problem by solving one crew pairing subproblem

for each fleet. They use Dantzig deepest-cut pricing as well as a dominance

relaxed constrained shortest path algorithm (see Section 4.4.2) to solve the

subproblems. The deepest cut heuristic is also used in the fleet assignment

master problem. To obtain integer solutions the authors first branch on the

fleet variables. Once all flights are separated by fleet type, they solve a main-

tenance routing problem for each fleet and branch on follow-on flight pairs.

A heuristic depth-first branching routine is used. The solution method is en-

hanced by generating Pareto optimal cuts. They show cost savings compared

to FAM with maintenance routing (Barnhart et al. [1998a]) and the integrated

model of Mercier et al. [2005].

Sandhu and Klabjan [2007] partially integrate fleet assignment, aircraft rout-

ing, and crew pairing with a similar approach as Klabjan et al. [2002] and

solve the model with both Lagrangian relaxation and Benders decomposition.
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While fleet assignment and crew pairing are considered in their original for-

mulations, only plane-count constraints are added to model the maintenance

routing requirements. Plane-count constraints ensure that only the number

of available aircraft is used at any time. This works well for hub-and-spoke

networks but the results are not as good for point-to-point networks that do

not contain as many feasible connections as hub-and-spoke networks.

Integration of Schedule Design, Fleet Assignment, and Aircraft Rout-

ing

Desaulniers et al. [1997b] integrate the basic FAM problem, the aircraft routing

problem, and the time window problem to increase revenue. They formulate

a set partitioning and a multi-commodity network flow model and solve the

models with column generation and branch-and-bound. The second model is

also decomposed with Dantzig-Wolfe decomposition with flight covering and

aircraft flow conservation constraints forming the master problem. This model

is an extension of the model of Abara [1989] with added time window con-

straints and constraints that ensure the feasibility of used connections.

Erdmann et al. [2001] solve the schedule design problem for a charter airline

and explicitly model aircraft routes for each aircraft in the fleet. They solve

the mixed integer path based formulation with branch-and-cut-and-price where

aircraft routing and passenger itinerary subproblems must be solved.

Ioachim et al. [1999] integrate time window, fleet assignment, and aircraft

routing problems in a multi-commodity flow formulation. Aircraft of different

types must be assigned to flights in a schedule of one week and the departure

times of the flights vary in some window. Moreover, flights are labelled with an

identifier and flights on different days with the same identifier must depart at

the same time. Hence, departure time synchronisation constraints are needed.

The model is solved with a Dantzig-Wolfe column generation approach em-

bedded in a branch-and-bound framework to obtain integer solutions. Results

on a weekly schedule are given.

Integration of Schedule Design, Aircraft Routing, and Crew Pairing

Klabjan et al. [2002] partially integrate aircraft routing, crew pairing, and
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schedule design. They reverse the order of the crew pairing and aircraft routing

problems. Plane-count constraints are added to the crew pairing problem to

ensure the existence of a feasible solution for the aircraft routing problem.

Their results are based on a hub-and-spoke network. To include schedule

design in the model the departure time of each flight varies in some time

window. This is done by relaxing feasibility parameters in the crew pairing

problem and hence generating a larger set of pairings. Each feasible pairing

has a departure time attached to each flight contained in the pairing. Klabjan

et al. [2002] solve the crew pairing problem via an LP based branch-and-bound

algorithm.

Cordeau et al. [2001] also reverse the sequential approach and try to solve the

crew pairing problem first, followed by the aircraft routing problem (Klabjan

et al. [2002]). They apply this approach to a point-to-point network but were

not successful in obtaining feasible solutions for the aircraft routing problem.

Mercier and Soumis [2007] extend their model (Mercier et al. [2005]) and in-

tegrate aircraft routing and crew pairing with time windows for the departure

times. Flights may depart five minutes earlier or later than originally sched-

uled. Binary variables are used to indicate which departure time is assigned

to a flight. Constraints, counting the binary departure time variables for the

crew and aircraft solutions, ensure that the same departure times are used in

the solutions of both problems. Again, the authors use Benders decomposition

to solve the problem.

Integrated Vehicle Scheduling Models

Besides the literature specialised on airline scheduling problems, a large num-

ber of publications in the area of vehicle routing (Cordeau et al. [2007]) exist,

dealing with very similar problems. Haase et al. [2001], Freling et al. [2003] and

Huisman et al. [2005] propose models to integrate vehicle and crew scheduling.

Borndörfer et al. [2002] and Borndörfer et al. [2004] describe a proximal bundle

method for the integrated multi-depot vehicle and duty scheduling problem in

public transit.
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2.3 Robustness

The common goal of most problem formulations in the previous section is to

find a cost minimising or profit maximising solution from a planning perspec-

tive. Deterministic flying and turn around times are assumed in all previous

models. Solutions for airline scheduling problems are usually the least expen-

sive if crew or aircraft spend only a minimal amount of time on the ground

between arrival and departure of flights and hence the total working or operat-

ing hours are minimised. Once disruptions occur in operations, due to delayed

passengers, bad weather, or mechanical failures for example, these solutions

may appear brittle in that short delays can cause very severe disruptions.

Because insufficient buffers are available between flights to compensate for de-

lays, a single initial delay can quickly propagate throughout a large part of the

schedule affecting many flights. This sort of disruption may incur large recov-

ery costs caused by additional crew requirements, compensation for passengers

with delayed or cancelled flights, and damaged reputation of the airline. In an

attempt to find robust solutions, the objective that needs to be minimised is

the sum of planned costs and recovery costs (referred to as operational costs)

rather than just planned costs as in the previous sections. In a robust solution

disruptions in some part of the schedule have a minimal effect on other parts

of the schedule.

It is easy to measure the performance of the schedule - once it has been op-

erated - in total minutes of delay that occurred during the operation. It is

difficult, however, to predict the total minutes of delay or to attach costs to

them. It is, for example, difficult to estimate how many minutes of delay will

result in a customer not booking with the airline again and the associated

loss of revenue. The total minutes of delay occurring during operations are a

sum of initial delays caused by unforeseen events and consequential delays that

are caused by flights being delayed or cancelled because of the initial delay.

The decisions made when planning the schedule cannot affect the first type

of delay but influence the second type of delay. It is difficult to estimate the

consequential delays that will occur during operations because they largely

depend on the strategy an airline uses to recover from disruptions, which is

a mostly manual process for many airlines. The decisions made during this

manual process include delaying or cancelling flights and re-routing aircraft,



56 2.3 Robustness

crew, and passengers. This recovery process needs to be taken into account

when the minutes of delay are forecast for a planned schedule.

A common measure for robustness among airlines is on time performance

(OTP), i.e. the percentage of all flights in the schedule that depart on time.

A flight is usually referred to as on time if it departs within 10 minutes of the

scheduled departure time.

Because recovery costs are difficult to measure from a planning perspective,

recent attempts in the literature add various robustness measures to different

airline scheduling problem formulations to estimate recovery costs. Consid-

ering a robustness measure as an optimisation goal leads to potentially more

robust solutions, i.e. solutions that are less vulnerable to disruptions, and hence

result in low recovery costs and high OTP. In the following we summarise var-

ious robustness measures that have been introduced for the schedule design,

fleet assignment, aircraft routing, and crew pairing problems.

Robustness and Flight Re-timing

Recently, the topic of flight re-timing in combination with robustness has be-

come increasingly popular in the literature. Recent contributions include Lan

et al. [2006], Wu [2006], Burke et al. [2007], Fuhr [2007], and AhmedBeygi

et al. [2008].

The approach of Lan et al. [2006] is twofold. In a first approach they find

aircraft routings that minimise the propagation of delay by using historic dis-

tributions of delay. In a second approach Lan et al. [2006] re-time the flights of

the schedule in order to minimise the number of missed passenger connections.

Instead of a simulation Fuhr [2007] propose an analytic approach to evaluate

performance. They solve an approximation of the analytical model.

AhmedBeygi et al. [2008] redistribute slack in the planned schedule in order

to minimise the effects of disruptions while leaving the aircraft routing and

crew pairing solutions fixed. This approach is very similar to our indepen-

dently developed re-timing approach described in Section 6.3.2. They use a

probability of delay as a measure of robustness. In a first step only delays that

follow immediately the initial disruption are considered while subsequently all
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down-stream effects are considered. They use a different model to solve the

problem which is larger than ours but possesses some nice integer properties.

Wu [2006] and Burke et al. [2007] consider flight re-timing to enable robust

aircraft routings and are described below.

Robustness and Fleet Assignment

For FAM, uncertainty of departure times is taken into account by Rosenberger

et al. [2004], Smith and Johnson [2006], Kang [2003], and Bian et al. [2003].

Rosenberger et al. [2004] use hub connectivity and the number of short cycles

as the measures of robustness for the solution. Hub connectivity is the number

of legs in the routings that start at one hub, end at another hub, and only visit

spokes in between. If hub connectivity is low delays at one hub are less likely

to affect operations at other hubs. They also observe that airlines usually do

not cancel single flights but cancel a cycle of flights that starts and ends at the

same airport. They find FAM solutions with low hub connectivity that also

contain many short cycles.

A similar idea is presented in Smith and Johnson [2006]. The authors solve

the fleet assignment problem and limit the number of different fleet types that

can serve each airport.

Kang [2003] decompose the schedule into different sub-schedules of relatively

independent flights called layers. The idea is that a delay in one layer does

not affect flights in other layers.

Bian et al. [2003] find that the arrival and departure delay depends on the

number of aircraft on the ground at KLM’s major hub.

Listes and Dekker [2002] and Pilla [2006] consider robust fleet assignment

solutions with respect to uncertainty of demand.

In a stochastic model Listes and Dekker [2002] take demand fluctuations into

account. They maximise the expected profit of the fleet assignment given

probabilities for the realisation of given demand scenarios. They solve the

problem with a scenario aggregation approach.

Pilla [2006] propose a two-stage stochastic model. Only fleet types that can be
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operated by the same crew (fleet family) are assigned to each leg in the first

stage (about 90 days prior to departure). In the second stage (2 weeks prior to

departure) originally assigned fleet types of the same family can be swapped

once most of the demand is realised. This procedure is called demand driven

dispatch (see Berge and Hopperstad [1993]).

Robustness and Aircraft Routing

For aircraft routing problems the robustness measures focus on availability of

aircraft in case previously operated flights are disrupted (Ageeva [2000], Wu

[2006], and Burke et al. [2007]).

The measure of robustness in Ageeva [2000] is the number of times when two

different aircraft routings meet. Aircraft routings meet when the aircraft of

both routings are at the same airport at the same time. This permits the two

aircraft to be swapped: if one aircraft is delayed the other aircraft can operate

the more profitable route.

Wu [2006] consider a fixed aircraft routing solution and re-time flights within

the routings to enlarge buffer times for flights that are likely to be delayed.

Burke et al. [2007] consider multiple robustness objectives of the aircraft rout-

ing problem. They maximise the number of possible aircraft swaps and min-

imise the probability of a flight to be delayed by varying departure times.

They use a so called multi-meme memetic algorithm to solve this biobjective

problem.

Robustness and Crew Pairing

For the crew pairing problem three common robustness approaches exist: min-

imise operational cost instead of planned cost (Schaefer et al. [2005]), minimise

the number of crew changing aircraft if ground time is small (Ehrgott and

Ryan [2002], Mercier et al. [2005], and Yen and Birge [2006]) and maximise

the swapping opportunities for two crew similarly to aircraft swapping oppor-

tunities (Shebalov and Klabjan [2006]). It is particularly important to find

robust crew solutions since a major part of variable operational cost is crew

salary and airlines cannot afford many standby crews to cover flights in case
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of disruptions.

Schaefer et al. [2005] use expected operational cost for crew pairings instead of

planned cost. Interactive effects between pairings are ignored. This assumes

that a delay can only cause further delays within the same pairing. Also,

a basic push-back strategy for recovery is used. In this strategy the flights

are delayed until crew and aircraft are available. The authors use SimAir to

estimate the costs and to evaluate the quality of their solutions. SimAir is

a Monte Carlo simulation of airline operations that permits the evaluation of

schedules and recovery policies in operations, see Rosenberger et al. [2002].

If only minimal ground time is available when crew are changing aircraft after

a delayed flight, the subsequent flights operated by the crew and both aircraft

will be delayed. After a few aircraft changes many flights may be delayed by

the initially minor delay. Ehrgott and Ryan [2002] and Yen and Birge [2006]

therefore penalise crew changing aircraft in the objective function whenever

the ground time is small. Yen and Birge [2006] formulate the crew pairing

problem as a stochastic programming problem in a computationally expensive

approach. Ehrgott and Ryan [2002] propose a deterministic approach. Crew

pairings are penalised where crew are changing aircraft and the sit-time of the

crew is less than the minimal sit-time plus the expected delay of the incoming

flight. Crew who stay on the same aircraft are not penalised. Thus, crew

connections where disruptions are likely to propagate onto multiple flights are

penalised. Robustness is treated as a second objective function in a bicriteria

approach. A similar measure of robustness is used in the integrated aircraft

routing and crew pairing approach by Mercier et al. [2005].

Similarly to the aircraft swapping measure in Ageeva [2000], Shebalov and

Klabjan [2006] solve the crew pairing problem first and then maximise the num-

ber of move-up crews without increasing the planned cost too much. Move-up

crews are crews that can potentially be swapped in case one crew is delayed.

They compare their method with the method of solving the standard crew

pairing problem by simulating disruptions. They find that their improved so-

lutions incur significantly lower operational costs if the additional cost allowed

for move-up crews is not too high.

For many of these robustness measures, the performance of a more robust

schedule is evaluated by means of simulation and compared to traditional
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schedules. Often, significant reductions in recovery costs and an increase in

OTP are indicated by the simulation results. Since simulations usually use

simplified recovery methods the final test of the robustness of a solution, that

is assumed to be more robust, will always occur once it is operating in practice.

2.4 Overview of Solution Approaches for Air-

line Scheduling Problems

Table 2.1 summarises main characteristics of the most relevant solution ap-

proaches for airline scheduling problems. Next to the reference, the problems

considered in the approach are indicated by “S” for schedule design, “F” for

fleet assignment, “A” for aircraft routing, “P” for crew pairing, “C” for crew

rostering and “R” for robustness. The problem types are classified into short,

medium, and long-haul and by daily, weekly, cyclic, and dated. The network

types are classified into flight and duty period networks and connection and

time-line networks. Indications of model and solution approach used are given.

Unless specified otherwise, all approaches use the simplex method to solve the

underlying linear program. The final column describes the largest problem size

that was solved successfully by the approach. Similar tables can be found in

Mercier [2006].



2.4 Overview of Solution Approaches for Airline Scheduling Problems 61

R
ef

er
en

ce
S

F
A

P
C

R
P

ro
b
le

m
T

y
p
e

N
et

w
o
rk

T
y
p
e

M
o
d
el

S
o
lu

ti
o
n

A
p
p
ro

a
ch

P
ro

b
le

m
S
iz

e

L
a
v
o
ie

et
a
l.

[1
9
8
8
]

×
d
a
te

d
,

m
ed

iu
m

,l
o
n
g
-

h
a
u
l

d
u
ty

p
er

io
d

S
et

co
v
er

in
g

p
ro

b
-

le
m

C
o
lu

m
n

g
en

er
a
ti

o
n
,

h
eu

ri
st

ic
IP

3
2
9

fl
ig

h
ts

F
eo

a
n
d

B
a
rd

[1
9
8
9
]

×
d
a
te

d
w

ee
k

M
C

F
E

u
le

r
to

u
r,

h
eu

ri
st

ic
1
5
4

a
ir

cr
a
ft

,
7
6

p
o
rt

s

D
a
sk

in
a
n
d

P
a
n
a
y
-

o
to

p
o
u
lo

s
[1

9
8
9
]

×
si

n
g
le

h
u
b

S
et

p
a
ck

in
g

L
a
g
ra

n
g
e,

h
eu

ri
st

ic

A
n
b
il

et
a
l.

[1
9
9
2
]

×
d
a
il
y

fl
ig

h
t

S
P

P
H

eu
ri

st
ic

co
lu

m
n

g
en

er
a
-

ti
o
n

a
n
d

b
ra

n
ch

in
g

8
0
0

fl
ig

h
ts

G
ra

v
es

et
a
l.

[1
9
9
3
]

×
sh

o
rt

-h
a
u
l,

d
a
il
y

fl
ig

h
t

S
P

P
H

eu
ri

st
ic

s,
cu

tt
in

g
p
la

n
es

,

el
a
st

ic
p
ro

g
ra

m
m

in
g
,

h
eu

ri
st

ic
co

lu
m

n
g
en

er
a
-

ti
o
n

1
7
0
0

fl
ig

h
ts

H
o
ff
m

a
n

a
n
d

P
a
d
b
er

g

[1
9
9
3
]

×
fl
ig

h
t

S
P

P
B

ra
n
ch

-a
n
d
-c

u
t

8
0
0

fl
ig

h
ts

,
3

b
a
se

s

B
a
rn

h
a
rt

et
a
l.

[1
9
9
4
]

×
lo

n
g
-h

a
u
l,

d
a
te

d
m

o
n
th

ti
m

e-
li
n
e,

co
n
n
ec

ti
o
n

S
et

co
v
er

in
g

p
ro

b
-

le
m

B
ra

n
ch

-a
n
d
-p

ri
ce

8
3
3

fl
ig

h
ts

,
4
1

p
o
rt

s,
2

cr
ew

b
a
se

s

H
a
n
e

et
a
l.

[1
9
9
5
]

×
sh

o
rt

-h
a
u
l,

d
a
il
y

ti
m

e-
li
n
e

F
A

M
M

C
F

S
im

p
le

x
,
h
eu

ri
st

ic
b
ra

n
ch

-

in
g

2
5
0
0

fl
ig

h
ts

,
1
5
0

p
o
rt

s,

1
1

a
ir

cr
a
ft

ty
p
es

C
la

rk
e

et
a
l.

[1
9
9
6
]

×
×

×
sh

o
rt

-h
a
u
l,

d
a
il
y

ti
m

e-
li
n
e

F
A

M
M

C
F

H
eu

ri
st

ic
b
ra

n
ch

in
g

2
5
7
2

fl
ig

h
ts

,
1
1

a
ir

-

cr
a
ft

ty
p
es

D
es

a
u
ln

ie
rs

et
a
l.

[1
9
9
7
b
]

×
×

×
m

ed
iu

m
-h

a
u
l,

d
a
il
y

co
n
n
ec

ti
o
n

S
P

P
,
M

C
F

C
o
lu

m
n

g
en

er
a
ti
o
n
,

D
a
n
tz

ig
-W

o
lf
e,

h
eu

ri
s-

ti
c

b
ra

n
ch

in
g

3
8
3

fl
ig

h
ts

,
3
3

p
o
rt

s,

9
1

a
ir

cr
a
ft

,
9

a
ir

cr
a
ft

ty
p
es

V
a
n
ce

et
a
l.

[1
9
9
7
b
]

×
d
a
il
y,

sh
o
rt

-

h
a
u
l

d
u
ty

p
er

io
d

S
P

P
,
d
ec

o
m

p
o
si

-

ti
o
n

o
f
fl
ig

h
ts

a
n
d

d
u
ty

p
er

io
d
s

D
a
n
tz

ig
-W

o
lf
e,

co
lu

m
n

g
en

er
a
ti

o
n

1
7
4

fl
ig

h
ts

R
u
sh

m
ei

er
a
n
d

K
o
n
to

-

g
io

rg
is

[1
9
9
7
]

×
×

×
d
a
il
y

co
n
n
ec

ti
o
n

M
C

F
H

eu
ri

st
ic

b
ra

n
ch

in
g

1
6
2
0

fl
ig

h
ts

,
8

a
ir

cr
a
ft

ty
p
es

,
1
0
0

p
o
rt

s,
4

h
u
b
s



62 2.4 Overview of Solution Approaches for Airline Scheduling Problems

R
ef

er
en

ce
S

F
A

P
C

R
P

ro
b
le

m
T

y
p
e

N
et

w
o
rk

T
y
p
e

M
o
d
el

S
o
lu

ti
o
n

A
p
p
ro

a
ch

P
ro

b
le

m
S
iz

e

D
es

a
u
ln

ie
rs

et
a
l.

[1
9
9
7
a
]

×
d
a
il
y,

m
ed

iu
m

-

h
a
u
l

d
u
ty

p
er

io
d

M
C

F
D

a
n
tz

ig
-W

o
lf
e,

co
lu

m
n

g
en

er
a
ti

o
n
,
h
eu

ri
st

ic

b
ra

n
ch

in
g

1
1
5
7

fl
ig

h
ts

,
6
3

p
o
rt

s,

2
cr

ew
b
a
se

s

C
la

rk
e

et
a
l.

[1
9
9
7
]

×
d
a
il
y

ti
m

e-
li
n
e,

a
g
g
re

g
a
ti
o
n

A
sy

m
m

et
ri

c
tr

a
v
-

el
in

g
sa

le
sm

a
n

L
a
g
ra

n
g
e

3
8
1
8

a
rc

s,
1
0
9
5

n
o
d
es

C
h
u

et
a
l.

[1
9
9
7
]

×
d
a
il
y,

sh
o
rt

-

h
a
u
l

fl
ig

h
t

S
P

P
C

o
lu

m
n

g
en

er
a
ti
o
n
,

h
eu

ri
st

ic
b
ra

n
ch

in
g

1
2
0
0

fl
ig

h
ts

B
a
rn

h
a
rt

a
n
d

S
h
en

o
i

[1
9
9
8
]

×
lo

n
g
-h

a
u
l

ti
m

e-
li
n
e,

d
u
ty

p
er

io
d

A
p
p
ro

x
im

a
te

M
C

F
C

o
lu

m
n

g
en

er
a
ti
o
n
,

h
eu

ri
st

ic
b
ra

n
ch

in
g

8
7
5

fl
ig

h
ts

,
2

cr
ew

b
a
se

s

B
a
rn

h
a
rt

et
a
l.

[1
9
9
8
c]

×
×

lo
n
g
-h

a
u
l

ti
m

e-
li
n
e,

p
o
in

t-
to

-p
o
in

t

M
C

F
F
A

M
,
a
p
-

p
ro

x
im

a
te

d
C

P

C
o
lu

m
n

g
en

er
a
ti

o
n

9
6
4

fl
ig

h
ts

,
2

a
ir

cr
a
ft

ty
p
es

G
o
p
a
la

n
a
n
d

T
a
ll
u
ri

[1
9
9
8
a
]

×
d
a
il
y,

cy
cl

ic
co

n
n
ec

ti
o
n

d
a
il
y

fl
ig

h
t

se
-

q
u
en

ce
s

E
u
le

r
to

u
r,

h
eu

ri
st

ic
1
2

a
ir

cr
a
ft

,
3
3

fl
ig

h
ts

A
b
a
ra

[1
9
8
9
]

×
×

sh
o
rt

-h
a
u
l

co
n
n
ec

ti
o
n

F
A

M
M

C
F

S
im

p
le

x
2
3
0
0

fl
ig

h
ts

,
1
5
0

p
o
rt

s,

5
0
0

a
ir

cr
a
ft

,
1
0

a
ir

-

cr
a
ft

ty
p
es

A
n
d
er

ss
o
n

et
a
l.

[1
9
9
8
]

×
-

co
n
n
ec

ti
o
n

S
P

P
W

ed
el

in
,
co

lu
m

n
g
en

er
a
-

ti
o
n
,
d
ep

th
fi
rs

t
p
a
ir

in
g

en
u
m

er
a
ti

o
n
,
ru

le
la

n
-

g
u
a
g
e

1
0
0
0
0

fl
ig

h
ts

G
a
m

a
ch

e
a
n
d

S
o
u
m

is

[1
9
9
8
]

×
tw

o
w

ee
k
s

p
a
ir

in
g

b
a
se

d
S
P

P
B

ra
n
ch

-a
n
d
-p

ri
ce

1
1
1

p
a
ir

in
g
s,

2
2

cr
ew

m
em

b
er

s

B
a
rn

h
a
rt

et
a
l.

[1
9
9
8
a
]

×
×

lo
n
g
-h

a
u
l,

w
ee

k
ly

ti
m

e-
li
n
e,

d
u
ty

p
er

io
d

st
ri

n
g

b
a
se

d
S
P

P
B

ra
n
ch

-a
n
d
-p

ri
ce

1
1
2
4

fl
ig

h
ts

,
8
9

a
ir

-

cr
a
ft

,
9

a
ir

cr
a
ft

ty
p
es

,

4
0

p
o
rt

s

Io
a
ch

im
et

a
l.

[1
9
9
9
]

×
×

×
w

ee
k
ly

,
lo

n
g
-

h
a
u
l

fl
ig

h
t,

co
n
n
ec

-

ti
o
n

M
C

F
,
sc

h
ed

u
le

sy
n
ch

ro
n
iz

a
ti

o
n

co
n
st

ra
in

ts

D
a
n
tz

ig
-W

o
lf
e,

co
lu

m
n

g
en

er
a
ti

o
n
,
B

n
B

1
0
6

fl
ig

h
ts

,
1

a
ir

cr
a
ft

ty
p
e

R
ex

in
g

et
a
l.

[2
0
0
0
]

×
×

d
a
il
y

ti
m

e-
li
n
e

M
C

F
B

ra
n
ch

-a
n
d
-b

o
u
n
d
,
it
er

a
-

ti
v
e

a
d
d
it
io

n
o
f
a
rc

s

2
0
3
7

fl
ig

h
ts

,
1
1

a
ir

-

cr
a
ft

ty
p
es



2.4 Overview of Solution Approaches for Airline Scheduling Problems 63

R
ef

er
en

ce
S

F
A

P
C

R
P

ro
b
le

m
T

y
p
e

N
et

w
o
rk

T
y
p
e

M
o
d
el

S
o
lu

ti
o
n

A
p
p
ro

a
ch

P
ro

b
le

m
S
iz

e

K
la

b
ja

n
et

a
l.

[2
0
0
1
a
]

×
d
a
il
y,

w
ee

k
ly

ti
m

e-
li
n
e,

d
u
ty

p
er

io
d

S
P

P
(R

a
n
d
o
m

)
co

lu
m

n
g
en

er
a
-

ti
o
n
,
h
eu

ri
st

ic
b
ra

n
ch

in
g

6
5
4

fl
ig

h
ts

C
o
rd

ea
u

et
a
l.

[2
0
0
1
]

×
×

d
a
te

d
,
sh

o
rt

-

h
a
u
l

co
n
n
ec

ti
o
n

in
te

g
ra

te
d

S
P

P
B

en
d
er

s,
co

lu
m

n
g
en

er
a
-

ti
o
n
,
h
eu

ri
st

ic
b
ra

n
ch

in
g

5
2
5

fl
ig

h
ts

B
a
rn

h
a
rt

et
a
l.

[2
0
0
2
a
]

×
d
a
il
y

ti
m

e-
li
n
e,

it
in

er
a
ry

b
a
se

d

M
C

F
C

o
lu

m
n

g
en

er
a
ti
o
n
,
ro

w

g
en

er
a
ti

o
n
,
h
eu

ri
st

ic

b
ra

n
ch

in
g

2
0
4
4

fl
ig

h
ts

,
9

a
ir

cr
a
ft

ty
p
es

C
o
h
n

a
n
d

B
a
rn

h
a
rt

[2
0
0
3
]

×
×

co
n
n
ec

ti
o
n

S
P

P
,
a
ir

cr
a
ft

ro
u
ti
n
g

so
lu

ti
o
n

v
a
ri

a
b
le

s

C
o
lu

m
n

g
en

er
a
ti

o
n
,
B

n
P
,

cu
t

g
en

er
a
ti

o
n

1
2
5

fl
ig

h
ts

E
h
rg

o
tt

a
n
d

R
y
a
n

[2
0
0
2
]

×
×

d
a
te

d
w

ee
k
,

sh
o
rt

h
a
u
l

fl
ig

h
t,

co
n
n
ec

-

ti
o
n

b
io

b
je

ct
iv

e
S
P

P
C

o
lu

m
n

g
en

er
a
ti
o
n
,

b
ra

n
ch

-a
n
d
-p

ri
ce

7
5
0

fl
ig

h
ts

K
la

b
ja

n
et

a
l.

[2
0
0
2
]

×
×

×
d
a
il
y,

sh
o
rt

-

h
a
u
l

cr
ew

S
P

P
w

it
h

p
la

n
e

co
u
n
t

co
n
-

st
ra

in
ts

C
o
lu

m
n

g
en

er
a
ti

o
n
,
re

-

la
x
ed

fe
a
si

b
il
it
y,

B
n
B

4
5
0

fl
ig

h
ts

,
5

cr
ew

b
a
se

s

S
ri

ra
m

a
n
d

H
a
g
h
a
n
i

[2
0
0
3
]

×
w

ee
k
ly

,
sh

o
rt

-

h
a
u
l

it
in

er
a
ry

b
a
se

d
M

C
F

L
o
ca

l
se

a
rc

h
5
8

fl
ig

h
ts

,
7
5

p
o
rt

s

R
o
se

n
b
er

g
er

et
a
l.

[2
0
0
4
]

×
×

×
d
a
il
y

ti
m

e-
li
n
e

M
C

F
2
5
5
8

fl
ig

h
ts

,
9

a
ir

cr
a
ft

ty
p
es

,
8

h
u
b
s

L
o
h
a
te

p
a
n
o
n
t

a
n
d

B
a
rn

h
a
rt

[2
0
0
4
]

×
×

d
a
il
y

ti
m

e-
li
n
e,

it
in

er
a
ry

b
a
se

d

M
C

F
,
o
p
ti

o
n
a
l

fl
ig

h
t

le
g
s

C
o
lu

m
n

g
en

er
a
ti

o
n
,
ro

w

g
en

er
a
ti

o
n
,
h
eu

ri
st

ic

b
ra

n
ch

in
g

8
4
8

fl
ig

h
ts

,
1
6
6

a
ir

-

cr
a
ft

,
4

a
ir

cr
a
ft

ty
p
es

S
ch

a
ef

er
et

a
l.

[2
0
0
5
]

×
×

d
a
il
y

S
P

P
,
ex

p
ec

te
d

co
st

(R
a
n
d
o
m

)
co

lu
m

n
g
en

er
a
-

ti
o
n
,
h
eu

ri
st

ic
b
ra

n
ch

in
g

3
4
2

fl
ig

h
ts

M
er

ci
er

et
a
l.

[2
0
0
5
]

×
×

×
d
a
il
y

fl
ig

h
t,

co
n
n
ec

-

ti
o
n

S
P

P
B

en
d
er

s,
co

lu
m

n
g
en

er
a
-

ti
o
n
,
h
eu

ri
st

ic
b
ra

n
ch

in
g
,

p
a
re

to
o
p
ti
m

a
l
cu

ts

7
0
7

fl
ig

h
ts

,
1
4
3

a
ir

-

cr
a
ft

G
rö
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Chapter 3

Aircraft Routing Problem

In this chapter we introduce a model for the aircraft routing problem and

propose two solution methods. The methods are particularly well suited to

solve the type of problem we are interested in by exploiting special character-

istics of the problem instances. We describe the characteristics and present

details of the solution procedures. We also demonstrate the performance of

the algorithms on various data sets.

3.1 Model

The aircraft routing problem is the problem of assigning aircraft to a given set

of flights in a schedule. We assign one (aircraft) routing (see Section 2.1.4) to

each aircraft such that each flight of the schedule is contained in exactly one

routing. Each routing is subject to maintenance requirements and other flying

restrictions, and the number of available aircraft is fixed. The requirements

and restrictions are described in Section 3.2. In the aircraft routing problem,

each particular aircraft must be assigned to one specific routing. This problem

is similar to the crew rostering problem where a line of work is assigned to each

particular crew member.

Aircraft routings can be represented as columns of a binary (m+a)×nR matrix

AR where m is the number of flights, a the number of available aircraft, and

nR the number of possible routings. The elements (aij)
R of the first m rows of
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matrix AR are defined as follows:

(aij)
R =

 1 if flight i is contained in routing j

0 otherwise,

with 1 ≤ i ≤ m, 1 ≤ j ≤ nR. Additionally, the element (am+i,j)
R is defined as:

(am+i,j)
R =

 1 if routing j is operated by aircraft i

0 otherwise,

with 1 ≤ i ≤ a, 1 ≤ j ≤ nR. The last a constraints are referred to as

generalised upper bound (GUB) constraints (or aircraft convexity constraints)

and ensure that each aircraft is assigned to exactly one routing. With this

matrix representation the aircraft routing problem can be formulated in the

following manner:

Minimise (cR)
T
xR

subject to ARxR = 1

xR ∈ {0, 1}nR
.

(3.1)

The element cR
j of cR ∈ R

nR
is the cost associated with routing j. We con-

sider a robustness measure as the only cost of the aircraft routings, which is

described in detail in Section 3.2. The decision variable xR
j ∈ {0, 1} takes

value 1 if routing j is in the solution and 0 otherwise. Since a variable xR
j is

associated with a particular column of AR and this column represents a par-

ticular aircraft routing we use the terms variable, column, and aircraft routing

interchangeably.

Formulation (3.1) is called a rostering model which is a special case of the set

partitioning model and NP-hard.

We solve the aircraft routing problem with column generation and branch-and-

price methods (introduced in Sections 1.3 and 1.4), as the number of possible

aircraft routings is very large. Firstly, the LP relaxation of problem 3.1 is

solved by alternately solving a restricted master problem and a column gener-

ation subproblem. The restricted master problem is solved with the simplex

method and the column generation subproblem with a resource constrained
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shortest path algorithm. Once the LP relaxation is solved, an optimal integer

solution is obtained with a branch-and-price algorithm.

We model the schedule as a directed flight network where flight arcs represent

flights and nodes represent departure or arrival of a flight. Note that for

the aircraft routing problem only flight nodes are necessary. However, we

use the same network for the crew pairing problem where flight arcs become

necessary to model passengering flights and in-flight meals. Besides flight arcs,

connection arcs link the arrival of one flight with the departure of another flight

if the two flights can be operated consecutively by the same aircraft. In a flight

network, each aircraft routing corresponds to a path. The column generation

problem is solved by a resource constrained shortest path problem. Costs and

rules are incorporated into the network design or as resource constraints in

the shortest path algorithm. Paths with negative reduced cost that represent

feasible aircraft routings are returned as columns of AR to the restricted master

problem. We refer to Section 3.3.3 for more details. Note that we can construct

a flight network and calculate shortest paths for each aircraft separately. This

strategy allows us to include aircraft specific restrictions into the formulation

and therefore the model effectively integrates fleet assignment problem and

aircraft routing problem.

3.2 Rules

An airline specifies a number of rules the aircraft routing solution must satisfy.

In the following we list all rules that are applicable to the problem instances

of Air New Zealand and explain how they are implemented in the simplex

algorithm and the resource constrained shortest path algorithm:

• AircraftCount

The schedule must be operated by a fixed number of aircraft. For each

aircraft a convexity constraint is included in the set partitioning for-

mulation to ensure that each aircraft is assigned to exactly one aircraft

routing. The problem can be modified to use at most the number of

available aircraft by allowing aircraft to be idle (adding aircraft routings

containing no flights) or equivalently by replacing the equality signs of

the convexity constraints by less than or equal signs.
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• Maintenance

All airports are classified into maintenance and non-maintenance ports.

All maintenance of the aircraft is performed at maintenance ports during

the night when no flights are operated. Each aircraft is maintained each

night if it is located at a maintenance port, otherwise it must be main-

tained at a maintenance port the following night. This requirement is

included as a resource constraint in the shortest path calculation of the

column generator. If an aircraft visits a non-maintenance port overnight

during the construction of a path, we make sure that this aircraft will

visit a maintenance port the following night. We must also make sure

that the aircraft is maintained late in the morning on the day before the

aircraft stays at a non-maintenance port. This is necessary so that the

legal limit of 36 hours between two consecutive maintenance checks is

not exceeded.

If we solve the aircraft routing problem for a single day, the network can

be altered for each aircraft to include the rule. If an aircraft starts at

a non-maintenance port, only arrivals at maintenance ports are feasible

end nodes for the aircraft routing on that day.

There are no capacity constraints at the maintenance ports, i.e. all air-

craft that overnight at a maintenance port can be serviced during the

night. Since all aircraft at maintenance ports must be maintained that

night, maintenance capacity limitations must be considered during sched-

ule construction. The fixed schedule together with the positions of the

aircraft at the start of the planning horizon determine the number of

aircraft at each port for each night.

If the number of aircraft is not pre-determined by the schedule, e.g. if

fleet assignment is considered together with the aircraft routing problem,

maintenance capacity constraints can be added to the model as follows.

Constraints are appended to (3.1) for each combination of port and night

where maintenance capacity is limited. The right hand side of such a

constraint is set to the number of possible maintenance checks that can

be carried out at a particular port during a particular night. The entries

of the columns of matrix A for the appended constraints are all 0, except

for the combination of port and night where the aircraft routing that is

represented by the column terminates. In this case the entry is equal to
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1. Together with less-or-equal signs, the additional constraints ensure

that all maintenance capacity restrictions are obeyed.

• Through

A through connection consists of two flights that must be operated in

sequence by the same aircraft. Through connections are included in

the network if there is high passenger demand for direct connections

(i.e. without the necessity of changing aircraft) on certain itineraries. A

list of through connections is specified by Air New Zealand. The rule

is enforced by removing arcs from the column generation network that

connect the incoming flight with any other successor than the specified

flight for every through connection. Additionally, all connections that

connect other (than the specified) predecessor flights to the outgoing

flight of the connection can be removed.

• OverWater

Only a subset of all aircraft can perform international sectors, namely all

aircraft that have life-raft equipment on board. We refer to these aircraft

as overwater capable. All other aircraft cannot operate international

sectors. This is enforced by eliminating international sector arcs from

the column generation network for these aircraft.

• MinTurnTime

If an aircraft is to operate two flights consecutively, a minimal turn-time

is required between the arrival of the incoming flight and the departure

of the outgoing flight. Different minimal turn-times are defined for dif-

ferent airports and depend on the type of incoming and outgoing flight.

Compliance with the MinTurnTime rule is also incorporated implic-

itly via the network construction. Incoming flights are only connected

to outgoing flights if the connection time is sufficient, i.e. exceeds the

minimal turn-time.

• MinTurnSeq

If many connections with minimal turn-time are operated in sequence

by the same aircraft, it is more likely that the flights at the end of this

sequence become delayed during operations. Since no buffer time is avail-

able for the aircraft to compensate for delays that occurred early in this

sequence, the last flights in such a sequence will very often depart late.
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We avoid the occurrence of too many consecutive connections with min-

imal turn-times (denoted by MinTurnSeq) within an aircraft routing

so that the solution is more likely to be operationally robust (see Section

4.3 for a detailed explanation). Such a sequence ends if a connection is

operated whose ground time exceeds the minimal turn-time. Since all

departure and arrival times occur at 5 minute intervals, the ground time

must exceed the minimal turn-time by at least 5 minutes. In the follow-

ing we refer to connections with minimal turn-time as minimal turns.

Costs are accumulated for an aircraft routing during the shortest path

calculation depending on the number of consecutive minimal turns it

contains (i.e. the more consecutive minimal turns, the larger the cost).

These costs are minimised in the objective function of the set partitioning

formulation. We choose costs of 10, 100, and 1000 for minimal turn se-

quences with 2, 3, and 4 consecutive turns, respectively. Sequences with

more than 4 minimal turns are prohibited. This strategy is motivated by

the observation that a sequence of four consecutive minimal turns leads

to much higher delays than the total delay caused by two sequences with

two consecutive minimal turns each. Other functions of the number of

consecutive minimal turns can easily be considered within the shortest

path calculation. The total cost of minimal turns of an aircraft routing

is the sum of the costs of all minimal turn sequences contained in the

aircraft routing.

• ThroughValues

A through-value is revenue attached to a pair of flights if they are op-

erated in sequence by the same aircraft. Through-values can be added

as (negative) costs to the aircraft routings such that as many through

connections as possible are operated by the aircraft. This can be incorpo-

rated into the column generation method by adding costs to connection

arcs. Since for our problem instances a set of through connections that

must be operated by the same aircraft is given by Air New Zealand, we

do not consider through-values.

• OperationalCosts

Operational costs that vary between aircraft can be considered by at-

taching different costs to the flight arcs for different aircraft. This makes

it possible for example to model different fuel efficiencies among the air-
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craft and assign more flying to more efficient aircraft. In the scenarios

we consider, the differences between aircraft are very small. Hence, we

assume that all aircraft are identical and do not impose any operational

costs.

• MaintenanceLimit

The legal requirement for the maximal time between maintenance checks

is 36 hours. Instead of maintaining the aircraft each night as in current

practice, each aircraft can be maintained less frequently but at least ev-

ery 36 hours. However, maintaining aircraft during the day, when only

limited time is available between flights, is for operational and robustness

reasons not desirable. It can be achieved in the column generation pro-

cess using a resource constraint and only generating paths that contain

as few maintenance checks as possible but two consecutive checks within

36 hours. We do not exploit the legal maintenance limit in our algorithm

and schedule maintenance checks as described in rule Maintenance.

• FlyingTime

Another requirement could be for all aircraft routings in the solution to

contain approximately the same number of flights and the same amount

of flying time. Since the total number of flights and the total flying time

in the schedule is known, targets for these values can be added to the

shortest path calculation. The target values can be set to be the average

number of flights and average flying time per aircraft, respectively. Using

resource constraints in the shortest path algorithm, aircraft routings are

generated with flying time and number of flights as close to the target

values as possible. We do not include this rule in our implementation of

the aircraft routing algorithm.

• BigCycle

The BigCycle condition, all aircraft must operate all flights in the

schedule within a certain period, is not applicable to schedules that

change frequently. The BigCycle condition is equivalent to finding

a single aircraft routing that contains each flight exactly once and wraps

around from the end to the beginning of the planning horizon as many

times as aircraft are available. If all aircraft must operate all flights in a

schedule of one week then the solution needs to span as many weeks as



72 3.3 Solution Methods

aircraft are available. This is not practical if the schedule already changes

in the subsequent week. The nature of the schedule of the problem in-

stances we consider enables the equal utilisation of all aircraft. Many

aircraft meet at only a few airports for overnight stays. Aircraft routings

of subsequent days can easily be swapped between different aircraft if

necessary. For these reasons we do not include the BigCycle condition

in our approach.

Additional rules are needed if the aircraft routing problem is solved as part of

an integrated aircraft routing and crew pairing model. We describe these rules

in Chapters 5 and 6. Note that in this section, the only costs that are associated

with an aircraft routing are MinTurnSeq costs. Finding an optimal solution

to the aircraft routing problem is therefore equivalent to finding an aircraft

routing solution with a minimal number of consecutive minimal turn sequences.

This approach is generalised in subsequent chapters.

3.3 Solution Methods

As outlined in Section 3.1, the aircraft routing problem is modelled as a set

partitioning model of the rostering type and is solved with column generation

and branch-and-price.

Columns of the set partitioning model correspond to paths in a flight network.

In this section, we first describe a preprocessing step to reduce the size of the

flight network. Secondly, the column generation and branching procedures are

described in more detail. We finally present two methods to efficiently solve

the problem.

3.3.1 Preprocessing

When performing column generation, we must repeatedly calculate resource

constrained shortest paths in the flight network. The performance of the al-

gorithm depends critically on the number of nodes and arcs contained in the

network. Therefore a preprocessing step is performed on the flight network

in order to reduce the number of arcs. Potentially, each incoming flight can
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be connected to all flights that leave the arrival airport at any time after the

incoming flight has arrived and the minimal turn-time has elapsed, causing a

large number of possible connection arcs in the network. We now show that we

can reduce the number of arcs in the network significantly and still guarantee

to find an optimal solution. Similar techniques are for example discussed in

Grönkvist [2006].

We solve the aircraft routing problem for a given schedule with dated time

horizon. We assume all arrival and departure times occur at 5 minute inter-

vals starting from midnight. The number of available aircraft and locations of

all aircraft at the beginning of the time horizon are given. Since the number of

aircraft at each airport at the beginning of the time horizon is known we can

determine the number of aircraft at each airport for every minute of the plan-

ning horizon. For a given airport p this is simply calculated by the following

summation:

nt
p = n0

p + at
p − dt

p,

where nt
p is the number of aircraft at airport p at time t (in minutes), n0

p

the number of aircraft at airport p at time 0 (the beginning of the planning

horizon), at
p the number of arrivals at airport p before time t, and dt

p the

number of departures at airport p before t.

When we calculate nt
p for all times t and all airports p we can identify all times

t̄ when no aircraft is at airport p̄, i.e. when nt̄
p̄ = 0. With this information we

can greatly reduce the number of connection arcs in the network by removing

connection arcs that cannot be part of any feasible solution since a flight

arriving at p̄ before t̄ and a flight departing from p̄ after t̄ cannot be operated

consecutively by any aircraft. Hence, we remove this connection arc from the

network. The dramatic effect of this preprocessing step can be observed in

Table 3.1 where the number of feasible connections for aircraft before and

after preprocessing are compared.

If we assume that the minimal turn-time requirement is the only rule applicable

and that the minimal turn-time is equal for all connections, we can construct

a feasible solution of the aircraft routing problem with a greedy heuristic. We

order all arrivals and departures at an airport by increasing time and consider

one arriving flight at a time. For each arrival, the flight that is operated

subsequently by the same aircraft is chosen to be the first feasible departing
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flight with respect to the minimal turn-time. This assignment will lead to a

feasible aircraft routing solution if such a solution exists. Since most rules

are relaxed it might be an infeasible solution to the original problem. It can

still be useful to determine a lower bound on the number of aircraft that are

required to operate the schedule. We can also use these aircraft routings as

initial columns of the AR matrix of the restricted master problem rather than

just using an artificial identity matrix (see Section 1.3).

3.3.2 LP-Relaxation

The linear program of the restricted master problem is solved with ILOG

CPLEX 10.1 (ILOG [2006b]) using the simplex algorithm with default param-

eter settings. The set partitioning model is formulated with the ILOG Concert

Technology 2.3 (ILOG [2006a]) interface and CPLEX is called to solve the

model. As a result, CPLEX returns the solution status (optimal or infeasible)

together with the solution vector x and the dual solution vector π. Note that

because of the set partitioning formulation all variables are bounded between

0 and 1 and hence the solution can never be unbounded.

The column generation subproblem is called with π as input. If columns with

negative reduced cost are returned these are appended to the set partitioning

model and the model is re-solved.

To obtain integer solutions, we use our own branch-and-price method and only

utilise CPLEX to solve the linear programs. As an advantage over the CPLEX

MIP (Mixed Integer Programming) solver, we can generate columns while

traversing the branch-and-bound tree and obtain optimal integer solutions.

Branching decisions are enforced in the set partitioning model by setting the

upper bound of a variable to 0 if the column that is associated with the variable

is infeasible with respect to the branching decisions.

3.3.3 Column Generation

Once the simplex algorithm finds an optimal solution x to the restricted master

problem, a column generation subproblem is called. The column generator

finds a column s with negative reduced cost rs = (cs − πT as) or guarantees
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that no such column exists.

The column generation problem is solved for each aircraft separately and mod-

elled on the flight network as follows. Only flight and connection arcs that do

not violate the MinTurnTime rule, the Through rule, and the OverWa-

ter rule are included in the network. During the branch-and-bound process

we also do not include arcs that violate the branching decisions (see Section

3.3.4). The negative of each dual variable πi is stored as the cost of the arc

associated with flight i. Each overnight connection arc is assigned an attribute

if maintenance can be performed during the stopover. The departure of every

flight the aircraft can operate as a first flight of a routing is marked as a source

node. The sink nodes are all arrivals of flights that the aircraft can operate

as last flights of a routing. A minimal reduced cost column corresponds to a

minimal cost path from a source node to a sink node. Hence, the column gen-

eration problem can be solved as a resource constrained shortest path problem

which is implemented as a label setting shortest path algorithm (Algorithm 1).

Since we solve the problem for a dated time horizon, the flight network does

not contain any cycles and we can assume all nodes are ordered by increasing

time. For the same reason it is sufficient to employ a label setting algorithm

rather than a more sophisticated label correcting algorithm.

To find a shortest path satisfying resource constraints we need to loop once over

all nodes, for an overview see Algorithm 1. A set of labels is attached to each

node, each label representing a path from a source node to the current node.

Each label contains the cost and resource usage of its path. Two resources are

attached to each label, one contains the elapsed time since the last maintenance

check, and the other one contains the number of minimal turns in the current

MinTurnSeq sequence.

For each label l and outgoing arc a of a node i we extend the label to a successor

label l′ at the successor node i′ (see Step 8 of Algorithm 1): arc a is appended

to the path represented by label l to form a new path represented by l′ and

the cost of a is added to the cost of l to form the cost of l′. We also update the

information of the MinTurnSeq rule. If the arc represents a minimal turn

we increase the resource that counts the length of the current MinTurnSeq

sequence by 1. If the connection arc exceeds the minimal turn-time the cost

for the previous MinTurnSeq sequence is added to the cost of the label and
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Algorithm 1 Label Setting - Resource Constrained Shortest Path

1: INPUT: A flight network for each aircraft that respects rules and branching
decisions for this aircraft.

2: for each aircraft do
3: Initialise label at source nodes with default values for cost and all re-

sources
4: for each node i {ordered by departure time} do
5: for each label l at node i do
6: for each outgoing arc a connecting i to i′ do
7: Extend label l along arc a to l′.
8: if l′ dominates label(s) l̄ of i′ then
9: Discard label(s) l̄.

10: Save l′ as label of i′.
11: else if Some label l̄ of i′ dominates l′ then
12: Discard label l′.
13: end if
14: end for
15: end for
16: end for
17: Store all labels at end nodes as aircraft routings
18: end for
19: OUTPUT: A set of negative reduced cost aircraft routings for each aircraft

(possibly empty).

the resource is set to 0. When we save a label as a path at a sink node, the cost

for the current MinTurnSeq sequence is added to the cost of the path. The

reduced cost of the path is equal to the sum over all costs of all arcs contained

in the path. If maintenance is performed during the ground time represented

by the connection arc, the Maintenance resource is updated accordingly.

The new label l′ is deleted if any rule is violated, otherwise it is checked for

dominance. A label l dominates another label l̄ at the same node if all resources

(including cost) used at label l are better than or equal to the corresponding

resources used at label l̄. In the case of the aircraft routing problem l dominates

l̄, if l incurs less (or equal) cost than l̄, the last maintenance check in l was

at the same time or later than the last one in l̄, and the current number of

consecutive minimal turns of l is at most that of l̄. Only non-dominated labels

are kept at each node since such labels always extend to a path as least as

good as a dominated label. When extending a label it may be dominated by a

label already present at the next node, in which case the new label is deleted.
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Otherwise it is added to the list of labels at the new node. If it dominates one

or more other labels at that node these labels are removed. Once the labelling

algorithm is finished, all labels at sink nodes represent feasible aircraft routings

with minimal reduced cost.

Additional resources can be added to the labels to model operational costs,

to enforce a similar amount of flying time between aircraft routings, or to

maximise the time between consecutive maintenance checks.

The column generation subproblem returns the aircraft routing with the most

negative reduced cost for each aircraft to the restricted master problem or

guarantees that no such aircraft routing exists. Hence, for each aircraft at most

one aircraft routing is added to the set partitioning model and the restricted

master problem is solved again. If no negative reduced cost aircraft routing

exists for any aircraft, optimality (or infeasibility) of the LP relaxation of the

original problem is guaranteed and the algorithm stops.

3.3.4 Branch-and-Price

After the LP relaxation is solved we start the branch-and-price process if any

value xf of the solution x is fractional. We branch on aircraft-flight pairs

which is a special form of constraint branching proposed by Ryan and Foster

[1981]. In one branch a particular aircraft is forced to operate a particular

flight and in the other branch the aircraft is not allowed to operate that flight.

Such a branching rule is much better suited for this kind of set partitioning

problem than variable branching. In variable branching the aircraft routing

associated with a fractional variable is forced to be in the solution or not. This

leads to a very imbalanced branch-and-bound tree since forcing an aircraft

routing to be in the solution restricts the feasible solution space significantly;

banning an aircraft routing from the feasible solution space does not restrict the

feasible solution space significantly since a large number of very similar aircraft

routings may exist. An even more severe problem of variable branching is the

feasibility check of aircraft routings within the column generation subproblem.

If an aircraft routing is banned from the solution space it is difficult and

computationally expensive to prevent this aircraft routing being generated

again. Only after the whole shortest path is generated, can it be checked



78 3.3 Solution Methods

if this path is banned. Using constraint branching on the other hand, the

feasibility of paths can easily be incorporated into the network design (see

below).

To decide which aircraft-flight pair to branch on, for each flight and each

aircraft we sum up all fractional values of variables associated with aircraft

routings that cover this flight and are operated by the aircraft. We usually

branch on the aircraft-flight pair with the highest fraction less than 1. We

branch on the smallest fraction only if the highest fraction is significantly

smaller than 0.5. Since forcing a particular aircraft to operate a flight is

much more restrictive than forbidding it from operating a flight, we choose

the first option as much as possible, i.e. we execute depth-first-one-branching.

In other words, after one branch-and-bound node is solved, the next node to

be considered is the most restrictive child node of the current node. Only if

this decision leads to infeasibility, other nodes are considered.

At each node of the branch-and-bound tree the LP relaxation of problem (3.1)

is solved again. The branching decisions we make at a node are incorporated

into the simplex algorithm by setting the upper bound of variables to 0 if the

associated aircraft routings are banned by the branching decisions.

Since we solve the column generation problem for each aircraft separately, the

branching decisions are included in the flight network (for a particular aircraft)

as follows. If the aircraft is forced to operate a particular flight, all connection

and flight arcs that overlap in time with the forced flight arc are removed from

the network for that aircraft. In fact, other arcs may be removed whenever

the usage of the arc contradicts the usage of the forced arc, i.e. an arc can

be removed if there exists no path between the arc and the forced arc. For

all other aircraft the flight arc is removed from the network. If the aircraft is

forced not to include a particular flight, this flight is removed from the network

for this aircraft. In this case the networks for other aircraft remain unchanged.

To justify the strategy of branching on aircraft-flight pairs we refer to the

theory of perfect matrices which was first proposed by Padberg [1974]. For a

perfect matrix A and the problem min{cT x : Ax = 1, x ≥ 0, c ∈ Zn} there

always exists an optimal integral solution vector x. We first introduce some

notation.

A graph G is called complete if every node is adjacent to every other node.
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The chromatic number of G is the minimal number of different colours needed

to colour all nodes of G such that no adjacent nodes have the same colour.

A subgraph G′ of G is a subset of the nodes of G together with all arcs of

G linking nodes in the subset. A clique is a complete subgraph. A graph G

is called perfect if for every subgraph G′ of G the chromatic number of G′ is

equal to the maximal cardinality of a clique in G′.

Let GI denote the intersection graph associated with a matrix A. The nodes

of GI correspond to columns of A and two nodes are linked by an edge if the

two corresponding columns have a common 1 in any row. The rows of A must

contain all cliques that are contained graph GI . The matrix A is called perfect

if the associated intersection graph is perfect.

We investigate the submatrices of AR that consist of the columns of AR as-

sociated with a single aircraft. The intersection graphs of these submatrices

are complete since all columns have a common 1 in the aircraft convexity con-

straint. Every subgraph of a complete graph is also complete. Also, in any

complete graph the chromatic number equals the cardinality of a maximal

clique which is equal to the number of nodes in the graph. This results in the

following theorem.

Theorem 3.3.1 Each submatrix of AR, that consists of the columns associated

with a single aircraft, is perfect.

Hence, not many fractions occur in the solutions of the LP relaxation of the

aircraft routing problem. In particular, if there is only one aircraft then the

solution of the LP relaxation is guaranteed to be integer. Intuitively, in this

simple case the convexity constraint dominates all other constraints and hence

all other constraints can be removed from the formulation. This will lead to

only a single positive variable in the basis which is integer because of the right

hand side of the convexity constraint being equal to one. The observation of

Theorem 3.3.1 has a large impact on a wide range of problems that can be for-

mulated as set partitioning problems with a convexity constraint, enabling this

class of problems to be solved easily. The theorem has an even bigger impact

on the class of rostering problems, e.g. staff rostering. This type of problem not

only occurs in airline scheduling but in a wide range of industries, e.g. health
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care or public transport. This type of problem can be very large, depending

on the number of staff and the duration of the time period that needs to be

solved. Methods resulting from the theorem enable to solve such large scale

problems to integer optimality. The fractions in the LP solution are caused by

different aircraft/staff members competing for the same flight/piece of work.

Such a fraction can be easily removed by applying a constraint branching strat-

egy (see above), effectively assigning the flight/piece of work to one of the two

aircraft/staff members. We refer to Ernst et al. [2004b] for more details on

rostering problems and Gamache and Soumis [1998], Butchers et al. [2001],

and Kohl and Karisch [2004] for successful solution methods.

3.3.5 Alternative Set Partitioning Formulation

In the case when all aircraft are identical, solving Formulation (3.1) can be

difficult due to symmetry in the model. For all aircraft that start at the same

port, identical columns are generated by the column generation subproblem.

This can result in many equivalent columns being present in the matrix that

only differ in the aircraft convexity constraint coefficient. Many equivalent

columns cause degeneracy of the model and can make it very difficult to solve.

To prevent the construction of equivalent columns, the aircraft convexity con-

straints can be substituted by one equality constraint for each starting port.

The right hand side of this constraint is set to the number of aircraft starting

at the port. The rest of the model remains unchanged. The column generation

subproblem is only called for each starting port instead of for each aircraft.

This alternative formulation removes the symmetry from the original model.

The approach has the slight drawback that we cannot longer use aircraft-flight

pair constraint branching as described in the previous section but only follow-

on constraint branching to obtain integer solutions. We do not use this model

for our computational experiments since the number of identical aircraft start-

ing from the same port is usually very small, i.e. less than four.

3.3.6 Decomposition Methods

All scenarios that are addressed in this thesis are dated schedules. We solve

a dated problem because the flights contained in the schedule vary signifi-
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cantly from day to day. A daily solution (Section 2.1.1) can therefore not be

duplicated to cover a multiple day period. The size of the set partitioning for-

mulation is large if a multiple day period such as a week is considered. Also,

because many aircraft are staying overnight in only a few different airports

and all these aircraft can operate many of the flights departing on the next

morning, the number of possible overnight arcs is large. For these reasons,

long computation times are needed to solve the LP as well as the resource con-

strained shortest path subproblems. In this section we describe two methods

that decompose the fully dated formulation in order to guarantee fast solution

times.

Sequential Method

The large number of overnight arcs causes a large number of feasible aircraft

routings. These routings consist of relatively few different routings for each

day that are combined with different overnight arcs. Many solutions with

identical objective values exist, only differing by how the daily routings are

joined together. Since it is sufficient to find one of these solutions we investigate

how to decompose the problem by solving smaller time periods at a time.

We first consider the aircraft routing problem without any cost and the only

rules that apply are the MinTurnTime rule and the Through rule which

can both be included in the network design. We assume all flights are operated

during the day and all aircraft are grounded overnight at some airport which

is the case for the problem instances we consider. When solving this version

of the aircraft routing problem for a dated period we observe that there is

no interaction of aircraft routings between different days and hence each day

of the period can be solved separately. An aircraft routing solution for the

whole period can be constructed by concatenating the aircraft routings that

span a day. This sequential solution method speeds up the the solution process

considerably.

When we include the OverWater rule, the strategy of solving one day at a

time can lead to infeasibility. This is the case for example, whenever aircraft

that cannot fly to international destinations, are staying overnight at an airport

from which only international flights depart on the next day.
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It is easy to see that there is no interdependence between different days if

the MinTurnTime, Through, Maintenance, and MinTurnSeq rules are

applied and if all aircraft are identical (no OverWater rule). The aircraft

maintenance requirements for an aircraft during a day depend only on the

type of airport where the aircraft stayed during the night before, i.e. if the

airport where the aircraft stayed overnight is a maintenance base or not. Also,

it can safely be assumed that overnight connections are always longer than the

minimal turn-time and hence no sequence of minimal turn-time connections

can span multiple days.

When all rules are considered, solving the sequential method with one day

at a time can lead to infeasible or suboptimal solutions with respect to the

MinTurnSeq rule. This is caused for example by overwater capable aircraft

that must do many consecutive minimal turns in the morning in order to reach

the origin of international sectors.

We therefore modify the sequential strategy by solving a subperiod of x days

with 1 < x < d and d the number of days in the whole period. We then shift

the subperiod by y days (y ≤ x and x + y ≤ d) and solve the next subperiod

from day y to day y + x. A similar technique is used successfully to solve the

crew rostering problem in Day and Ryan [1997]. Parameters x and y can be

chosen depending on the rules applicable from solving subperiods of one day

(x = 1) to solving the whole period at once (x = d). By solving overlapping

subperiods (y < x), we can guarantee that a feasible extension of the solution

of the previous subperiod exists. We choose the values x = 2 and y = 1 for the

best compromise between running time and solution quality. When using an

overlap of y = 0 days the OverWater rule causes infeasible solutions. Solving

subperiods of more then x = 2 days can cause very long running times.

Flow Formulation Method

In this section we present a flow formulation for the dated period problem.

This model guarantees global optimality of the solution but only needs to

generate aircraft routings for single days. This approach features very fast

solution times of the resource constrained shortest path calculations and leads

to an optimal result in contrast to the approach of the previous section.
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Again, we observe that the only interdependence between aircraft routings on

different days is caused by the OverWater rule. This effectively separates

the aircraft into two different fleets: one fleet can operate international sectors

while the other fleet cannot operate international sectors. We can partition the

schedule of the whole period by aircraft routings that only span a single day if

we make sure that the correct number of aircraft of the overwater capable fleet

is available on each day to operate the aircraft routings containing international

sectors. After the problem is solved, an aircraft routing that spans the whole

period is defined by the aircraft routings that span a day each and are operated

by the same aircraft. This results in the following model.

We decompose the set partitioning (SPP) model (3.1) for the whole period

into one SPP model for each day coupled by flow conservation constraints for

the aircraft that are overwater capable. Since there are only two types of

aircraft this condition preserves the flow of the other fleet as well. The flow

conservation constraints only link two set partitioning problems on consecutive

days. The constraints ensure that the number of aircraft that are permitted

to fly over water and that end their routing at a specific airport at a specific

day is equal to the number of overwater capable aircraft that leave from that

airport the next morning.

Formulation (3.2) describes the altered set partitioning model. Matrix AR is

split into matrices AR
d for each day d. Matrix AR

d contains aircraft convexity

constraints for each aircraft and flight covering constraints for the flights that

are departing on day d. Similarly, costs cR and decision variables xR are split

for each day. Flow conservation constraints are added to the model as follows.

We define binary mp × nR
d matrices PA

d and PD
d where mp is the number of

airports and nR
d the number of possible routings on day d. Elements (pij)

A
d of

matrix PA
d are defined as follows:

(pij)
A
d =


1 if routing j is assigned to an overwater aircraft and

routing j ends at port i on day d

0 otherwise,

with 1 ≤ i ≤ mp, 1 ≤ j ≤ nR
d . Similarly, elements (pij)

D
d of matrix PD

d are
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defined as:

(pij)
D
d =


1 if routing j is assigned to an overwater aircraft and

routing j starts at port i on day d

0 otherwise,

with 1 ≤ i ≤ mp, 1 ≤ j ≤ nR
d . With this matrix representation the flow

formulation of the aircraft routing problem can be represented as follows:

Minimise (cR
1 )

T
xR

1 + (cR
2 )

T
xR

2 + (cR
3 )

T
xR

3 . . .

subject to AR
1 xR

1 = 1

AR
2 xR

2 = 1

AR
3 xR

3 = 1

. . .
...

PA
1 xR

1 − PD
2 xR

2 = 0

PA
2 xR

2 − PD
3 xR

3 = 0
. . .

...

(3.2)

All decision variables xR
d ∈ {0, 1}nd are binary variables. The decision variable

xR
d j ∈ {0, 1} takes value 1 if routing j is in the solution on day d and 0

otherwise. The second set of constraints ensures that the number of overwater

capable aircraft that arrive on a day and stay overnight is equal to the number

of overwater capable aircraft departing in the next morning.

This enhanced SPP formulation contains flight covering constraints for the

whole period and is again solved with CPLEX, but aircraft routings that only

span a day are generated for each day independently. The negative of the dual

values of the associated flow conservation constraints must be added to the

reduced costs of the aircraft routings during the shortest path calculation.

Not many (number of airports times (number of days minus 1)) flow conserva-

tion constraints have to be added to the original set partitioning formulation

(3.1). We also expect most of these constraints to be easily satisfied during

the solution process. The great advantage of the formulation is the speed-up

in the column generation process since resource constrained shortest paths are

generated on single day networks only. We also expect that significantly fewer
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columns need to be generated during the solution process than in the original

problem.

During the LP solution phase, columns can be generated for each aircraft sep-

arately or once for overwater capable aircraft and once for all other aircraft.

In the first case the start nodes represent only flights departing from the air-

port where the aircraft is located. In the latter case the start nodes are all

possible first flights for all aircraft of the same type. In both cases we can

solve the resource constrained shortest path algorithm for each start port sep-

arately. Maintenance conditions of the airport where the aircraft routings end

can then be integrated into the network because the conditions only depend

on the starting port. Since the second option incurs fewer calculations of re-

source constrained shortest paths, we solve the column generation once for

each aircraft type during the LP solution phase. During the branching process

we enforce the branching decisions by the network design and hence solve the

resource constrained shortest path problem for each individual aircraft.

The model can easily be modified by decomposing the aircraft into more than

two types depending on properties of the aircraft. The model can then be

used to solve the integrated fleet assignment and aircraft routing problem. If

all aircraft have different feasibility parameters, one needs to add flow conser-

vation constraints for each aircraft. It remains to be checked how this affects

the solution times which depend on how many of these constraints are difficult

to enforce during the solution process. If the scheduling period is very long the

number of rows can become very large and the simplex algorithm cannot solve

the model efficiently any longer. In this case the matrix structure implies a

Dantzig-Wolfe decomposition approach as the most natural solution method.

The master problem only contains the flow conservation constraints and one

aircraft routing subproblem must be solved for each day of the period.

3.4 Computational Experiments

We perform computational experiments on point-to-point flight networks cor-

responding to domestic airline schedules of Air New Zealand. The schedules

mostly contain short-haul flights and a small number of medium-haul inter-

national flights. The schedules vary on a daily basis and we consider dated
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time periods of one day, three days, and one week. We consider four different

schedules: summer 2005 (s05), winter 2005 (w05), summer 2006 (s06), and

winter 2007 (w07). For the last schedule (w07) we additionally solve periods

of 10 and 14 days. The schedule in the second week differs from the schedule

in the first week for this scenario and the large schedules yield an indication of

the scalability of the approaches to solve larger instances. For each schedule

we compute solutions to the aircraft routing problem with three different ap-

proaches presented in the previous section: we investigate the performance of

the sequential approach with a subperiod length of one day (seq1), the sequen-

tial approach with a subperiod length of two days and an overlap of subperiods

of one day (seq2), and the performance of the flow method (flow).

The fleet consists of 14 aircraft for all scenarios, four of which can operate

international sectors. The flight networks contain up to 750 flights and 3000

connection arcs per week. More details on the characteristics are given in Table

3.1. The table shows the scenario names, the number of available aircraft and

the number of overwater capable ones. We also list the number of feasible

aircraft connections before and after preprocessing.

scenario aircraft flights aircraft connections aircraft connections
(overwater) before preprocessing after preprocessing

s05, 1 day 14 (4) 113 8678 170
s05, 3 days 14 (4) 330 17605 734
s05, 7 days 14 (4) 743 33191 2170

w05, 1 day 14 (4) 114 9312 188
w05, 3 days 14 (4) 336 18745 822
w05, 7 days 14 (4) 753 34391 2212

s06, 1 day 14 (4) 108 8930 210
s06, 3 days 14 (4) 324 17980 877
s06, 7 days 14 (4) 745 33789 2298

w07, 1 day 14 (4) 110 8993 177
w07, 3 days 14 (4) 330 18227 1057
w07, 7 days 14 (4) 751 34303 3091
w07, 10 days 14 (4) 1092 48570 4063
w07, 14 days 14 (4) 1510 64569 6467

Table 3.1. Characteristics of scenarios.
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Tables 3.2 - 3.5 list results for the different schedules and solution methods.

In the first two columns, scenarios (i.e. schedules and the number of days of

the scheduling periods) and solution methods are listed. In some instances

of seq1, the OverWater rule needs to be relaxed in order to find feasible

solutions. For these scenarios all aircraft may operate international sectors and

we denote the scenarios by “seq1r”. The numbers of rows and columns refer to

the number of rows in the constraint matrix and the total number of generated

columns. For sequential approaches these numbers are maximal values over

all subperiods. To obtain an estimate of the total number of columns that are

generated and the number of branch-and-bound nodes evaluated, the values

need to be multiplied by the number of subperiods that are solved in the

scenario.

In the column “minimal turns” the number of consecutive minimal turns is

listed for the whole solution period. The values (t2, t3, t4) represent the occur-

rences of minimal turn sequences of length 2, 3, and 4, respectively. Since the

penalty for 5 consecutive minimal turns is very large, such a sequence does

not occur in any of the solutions. The number of branch-and-bound nodes

to obtain an optimal integer solution is shown in column “BnB-nodes”. For

sequential approaches this is again a maximum over all subperiods. Finally,

computation times to solve the whole period of the scenarios are listed. The to-

tal running times (“tot”), the LP solution times (“lp”), the branch-and-bound

solution times (“ip”), and the total times used to generate columns (“colgen”)

are listed separately. The total running time includes setup and preprocessing

times besides LP and IP solution times. The LP and IP solution times include

the time used for column generation. All times are given in seconds. Note

that we generate columns during the branch-and-bound process. The LP/IP

gap is 0 for all scenarios shown, i.e. for all scenarios the objective values of the

optimal LP and integer solutions coincide. Note that the only costs considered

in the objective function are penalties for minimal turn sequences.

The results are similar for all schedules. For all scenarios of 7 day duration,

the number of minimal turn sequences of length two is between 67-80 and be-

tween 1-12 for sequences of length three. Hardly ever four consecutive minimal

turns need to be included in the solution. Also, run times, number of rows,

columns, and branch-and-bound nodes are similar for all scenarios considered.

We observe that the seq1 method is very fast but not always able to generate
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feasible solutions in which case we relax the OverWater rule. As expected

(see Section 3.3.4), many of the LP solutions are integer or almost integer

causing the number of branch-and-bound nodes to be small and IP solution

times very short.

The seq2 method takes significantly longer than seq1 and many more aircraft

routings are generated over two days than for a single day. The seq2 method

always finds a feasible solution, and in all but 2 instances (10 and 14 day

periods of schedule w07, Table 3.5) the solution is optimal with respect to the

number of minimal turn sequences. The number of branch-and-bound nodes

required is also significantly larger than for method seq1. From the increase in

run time between methods seq1 and seq2 we conclude that solving subperiods

of more days than two is impractical.

The flow method is faster than the seq2 method and generates fewer columns

than the seq2 method for a single subperiod. Even when we solve a two

week period with the flow method the number of aircraft routings generated

is smaller than the number of aircraft routings generated for a two day period

with seq2. The number of branch-and-bound nodes is larger than in the other

approaches since the row dimension of the matrix is much larger. Compared

with the total number of nodes required in the sequential approaches (num-

ber of subperiods × number of BnB-nodes) the number of nodes is still small.

Branching on multiple days simultaneously can be investigated to speed up the

solution process without deteriorating solution quality. Since the flow method

guarantees to find the optimal solution the superiority of this approach is ob-

vious. We utilise this method for all computational experiments in subsequent

chapters.
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minimal BnB- times
scenario method rows* cols* turns nodes* tot lp ip colgen
s05, 1 seq 1 127 637 (11,3,0) 6 0.09 0.03 0.04 0.02
s05, 3 seq 1 127 821 (33,5,0) 6 0.19 0.14 0.05 0.06
s05, 7 seq 1r 132 2970 (67,10,3) 20 1.12 0.51 0.58 0.36

s05, 3 seq 2 233 10046 (33,5,0) 19 4.70 2.06 2.60 1.58
s05, 7 seq 2 247 23095 (67,10,3) 39 30.36 8.34 21.84 7.23

s05, 1 flow 127 1014 (11,3,0) 7 0.27 0.13 0.14 0.11
s05, 3 flow 398 3980 (33,5,0) 5 1.56 1.07 0.47 0.39
s05, 7 flow 919 12834 (67,10,3) 59 24.77 4.79 19.96 8.21

* for sequential approaches the maximal number over all iterations is listed.

Table 3.2. Computational results for summer 2005.

minimal BnB- times
scenario method rows* cols* turns nodes* tot lp ip colgen
w05, 1 seq 1 128 1098 (12,2,0) 10 0.15 0.08 0.07 0.07
w05, 3 seq 1 129 2272 (35,5,0) 10 0.60 0.27 0.32 0.27
w05, 7 seq 1 133 3163 (71,12,1) 20 1.61 0.70 0.90 0.62

w05, 3 seq 2 236 25117 (35,5,0) 26 17.35 5.88 11.32 4.24
w05, 7 seq 2 249 25117 (71,12,1) 43 42.98 13.46 29.16 10.46

w05, 1 flow 128 1356 (12,2,0) 1 0.21 0.20 0.01 0.04
w05, 3 flow 404 5241 (35,5,0) 21 4.09 1.62 2.47 1.54
w05, 7 flow 929 14171 (71,12,1) 36 22.99 7.24 15.71 7.05

* for sequential approaches the maximal number over all iterations is listed.

Table 3.3. Computational results for winter 2005.
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minimal BnB- times
scenario method rows* cols* turns nodes* tot lp ip colgen
s06, 1 seq 1 122 1800 (13,0,0) 1 0.11 0.10 0.00 0.02
s06, 3 seq 1r 126 2430 (41,0,0) 13 0.59 0.38 0.21 0.24
s06, 7 seq 1r 134 2651 (80,1,0) 14 1.65 0.86 0.76 0.49

s06, 3 seq 2 230 33177 (41,0,0) 30 26.13 6.91 19.01 4.99
s06, 7 seq 2 247 34168 (80,1,0) 33 61.14 17.07 43.51 14.41

s06, 1 flow 122 2198 (13,0,0) 1 0.42 0.40 0.01 0.19
s06, 3 flow 392 8282 (41,0,0) 26 7.26 2.78 4.46 2.40
s06, 7 flow 921 18455 (80,1,0) 75 43.65 8.88 34.71 12.70

* for sequential approaches the maximal number over all iterations is listed.

Table 3.4. Computational results for summer 2006.

minimal BnB- times
scenario method ro.* cols* turns no.* tot lp ip colgen
w07, 1 seq 1 124 1296 (12,1,0) 6 0.13 0.08 0.02 0.06
w07, 3 seq 1 129 4304 (25,4,0) 11 0.93 0.54 0.37 0.30
w07, 7 seq 1r 135 6647 (60,6,0) 18 2.82 1.62 0.50 0.74
w07, 10 seq 1r 135 6647 (93,8,0) 18 4.77 2.56 2.16 1.53
w07, 14 seq 1r 135 6647 (127,9,0) 21 6.55 3.53 2.94 1.76

w07, 3 seq 2 234 53107 (25,4,0) 26 28.29 11.69 16.25 5.13
w07, 7 seq 2 252 69792 (60,6,0) 33 98.77 46.46 51.17 21.36
w07, 10 seq 2 252 69792 (92,9,0) 33 144.20 65.21 77.39 31.96
w07, 14 seq 2 252 75689 (126,10,0) 47 227.88 103.64 121.74 48.35

w07, 1 flow 124 1482 (12,1,0) 6 0.40 0.23 0.17 0.14
w07, 3 flow 398 8494 (25,4,0) 50 10.14 2.61 7.51 3.33
w07, 7 flow 927 22387 (60,6,0) 73 64.41 18.09 46.26 20.64
w07, 10 flow 1349 31688 (93,8,0) 82 127.51 32.22 95.18 31.75
w07, 14 flow 1875 48781 (127,9,0) 92 287.55 69.38 216.39 59.08

* for sequential approaches the maximal number over all iterations is listed.

Table 3.5. Computational results for winter 2007.



Chapter 4

Crew Pairing Problem

In this chapter we describe the crew pairing problem and our solution approach

in detail. We use a commercial solver for the crew pairing problem and hence

obey all rules and restrictions applicable to the problem instances we are in-

terested in. The generated solutions are therefore ready to be implemented in

practice. All scenarios assume an aircraft routing solution as input together

with the schedule data. Note that the model and all solution methods described

are featured in the commercial solver. We add the AircraftChangeCost

mechanism as described in Section 4.3. The cost constraint approach (Section

4.4.4) is introduced in Ehrgott and Ryan [2002].

4.1 Model

Given a flight schedule, the crew pairing problem is defined as the problem

of assigning generic crews to flights in the schedule such that each flight is

operated by exactly one crew. A sequence of flights which can be flown by a

crew on one work day is called a duty period. After each duty period a rest

period must be assigned to each crew member. An alternating sequence of

duty periods and rest periods is called a (crew) pairing or tour of duty. Any

crew pairing must start and end at the same crew base and is restricted by a

number of rules such as rest time regulations or flying time restrictions (see

Section 4.2). There are costs associated with each crew pairing. In the crew

pairing problem we seek a minimal cost set of crew pairings that partition the
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flights in the schedule, i.e. each flight is contained in exactly one pairing.

The crew pairings can be represented as columns of a binary m × nP matrix

AP where m is the number of flights in the schedule and nP is the number of

possible crew pairings. Entries (aij)
P of matrix AP are defined as follows:

(aij)
P =

 1 if flight i is contained in pairing j

0 otherwise,

with 1 ≤ i ≤ m, 1 ≤ j ≤ nP . With this matrix representation we formulate

the crew pairing problem as a standard set partitioning model :

Minimise (cP )
T
xP

subject to AP xP = 1

xP ∈ {0, 1}nP
.

(4.1)

The element cP
j of cP ∈ RnP

is the cost associated with pairing j. The decision

variable xP
j ∈ {0, 1} has value 1 if pairing j is contained in the solution and 0

otherwise. The cost of a pairing is composed of a combination of flight time

and duty time salaries, and meal, rest, and travel allowances (see Section 4.2).

Base-constraints are added to the standard model to consider base strengths

at the crew bases. The base strength restricts the number of crew pairings

that can start at a crew base in a particular week or on a particular day.

To include these restrictions, constraints are appended to formulation (4.1)

for each combination of day (or week) and crew base where base restrictions

apply. The columns of matrix AP are appended by the following entries:

(ai+m,j)
P =


kj if pairing j starts at the crew base and in the time interval

specified by base-constraint i

0 otherwise,

with 1 ≤ i ≤ mBC , 1 ≤ j ≤ nP . Integer value kj ∈ N specifies the number of

working days that are necessary to operate crew pairing j and mBC is the total

number of base-constraints. The base-constraints usually have inequality signs

and non-unit integer right hand sides. The integer right-hand side ensures that

at least (≥) or at most (≤) a given number of crew pairings start on a particular
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day or during a particular week from a given crew base. With base-constraints

included the model is referred to as generalised set partitioning model :

Minimise (cP )
T
xP

subject to AP xP = bP

xP ∈ {0, 1}nP
,

(4.2)

where the entries of bP have value 1 for all flight partitioning constraints and

are non-negative integers for base-constraints. Besides crew pairing columns

and variables, matrix AP and variables xP also contain slack and surplus

columns and variables to satisfy the inequality base-constraints.

In the crew pairing formulation (4.2) generic crew members are assigned to

flights. This is the main difference from the aircraft routing model (3.1) that

assigns individual aircraft to flights. The generic crew pairings are assigned to

particular crew members in a subsequent step in the crew rostering problem

(see Section 2.1.6). Convexity constraints which ensure that each pairing is

operated by the appropriate number of crew members are therefore not in-

cluded in formulation (4.2). The total number of crew to operate all flights in

the schedule is not known a priori but determined by the solution. However,

the number of crew available is limited by the base-constraints.

Similar to the aircraft routing problem, the number of feasible crew pairings

nP is very large and we use column generation to solve the NP-hard problem.

We model the network in the same way as for the aircraft routing problem,

i.e. arcs represent flights as well as connections between flights if a crew can

operate the two flights consecutively. A copy of a flight arc is added to the

network if the crew may travel as passengers on this flight (also called passen-

gering). These arcs are only included in the network. No entries are added to

the column in the set partitioning formulation for passengering flights. Two

columns may exist that cover exactly the same flight constraints, but one col-

umn contains a passengering sector while the other column does not. The two

columns are distinguished by the objective coefficient and the entries covering

the base-constraints. This is in contrast to a set covering formulation where

passengering a sector is treated identically to operating the sector and the

equality constraints are replaced by greater-than-or-equal constraints (see for
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example Wedelin [1995]). The set covering model results in fewer variables but

costs and rules associated with passengering cannot be modelled accurately.

Similarly to flight arcs, copies of connection arcs are added to the network if

it is possible for crew to have a meal break during this connection: one con-

nection arc represents the crew having a meal break during their stay at the

airport while the other arc copy represents the crew not having a meal break.

Each crew pairing is represented by a path in this network. The arcs contained

in the path determine when meal breaks occur or if the crew travel as pas-

sengers. For each column the corresponding path must be stored so that this

information can be retrieved for a solution. A resource constrained shortest

path algorithm is used to find feasible crew pairings.

4.2 Rules

In this section we describe the rules that are applicable to feasible crew pair-

ings. We limit the description to the most important rules, in particular with

respect to robustness and the integration of aircraft routing and crew pairing

problems as described in the following chapter. Some additional rules are im-

posed by Air New Zealand but these do not affect the characteristics of the

results and are therefore omitted. Since we use the airline’s crew pairing solver

all of them are satisfied by the generated crew pairing solutions. All rules de-

scribed apply to scenarios of dated scheduling periods. The crew pairing solver

can also be used to solve cyclic problems (see Section 2.1.1).

• CrewCost

The cost of a pairing is a sum of costs for working time (flying or on the

ground), daily expenses allowances (paid for each day away from base),

staying overnight, transportation, hotel rooms, meal breaks, idle time,

working overtime, passengering crew, and other factors. Most of these

costs can be assigned to arcs, for example flying time costs, overnight

costs or passengering costs. Other (so called non-arc) costs must be

calculated during the resource constrained shortest path calculation. An

example is the cost of working overtime since this cost cannot be assigned

to any arc because it depends on the starting time of the duty period.

The cost resource of a label accumulates all arc and non-arc costs of the
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path the label represents.

Additional penalty costs can be added to the cost of the path to influ-

ence certain characteristics. For example, crew can be discouraged from

changing aircraft by adding penalties to the costs of connection arcs that

represent aircraft changes, see AircraftChangeCost below.

• MinSitTime

The minimal sit-time is the minimal time required between the arrival

and departure of two flights a crew can operate in sequence. The min-

imal sit-time depends on the port and on the flight types (domestic or

international) of the two flights. The minimal sit-time is usually shorter

when crew stay on the same aircraft compared to when they change air-

craft to give crew enough time to transfer to the departure gate of their

next flight. The minimal sit-time is also different for crew that operate

the second flight compared to crew travelling as passengers on the second

flight. Only arcs that satisfy the minimal sit-time rule are included in

the network.

• MaxSitTime

Similarly to MinSitTime, the maximal sit-time specifies the maximal

time on the ground for a crew member between consecutive flights he or

she can operate. Connection arcs violating this rule are not included in

the network.

• AircraftChangeCost

Costs can be imposed for crew changing aircraft when the sit-time is

below some threshold. The rule is explained in detail in the following

section.

• DutyPeriodAircraftChangeLimit (DPACLim)

The limit specifies how often a crew member can change aircraft during

one duty period. The rule is explained in detail in the following section.

• BaseConstraints

A fixed number of crew bases is located throughout the network. All

crew pairings start at one of the crew bases and must end at the same

one. For each day and week of the scheduling periods we consider, a

minimal and maximal number of crew pairings is specified that can start
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at a crew base on that day or week, respectively. This requirement is

included in the set partitioning formulation (4.2) as knapsack constraints

with non-unit right-hand sides for each day or week and crew base.

• MaxSectors

Each duty period can contain a maximal number of flights which is en-

forced by a resource during the shortest path calculation.

• MaxDutyPeriods

Any crew pairing can contain a maximal number of duty periods. This

is enforced by a resource during the construction of the shortest path.

• LeadIn

As general practice the airline solves the crew pairing problem for a

fixed period (e.g. a week) of the schedule at a time. This is necessary

since the number of crew available at each crew base changes over time.

The schedule itself is also different for each week. Whenever a period

is solved, some crew pairings that span multiple days may continue into

the subsequent period. When such a subsequent period is solved, lead-in

crew pairings that started in the previous period and continue into the

current period must be taken into account. The user can specify a list of

lead-in crew pairings, usually as a result of the solution of the previous

period. All flights of the current period that are already operated by crew

from the last period are removed from the set partitioning formulation

since they do not need to be covered again. This ensures that the solution

of the current period can be appended to the solution of the previous

period without operating the same flight multiple times.

• ForceBan

The user can specify a set of connections that are forced, i.e. must be

operated by some crew, or banned, i.e. cannot be operated by any crew.

This is enforced in the network design by only including feasible connec-

tion arcs with respect to the force and ban input data.

• Passengering (Deadheading)

Crew can travel as passengers to operate a flight that is not departing

from their current location or to return back to their home base. Pas-

sengering (also referred to as deadheading) may be permitted anytime
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during a duty period, only at the start or the end of a duty period, or

not at all. Passengering is considered in the network by adding a copy of

a flight arc if the crew can use this flight to travel as passengers. These

flight copies are only part of the network and not present in the set par-

titioning formulation. Additional costs for passengering can be added to

the passengering arcs.

• TimeLimits

Limits on the total length (in minutes) of a duty period or a crew pairing

are enforced during the shortest path calculation by a resource.

• MinRestTime

A minimal time of rest is required between two consecutive duty periods.

The required rest needs to be enforced during the shortest path calcula-

tion by a resource since it is a function of the working time during the

duty periods.

• MaxFlightTime

Other restrictions on the flying time include maximal working time (in

minutes) in any 24 hour rolling time window. This rule is enforced by a

resource in the shortest path algorithm. The working time depends not

only on the current duty period but also on previous duty periods.

• MealBreaks

Meal breaks must take place in certain time windows within the duty

period, and there must be sufficient ground time available. Furthermore,

in-flight meals incur additional costs. Arcs are duplicated in the network

if a meal break can take place during a connection or a flight. One copy of

the arc includes the meal break while the other arc does not. Additional

costs incurred by the meal break can be assigned to the appropriate arc.

Other meal break rules are enforced during the shortest path calculation,

e.g. maximal allowed time between two consecutive meal breaks.

4.3 Operational Robustness

An airline schedule is unlikely to be operated as planned because of disruptions.

Delays occur frequently in airline operations and can for example be caused
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by late passengers, unscheduled maintenance requirements, or bad weather.

Such disruptions cannot be controlled by the airline. Since the aircraft and

crew that operate a delayed flight usually operate further flights that depart

later during the day, these flights may be delayed due to the unavailability of

aircraft or crew. In this section we describe how we minimise such subsequent

delays.

A solution, where effects of potential delays are minimal, is called operationally

robust. The concept of robust solutions is important since an airline is inter-

ested in achieving high on-time performance (OTP), i.e. a high percentage

of all flights in the schedule departs on-time. However, the planned cost of

a more robust solution is usually high since slack is built in the schedule to

compensate for delays. Bad OTP can incur large additional costs (referred

to as recovery costs), caused by additionally required crews, compensation for

passengers affected by delayed or cancelled flights, and damaged reputation

of the airline. These additional costs may be much larger than the savings of

using a solution with less planned cost that is also less robust. We try to iden-

tify solutions with low planned costs which are operationally robust, i.e. where

disruptions will result in minimal recovery costs. Costs listed in this thesis are

generally planned costs. We refer to the sum of planned costs and recovery

costs as operational costs.

Before we describe how to obtain operationally robust solutions, we explain

the concepts of short and restricted connections as introduced in Mercier et al.

[2005]. First, we repeat some definitions from Chapter 2. If two flights can be

operated in sequence by the same crew or aircraft (i.e. there exists a connection-

arc linking both flights), the time between arrival of the incoming and depar-

ture of the outgoing flight is called turn-time for aircraft and sit-time for crew.

The minimal time required for an aircraft or a crew to operate a connection

is called minimal turn-time or minimal sit-time, respectively. The required

minimal sit-time can exceed the minimal turn-time. For example, crew need

enough time to travel from the arrival gate, through the terminal(s), to the

departure gate of the next flight. If crew stay on the same aircraft, the minimal

turn-time for this connection also applies to crew, instead of the minimal sit-

time. A connection between flights i and j is called short if

(minimal turn-time)ij ≤ (sit-time)ij < (minimal sit-time)ij.
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Thus, in a feasible solution, short connections are only allowed if crew stay

on the same aircraft. Since we solve the crew pairing problem for a given air-

craft routing solution this requirement is easily incorporated into the network

construction by not including arcs for short connections that are operated by

different aircraft.

In addition to allowing short connections only when crew stay on the same

aircraft, we also prefer solutions where crew are not changing aircraft when

the turn time is less than some restricted time. A connection between two

flights i and j is called restricted if

(minimal sit-time)ij ≤ (sit-time)ij < (restricted time)ij.

In contrast to short connections, crews are allowed to change aircraft if the

connection is restricted, but we try to find solutions in which this occurs as

rarely as possible. If crew change aircraft on restricted connections we refer to

these connections as restricted aircraft changes.

We minimise the number of restricted aircraft changes that are operated to

obtain operationally robust solutions. Minimal turn-times are usually oper-

ated in aircraft routings to keep costs low and connection times attractive for

passengers. Hence, if a flight is delayed, the flight operated next by the aircraft

is probably also delayed. In the aircraft routing chapter we minimise the num-

ber of minimal turn sequences in the solution to keep such subsequent delays

small. If the crew are also changing aircraft on a restricted connection after

the delayed flight, other flights might be affected by the initial delay. Due to

the small buffer to compensate for the delay, the crew are likely to be late for

the next flight they operate. This behaviour can propagate to a large number

of delayed flights within a short amount of time. The solution is expected to

be operationally more robust if crew change aircraft only when the sit-time

provides sufficient buffer to compensate for a delay.

In Figure 4.1 examples of a non-robust (top) and a robust solution (bottom)

are depicted. Flights are represented as rectangles with origin and destination

airports indicated by 3-letter-codes. Aircraft routings are represented as rows

of flights while crew pairings are represented as flights connected by lines.

Dashed rectangles represent flights that are delayed. We can see in the first

scenario that two flights are affected by the initial delay because the crew
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Figure 4.1. Comparison of a non-robust and a robust solution

operates a restricted aircraft change. In the second scenario only one other

flight is affected by the initial delay.

There are two mechanisms in the crew pairing solver to limit the number of

restricted aircraft changes: AircraftChangeCost and DPACLim rule.

AircraftChangeCost

Costs can be imposed for crew changing aircraft when the sit-time is below

some threshold (restricted time). By minimising these costs as part of the

objective function we encourage the crew to stay on the same aircraft whenever

the sit-time is small.

The airline does not impose any costs for aircraft changes. In the computa-

tional experiments we analyse the impact of penalising all aircraft changes with

a sit-time exceeding the minimal sit-time by 30 minutes or less. We impose

costs that increase linearly with decreasing sit-time. The cost for changing

aircraft on a restricted connection ij is denoted by cAC
ij :

cAC
ij = (k1 − ((sit-time)ij − (minimal sit-time)ij)) ∗ k2. (4.3)
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Weights k1 and k2 are chosen such that cAC
ij equals 7 for a restricted aircraft

change with sit-time equal to the minimal sit-time, 6 for a restricted aircraft

change with sit-time exceeding the minimal sit-time by 5 minutes, and so on

until a weight of 1 is assigned to a restricted aircraft change with sit-time

exceeding the minimal sit-time by 30 minutes. Note that all departure and

arrival times in the schedules we consider are at 5 minute intervals starting

from midnight. A different set of connections (e.g. those with a larger sit-time)

or a different function of the sit-time (e.g. where weights increase exponentially

with decreasing sit-time) could be chosen in a straightforward way. Comparing

the scale of the aircraft change costs, the cost of a single day crew pairing varies

between 500 and 1000.

Let RC denote the set of restricted connections. For a crew pairing solution

xP , RC(xP ) is the set of restricted connections used in this solution. If xR is

a solution to the aircraft routing problem, then RC(xR) is the set of restricted

connections induced by this solution. With this notation, the aircraft change

cost cAC of a crew pairing solution is the sum over all restricted aircraft changes

that are contained in the solution:

cAC =
∑

ij∈RC(xR)

cAC
ij

∑
k,ij∈k

xP
k . (4.4)

Here, k is used to index crew pairings and ij ∈ k is used to indicate that

connection ij is used in crew pairing k. To include this rule in the algorithm,

the costs for changing aircraft are assigned to connection arcs of the column

generation network.

DutyPeriodAircraftChangeLimit (DPACLim)

The limit specifies how often a crew member can change aircraft during one

duty period. The airline introduced this rule in an attempt to increase the

robustness of the solutions. In contrast to penalising aircraft changes, the

DPACLim rule limits the total number of aircraft changes in a solution, in-

dependently of the sit-time of these aircraft changes. A resource is added to

the labels to enforce this rule during the shortest path calculation. It is pos-

sible to count the number of aircraft changes during a duty period because an

aircraft routing solution is given as input. This rule needs special attention in

Chapter 5 when aircraft routing and crew pairing problems are integrated and
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the aircraft routing solution is no longer fixed. We also analyse the impact of

relaxing this rule in the computational experiments.

4.4 Solution Methods

In this section we describe an efficient solution method for the crew pairing

problem. We use column generation and branch-and-price methods to solve the

problem. We utilise the commercial crew pairing solver that is used by Air New

Zealand. As a consequence, the crew pairing solutions satisfy all operational

rules and requirements that are imposed by the airline. We describe the LP

solution, column generation, and branch-and-price methods of the crew pairing

solver in the following.

4.4.1 LP-Relaxation

The LP relaxation of problem (4.2) is solved by the simplex method with the

ZIP (Zero-One Integer Programming) package (Ryan [1980]) which is written

in FORTRAN. ZIP is a specialised zero-one integer programming solver that is

equipped with many call-back functions to allow the user to control each step

of the simplex algorithm and the branch-and-price process. The user can for

example specify particular rules to determine entering or leaving variables or

how branching is performed to obtain integer solutions. The column generation

routine is called in each pricing step of the simplex algorithm if no entering

column can be found among the non-basic columns of the matrix. We employ

steepest edge pricing in the simplex algorithm.

Quite often crew pairings exist already that cover flights of the scenario period.

These crew pairings may have been generated by solving a scenario for the

same or another period with a very similar schedule. The pairings can be

used to speed up the computation process. The user can specify a list of

previously generated crew pairings that are available to the optimiser. These

crew pairings are checked for feasibility and negative reduced cost and are

added to the matrix AP of the restricted master problem before the column

generator is called. Also, the optimal basis of a previous solution can be used

as an initial starting basis of the simplex algorithm. If some of the columns
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of the previous basis are now infeasible, these columns are treated as artificial

columns in a phase I/II approach.

4.4.2 Column Generation

Column generation is performed on a flight and connection based network.

Crew pairings correspond to paths in this network. Only connection arcs that

satisfy all rules are included in the network. All rules that require taking multi-

ple arcs into account are modelled as resources in the shortest path algorithm.

We use a label setting algorithm as described for the aircraft routing problem

in Section 3.3.3 to find paths with negative reduced costs. Compared with

the aircraft routing generator, many more resources must be considered when

solving the crew pairing problem because of the more complicated rule struc-

ture. The network also consists of many more arcs than the aircraft routing

network because we cannot eliminate arcs based on the number of crew at an

airport. Since crew pairings contain many fewer flights than aircraft routings,

at most six per duty period, the total number of crew pairings we generate

to obtain an optimal solution, is smaller than the total number of generated

aircraft routings.

We use a dominance relaxation method to achieve fast solution times for the

resource constrained shortest path calculation. In this method each time the

column generation routine is called, a shortest path algorithm is executed

multiple times in so called stages. Each stage can return crew pairings with

negative reduced costs. A particular stage is only called if all previous stages

did not compute any path with negative reduced cost. In all but the very

last stage only a subset of all resources are considered when dominance is

checked between two labels. In the first stage for example, a pure shortest

path problem could be solved by only keeping the cheapest label at each node.

Since infeasible labels are removed from each node, this stage may not return

a negative reduced cost path even though such a path exists. In subsequent

stages more and more resources are considered in the dominance check. The

user can choose to consider all resources in the dominance check of the last

stage. But the user can also only use a limited number of stages not consid-

ering all resources in the last stage. The latter method cannot guarantee an

optimal solution but may reduce solution times significantly. Care must be
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taken to consider a “good” set of resources when checking for dominance in

order to obtain good quality solutions. This needs to be verified by extensive

computational experiments.

4.4.3 Branch-and-Price

To solve the crew pairing problem, first the LP relaxation of (4.2) is solved

using column generation. Fractional variables in the solution are caused by

different crew pairings competing for the same flights. To eliminate these

fractions and obtain an integer solution for (4.2), a branch-and-price algorithm

with a follow-on branching strategy is used. In this strategy two flights must be

operated consecutively by the same crew in one problem called the 1-branch.

In the 0-branch the two flights must not be operated consecutively by the

same crew. The branching restrictions are enforced in the column generation

network by removing arcs from the network. In the first branch only the

forced connection arc leaves the arriving flight node and enters the departing

flight node of the connection. All other arcs leaving the departing flight node

or entering the arriving flight node are removed. In the second branch the

connection arc that represents the follow-on connection is removed.

Since the LP solver in ZIP is integrated into the branch-and-price framework,

enforcing of branching decisions works slightly differently to CPLEX. When-

ever the LP relaxation is solved at a node, the optimal basis of the LP relax-

ation at the node solved previously is used as a starting solution. Since new

branching decisions are made some variables that are part of the previous LP

basis may violate this decision. These variables are forced out of the basis

with a phase I/II approach. Infeasible (with respect to the branch) non-basic

variables cannot enter the basis. Column generation is used to ensure an opti-

mal solution of the LP relaxation at each node of the branch-and-bound tree.

Depth first branching is used to obtain an integer solution.

4.4.4 Cost Constraint Approach

In this section we outline an enhanced solution method for the crew pairing

problem to obtain cost efficient and operationally robust solutions of the crew
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pairing problem. This method is introduced in Ehrgott and Ryan [2002]. In

this approach the crew pairing problem is essentially solved twice. First, the

original crew pairing problem problem (4.2) is solved to crew pairing cost

optimality. Then, a cost constraint is added to the set partitioning formulation

that forces the crew pairing cost cP of the solution to be less than some value

ε. The crew pairing problem is solved again with the objective of minimising

aircraft change cost cAC (4.4) and subject to the set partitioning constraints

and the new constraint limiting the crew pairing cost.

The value ε is set to exceed the optimal IP solution value by a specified per-

centage: ε = (1 + o/100) × cIP . Here cIP denotes the optimal IP solution

value and o denotes the percentage increase in the objective one is prepared

to invest to obtain a more robust solution. The cost constraint is added to

the set partitioning formulation as an elastic constraint since a hard constraint

causes computational difficulties in the branch-and-bound process as described

in Ehrgott and Ryan [2002]. With the cost constraint and the objective to

minimise aircraft change costs the crew pairing problem can be formulated as

follows:

Minimise (cAC)
T
xP + tsu

subject to AP xP = bP

(cP )
T
xP + sl − su = ε

xP ∈ {0, 1}nP
.

(4.5)

The elements xP , cP , bP and AP of formulation (4.5) are identical to formu-

lation (4.2). The aircraft change cost cAC
j that is assigned to pairing j is the

sum over all restricted aircraft changes contained in the pairing. Non-negative

variables sl and su represent slack and surplus of the cost constraint. The

surplus variable is penalised in the objective function by parameter t which

represents the trade-off between crew pairing costs and aircraft change costs.

Details on how to obtain values for t are given in Section 4.5.1. The constraint

is only elastic during the IP solution phase. During the LP solution phase the

surplus variable su is set to 0, i.e. the cost constraint is a hard constraint. The

optimal solution of (4.5) incurs minimal aircraft change costs while the crew

pairing cost of the solution does not exceed the optimal crew pairing costs by

more than a given percentage.
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4.5 Computational Experiments

All computational results in this section are obtained using the unmodified

crew pairing solver of Air New Zealand. We use the results as reference data

for the experiments in the following chapters. For all schedules, crew need to

be assigned to flights that are operated by a single aircraft type. Crew can

travel as passengers on additional flights operated by other aircraft types. We

consider the same schedules discussed in the aircraft routing chapter, summer

2005 (s05), winter 2005 (w05), summer 2006 (s06), and winter 2007 (w07).

For each schedule we again solve periods of 1 day, 3 days, and 7 days. For the

winter 2007 schedule we additionally solve 10 and 14 day periods. We solve

the scenarios for three different crew types, namely captains (c33), first officers

(f33), and cabin crew (spsr). The cost structure and rules vary for different

crew types and for different schedules. Technical crew, i.e. captains and first

officers are much more expensive than cabin crew. A duty period for technical

crew may contain at most 5 flights, while a duty period for cabin crew may

contain 6 flights (MaxSectors rule). No AircraftChangeCost penalties

apply and the DPACLim is by default set to 1 for technical crew and 2 for

cabin crew, i.e. cabin crew can change aircraft twice during a duty period and

technical crew only once. All crew are located at three bases. The strengths at

each base vary for each crew type and each schedule. All scenarios use a given

aircraft routing solution as input. This aircraft routing solution is constructed

manually by the airline. We do not consider any (lead-in) crew pairings from

previous solutions.

We apply model (4.2) to various scenarios and results of the computational

experiments are summarised in Table 4.1. The first two columns list scenarios

and crew types. Schedules summer 2005 and winter 2005 are solved for all

crew types. For schedules summer 2006 and winter 2007 the rules and base

strengths for captains and first officers are identical and we only show results

for first officers. No data is available for cabin crew for schedule winter 2007.

Columns “arcs”, “rows” and “cols” list the total number of arcs in each

network, the number of constraints in each model, and the total number of

columns generated. The next four columns display solution times. All times

are given in seconds. Total solution times (“tot”), LP solution times (“lp”),

branch-and-bound solution times (“ip”), and column generation times (“col-
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gen”) are shown. The LP and IP solution times contain the time spent for

column generation and the column generation time is the total time of LP

and IP solution phases. The total solution time contains, besides LP and IP

solution times, pre- and post-processing times. We observe that run times

are much faster for the cabin crew problems than the technical crew problems.

The cabin crew problems are easier to solve because the set partitioning models

contain fewer and less restrictive base-constraints and the crew pairing rules

are easier to satisfy.

Column “BnB-nodes” shows the number of branch-and-bound nodes to obtain

an integer solution. The next three columns (“crew pairing costs”) list the costs

of the LP and IP solution and the gap between the two solutions in percent.

We observe that in most cases the actual gap is much smaller than the stopping

criterion which is set to 2%.

The last set of columns gives details on the number of restricted aircraft

changes of each solution. The last seven columns show the number of aircraft

changes where the sit-time of the connection exceeds the minimal sit-time by

0, 5, 10, 15, 20, 25, and 30 minutes. The total cost (column “cAC”) for these

aircraft changes is obtained by summation (4.4). For the scenarios that span

one week around 30 to 40 crew members change aircraft on a connection with

sit-time equal to the minimal sit-time. The total aircraft change costs vary

from 344 to 639 for weekly scenarios. More restricted aircraft changes are oper-

ated by cabin crew than technical crew because 2 aircraft changes are allowed

for cabin crew during a duty period instead of 1 for technical crew. Note

that aircraft changes are not penalised in the objective function during the

execution of the algorithm and therefore a large number of restricted aircraft

changes is expected.
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Table 4.2 lists detailed results for the first officer schedule of summer 2005. In

these computational experiments we vary DPACLim and AircraftChange-

Cost to observe the relationship between these parameters, the crew pairing

costs, and the aircraft change costs of the solutions. We solve periods of 1,

3, and 7 days. We use values of 1, 2, and 4 for the maximal aircraft changes

per duty period (column “DPACLim”). Note that value 4 disables the rule

since each duty period contains at most 5 sectors. Instead of minimising crew

pairing costs only, we now solve the crew pairing problem with a weighted sum

objective of crew pairing costs and aircraft change costs:

Minimise cP + pcAC ,

where cP represents crew pairing cost and cAC represents aircraft change cost

of the solution and penalty p ∈ {0, 10, 50} which is listed in column “p”.

We list costs for LP and IP solutions. The total costs (column “tot”) are

split into crew pairing costs (“cP ”) and costs caused by crew changing aircraft

times the penalty p (“pcAC”). The gap (“gap”) between total LP and IP costs

is listed and given as a percentage. As in Table 4.1 we list the number of

aircraft changes and the costs incurred by them. The last set of columns lists

the total number of duty periods in the solution classified by the number of

aircraft changes within each duty period. Column “tot” lists the total number

of duty periods of the solution. Columns “0”, “1”, “2”, “3”, and “4” show

the number of duty periods that contain 0, 1, 2, 3, and 4 aircraft changes

(no matter if restricted or not), respectively. We observe that aircraft change

costs cAC can be decreased by increasing penalty p. If DPACLim is relaxed,

cheaper solutions can be obtained but they contain many aircraft changes. In

the following we investigate these relationships in more detail.

In Tables 4.3 and 4.4 we display the change in solution quality that results from

varying AircraftChangeCost penalty p and DPACLim. The first three

columns of each table are identical to Table 4.2. The next two columns list

the crew pairing costs (“lp costs cP ”) and the aircraft change costs (“lp costs

cAC“) for the LP solutions, respectively. We use LP solutions since statements

about cost improvements are not reliable for IP solutions because we use a

branch-and-bound stopping gap of 2%. Tables 4.3 and 4.4 are sorted in a

different order in order to compare values of three consecutive rows in each
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table.

In Table 4.3 the increase in crew cost and aircraft change cost for varying

penalty p and fixed DPACLim rule can be observed in columns six and seven.

In three consecutive rows the change in solution quality is given as a percent-

age for changing penalty p from 0 (the default) to 10 and 50, respectively. We

observe that a decrease of up to 100% of aircraft change cost can be achieved

by penalising aircraft changes. A solution with fewer aircraft changes comes

with the price of an increase in crew pairing costs of up to 3.13%. The second

row of Table 4.3 shows a simultaneous decrease in crew pairing cost and air-

craft change cost. This shows that the solution displayed in row 1 is in fact

slightly sub-optimal. This small error is caused by the heuristic nature of the

dominance relaxed shortest path algorithm (Section 4.4.2). We accept this

error and use the heuristic method rather than an optimal method since the

run time of the latter is very long. We do not observe an error that exceeds

0.1%.

The last two columns of Table 4.4 show the change in solution quality when

varying DPACLim for fixed penalty p. For each period (1, 3 and 7 days)

the difference is given as a percentage comparing a limit of 1 aircraft change

(the default) with limits of 2 and 4 in three consecutive rows. A decrease in

crew pairing cost of up to 2.27% can be achieved by relaxing the DPACLim

rule. The cheaper solutions do contain many more aircraft changes if these are

not penalised. By penalising aircraft changes, a decrease in crew costs with

simultaneous decrease in aircraft change costs can be achieved as for example

in the last row of Table 4.4. This solution however contains 21 duty periods

with 2 aircraft changes and 2 duty periods with 3 aircraft changes that are

forbidden by the default settings of the algorithm.

Figures 4.2 and 4.3 show the same solutions as in Tables 4.3 and 4.4 in objective

space for the 7 day scenario of the first officer schedule, summer 2005. On

the horizontal axis the crew pairing costs are depicted while the vertical axis

shows the aircraft change costs. For constant DPACLim the improvements in

AircraftChangeCost for increasing penalties are shown in Figure 4.2. We

again observe that aircraft change costs can be greatly decreased but this incurs

a crew pairing cost increase. We can also see that increasing DPACLim from 1

(green) to 2 (blue) greatly reduces costs while a value of 4 (red) does not yield
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significant additional improvements. Figure 4.3 shows improvements in crew

pairing cost for increasing DPACLim and constant AircraftChangeCost.

If aircraft changes are not penalised aircraft change costs increase significantly

for smaller crew pairing costs (green). If aircraft changes are penalised, aircraft

change costs remain small for decreasing crew pairing costs (blue and red).

For a value of p = 50 we observe that crew pairing costs increase by changing

DPACLim from 2 to 4 but aircraft change costs decrease due to the large

value of p.
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D
P
A

C
L
im

da
ys lp costs increase (%), DPACLim fixed

p cP (×102) cAC(×10) cP cAC

1 1 0 347.13 3.40 - -
1 1 10 346.79 1.50 -0.10 -55.88
1 1 50 348.84 0.00 0.49 -100.00
1 2 0 345.53 6.73 - -
1 2 10 346.86 0.60 0.38 -91.09
1 2 50 348.60 0.00 0.89 -100.00
1 4 0 344.95 5.50 - -
1 4 10 346.70 0.90 0.51 -83.64
1 4 50 348.63 0.00 1.07 -100.00
3 1 0 892.95 16.37 - -
3 1 10 894.41 4.28 0.16 -73.88
3 1 50 896.55 1.74 0.40 -89.39
3 2 0 884.09 21.12 - -
3 2 10 885.43 5.49 0.15 -74.02
3 2 50 886.74 2.06 0.30 -90.25
3 4 0 883.80 22.91 - -
3 4 10 885.32 5.65 0.17 -75.34
3 4 50 886.66 2.06 0.32 -91.01
7 1 0 1725.12 34.09 - -
7 1 10 1729.29 14.89 0.24 -56.33
7 1 50 1750.93 4.83 1.50 -85.84
7 2 0 1688.99 57.86 - -
7 2 10 1701.78 20.18 0.76 -65.13
7 2 50 1735.38 3.79 2.75 -93.45
7 4 0 1685.98 63.52 - -
7 4 10 1698.69 19.89 0.75 -68.69
7 4 50 1738.75 3.20 3.13 -94.96

Table 4.3. Improvements of solutions for variation of AircraftChangeCost
penalty p for first officer scenario, summer 2005, 7 days.
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D
P
A

C
L
im

da
ys lp costs increase (%), p fixed

p cP (×102) cAC(×10) cP cAC

1 1 0 347.13 3.40 - -
1 2 0 345.53 6.73 -0.46 98.04
1 4 0 344.95 5.50 -0.63 61.76
1 1 10 346.79 1.50 - -
1 2 10 346.86 0.60 0.02 -60.00
1 4 10 346.70 0.90 -0.03 -40.00
1 1 50 348.84 0.00 - -
1 2 50 348.60 0.00 -0.07 0.00
1 4 50 348.63 0.00 -0.06 0.00
3 1 0 892.95 16.37 - -
3 2 0 884.09 21.12 -0.99 29.00
3 4 0 883.80 22.91 -1.02 39.95
3 1 10 894.41 4.28 - -
3 2 10 885.43 5.49 -1.00 28.30
3 4 10 885.32 5.65 -1.02 32.10
3 1 50 896.55 1.74 - -
3 2 50 886.74 2.06 -1.09 18.56
3 4 50 886.66 2.06 -1.10 18.56
7 1 0 1725.12 34.09 - -
7 2 0 1688.99 57.86 -2.09 69.71
7 4 0 1685.98 63.52 -2.27 86.29
7 1 10 1729.29 14.89 - -
7 2 10 1701.78 20.18 -1.59 35.53
7 4 10 1698.69 19.89 -1.77 33.57
7 1 50 1750.93 4.83 - -
7 2 50 1735.38 3.79 -0.89 -21.51
7 4 50 1738.75 3.20 -0.70 -33.64

Table 4.4. Improvements of solutions for variation of DPACLim for first officer
scenario, summer 2005, 7 days.
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Figure 4.2. Solutions for variation of AircraftChangeCost penalty for
first officer scenario, summer 2005, 7 days.

Figure 4.3. Solutions for variation of DPACLim rule for first officer scenario,
summer 2005, 7 days.
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4.5.1 Cost Constraint Approach

Table 4.5 summarises results of computational experiments for the cost con-

straint approach. We consider the first officer schedule summer 2005 with

scenarios of 1, 3, and 7 days. Default settings of 0 and 1 are used for Air-

craftChangeCost and DPACLim, respectively. The columns “days”, “o”

and “t” show the number of days of the scenario and the applicable values for

o and t (see Section 4.4.4). For each row value t was obtained by using the

2 neighbouring LP solutions (listed in the row above and below the current

row). These solutions are depicted in two dimensional objective space with

one dimension representing crew pairing cost and the other dimension repre-

senting aircraft change cost as in Figures 4.2 and 4.3. The value for t is set to

the negative of the slope of the line connecting the two neighbouring solutions,

hence t is an approximation of the trade-off between crew pairing cost and

aircraft change cost. For the first and last row of each of the three scenarios

t is set to 10. Crew pairing costs (“cP ”) and aircraft change costs (“cAC”)

are shown for the LP and IP solutions with the objective to minimise air-

craft change costs. The increase (“increase”) in crew pairing cost and aircraft

change cost is with respect to the minimal crew pairing cost solutions listed in

Table 4.1. We further list the number of restricted aircraft changes of the IP

solutions and solution times in seconds. The total solution time contains pre-

and post-processing times.

Improvements in aircraft change cost of more than 90% can be achieved by

allowing an increase in crew pairing cost of a few percent. Even a small increase

in crew pairing cost, for example of 1.2% in the second row of the 7 day

scenario, enables a large decrease in aircraft change cost (78.49%). We observe

that solution times roughly double compared to the standard crew pairing

approach (Table 4.1). This is partly due to the fact that we solve the LP

twice, once with objective to minimise crew pairing costs and once with the

objective to minimise aircraft change costs. Although we start the second LP

solution process from the optimal basis of the first solve, the second LP does

not solve much faster than the first LP. The reason for this is that the optimal

solutions of the 2 LPs are quite different due to the additional constraint. The

IP is only solved in the latter case and can also be very difficult to solve. For

the last five rows in Table 4.5 for example, the branch-and-bound process is
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stopped after the first integer solution is found and we can observe that the

LP/IP gap is very large for these instances. The gap for the last instance is in

excess of 300%. We stop the branch-and-bound process after the first integer

solution since no significant improvement is made during further exploration of

the branch-and-bound tree. As an example we explore the branch-and-bound

tree up to the node limit of 2000 nodes for the second to last instance. The

integer solution listed in Table 4.5 has an objective value of 14 and is found

after 50 nodes. This solution exceeds the optimal LP solution value by more

than 200%. No further integer solution is found within the node limit and

the computation time is in excess of 4,000 seconds. The difficulties in the

IP solution phase are caused by the cost constraint being active in the LP

solution. Although formulation (4.2) generally yields very small LP/IP gaps,

this property is destroyed by adding the cost constraint to the formulation.

Even with the cost constraint being elastic, the branch-and-bound process is

very difficult and time consuming.
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Chapter 5

Robust and Integrated Aircraft

Routing and Crew Pairing

In this chapter we formulate a model that integrates the two problems aircraft

routing and crew pairing. Integrating the schedule design problem is addressed

in the subsequent chapter. We expect the largest gain in cost and robustness by

integrating these three problems compared to the integration of other airline

scheduling problems. We do not consider the problems fleet assignment or

crew rostering in the integrated approach. The fleet assignment problem is

important for large airlines with many different fleet types. For the problem

instances considered in the context of this thesis the fleet can be regarded as

homogeneous and the fleet assignment problem can be omitted. Note that we

do consider a basic fleet assignment model by including the OverWater rule.

We outline below how this can be generalised to consider different fleet types

in our solution approaches. We do not include the crew rostering problem in

our formulation. For the relevant scenarios, the crew rostering problem can be

viewed as a separate optimisation problem. The main objective in rostering

is maximising crew satisfaction rather than minimising cost and therefore the

rostering problem has no influence on the cost of the overall airline scheduling

solution [Butchers et al., 2001].

The goal of the integrated aircraft routing and crew pairing model is to generate

solutions that incur low costs and are also operationally robust. We present

the integrated model and describe three solution methods in the following

sections. We present optimisation methods that are capable of finding optimal
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solutions as well as a heuristic method that finds good quality solutions quickly.

We compare the approaches theoretically and conclude the chapter with a

summary of the results of computational experiments.

5.1 Model

In this section we describe a model that integrates aircraft routing and crew

pairing problems. In Section 4.3 we have seen that for a feasible solution,

short connections are only permitted if crew stay on the same aircraft. This

condition might result in suboptimal or infeasible solutions if the two problems

are solved separately. If the crew pairing problem is solved for a fixed aircraft

routing solution, the feasible set of connections to be used by crew is limited.

But if the aircraft routing problem is solved for a fixed crew pairing solution,

it may be infeasible to operate all required (short) connections with the given

number of aircraft.

In order to obtain an optimal solution for the aircraft routing and crew pairing

problem we need to formulate an integrated model. We enumerate all short

connections that can be operated by crew and define a binary mB×nP matrix

BP where mB is the number of short connections. Each pairing is associated

with one column of BP , where

(bij)
P =

 1 if short connection i is contained in pairing j

0 otherwise,

with 1 ≤ i ≤ mB, 1 ≤ j ≤ nP . For aircraft, a binary mB × nR matrix BR is

defined in an analogous way.

With this matrix representation the integrated aircraft routing and crew pairing

problem can be formulated as follows:

Minimise (cP )
T
xP + (cR)

T
xR

subject to AP xP = bP

ARxR = 1

BP xP − BRxR ≤ 0,

(5.1)
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where xP ∈ {0, 1}nP
and xR ∈ {0, 1}nR

are binary variables. The first two sets

of constraints are identical to the original single problem formulations. The

third set of constraints ensures that short connections which are operated by

some crew are also operated by some aircraft.

Since we are not only interested in minimal cost but also robust solutions we

need to minimise the number of restricted connections in the solution (see

Section 4.3). If the two problems are solved in sequence, the overall solution

can be suboptimal, i.e. another solution may exist with equal or less cost

that contains fewer restricted aircraft changes. It is possible to improve both

objective simultaneously compared to a solution of a sequential approach. In

a sequential approach the solution space of the problem solve last, and hence

the overall solution space, is limited by the problem solved first, leading to

globally suboptimal solutions. In order to integrate restricted connections into

our formulation we enumerate all restricted connections. Analogously to short

connections, we define a binary mD × nP matrix DP where mD is the number

of restricted connections:

(dij)
P =

 1 if restricted connection i is contained in pairing j

0 otherwise,

with 1 ≤ i ≤ mD, 1 ≤ j ≤ nP . For aircraft, a binary mD × nR matrix DR is

defined in an analogous way.

With this matrix representation the robust and integrated aircraft routing and

crew pairing problem [see also Mercier et al., 2005] can be formulated as follows:

Minimise (cP )
T
xP + (cR)

T
xR + p(cAC)

T
d

subject to AP xP = bP

ARxR = 1

BP xP − BRxR ≤ 0

DP xP − DRxR − d ≤ 0,

(5.2)

where xP ∈ {0, 1}nP
, xR ∈ {0, 1}nR

, and d ∈ {0, 1}mD
are binary variables,

cAC ∈ R
mD

+ are positive penalties for changing aircraft, and value p ∈ R+

is a weight to adjust the scale of the aircraft change cost compared to crew
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pairing and aircraft routing costs. Variable di equals 1 if restricted connection

i is operated by a crew but no aircraft and 0 otherwise. The first three sets

of constraints are identical to problem (5.1). The last set of constraints pro-

vokes additional aircraft change cost in the objective function if a restricted

connection is operated by a crew but not by an aircraft.

The model yields an optimal solution for given aircraft change penalties cAC .

The model assumes that the DPACLim rule is relaxed. We describe below

how the DPACLim rule can be considered in each solution approach.

For the schedule data sets considered in this work, it can be assumed that the

minimal sit-time of the crew is equal to the minimal turn-time of aircraft for all

connections. Hence no short connections are taken into account and we remove

the short connection constraints from the model. Short connections could be

treated in a similar way to restricted connections. Instead of penalties cAC ,

we could use very large penalties, effectively forbidding short aircraft changes

in any solution.

Aircraft routings and crew pairings must obey the rules listed in Sections 3.2

and 4.2, respectively.

5.2 Solution Methods

In this section we describe two new solution methods for the robust and inte-

grated aircraft routing and crew pairing model: the iterative approach which is

an optimisation based heuristic approach and a Dantzig-Wolfe decomposition

approach which is an optimisation method. We also describe the currently

most successful solution method in the literature which is a Benders decom-

position approach as in Mercier et al. [2005]. We compare the characteristics

of the different methods.

As described in the introduction, the goal of this thesis is to solve the ro-

bust and integrated aircraft routing and crew pairing problem without poten-

tially damaging the set partitioning structures of the individual problems. The

structure of the problems can therefore still be exploited to solve the problems

efficiently. From a practical point of view, only minimal changes are required

for existing crew pairing and aircraft routing solvers to be incorporated in such
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an approach.

There are five existing solution approaches for the integrated aircraft routing

and crew pairing problem (see Section 2.2):

1. Direct solution method [Cordeau et al., 2001]

2. Benders decomposition with aircraft routing as the master problem [Cordeau

et al., 2001]

3. Plane-count method [Klabjan et al., 2002]

4. Extended crew pairing method [Cohn and Barnhart, 2003]

5. Benders decomposition with crew pairing as the master problem [Mercier

et al., 2005]

Cordeau et al. [2001] show that their Benders decomposition approach is su-

perior to a direct solution method for the integrated model. Mercier et al.

[2005] in turn show that the Benders decomposition approach with the crew

pairing problem as the master problem is superior to the approach with the

aircraft routing as the master problem [Cordeau et al., 2001]. In the plane-

count constraint approach by Klabjan et al. [2002] feasibility of the aircraft

routing problem cannot be guaranteed. Since we consider aircraft routing costs

(see Section 3.2) we cannot find an optimal solution with this approach. Cohn

and Barnhart [2003] propose to extend the crew pairing problem with an ad-

ditional aircraft routing column generation problem but Mercier et al. [2005]

show that this approach is computationally expensive. This leaves the Benders

decomposition approach by Mercier et al. [2005] as the best approach in the

literature to solve the integrated aircraft routing and crew pairing problem.

In all these approaches inequalities are added to the original set partitioning

formulations of the aircraft routing or crew pairing problem. From our experi-

ence, adding base-constraints and the cost constraint to the crew pairing prob-

lem, greatly increases the complexity of the problem (see Section 4). Without

these constraints the problems have “almost” integer properties. The LP/IP

gaps are usually very small and integer solutions can be obtained quickly with

a branch-and-bound method. After adding the constraints the gaps can be

substantial and it can be very difficult to find an integer solution.
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For these reasons we propose two solution methods that do not add additional

constraints to the set partitioning formulation, the iterative approach and a

Dantzig-Wolfe decomposition approach. Lagrange decomposition could also

be used as a solution method but is not considered in this thesis. Cordeau

et al. [2001] believe that Benders decomposition is superior to Lagrange relax-

ation since their approach is very fast. However, Lagrange relaxation could

be investigated as a further approach that does not alter the structures of the

subproblems.

5.2.1 Iterative Approach

In this section we describe an optimisation based heuristic solution method

for the robust and integrated aircraft routing and crew pairing problem. The

two individual problems are alternately solved to optimality. Each problem

receives input from the previously solved problem. This process continues

until a stopping criterion is reached. A predefined solution quality cannot be

guaranteed but a lower bound for the optimal solution value is provided so

that the quality is known once the algorithm terminates.

We assume that MinTurnSeq costs are the only aircraft routing costs and

the majority of the costs of the integrated solution are crew pairing costs. In

the following we denote the sum of crew pairing costs and MinTurnSeq costs

simply by costs of the integrated solution cINT . We consider a connection to

be restricted, if the sit-time does not exceed the minimal sit-time by more than

30 minutes. The aircraft change cost cAC of an integrated solution is the sum

over all restricted aircraft changes (see Section 4.3):

cAC =
∑

ij∈RC(xR)

cAC
ij

∑
k,ij∈k

xP
k , (5.3)

where RC(xR) is the set of restricted connections induced by the aircraft

routing solution xR. Value k is used to index crew pairings and ij ∈ k is

used to indicate that connection ij is used in crew pairing k. The smaller the

aircraft change cost cAC of a solution the more robust we expect the solution

to be.

We search for an integrated solution with small cost cINT and small aircraft
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change cost cAC . We do not attempt to solve the integrated problem to opti-

mality. Instead we propose to solve the crew pairing problem and the aircraft

routing problem iteratively. Initially, we solve the crew pairing problem to

cost optimality without considering any aircraft routings. This results in the

generation of a larger set of feasible crew pairings since feasibility parameters

are relaxed, treating every connection in the crew pairing problem as a follow-

on connection. Since this reduces the minimal sit-time on these connections

there exist many more feasible arcs. The solution is likely to be infeasible for

any aircraft routing solution. This initial solution yields a lower bound on

the crew pairing cost of a feasible integrated solution. Then, in each iteration

the aircraft routing problem is solved first. We consider all restricted con-

nections operated in the current crew pairing solution and force the aircraft

routing solution to contain as many of those connections as possible. This will

force the “aircraft to follow the crew” as much as possible if the connection

is restricted. In other words, we solve the aircraft routing problem using the

following objective function:

Minimise (cR)
T
xR −

∑
ij∈RC(xP )

cAC
ij

∑
k,ij∈k

xR
k , (5.4)

where RC(xP ) is the set of restricted connections operated in the current crew

pairing problem solution. Vectors cR and xR are defined as in (3.1). The first

term of objective function (5.4) minimises the number of consecutive minimal

turns and the second term maximises the number of restricted connections

that are operated by crew in the aircraft routing solution. This is in contrast

to the aircraft change cost (5.3) where we minimise the number of restricted

aircraft changes. Next we solve the crew pairing problem to optimality for

the current aircraft routing solution with a weighted sum objective function of

crew pairing costs and aircraft change costs:

Minimise (cP )
T
xP + pcAC , (5.5)

where cP , xP , p, are defined as in (5.2) and cAC is defined as in (5.3). The

solutions of the two problems solved in each iteration yield a feasible solution

to the integrated problem. We start with penalty p equal to 0 and increase the

penalty in each iteration in order to increase the robustness of the solutions

we generate. Note that we do not change the ratio of weights between costs
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Algorithm 2 Iterative Algorithm
1: set p = 0
2: solve crew pairing problem with objective function (5.5){Since no aircraft

routings are taken into account a larger set of feasible pairings is gener-
ated.}

3: while p ≤ pmax do
4: solve aircraft routing problem with objective function (5.4){Minimise

cost and maximise the number of restricted connections contained in the
aircraft routing solution that are operated in the current crew pairing
solution.}

5: solve crew pairing problem with objective function (5.5){Minimise cost
and the number of restricted aircraft changes.}

6: break if robustness cannot be improved
7: increase p
8: end while

cR and
∑

ij∈RC(xP ) cAC
ij in the aircraft routing problem. Here the ratio is set

to reflect the importance of the two robustness measures aircraft change cost

(
∑

ij∈RC(xP ) cAC
ij ) and consecutive minimal turns (cR) and there exists no trade-

off with a monetary cost objective as in the crew pairing problem.

Algorithm 2 shows the steps of the iterative approach, see also Figure 5.1

for a schematic overview. For the schedules we consider the minimal sit-time

is equal to the minimal turn-time for all connections, and, hence, no short

connections are taken into account. Since we always solve the crew pairing

problem for a given solution of the aircraft routing problem, short connections

can be considered by removing connections in the underlying network of the

crew pairing problem. If short connections are present in the problem, e.g. in

problem instances of American or European airlines, Step 2 of Algorithm 2

generally yields an infeasible solution that violates the short connection rules.

For our problem instances the interdependence between aircraft routings and

crew pairings stated above is extended by the DPACLim rule. Since the crew

pairing problem is solved for a given aircraft routing solution, this rule can

simply be embedded in the resource constrained shortest path algorithm of

the crew pairing problem (see Section 4).

The cost of the crew pairing solution in Step 2 yields a lower bound on the

crew pairing costs of a feasible integrated solution since no aircraft routings

are taken into account. In our experiments, no aircraft routing solution for
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aircraft change penalty:

p = 0

restr. time = min. sit-

time + 30

Objective:

minimise crew pairing cost

Note: A larger set of feasible

pairings is generated because

aircraft routes are not consid-

ered.

Solve crew pairing prob-

lem

(no aircraft routes)

Objective:

minimise aircraft routing cost +

aircraft change cost

Solve aircraft routing

problem

“encourage aircraft to

follow the crew”

Objective:

minimise crew pairing cost +

p×aircraft change cost

Solve crew pairing prob-

lem

“encourage crew to follow

the aircraft”

Solution

changed?

p ≤ pmax?

Increase aircraft

change penalty p

Stop

No

Yes

Figure 5.1. Schematic view iterative approach.

the crew pairing solution of Step 2 could be found to satisfy the DPACLim

rule. Hence, Step 2 usually yields an infeasible crew pairing solution to the

integrated problem. If the DPACLim rule is relaxed we can find an aircraft

routing solution to form a feasible solution to the integrated problem. For the

test instances, such an integrated solution contains a large number of restricted

aircraft changes and hence accounts for large aircraft change costs.

After the initial steps of the algorithm, we obtain a feasible solution to the in-

tegrated problem in each iteration by solving the crew pairing problem (Step

5) for a given aircraft routing solution (Step 4). Once the integrated solu-

tion converges to a stable solution, i.e. all successive iterations yield identical

aircraft routing and crew pairing solutions, the algorithm stops. Hence, the

aircraft change cost cannot be improved. The value of pmax is chosen such that

the aircraft change costs dominate the crew pairing costs in function (5.5) in

the sense that no restricted aircraft changes are contained in the optimal solu-
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tion if such a solution exists. The sequence of values p we use in this thesis is

p = {0, 2, 5, 10, 20, 50, 100, 500, 1000}. In practice, we stop the algorithm once

the aircraft change costs are below some threshold, e.g. less than 10.

Once the algorithm terminates, a number of different solutions to the robust

and integrated aircraft routing and crew pairing problem are provided. The

trade-off between cost and robustness varies between solutions and the airline

can choose which solution to operate (see Figure 5.3 below).

Implementation

Note that the only modification of the aircraft routing and crew pairing algo-

rithms presented above are different costs in the objective functions. Hence,

the modifications can easily be applied to existing aircraft routing and crew

pairing solvers an airline may possess. In each iteration the costs are assigned

to the appropriate arcs of the column generation networks.

Non-linear Programming Formulation

It is noteworthy that characteristics of the iterative approach are similar to
solution approaches in non-linear programming. Model (5.2) without the short
connection constraints is equivalent to the following non-linear non-convex
integer optimisation problem:

Minimise (cP )T
xP + (cR)T

xR + p
∑

ij∈RC

 ∑
k,ij∈k

xP
k

1−
∑

k,ij∈k

xR
k


subject to AP xP = bP

ARxR = 1,

where RC denotes the set of all possible restricted connections. Formulation

(5.6) can be solved by sequential linearisation methods, solving a sequence of

linear approximations. We refer to Arora et al. [1994] and Li and Sun [2006]

for details on non-linear programming and sequential LP solution methods. It

is an interesting topic of future research to compare the performance of such

a solution method with the methods proposed in this thesis.
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Figure 5.2. Schematic view iterative approach with two crew groups.

Iterative Approach for Multiple Crew Groups

The crew for an aircraft usually consists of multiple crew groups. Our data

sets consist of three crew groups, namely captains and first officers (technical

crew) and flight attendants (cabin crew). Different rules, base strengths and

pay structures apply to each group. A robust aircraft routing and crew pairing

solution for one crew group may enforce many restricted aircraft changes in

a crew pairing solution for another crew group. Hence, considering aircraft

and one crew group might lead to a suboptimal solution. Ideally we want to

consider all crew groups and aircraft simultaneously. To incorporate multi-

ple crew groups into the iterative approach we simply solve the crew pairing

problem in Steps 2 and 5 for each crew group separately but use the same

common aircraft routing solution. To obtain penalties for the restricted con-

nections for the subsequent aircraft routing problem we scale the penalties for

the restricted connections of the different crew pairing solutions according to

weights (w1 and w2 in objective function (5.6) in an example with two crew
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groups) chosen by the airline. The aircraft routing objective function in Step

4 for two crew groups is changed to:

Minimise (cR)
T
xR − w1

∑
ij∈RC(xP

G1)

cAC
ij

∑
k,ij∈k

xR
k − w2

∑
ij∈RC(xP

G2)

cAC
ij

∑
k,ij∈k

xR
k ,

(5.6)

where RC(xP
G1), RC(xP

G2) are the restricted connections contained in crew

pairing solutions of crew group 1 (G1) and crew group 2 (G2), respectively.

Indices k and ij are defined as in Section 5.2.1. Non-negative weights w1 and

w2 can be chosen to reflect the ratio of crew pairing costs between both crew

groups. We then generate a new aircraft routing solution as before. The results

of the iterative algorithm with multiple crew groups are presented in Section

5.3.3. More than two crew groups can be considered in a straightforward ex-

tension. Figure 5.2 shows a schematic overview of the iterative algorithm with

two crew groups, captains and flight attendants.

Iterative Approach for Multiple Aircraft Types

Since we use a path based formulation for the aircraft routing problem, multiple

fleet types can be considered in the aircraft routing problem in a straightfor-

ward way. If crew can only operate a subset of fleet types (which is common for

pilots for example), the subsequent crew pairing problems are solved over sub-

sets of flights determined by the aircraft routing problem. With this strategy

the iterative approach partially integrates fleet assignment, aircraft routing,

and crew pairing problems.

5.2.2 Dantzig-Wolfe Decomposition Approach

First we repeat the formulation of the robust and integrated aircraft routing

and crew pairing model we try to solve:

Minimise (cP )
T
xP + (cR)

T
xR + p(cAC)

T
d

subject to AP xP = bP

ARxR = 1

DP xP − DRxR − d ≤ 0.

(5.7)
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Here we omit the short connection constraints because the scenarios we con-

sider do not contain any short connections as explained in Section 5.2.1. The

third set of constraints of formulation (5.2) can be considered in a similar way

to the restricted connection constraints, as illustrated in the following.

We use Dantzig-Wolfe decomposition (see Section 1.5.1) to re-formulate (5.7)

as one master problem and two sub-problems. The only constraints of the

original formulation that are present in the master problem are the restricted

connection constraints:

Minimise (cP )T V P λ + (cR)T V Rµ + p(cAC)
T
d

subject to 1
T λ = 1 → πP

1
T µ = 1 → πR

DP V P λ − DRV Rµ − d ≤ 0 → π,

(5.8)

where λ ∈ {0, 1}|V P |, µ ∈ {0, 1}|V R| and d ∈ {0, 1}mD
. The columns vP

i and vR
i

of matrices V P = [vP
1 , vP

2 , · · · , vP
k ] and V R = [vR

1 , vR
2 , · · · , vR

k ] span the respec-

tive polyhedra P P = {xP ∈ Rn
+|AP xP = bP}, P P = conv ({vP

1 , . . . ,vP
k }) and

PR = {xR ∈ Rn
+|ARxR = 1}, PR = conv ({vR

1 , . . . ,vR
k }). Dual values πP and

πR are associated with crew and aircraft convexity constraints, respectively.

The entries of vector π are the dual values corresponding to the restricted con-

nection constraints. The convexity constraints ensure that exactly one aircraft

routing solution and exactly one crew pairing solution is chosen in an optimal

integer solution.

The two subproblems contain all other constraints of the original formulation.

The crew pairing subproblem is identical to the original crew pairing problem

except for the objective function:

Minimise ((cP )T − πT DP )xP

subject to AP xP = bP

xP ∈ {0, 1}nP
.

(5.9)

It is important to note that this crew pairing subproblem assumes no aircraft

routing solution. All connections are follow-on connections and minimal sit-

time rules are relaxed. Similarly, the aircraft routing subproblem is identical
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to the original aircraft routing problem except for the objective function:

Minimise ((cR)T + πT DR)xR

subject to ARxR = 1

xR ∈ {0, 1}nR
.

(5.10)

The solution process works as described in Section 1.5.1. The LP relaxation of

the restricted master problem is solved and the optimal dual values are passed

as input to both subproblems. These are solved and one column is generated

from each subproblem solution and added to V P or V R of the master problem,

respectively, if the reduced costs are negative. The process iterates until no

columns with negative reduced cost are returned by either subproblem or a

specified optimality gap is reached.

In each iteration we solve both subproblems and generate one column for V P

and one column for V R from these solutions. Note that the subproblems

are not necessarily solved to IP optimality but stopped when a specified LP

bound-gap is achieved. In a first phase the master problem is only solved to

LP optimality. During this phase an optimality gap can be obtained from

the LP optimal solution values of the subproblems. Since the right-hand-side

b2 of the second set of constraints of formulation (1.7) is equal to 0, a lower

bound for an optimal LP solution of (5.7) is provided by the sum of the costs

of optimal LP solutions of the two subproblems (see last paragraph of Section

1.5.1). We can get an improved lower bound for the optimal solution value of

(5.7) if we solve the subproblems to IP optimality.

If fractional solution variables are contained in the optimal solution of the lin-

ear relaxation of (5.7) we branch on the restricted connections to obtain an

integer solution. Since each restricted connection is associated with a connec-

tion arc i in the flight network, the branching decisions are easily incorporated

into the subproblems by forcing or banning arcs to be contained in a solution.

We can stop the algorithm after the LP solution phase (or at any time) pre-

maturely and determine the best integer solution found by solving the master

problem to IP optimality over the columns generated so far.

In our computational experiments we stop the algorithm after the linear re-

laxation of (5.7) is solved to optimality or within a specified optimality gap.
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We do not use the Dantzig-Wolfe decomposition approach to obtain integer

solutions to (5.7) since the integer solutions obtained by iterative approach

are usually within the specified bound-gap of 2% of the LP solution. Hence,

there is no additional benefit of running the IP solution phase. We refer to the

computational experiments (Section 5.3) for more details.

Note that we do not include the DPACLim rule in this solution approach.

The consideration of this rule requires linking particular routings and pairings

which could be enforced by additional constraints or a branching strategy.

This, however, is computationally difficult and inefficient to enforce. For the

iterative approach on the other hand, enforcing the rule is very easy. Since the

crew pairing problem is always solved for a given aircraft routing problem, the

DPACLim rule can be enforced during the shortest path calculation.

We expect that an operationally robust solution will “almost” satisfy the DPA-

CLim rule. Since the DPACLim is an artificial rule to enforce robustness (see

Section 4.3), a slight violation of the rule can be tolerated. We can enforce

the rule heuristically by using the aircraft routing solution of the optimal in-

tegrated IP solution and generating a DPACLim rule feasible crew pairing

solution as in the iterative approach.

Implementation

Similar to the iterative approach, only small changes are required to existing

aircraft routing and crew pairing algorithms. Again, in each iteration, costs

are assigned to the appropriate arcs of the column generation networks. We

also modify the crew pairing algorithm so that each connection is treated as a

follow-on connection, i.e. minimal sit-times are relaxed. Note that the rows of

matrices DR and DP are not generated a priori for all connections. Instead,

the rows are populated during the algorithm for connections that are part of

a solution that is returned by the crew pairing subproblem.

5.2.3 Benders Decomposition Approach

Currently, the most successful approach in the literature to solve the robust

and integrated aircraft routing and crew pairing problem seems to be Benders
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decomposition (see Mercier et al. [2005]). In this section we outline their

solution approach. We again consider problem (5.7) where short connection

constraints are omitted. Such constraints can be considered in a similar way

to restricted connection constraints.

First, for a given LP solution xP ∈ {xP : AP xP = bP , xP ≥ 0} of the crew

pairing problem, the LP relaxation of (5.7) reduces to a primal subproblem

that contains only aircraft routing variables:

Minimise (cR)
T
xR + p(cAC)

T
d

subject to ARxR = 1

DRxR + d ≥ DP xP ,

(5.11)

with xR ≥ 0 and d ≥ 0. Note that the primal subproblem is always feasible if

a feasible aircraft routing solution exists. Otherwise (e.g. if short connection

constraints are included), feasibility can be achieved by adding artificial vari-

ables with large costs. Next, we formulate the dual of the primal subproblem:

Maximise αT
1 + βT DP xP

subject to αT AR + βT DR ≤ cR

β ≤ pcAC ,

(5.12)

with β ≥ 0 and dimensions of α and β as appropriate. Since α = 0 and

β = 0 is a feasible solution for the dual subproblem, both primal and dual

subproblems have bounded and feasible solutions. Let ∆ denote the polyhe-

dron defined by the constraints of (5.12) and let P∆ be the set of extreme points

of ∆. The LP relaxation of (5.7) can be reformulated as a master problem

containing only crew pairing variables:

Minimise z + (cP )
T
xP

subject to AP xP = bP

z − βT DP xP ≥ αT
1 (α, β) ∈ P∆

xP ≥ 0.

(5.13)

The free variable z is restricted to be larger than the optimal value of the dual

subproblem for any xP . In general, the master problem contains more con-
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straints than formulation (5.7). As the variables in the Dantzig-Wolfe decom-

position, these constraints are not enumerated a priori. Instead, an initially

empty restricted master problem is solved and the optimal solution is used as

input to the primal subproblem. If the optimal solution value of the subprob-

lem is larger than the value of z, the constraint formed by the dual variables

of the optimal subproblem solution is violated by the current solution of the

master problem. It is therefore added to the master problem and the master

problem is re-solved. If the objective value of the subproblem is equal to (or

within a specified gap of) z, the algorithm stops with a (close to) optimal

solution for the LP relaxation of problem (5.7).

To obtain integer solutions to problem (5.7), the Benders decomposition is

embedded in a 3 phase approach by Mercier et al. [2005]. In the first phase

all integer requirements are dropped and master problem and subproblem are

solved to LP optimality with the use of column generation. The first phase of

the algorithm can be stopped when the gap between lower and upper bound

of the LP solution is sufficiently small. In the second phase the master prob-

lem is solved to integer optimality with a branch-and-bound method and the

subproblem is solved to LP optimality at each node. In the final phase in-

tegrality conditions are enforced on the subproblem and this is solved once.

Since the subproblem is always feasible, the algorithm stops with a heuristic

integer solution. However, the objective value of this solution may violate

the cost constraint of the master problem. If the master problem contains

not only optimality constraints for restricted connections, but also feasibility

constraints for short connections, the heuristic integer solution may in fact

be infeasible. In this case a constraint must be added to the master problem

forbidding the set of short connections. With this new constraint the problem

must be re-solved starting from phase 2.

Implementation

As in the Dantzig-Wolfe decomposition, the DPACLim rule is relaxed in the

Benders decomposition approach. The following changes to the algorithms that

solve the individual problems are required. An additional set of constraints

must be added to the aircraft routing problem. On each iteration the right-

hand sides of these constraints must be changed. On each iteration a new
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constraint is added to the crew pairing problem. Finally, the variable z must

be added to the crew pairing model.

Identifying Strong Cuts

Mercier et al. [2005] improve their algorithm by modifying the subproblem

to generate strong cuts. If the primal subproblem is degenerate, more than

one optimal solution to the dual subproblem may exist. Although all of these

solutions generate valid cuts, some may be stronger than others. A cut gener-

ated from the optimal solution (α, β) dominates another cut generated from

solution (α′, β′) if and only if αT
1 + βT DP xP ≥ α′T

1 + β′T DP xP for all

xP ∈ {xP : AP xP = bP , xP ≥ 0}. A cut that is not dominated is called

Pareto optimal. The authors solve a dual auxiliary subproblem to obtain a

Pareto optimal cut:

Maximise αT
1 + βT DP xP

0

subject to αT
1 + βT DP xP = v(xP )

αT AR + βT DR ≤ cR

β ≤ pcAC ,

(5.14)

with β ≥ 0. Vector xP
0 is chosen in the relative interior ri(XLP ) of XLP =

{xP : AP xP = bP , xP ≥ 0} (see below how to choose such an xP
0 ). Vector

xP ∈ XLP is a given solution for which the primal subproblem is feasible

and value v(xP ) denotes the optimal value of the primal subproblem. Only

the first constraint is added to the original dual subproblem (5.12) to obtain

(5.14). This constraint ensures that the solution will be an extreme point of

the set of optimal solutions of the original dual subproblem. In the objective

function the strengths of the cuts are compared with respect to some primal

feasible point xP
0 . The Pareto optimal cut is added to the master problem.

One can solve the primal version of the dual auxiliary problem instead of the

dual problem. Since the master problem is solved by column generation, an

interior point xP
0 ∈ ri(XLP ) may not be available. Other points can be chosen

for xP
0 and the dual auxiliary problem still yields a valid cut since the choice

of xP
0 only changes the objective function. The choice may, however, affect the

strength of the cut. The authors arbitrarily fix the coefficients of β close to 0
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to generate strong cuts.

The primal auxiliary subproblem is solved to obtain a strong cut once the

primal subproblem is solved in phase one of the algorithm. All other steps

of the algorithm remain unchanged. We do not implement the strong cut

approach. The main purpose of our implementation is to obtain a lower bound

for the optimal solution value and speed of the algorithm is not very important.

5.2.4 Discussion of Approaches

In both optimisation approaches, Dantzig-Wolfe and Benders decomposition,

a weight must be attached to aircraft change cost a priori. This weight rep-

resents the trade-off between costs and operational robustness and is difficult

to estimate. In the iterative approach the user can choose a solution after

the algorithm terminates depending on the trade-off observed between crew

pairing cost and aircraft change cost, no weight is needed a priori.

All solution methods previously discussed in the literature, including Benders

decomposition, add constraints to the set partitioning polytopes of the air-

craft routing and crew pairing problems. These additional constraints can

cause computational difficulties. In the iterative approach and the Dantzig-

Wolfe decomposition approach the original set partitioning structures are not

disturbed by additional constraints. Apart from the computational difficulties

there are two further advantages of such an approach. Firstly, it is possible to

solve aircraft routing and crew pairing problems efficiently with the methods

described in Chapters 3 and 4. In both approaches only the objective func-

tion is changed to influence characteristics of the solutions. The calculation

of objective function coefficients is easily implemented into the shortest path

computations of the column generators for both problems. An airline usu-

ally uses aircraft routing and crew pairing solvers as part of the traditional

sequential solution approach. Existing solvers can be used with only minor

modifications. For both approaches only a master problem needs to be added,

that controls the two subproblems. Secondly, in both approaches the aircraft

routing and crew pairing problems must be solved repeatedly. The solution of

a previous iteration can be used as a starting basis for the simplex algorithm.

If only the objective function changes, the previous solution is still feasible
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and we expect that only very few iterations are needed until the new optimal

solution is found.

The iterative approach and the Dantzig-Wolfe decomposition approach are

structurally very similar. In both approaches identical subproblems are solved.

Only additional aircraft routing information is used in the crew pairing sub-

problem of the iterative approach. The penalties used in the iterative approach

to penalise aircraft changes can be thought of as duals π corresponding to the

restricted connection constraints in the Dantzig-Wolfe master problem. This

in fact gives the motivation for the iterative approach: instead of using optimal

duals from an LP solution, heuristically constructed duals are used to guide

the solution process of the subproblems in the iterative approach.

We think it is not possible to efficiently integrate the DPACLim rule into

the Dantzig-Wolfe or Benders decomposition approaches. This would require

comparing particular pairs of routings and pairings and is computationally

expensive.

All three approaches provide lower bounds on the optimal solution. For the two

decomposition approaches the optimal solution values of the LP relaxations of

the subproblems provide lower bounds on the objective value of an optimal

solution. In the iterative approach a lower bound for the crew pairing cost is

calculated in the very first iteration. The minimal aircraft routing costs can be

added to obtain a lower bound for the cost of an integrated solution. Benders

and Dantzig-Wolfe decomposition provide a guarantee of the solution quality

of the LP relaxation of problem (5.7) while the iterative approach does not.

In practice, it is beneficial to combine the iterative approach and the Dantzig-

Wolfe decomposition approach. An initial solution is found by the iterative

approach. The solution is added to matrices V P and V R of the Dantzig-Wolfe

decomposition approach. This approach can then be used to obtain a lower

bound for the solution and to improve the solution quality. The weight p of the

iterative approach starting solution is used as weight p in the objective function

of the decomposition approach. Using a starting solution can significantly

speed up the solution process of the optimisation approach.

Mercier et al. [2005] show that in the Benders decomposition approach only

very few iterations are required to obtain optimal LP solutions. In their compu-

tational experiments they do not consider base-constraints except for limiting
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the total number of duties. They also use an approximation of the crew cost

function. In our experience, such relaxations greatly simplify the crew pairing

problem.

Finally, FAM can easily be partially integrated into the iterative approach.

For Dantzig-Wolfe and Benders decomposition methods, additional constraints

are needed to ensure that crew with the correct qualifications operate on each

aircraft type.

5.3 Computational Experiments

In this section we compare computational results of our implementations of

the iterative approach, the Dantzig-Wolfe decomposition approach, and Ben-

ders decomposition approach. All program code is written in C, C++, and

FORTRAN. We use basic implementations of Dantzig-Wolfe and Benders de-

composition without any speed-up procedures. We also solve both optimisation

approaches to LP optimality only and compare the results and run times with

the iterative approach.

5.3.1 Iterative Approach for a Single Crew Group

Figure 5.3 displays a typical set of results of the iterative approach. As in the

crew pairing chapter, the horizontal axis displays crew pairing costs and the

vertical axis shows aircraft change costs. The costs of the solution operated by

the airline and the solutions generated by the iterative algorithm are compared

for the first officer schedule, summer 2005. The green diamond shows the ob-

jective value of the crew pairing solution that was manually generated and

operated by Air New Zealand. This solution is obtained by using the aircraft

routing solution that was operated by the airline and generating a cost min-

imal crew pairing solution with the traditional method described in Chapter

4. The lower bound for the crew pairing cost is shown which is obtained from

the initial step of the iterative approach. The blue squares show the objective

values of the solutions generated by the iterative approach. The labels show

the iteration in which the solution is obtained. Starting with very cheap so-

lutions the solutions become more robust during the algorithm and also more
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expensive. The first six solutions are all cheaper and more robust than the

solution obtained by the traditional approach. These results are remarkable

since Air New Zealand is using sophisticated optimisation methods for crew

planning, described in detail in Butchers et al. [2001], a finalist entry for the

Franz Edelman Award in 2000.

Figure 5.3. Iterative approach solutions for first officer scenario, summer 2005,
7 days.

In Table 5.1 results of the iterative approach are listed in detail for one, three,

and seven day scenarios of the first officer schedule, summer 2005. The first

column lists the scenario name. The next column lists the iteration in which

the results are obtained. For comparison we list the solution obtained by

the traditional sequential approach as “airline” (see Chapter 4). Column p

shows the value of p that applies to the iteration. The next four columns show

LP and IP values of crew pairing costs, the gap between LP and IP solution

values (“gap”) as a percentage, and the improvement of LP solutions (“impr.”)

compared to the sequential “airline” solution. The aircraft routing costs are

displayed in column “cR”. The IP costs of aircraft changes are listed in column

“cAC” and the improvements compared to the “airline” solution are listed in

the following column (“impr.”) as a percentage. All restricted aircraft changes
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are listed in the following columns. Finally, the total time elapsed since the

start of the algorithm is shown for each iteration in seconds. We do not show

any aircraft change costs for the lower bound solution of iteration 0 since we

cannot find an integrated solution satisfying the DPACLim rule and hence

this solution is infeasible.

Note that in the crew pairing problem a weighted sum objective of crew pairing

costs and aircraft change costs is used. The ratio of crew pairing costs and

aircraft change costs in the solution value of LP and corresponding IP solution

can differ. Since we only display crew pairing costs we may observe smaller

IP solution values than the corresponding LP solution values. Since the ratio

also differs from iteration to iteration we observe that crew pairing costs are

not strictly increasing during the iterative algorithm.

The cost of the crew pairing solution obtained in Step 2 of Algorithm 2 (it-

eration 0) is a lower bound for the crew pairing cost of the optimal solution

value. In Table 5.1 we can observe for the 7 day first officer solutions, that

this lower bound solution incurs up to 2.34% less crew pairing cost than the

airline solution (LP). The solution is infeasible since we cannot find aircraft

routings to satisfy the DPACLim rule.

The cheapest feasible solution we find (iteration 1) incurs 2.32% less cost than

the airline solution (LP) and its cost is almost at the lower bound (0.02%

gap). Also, the aircraft change cost of this solution is only 289 compared to

344 for the airline solution which is an improvement of 15.99%. The most

robust solution that is still cheaper than the airline solution improves the

aircraft change cost by 86.63% (iteration 6). Note that for all technical crew

DPACLim is set to 1 for the airline approach while for the iterative algorithm

DPACLim is set to 2. Different settings are investigated below (see Figure 5.4)

where we show that for setting DPACLim to 1 the solutions of the iterative

approach are also cheaper than the airline solution.

In Tables 5.2 and 5.3 we present further results for first officer schedules of

winter 2005 and summer 2006, respectively. The overall trend is similar to the

solutions for summer 2005 shown in Table 5.1. We find solutions that incur up

to 2.23% (w05, 7 days, iter. 1) less crew pairing cost than the corresponding

airline solution. For all 7 day scenarios we obtain solutions with no increase of

crew pairing cost but a decrease of aircraft change cost exceeding 90% (w05,
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7 days, iter. 7 and s06, 7 days, iter. 7). Aircraft routing costs cR remain on

a similar level during the iterations of the algorithm. This is caused by the

constant ratio of cR and cAC in the objective function of the aircraft routing

problem. Note that for the summer 2005 scenarios the aircraft routing costs

are much higher for the airline solutions than for all other scenarios. For these

scenarios the airline did not take the objective of minimising minimal turn

sequences into account when constructing the aircraft routings.

In Tables 5.4 and 5.5 we list results for the summer 2005 schedule for captain

and cabin crew groups, respectively. For the captain scenarios, results look very

similar to the first officer scenarios. We achieve a decrease in crew pairing cost

of up to 2.1% with a simultaneous decrease of aircraft change cost of 13.44%.

We observe that for cabin crew scenarios the airline crew pairing cost is very

close to the LP lower bound. The reason for this is that a relaxed DPACLim

rule of 2 is used for all cabin crew scenarios in airline and iterative approach

solutions. Nevertheless, we obtain a decrease of almost 60% in aircraft change

cost without an increase of crew pairing cost.

Although the integer bound gap is set to 2.0% for all scenarios the average

bound gap observed over all solutions of the iterative approach listed is 0.44%.

Finally, we observe that the total running time of the iterative approach for a

scenario of one week ranges in between 570 seconds for the easier cabin crew

problem up to 2172 seconds for the captain problem. These running times are

very reasonable for the types of planning problem we try to solve. Note that

the increase of weight p during the algorithm is chosen to be conservative. A

faster increase of p will decrease the number of iterations and hence the running

time of the algorithm considerably. We choose to generate many solutions to

allow for better judgement of the trade-off between crew pairing costs and

aircraft change costs.
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Figure 5.4 shows the impact of the DPACLim rule for the first officer scenario,

schedule summer 2005, 7 days. Relaxing the rule from 1 to 2 for the airline

approach results in a solution with less crew pairing costs but many more

restricted aircraft changes and hence it is less robust. In the iterative approach

cheaper solutions can be generated if the DPACLim rule is relaxed from 1 to 2.

Here the solutions are equally robust for both settings since restricted aircraft

changes are penalised in both approaches. Since the DPACLim rule is only

used by Air New Zealand to increase the robustness of the solutions the rule is

relaxed to 2 for the iterative approach since robustness is achieved by means

of aircraft change costs. From a practical point of view, multiple aircraft

changes can be tolerated if this does not affect robustness, i.e. the aircraft

changes occur on connections with long ground times. Note that because

of the LP/IP gaps, LP values are displayed in Figure 5.4 to obtain a more

consistent representation.

Table 5.6 lists some more details about the characteristics of the solutions.

Statistics are shown for setting DPACLim to 1 and 2, respectively. We list the

airline solutions as well as the solutions generated by the iterative approach.

For DPACLim equal to 1 we list the total number of duty periods in the

solution (“all”). We show the number of duty periods with 1 aircraft change

(“1 ac”) and the number of restricted aircraft changes (“(rac)”) within these

duty periods. Column cAC shows the aircraft change cost for each solution.

For a DPACLim setting of 2 we again show the total number of duty periods.

Additionally, we list the number of duty periods with 1 (“ac 1”) and 2 (“ac

2”) aircraft changes and the number of restricted aircraft changes contained

in both types of duty periods, respectively. Finally, column cAC again displays

the aircraft change costs of the solutions. We observe that the relaxation of

the rule has no negative impact on the aircraft change cost of the solutions

of the iterative algorithm. The reduction in crew pairing cost is achieved by

increasing the number of duty periods with two aircraft changes. However, the

aircraft change costs of these solutions do not increase significantly. In iteration

3 for example, aircraft change costs are almost identical but we observe (see

Figure 5.4) a decrease in crew pairing cost of 0.77 % for setting DPACLim to 2.

This cheaper solution does contain 16 duty periods with 2 aircraft changes but

only 11 restricted aircraft changes. This demonstrates that we can achieve a

better crew pairing cost and a more robust solution if we allow a small number
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of duty periods to contain two aircraft changes.

Figure 5.4. Variation of DPACLim for first officer scenario, summer 2005, 7
days.

DPACLim 1 DPACLim 2
no. duty periods no. duty periods

iteration all 1 ac (rac) cAC all 1 ac (rac) 2 ac (rac) cAC

airline 210 115 72 344 206 74 52 56 76 558
0 204 101 54 255 202 77 46 25 24 289
1 203 98 52 217 202 81 43 17 14 191
2 205 83 35 149 202 83 40 21 19 188
3 204 86 34 123 202 76 26 16 11 126
4 204 81 17 59 203 73 24 16 10 90
5 205 77 14 39 205 60 12 12 3 46
6 205 81 5 10 206 69 5 10 1 14
7 207 83 1 2 207 66 1 17 0 1

Table 5.6. Variation of DPACLim for first officer scenario, summer 2005, 7
days.
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5.3.2 Comparison of Iterative Approach and Optimisa-

tion Approaches

In this section we use Dantzig-Wolfe and Benders decomposition methods to

solve the LP relaxation of the robust and integrated aircraft routing and crew

pairing problem. The purpose of the computational experiments is twofold.

Firstly, we want to establish lower bounds for the solution values of the inte-

grated problem. We compare the integer solutions of the iterative approach

with the LP lower bound from the decomposition methods. Secondly, we

compare the running times of Dantzig-Wolfe and Benders decomposition ap-

proaches for solving the LP relaxation to establish which algorithm performs

better.

For each of the scenarios investigated in the previous section we apply each

decomposition approach twice. In one run we set weight p equal to 2 and in

the other run we set weight p equal to 20. This corresponds to the value of

weight p in iterations 2 and 5 of the iterative approach.

In the Benders decomposition approach the master problem and subproblem

are only solved to LP optimality. In the Dantzig-Wolfe approach the master

problem is solved to LP optimality and integer solutions for the subproblems

are found. Both decomposition approaches provide lower bounds for the op-

timal solution of the optimal LP solution (see Section 1.5). Once the gap

between the lower bound and the best LP solution value found is below 0.5%

we stop the algorithm.

Table 5.7 summarises the results of the experiments. We list crew group,

scenario name, solution method and value of p for all experiments we perform.

In the next two columns the number of iterations and running time needed

to reach the stopping criterion are listed. If the optimality gap of 0.5% is

not reached in 50 iterations, we stop the algorithm and report the gap that

is obtained after 50 iterations. For each optimisation run we list lower and

upper bound of the optimal LP solution and the gap between the two values.

Note that because of the heuristic nature of the crew pairing solver (i.e. the

dominance relaxed shortest path) that is used, we can sometimes observe two

different intervals for the same optimal solutions that are not overlapping (see

for example Table 5.7 scenarios f33, s05, 7 days, p = 20 and c33, s05, 7 days,



158 5.3 Computational Experiments

p = 20). Of course, this cannot occur if the solution approach for the crew

pairing problem is truly optimal. The observed gaps between two intervals for

the same optimal solution is usually very small (< 0.1%). In two instances,

however, the observed gap is 0.32% (c33, s05, 7 days, p = 20) and 0.33% (f33,

s05, 7 days, p = 20), respectively. For the iterative approach, we show the best

solution that is found with respect to the objective function that is used in

the optimisation approaches. We apply this objective function to the integer

solutions of the iterative approach and display the objective value and the gap

with respect to the lower bound obtained by the optimisation approach. We

also list the time needed for the iterative approach to obtain the solution.

Note that the lower bound LP relaxation solutions do not necessarily satisfy the

DPACLim rule restrictions since the rule is not integrated into the model. The

LP/IP gaps observed are partially caused by the violation of the DPACLim

rule. Also, more than two aircraft changes in a duty period are not desirable

for the problem instances we consider. Hence, the iterative approach has

the advantage of easily satisfying the DPACLim rule while the optimisation

approaches cannot guarantee to satisfy the rule.

The average gap between iterative approach solution and LP lower bound is

very small (0.9%). In most cases this integer solution is found before the

stopping criterion of either optimisation approach is reached. The observed

gap is also well below the branch-and-bound gap of 2%. Using the iterative

approach, we always find an integer solution within the 2% gap and hence, we

do not solve the optimisation approaches to IP optimality. The additionally

required run time cannot result in significantly improved solution quality. In

two cases the Dantzig-Wolfe decomposition indicates a gap exceeding 2% but

the gap is smaller than 2% for the lower bound of Benders decomposition in

both cases.

In terms of run time, Benders decomposition seems to be superior to Dantzig-

Wolfe decomposition. However, integer subproblems are solved for the Dantzig-

Wolfe decomposition approach while the subproblem is only solved to LP op-

timality for Benders decomposition. It is noteworthy that the contribution by

Mercier et al. [2005] indicates fewer iterations and much faster run times for

Benders decomposition than observed in our computational experiments. We

believe that this is caused by the authors solving a slightly relaxed problem,
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while in our approach a real world application is addressed together with all

applicable rules. It also seems to be much harder to obtain an optimal solution

for both decomposition approaches when the weight p is large. For Benders

decomposition, this is caused since larger costs are associated with the sub-

problem and hence the subproblem must not only transfer feasibility but also

optimality information back to the master problem. The Dantzig-Wolfe de-

composition is also more difficult when p is large since the sum of crew pairing

cost and aircraft routing cost as naturally available lower bound for the ob-

jective value of the relaxed master problem is further away from an optimal

solution than for small values of p.

Note that both optimisation approaches are implemented in a basic fashion.

No dual stabilisation method is used to speed up Dantzig-Wolfe decomposition,

and Benders decomposition is not enhanced with stronger cut generation. We

omit these improvements since we do not believe that the run times of the

optimisation approaches can be improved sufficiently to compete with those

of the iterative approach. We use the results of the optimisation approaches

to verify the quality of the solutions of the iterative approach. In practice we

suggest only running the decomposition approach to verify the solution quality

of the iterative approach. If this is only done rarely and run time is not very

important then Dantzig-Wolfe decomposition can be chosen as the solution

method since it is much easier to implement into existing aircraft routing and

crew pairing optimisation algorithms than Benders decomposition.

We investigated hot-starting the Dantzig-Wolfe decomposition approach by

generating columns for the restricted master problem from all solutions of the

iterative approach but this procedure did not improve run times significantly.
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5.3.3 Iterative Approach for Multiple Crew Groups

In this section we show results for considering two crew groups in the iterative

approach instead of one. We extend the iterative algorithm to solve the aircraft

routing problem together with the crew pairing problems for technical crew and

flight attendants. The goal is to show that the benefits of solving one crew

group together with the aircraft are not lost if we add another crew group.

Clearly, using a solution that is very robust for one crew group but results

in many restricted aircraft changes for another crew group is not desirable.

Figures 5.5 and 5.6 summarise the results. Note that LP solution values are

displayed in both figures to obtain a more consistent overview.

In Figure 5.5 the results of applying the iterative algorithm to first officers only

are shown as blue squares. Similarly, in Figure 5.6 the results of considering

cabin crew only are also marked as blue squares. Additionally, we solve the

first officer scenario as before and in each iteration use the aircraft routing

solution to generate solutions for the cabin crew problem. This corresponds to

setting w1 = 1 and w2 = 0 in objective function (5.6). The results are shown

as red diamonds in Figure 5.6. The solutions incur more crew pairing cost

and more aircraft change cost than the solutions obtained from focusing on

cabin crew and aircraft only. But the solutions follow the same pattern and

are of good quality compared to the airline solution. Hence we do not need

to sacrifice solution quality of the cabin crew problem in order to improve the

first officer solution and hence improve the overall solution to the integrated

problem. Note that rules for captains, the third crew group, are very similar

to the first officer scenario and hence we expect to obtain almost identical

solutions for captains compared to first officers.

In a second experiment we again solve two crew pairing problems in each it-

eration but we now use feedback information from the first officer problem as

well as the cabin crew problem to generate the aircraft routing solution. In

the aircraft routing problem we scale the penalties for the restricted connec-

tions of the first officer solution and of the cabin crew solution with the same

weight. This corresponds to setting w1 = 1 and w2 = 1 in objective function

(5.6). We then generate aircraft routings subject to this objective function.

The resulting solutions are represented as light blue triangles in both figures.

In Figure 5.5, we observe that the first officer solutions do not deteriorate sig-
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Figure 5.5. Results for first officer scenario, summer 2006, 7 days, with cabin
crew solved simultaneously.

Figure 5.6. Results for cabin crew scenario, summer 2006, 7 days, with first
officers solved simultaneously.
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nificantly. In Figure 5.6, the solutions for cabin crew are not as good as the

best cabin crew solutions (squares), but better than the solutions generated

without using any feedback from the cabin crew solutions (diamonds). Note

that for the more robust of these solutions, both crew groups rarely change

aircraft if the connection is restricted. This also implies that both crew groups

usually stay together on restricted connections, which is of great advantage

not only from a robustness point of view but also from an operational point of

view since keeping the crew as one unit greatly simplifies business procedures.

The solutions satisfy this property without the need to focus on the property

in the algorithm.

We only use two basic configurations of the weights ((1, 0) and (1, 1)) to scale

the penalties. The weights can be adjusted according to the airline’s pref-

erences, e.g. relative to the cost incurred by each crew group. We can now

generate solutions for the aircraft routing and the two crew pairing problems

in one integrated procedure. Likewise, additional crew groups or multiple air-

craft types can be added in a straightforward way.

5.4 Simulation

In this thesis we consider sequences of minimal turns within an aircraft routing

and aircraft change costs as two measures of the operational robustness of

the integrated solution. We use simulation to estimate whether more robust

solutions with respect to our measures are indeed solutions where disruptions

are less likely to propagate onto other flights causing additional delays. The

final test of robustness of the improved solutions can only be made once the

solutions are operated in practice.

The aircraft routing solution and two crew solutions, one for technical crew and

one for cabin crew, are used as input for the simulation. We assume that the

two technical crew group solutions, for captains and first officers, are identical.

During the simulation we loop over all flights which are ordered by increasing

departure time. For each flight a possible initial disruption delay is generated

randomly depending on origin and hour of departure. The distribution that is

used to calculate delays is derived from actual delay data over two years. A

simple push-back recovery is used: each delayed flight departs as soon as the



5.4 Simulation 167

aircraft and both crew types are available to operate this flight. The time at

which aircraft and crew are available depends on the actual departure times

of the flights they are operating prior to the current flight. For each flight the

actual delay is calculated as the maximum of three values: delay caused by

waiting for technical crew, delay caused by waiting for cabin crew, and the

sum of delay caused by waiting for aircraft and new initial disruption delay.

The delay is added to the original departure time of the flight to obtain the

actual departure time. Iteratively, all flights are considered in the same way.

We repeat this simulation 1000 times with different random seeds.

As a result, we obtain estimates of the on-time performance (OTP) of the

solutions, i.e. what percentage of the flights depart within 10 minutes of the

originally scheduled departure time, and the number of minutes of delay. In

Table 5.8 we display the simulation results for the “airline” solution and for

the solutions from iterations 2 and 5 of the iterative approach. We use the

iterative approach for two crew groups with identical weights w1, w2 for both

crew groups as in the previous section to obtain the solutions. For each solution

we list crew pairing costs and aircraft change costs for both crew groups,

technical crew (“f33”) and cabin crew (“spsr”). We also display aircraft routing

costs. The last column shows the OTP percentage. For the airline solution

78.34% of all flights depart within 10 minutes of the scheduled departure time.

For iteration 2 and 5 the values are 80.03% and 81.16%, respectively. All three

robustness measures are better for the iterative approach solutions compared

to the airline solution. This increase in robustness is reflected in better OTP,

where the OTP value increases by up to 3.6%. We only list results for a single

data set, results are very similar for all scenarios considered in this chapter.

f33 spsr
iteration cP (×102) cAC cP (×102) cAC cR OTP (%)
airline 1673.21 385 706.56 591 1890 78.34
2 1624.29 198 713.37 389 1540 80.03
5 1627.32 85 713.07 191 1460 81.16

Table 5.8. On-time performance for iterative approach solutions, first officer
and cabin crew scenarios, summer 2006, 7 days.

Table 5.9 lists the minutes of delay that occurred for the different solutions.

We list the number of minutes of delay that are occurring during a week.
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Delays are listed for new initial disruptions (“new”), delays caused by waiting

for aircraft, delays caused by waiting for technical crew (“f33”), and delays

caused by waiting for cabin crew (“spsr”). The final column of Table 5.9

shows the total number of passenger delay minutes (“PDM”) per year. The

values are obtained by multiplying the occurring delays by average passenger

numbers for every pair of origin and hour of departure. We observe a significant

decrease in all reactionary delay figures. These delays are all delays caused by

waiting for aircraft and crew. The annual passenger delay minutes decrease by

more than 4.2 million minutes or almost 14%. All values are average numbers

over all simulations performed.

weekly annual
iteration new aircraft f33 spsr total PDM
airline 2456.76 2551.12 382.84 413.07 30360061.95
2 2454.06 2473.75 137.76 228.88 27838728.10
5 2456.88 2304.04 68.18 131.70 26143271.69

Table 5.9. Minutes of delay listed by reason for iterative approach solutions,
first officer and cabin crew scenarios, summer 2006, 7 days.

5.5 Visualisation

We use a visualisation GUI to compare solutions and verify the solution quality.

The visualisation GUI is implemented in MATLAB 7.3.0 (The MathWorks

Inc. [2003]). Aircraft routings for all aircraft for the whole solution period

are displayed together with crew pairings of one crew pairing solution. It is

possible to view selected pairings or pairings originating from particular bases.

Minimal aircraft turns, restricted aircraft changes, and various statistics can

also be displayed. It is also possible to print solutions over any time period.

In the following screen-shots a single day of solutions of the first officer schedule

of summer 2006 is shown. Each flight is represented by a rectangle associated

with flight number, origin, destination, departure time, and arrival time. Air-

craft routings are displayed as rows of flights. Crew pairings are represented as

red lines connecting flights. The crew pairings are labelled with id numbers,

the start (“ST”) and end (“ET”) of the crew pairings are identified as well

as overnight rest breaks (“R”). If a crew pairing starts with a blue line, the
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crew is passengering on the blue flights until the red line of the pairing starts.

Similarly, if the crew pairing ends with a green line, the crew is passengering

at the end of the pairing back to their home base.

Screen-shot 5.7 displays an aircraft routing solution only, for Tuesday, July 25,

2006. All times are given in local Auckland time. The difference between a

robust and non-robust solution becomes obvious in screen-shots 5.8 and 5.9.

Figure 5.8 displays the solution that is generated by using the traditional se-

quential approach which is an aircraft routing solution that was operated by

Air New Zealand. Figure 5.9 shows the solution of iteration 5 of the iterative

approach for the same day. Only very few aircraft changes can be observed in

the second Figure. Aircraft changes can easily be identified in this representa-

tion as diagonal lines connecting one aircraft with another in a different row

of flights.
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Figure 5.7. Screen-shot of aircraft routing solution for first officer scenario,
summer 2006.
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Figure 5.8. Screen-shot of traditional approach crew pairing solution for first
officer scenario, summer 2006.
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Figure 5.9. Screen-shot of iterative approach (iteration 5) crew pairing solution
for first officer scenario, summer 2006.



Chapter 6

Robust and Integrated Aircraft

Routing and Crew Pairing with

Time Windows

In this chapter we describe a robust and integrated model for aircraft routing

and crew pairing problems that also allows re-timing of departure times of

flights in the schedule. The problem is called the time window problem because

the departure time of each flight can vary within some specified interval, i.e. a

time window. We formulate a model that integrates the three problems of

aircraft routing, crew pairing, and time windows and propose two different

solution approaches. We present computational experiments for both solution

approaches and highlight problems and challenges.

In contrast to the robust and integrated problem described in the previous

chapter, the type of problem considered in this chapter is a long term planning

problem. The schedule is usually published at least six months or even a year

prior to operation. Once the schedule is published only minor adjustments to

the schedule can be made because passengers start booking flights and rely on

the published departure times of the flights, e.g. because of business travel or

international connections. The aircraft routing and crew pairing problems are

solved much closer to the day of operations, e.g. two months in advance. We

cannot change departure times of the flights at this time. Instead, we solve

the robust and integrated problem with time windows at the time the schedule

is constructed as a long term planning problem. We try to explore benefits



174 6.1 Model

in cost or robustness of slightly modified schedules compared to the originally

proposed schedule. We expect the modified schedule to possess characteristics

that will enable low cost and robust crew pairing and aircraft routing solutions.

These solutions will be constructed with the iterative approach shortly before

the day of operations, as discussed in the previous chapter.

6.1 Model

The robust and integrated aircraft routing and crew pairing problem with

time windows is a generalisation of model (5.2). Flexibility is added to the

departure times (and hence arrival times) of the flights in the schedule, i.e. the

departure time of each flight can vary within some lower and upper bounds.

We are solving the robust and integrated aircraft routing and crew pairing

problem, and the model must ensure that the same departure time is assigned

to the same flight in both problems. As in all previous models a dated schedule

is considered. Although the schedule is different on each day of the week, a

number of flights are offered by Air New Zealand at the same time each day,

e.g. a business flight between the same origin and destination each morning at

7 o’clock. Some flights are repeated on every day of the schedule while others

are only operated on some days, e.g. only on weekdays. As a requirement to

the model, every flight that repeats throughout the schedule must depart at

the same time. For example, the model may change the departure time of the

business flight above to depart at 7:05 a.m., but it must do so on each day the

flight is operated. We refer to these requirements as schedule synchronisation

constraints. Additionally, we must ensure all departure times are within the

applicable lower and upper bounds and all minimal turn-time and minimal

sit-time requirements are met.

To incorporate departure time flexibility into the model, we add a set of vari-

ables t to the formulation: variable ti represents the departure time of flight

i. Variable ti is limited by the lower and upper bound of the departure time

window:

tmin
i ≤ ti ≤ tmax

i . (6.1)

Since we assume fixed flying time, the departure time also determines the

arrival time of each flight. If connection ij is operated in the solution by
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some aircraft, we need to enforce the following inequality to ensure minimal

turn-time restrictions are satisfied:

ti + (flightT imei + minTurnT imeij) ≤ tj. (6.2)

Equivalently, the same restrictions need to be satisfied for crew connections.

If connection ij is operated by some crew, the following inequality must hold:

ti + (flightT imei + minSitT imeij) ≤ tj. (6.3)

To integrate these constraints into our model, we define an integer mT × nR

matrix TR. The value mT is the number of all possible connections in the

schedule and nR the number of all feasible aircraft routings. Each column in

matrix TR corresponds to exactly one column of matrix AR, where

(tij,k)
R =


flightT imei + minTurnT imeij if connection ij is contained in

routing k

−M otherwise,

with 1 ≤ ij ≤ mT , 1 ≤ k ≤ nR. Note that we use value ij to identify the single

row of matrix TR that is associated with connection ij. A large constant M

(called big-M ) is chosen such that the inequality ti − M ≤ tj holds for all

feasible connections ij, independently of the values of ti and tj. This ensures

that if a connection ij is not part of the solution, constraints (6.2) are always

satisfied. If connection ij is part of the solution, constraints (6.2) ensure that

the MinTurnTime rule is satisfied.

We also define an mT ×m node-arc incidence matrix T , where m is the number

of flights. Each row of matrix T represents a possible connection and each

column represents a flight. Each row has exactly two non-zero entries: the

value 1 in the column of the arriving flight and the value −1 in the column of

the departing flight of the connection:

(tij,k) =


1 if k = i, i.e. flight k is the arriving flight of connection ij

−1 if k = j, i.e. flight k is the departing flight of connection ij

0 otherwise,
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with 1 ≤ ij ≤ mT , 1 ≤ k ≤ m. For crew, we define an mT × nP matrix T P

analogously to TR:

(tij,k)
P =


flightT imei + minSitT imeij if connection ij is contained in

pairing k

−M otherwise,

with 1 ≤ ij ≤ mT , 1 ≤ k ≤ nP . Constant M ensures that constraints (6.3) are

satisfied if connection ij is not part of the solution, otherwise the constraints

ensure that the MinSitTime rule is satisfied.

In order to satisfy the schedule synchronisation constraints, we partition the

flights in the schedule into groups of flights G that must depart at the same

time. We add one departure time variable τg for each group of flights g ∈ G

determining the departure time of all flights in the group and we add the

following constraints to the model:

ti = τg, for all g ∈ G and all i ∈ g.

We define an m×|G| matrix S that maps the time variables to the appropriate

group:

(sij) =

 1 if flight i is in group j

0 otherwise,

with 1 ≤ i ≤ m, 1 ≤ j ≤ |G|. With this matrix representation the robust and

integrated aircraft routing and crew pairing problem with time windows can be
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formulated as follows:

Minimise (cP )
T
xP + (cR)

T
xR + (cD)

T
d

subject to AP xP = 1

ARxR = 1

BP xP − BRxR ≤ 0

DP xP − DRxR − d ≤ 0

T P xP − T t ≤ 0

TRxR − T t ≤ 0

t − Sτ = 0

tmin ≤ t ≤ tmax,

(6.4)

where xP ∈ {0, 1}nP
, xR ∈ {0, 1}nR

, d ∈ {0, 1}mD
are binary variables and

t ∈ Zm and τ ∈ Z|G| are integer departure time variables. All departure times

are represented as minutes from the start of the day.

The first four sets of constraints and associated variables are identical to those

in Model (5.2). Constraint sets five and six ensure that minimal turn-time and

minimal sit-time requirements are met, respectively. Constraints seven are the

schedule synchronisation constraints and the last set of constraints enforces

the lower and upper bounds on all departure time variables.

Variables τ are included in the model for simplicity and can be removed from

the formulation and expressed by variables t. The time variables can be disag-

gregated from one variable for each flight to one variable for each connection

to avoid the big-M constraints, see van Eijl [1995]. We do not present this

formulation since the big-M constraints are not included in our solution ap-

proaches, as discussed in Section 6.3. Instead, the constraints are implicitly

satisfied in the pairing and routing generation subproblems. Note that other

departure time dependant restrictions such as maximal duty time limits are

also implicitly satisfied in the column generation problems.

6.2 Rules

The following restrictions for re-timing flights are imposed:
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• AklWlg

Departure times for all flights between the airports Auckland and Welling-

ton (in both directions) are fixed to the original departure time. This

restriction is a requirement imposed by Air New Zealand. All other

flights are allowed to be re-timed within a window of ± 10 minutes of

the original departure time. All departure times occur at 5 minute in-

tervals starting from midnight.

• FollowThrough

A pair of follow-through flights must be re-timed by the same amount.

The turn-time between two follow-through flights is usually equal to the

minimal turn-time and must remain constant because passengers expect

minimal turn-times between follow-through flights.

• Synchronisation

Flights with the same flight number and origin must depart at the same

time on each weekday. On the weekend, however, the flights with the

same flight number and origin are allowed to depart at different times.

We refer to a group of flights that must depart at the same time on

different days as a departure time group. Additionally, aircraft, operating

crew, and passengering crew that operate the same flight must all depart

at the same time. Since the departure time of a flight is only determined

by the routing and pairing that contain the flight, we must make sure

that all routings and pairings use the same departure time for all flights

in the same departure time group.

The departure time flexibility is incorporated into the shortest path algorithms

of aircraft routing and crew pairing problems. The departure time of each flight

contained in a routing or pairing is determined by the labelling algorithm:

an attribute is associated with the departure time of each flight. Similarly

to deciding when a meal break occurs during a pairing, it is decided in the

labelling process which departure time attribute is chosen for each flight. The

attributes that are stored at a label determine the departure times of all flights

contained in the path that is associated with the label.

The algorithm finds re-timings for all flights in the routing or pairing that result

in the most negative reduced cost. Different routings or pairings covering the

same flight may assign different departure times to the flight. Additionally, a
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pairing that contains a crew that is passengering on a flight may determine

a different departure time for that flight than a pairing in which the flight is

operated. We propose two solution methods that ensure that the departure

times determined by a solution are the same for all flights in the same departure

time group.

6.3 Solution Methods

Solving the robust and integrated model with time windows is challenging for

the problem instances we consider. The main reason is that synchronisation

constraints are needed to ensure the same departure time for all flights in the

same group on different days. Since the schedule is different on every day, a

particular re-timing may yield an improvement of crew pairing cost or robust-

ness on one day, but may worsen the solution or render the solution infeasible

on another day. Clearly, a daily problem is much easier to solve because such

constraints are not needed. In this section we present two optimisation based

heuristic solution approaches: time window branching approach and re-timing

of flights for fixed aircraft routings and crew pairings approach.

Other recent approaches considering time windows include Ioachim et al. [1999]

and Mercier and Soumis [2007]. Ioachim et al. [1999] solve the fleet assign-

ment and aircraft routing problem with time windows and synchronisation con-

straints. They use stepwise linear cost functions on the time windows for the

shortest path calculations and find that this approach works better than dis-

cretised departure times for very large time windows (100 minutes and more).

For small time windows however, faster solution times are achieved with dis-

cretised departure times. Mercier and Soumis [2007] include time windows in

their integrated aircraft routing and crew pairing model. They consider time

windows of ± 5 minutes around the original departure time and add binary

variables that indicate if the flight leaves 5 minutes earlier, later, or at the

same time as originally scheduled. Synchronisation constraints are added to

the model of Cordeau et al. [2001] to ensure the same departure time is used for

aircraft, crew, as well as deadheading crew. Because of the additional binary

variables the number of short connection constraints is much larger than in the

original formulation. Mercier and Soumis [2007] propose an equivalent model
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aggregating the short connection constraints but in our opinion the feasible

solution space is reduced by the aggregation. They do not consider robust-

ness in the approach and solve a daily problem, so no further synchronisation

constraints are needed to ensure the same departure time of flights that are

repeated on multiple days. They use Benders decomposition and the three

phase solution approach as described in Cordeau et al. [2001] and Mercier

et al. [2005] to solve the problem.

6.3.1 Time Window Branching Approach

Starting from a solution of the iterative approach, we allow time windows for

departure times of the flights and solve crew pairing and aircraft routing in-

dependently. This yields a new (possibly infeasible) integrated solution with

un-synchronised departure times. In each routing or pairing that is covering a

flight, the departure time for the flight is determined by the particular routing

or pairing. Hence, departure times may be different for aircraft, operating

crew, and passengering crew as well as for flights of the same departure time

group on different days of the week. We penalise deviations from the original

departure times of the flights in the objective function by linearly increasing

penalties. We hereby avoid a large number of unnecessarily re-timed flights

that do not yield an improvement in crew pairing cost or aircraft change cost.

The ratio of weights between crew pairing cost and robustness in the objective

function remain the same as used for the iterative approach starting solution.

The un-synchronised solutions usually show significant gains in cost and ro-

bustness compared to the starting solution of the iterative approach.

If in an un-synchronised solution, departure times are different for flights within

the same departure time group, we employ a branching scheme on the time

windows to synchronise the departure times, but only in the aircraft routing

problem, i.e. we force all departure times for flights in the same departure time

group to be equal in the aircraft routing solution. We guide this branching

procedure in the aircraft routing problem by the departure times of the oper-

ating crew: for each departure time group we find the departure time that is

preferred by crew, that is the departure time over all flights of the group that

is used the most by crew. In case of a tie, we choose the departure time that is

closest to the original departure time. We then force this common departure
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time for all flights of the group by setting the time window bounds accordingly.

All other flights are allowed to be re-timed but each re-timing is penalised in

the objective function. We solve the aircraft routing problem for the new time

windows. If no feasible solution can be found, we increase the time windows of

the flights with fixed departure time in 5 minute steps until we find a feasible

aircraft routing solution. Subsequently, we branch on time windows for which

the aircraft routing solution uses different departure times for flights of the

same departure time group.

Once all departure times for all groups are synchronised, we use this aircraft

routing solution and solve the crew pairing problem once. All departure times

in the crew pairing problem are fixed to the departure times used in the aircraft

routing problem. Once the crew pairing problem is solved, we obtain a robust

and integrated aircraft routing and crew pairing solution where some of the

departure times of flights may differ from the original departure times.

We use this heuristic procedure because branching on time windows is difficult

and time consuming. We would prefer to incorporate both the aircraft routing

and crew pairing problems within the time window branching process and ex-

plore the branch-and-bound tree until an optimal solution is found. However,

this is very time consuming for two reasons. Firstly, each iteration takes a

considerable amount of time. Note that because of the departure time flexi-

bility the run times of the column generation problems increase greatly since

many more labels exist at each node. Secondly, branching on time windows is

difficult, especially when time windows are large, and leads to a large number

of branch-and-bound nodes that must be explored. Ideally, we want to make

only few branching decisions that lead to a good quality solution. We discuss

some difficulties with such a branching procedure in the following:

• It is not obvious what a good branching strategy might be. In the fol-

lowing examples each table lists the departure times of flights of one

departure time group. The top line of each table shows the possible off-

sets in minutes from the original departure time, while the bottom line

displays how many flights of the departure time group depart with each

offset. Suppose 7 flights depart 15 minutes earlier and 1 flight departs 10

minutes earlier than originally scheduled. Then, the table showing the

offsets has the following form:
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offset −15 −10 −5 0 5 10 15

flights 7 1 0 0 0 0 0

In this case the branch is explored first where all flights must depart 15

minutes earlier than originally scheduled. However, if departure times are

obtained as in the following examples, the branching decision becomes

much more difficult:

offset −15 −10 −5 0 5 10 15

flights 0 5 0 0 2 2 2

offset −15 −10 −5 0 5 10 15

flights 1 1 1 1 1 1 1

offset −15 −10 −5 0 5 10 15

flights 1 0 0 0 0 1 1

A sensible branching strategy in order to divide a time window into 2

smaller intervals might be the following. For each possible partition of

the time window calculate the ratios between the number of departures

in a sub-interval and the number of different offsets that contribute to

the sub-interval for each side of the partition. The sub-interval with the

largest ratio over all possible partitions is explored first. The example

offset −15 −10 −5 0 5 10 15

flights 0 0 5 0 0 0 3

shows that one has to decide if the contributing offsets of the sub-interval

for the ratio calculation is determined from the beginning and end of the

time window or if one starts counting from the first nonzero entry in the

partition. In the first case the 6 possible partitions result in the ratios

(0/1, 8/6), (0/2, 8/5), (5/3, 3/4), (5/4, 3/3), (5/5, 3/2) and (5/6, 3/1) and,

hence, the preferred branch is the second interval of

offset −15 −10 −5 0 5 10

flights 0 0 5 0 0 0
and

offset 15

flights 3
.

In the latter case, however, the preferred branch is the first interval of
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offset −15 −10 −5

flights 0 0 5
and

offset 0 5 10 15

flights 0 0 0 3

with a largest ratio of 5/1. Note that branching on time-windows is

equivalent to branching on special ordered sets. Special ordered sets are

introduced in Beale and Tomlin [1970] and are used to branch on sets

of variables rather than on individual variables. The departure time

variable of a single flight can be expressed as a special ordered set of

binary variables, each representing a single departure time. For a feasible

solution, exactly one variable must have value 1 and all other variables

must have value 0. During each branching decision a subset of these

variables is set to 0. Because of these similarities the extensive literature

on special ordered sets should be analysed thoroughly in a future research

project in order to improve the branching decisions on the time-windows.

• It is unclear how to decide how restrictive the branches should be, i.e. how

small the time window in the preferred branch should be. More restric-

tive branching quickly leads to infeasibility in the aircraft routing or crew

pairing problem. If less restrictive branches are employed branching mul-

tiple times on the same time window may be necessary resulting in many

nodes that must be explored. Note that for a weekly schedule, there are

around 120 departure time groups that contain more than 1 flight and

hence many nodes must be explored even if there is only a single branch

required for each time window.

• It is very difficult to predict the impact on crew pairing cost and air-

craft change cost an imposed branch may have. Re-timings that yield

improvements on some days of the week may cause much worse or infea-

sible solutions on other days of the schedule. To keep crew pairing costs

low, the branching decisions could take only (or mostly) crew pairing so-

lutions into account. However, in our experiments this strategy quickly

leads to infeasibility of the aircraft routing problem.

• After solving the un-synchronised problem, one can shrink the time win-

dows to only include departure times that are actually used by the solu-

tion. This decreases the number of branches required but quickly leads

to infeasibility.
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To overcome these difficulties the following two strategies seem to be useful:

• We introduce costs on the time windows to guide the branching process.

If oi denotes the difference in time compared to the original departure

time of flight i, costs can be used to discourage any re-timing (cost = k ∗
abs(oi)) for some positive constant k or to force all flights in a departure

time group to depart at a certain time t within the window (cost =

k ∗ abs(oi − t)). This strategy proves to be very useful in finding good

quality solutions quickly because it results in less re-timings and the

re-timings are more homogeneous across the same departure time group.

• Only considering the aircraft routing problem within the time window

branching process is promising. For our problem instances the aircraft

routing problem is easier and hence faster to solve than the crew pair-

ing problem. Also, the aircraft routing problem is much more likely

to become infeasible within the branching process than the crew pair-

ing problem because of the limited number of available aircraft. If the

branching decisions are guided by the crew pairing departure times of the

un-synchronised version, the synchronised and re-timed solution of the

aircraft routing problem generally leads to a crew pairing solution with

low crew pairing cost and aircraft change cost. This, however, cannot be

guaranteed.

Implementation

Compared to the approaches described in previous chapters, significant changes

are made to aircraft routing and crew pairing algorithms to implement the time

window branching approach. A large amount of code development is needed to

allow flexible departure times in crew pairing and aircraft routing optimisers.

All data structures and functions of the commercial crew pairing solver were

based on the assumption that the departure time of a flight is determined by

the flight itself. This assumption is no longer valid in our implementation of the

algorithm. Instead, the departure time of each flight is determined in the label

setting resource constrained shortest path algorithm. Each path represents a

pairing and contains the sequence of flights as well as the departure time for

each flight. These departure times must be considered in many rule and cost
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calculations which requires code changes to most parts of the commercial crew

pairing optimiser. All restrictions on the departure times are satisfied by the

shortest path algorithm.

6.3.2 Re-timing of Flights for Fixed Aircraft Routings

and Crew Pairings

In this section we describe how to find a re-timed solution that incurs minimal

aircraft change cost for fixed aircraft routings and crew pairings of a solution

of the iterative approach. We do not change the sequences of flights in the

routings and pairings and hence we do not alter the total number of aircraft

changes in the solution but improve aircraft change costs by increasing buffer

times. Whenever it is possible to re-time a flight before or after a restricted

aircraft change, we re-time this flight in order to improve aircraft change cost.

If the crew pairings are still feasible, the crew pairing cost of the re-timed

solution only changes very slightly as long as the changes in departure times

are not too large.

Re-timing flights for fixed aircraft routing and crew pairing solutions to im-

prove aircraft change cost is very easy compared to the problem formulated

in the previous section. As all connections operated by crew and aircraft are

given, the effects of re-timing a particular flight on all other flights in the sched-

ule can easily be calculated. We formulate the problem of finding a re-timing

of flights that incurs minimal aircraft change costs for given and fixed aircraft

routings and crew pairings as an integer program in the following way.

We define integer variables o for the offset from the original departure time

for each departure time group. Each variable oi is bounded by the time win-

dow imposed on departure time group i and must be an integer multiple of 5

minutes. Additional binary variables q are used to penalise restricted aircraft

changes.

The constraints are constructed by considering all connections operated by

aircraft and crew in the given solution: for all departure time groups i and j

operated in sequence by some aircraft we add a constraint

oi = oj + (connectionT imeij −minTurnT imeij),
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if connection ij is a follow-through connection (as we are not allowed to change

the duration of this connection) and

oi ≤ oj + (connectionT imeij −minTurnT imeij),

otherwise. The value of connectionT imeij refers to the connection duration

without re-timings. Time (connectionT imeij − minTurnT imeij) ≥ 0 is the

buffer by which we can shorten connection ij without violating the minimal

turn time. Note that i can be followed by multiple departure time groups j

because different connections may be operated by aircraft on different days.

For all departure time groups i and j operated in sequence by some crew we

add the following constraints if connection ij is an aircraft change:

oi = oj + (connectionT imeij −minSitT imeij)−
l∑

k=0

fkq
ij
k ,

and
l∑

k=0

qij
k = 1,

Binary variables qij
k are used to penalise the aircraft change in the objective

function if the connection time is smaller than the restricted time. The coeffi-

cients are defined by fk = 5k since all departure times occur at 5 minute inter-

vals. Index k ∈ {0, . . . , l} is used to determine by how many minutes (5k) the

minimal turn-time is exceeded. The constant l is determined a priori such that

5l is equal to the maximal possible duration (in minutes) of any aircraft change

connection: l = (abs(min(oi))+ abs(max(oj))+ restrictedT ime)/5+1. Func-

tions min(oi) and max(oi) determine the minimal and maximal possible value

of oi, respectively. The GUB constraint
∑l

k=0 qij
k = 1 ensures that exactly one

variable qij
k′ for some k′ ∈ {0, . . . , l} equals 1 and all others are equal to 0. This

is equivalent to the duration of the re-timed connection exceeding the minimal

sit time by 5k′ minutes. We add positive (linearly decreasing with increasing

time) cost cij
k to the objective function for each qij

k if 5k < restrictedT ime,

otherwise the cost cij
k of qij

k is set to 0.

If connection ij is not an aircraft change we add constraint

oi ≤ oj + (connectionT imeij −minSitT imeij),
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similarly to aircraft connection constraints.

All constraints combined form the re-timing problem as follows:

Minimise
∑

ij∈ACP

l∑
k=0

cij
k qij

k

subject to oi − oj − (ctij −mttij) = 0 ∀ij ∈ TCR

oi − oj − (ctij −mttij) ≤ 0 ∀ij ∈ CR \ TCR

oi − oj − (ctij −mstij) +
l∑

k=0

fkq
ij
k = 0 ∀ij ∈ ACP

l∑
k=0

qij
k = 1 ∀ij ∈ ACP

oi − oj − (ctij −mstij) ≤ 0 ∀ij ∈ CP \ ACP ,

where CR is the set of all connections operated in the solution by an aircraft

and TCR the set of follow-through connections. Sets CP and ACP denote

all connections operated by crew and all aircraft change connections, respec-

tively. Values ctij, mttij, and mstij denote the connection time, minimal turn

time and minimal sit time of connection ij, respectively. All other parameters

and variables are defined as above. The objective minimises the total aircraft

change cost of the solution. The first set of constraints ensures that the con-

nection times of all follow-through connections remain constant. The second

set ensures that the minimal turn time rule is obeyed for all other aircraft

connections. Constraint sets three and four impose a penalty in the objective

function for aircraft change connections where the sit time is less than the re-

stricted time and the last set of constraints ensures that the minimal sit time

rule is obeyed by all connections operated by crew.

By substituting variables o with o = o+ − o−, o+ ≥ 0, o− ≥ 0 we can add

linearly increasing penalties to the objective function for increasing deviation

from original departure times. The model then yields a solution with small

aircraft change cost that also only re-times as few flights as possible.

Since the only rules considered by the re-timing IP involve minimal turn-times

and minimal sit-times, we must make sure that other rules such as meal breaks

or maximal duty time limits are not violated. We check the solutions with the

crew pairing solver for feasibility (the re-timings are guaranteed to be feasible
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for the aircraft routing problem). In our experiments all solutions turn out

to be feasible crew pairing solutions. If this is not the case, we change the

re-timing limits for an infeasible crew pairing, re-solve the re-timing IP and

check the new solution for feasibility. Meal break rules and duty time limits

can be added as constraints to the IP if necessary.

Implementation

This simple approach proves to be very effective. Very little implementation

effort to construct the re-timing IP is needed in order to improve the robustness

of the solutions by orders of magnitude. Note that no time window coding is

necessary in the crew pairing solver or the aircraft routing optimiser. We find

solutions that are optimal for a weighted sum objective function of aircraft

change costs and penalties for re-timing flights for given aircraft routings and

crew pairings. Note that there is hardly any computation time needed to solve

the re-timing IP to optimality (with CPLEX). As a drawback we do not know

the solution quality compared to a globally re-timed optimum where aircraft

routings and crew pairings are allowed to be changed.

6.4 Computational Experiments

In this section we present computational experiments of solving the time win-

dow problem. We show results of applying the time window branch-and-bound

approach and the re-timing approach to the first officer scenarios of schedule

winter 2005 and summer 2006.

Figure 6.1 shows the results for re-timing solutions of the iterative approach

for the first officer scenario, schedule summer 2006, 7 days. Original iterative

approach solutions without re-timing are represented as blue squares. Red

diamonds show a solution with identical aircraft routings and crew pairings but

with an optimal re-timing with respect to a weighted sum objective function of

aircraft change cost and re-timing penalties. Departure times for all AklWlg

flights are fixed while all other flights can be re-timed by ± 10 minutes around

the original departure time. The aircraft change cost decreases by around 30%

for all solutions (e.g. from 93 to 62 for the solution of iteration 4). Only a
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modest amount of re-timings (e.g. 46 flights in 23 departure time groups in

iteration 4) is required to achieve this improvement.

Figure 6.1. Re-timed solutions of iterative approach, AklWlg flights fixed,
±10 minute windows, first officer scenario, summer 2006, 7 days.

To estimate the full potential of this method we relax the AklWlg rule and

allow ±10 minute time windows for these flights as well. The results are shown

in Figure 6.2. The robustness of all solutions improves dramatically. Aircraft

change costs are roughly reduced by a factor of 3 (e.g. aircraft change cost

decreases from 93 to 27 for the solution of iteration 4). Since the AklWlg

rule was imposed by Air New Zealand in an attempt to describe important

flights which cannot be re-timed, this rule could be revised. As an example

we could only fix business flights in the morning and the afternoon or assign

a different time window to each individual departure time group.

Tables 6.1 and 6.2 list statistics for re-timed solutions with and without the

possibility of re-timing AklWlg flights for summer 2006 and winter 2005

scenarios. The first column displays the iteration number of the iterative

approach. The next two columns show crew pairing costs (“cP ”) and aircraft

change costs (“cAC”) for the iterative approach and the airline integer solutions.

The next four columns show results for the scenario when departure times for
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Figure 6.2. Re-timed solutions of iterative approach, AklWlg flights flexible,
±10 minute windows, first officer scenario, summer 2006, 7 days.

AklWlg flights are fixed. Column “cAC” shows the aircraft change cost

and columns “groups”, “flights”, and “mins.” display the number of re-timed

groups and flights, and the sum of re-timing minutes over all flights for each

solution, respectively. The same values are shown in the next four columns

for the scenario when AklWlg can also be re-timed within a window of ± 10

minutes around the original departure time. We observe that aircraft change

costs can be reduced significantly by only re-timing a small number of flights

by a few minutes. Results look similar for both scenarios for fixed AklWlg

flights. Results are not as good for the winter 2005 scenario since for flexible

AklWlg flights, a much larger number of flights is re-timed in this scenario

to reach a similar level of robustness as in the summer 2006 scenario.

Figure 6.3 shows two solutions for the time window branch-and-bound ap-

proach for the scenario of 2006. We run the approach twice, starting from

solutions of iterations 3 and 5 of the iterative approach and hence the value

of p is set to 5 and 20, respectively. Solution 3 of the time window branch-

and-bound approach incurs 1.83% less cost than the solution of the iterative

approach with the lowest crew pairing cost. The gap for the corresponding LP
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iter. approach AklWlg fixed AklWlg flexible
cP cAC cAC groups flights mins. cAC groups flights mins.

airline 1673.21 385 - - - - - - - -
1 1625.28 364 279 47 139 1110 190 36 127 990
2 1631.20 212 147 45 131 1075 95 26 81 655
3 1620.44 107 72 27 62 495 32 14 38 275
4 1619.53 93 62 23 46 375 27 14 34 285
5 1621.36 68 43 21 42 335 15 10 21 155
6 1634.23 28 11 18 31 245 0 5 8 55
7 1638.29 21 9 13 26 205 0 4 7 45
8 1681.33 1 1 0 0 0 0 0 0 0

Table 6.1. Results for re-timed solutions of iterative approach for first officer
scenario, summer 2006, 7 days.

iter. approach AklWlg fixed AklWlg flexible
cP cAC cAC groups flights mins. cAC groups flights mins.

airline 1684.42 374 - - - - - - - -
1 1636.52 289 226 45 139 1120 152 114 350 2630
2 1630.94 205 156 38 130 990 93 104 333 2595
3 1629.31 165 130 24 75 555 68 80 233 1780
4 1634.70 112 80 24 77 580 37 75 225 1610
5 1645.23 58 42 16 43 315 15 42 113 840
6 1654.36 47 35 12 44 325 13 33 105 810
7 1670.09 17 13 4 8 45 3 16 40 310
8 1700.83 1 1 0 0 0 0 1 1 5

Table 6.2. Results for re-timed solutions of iterative approach for first officer
scenario, winter 2005, 7 days.
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Figure 6.3. Time window branch-and-bound solutions of iterative approach
solutions (iterations 3 and 5), AklWlg flights fixed, ±10 minute windows,
first officer scenario, summer 2006, 7 days.

solution values is even bigger with 2.4%. The value of the un-synchronised IP

solution incurs 2.3% less cost than the best solution of the iterative approach.

When we solve the aircraft routing problem where departure times are driven

by the departure times that are operated by the majority of the crew, no

branching on time windows is necessary in the aircraft routing problem since

all departure times are equal for flights within the same group. This is caused

by penalising deviations of departure times in the aircraft routing problem

from the departure times that are operated mostly by the crew. The running

time is 1325 seconds. Only four departure time groups are re-timed for this

solution, two groups containing five flights where each flight is re-timed by 10

minutes, and two groups containing two flights where each flight is re-timed

by only 5 minutes. The cost saving results from four duty periods that are

required less in the re-timed solution.

The results for the winter 2005 scenario are not as promising. Although the un-

synchronised solution incurs 2.2% less cost than the minimal crew pairing cost

solution of the iterative approach, no solution with synchronised departure
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times can be found that incurs less costs than the solutions of the iterative

approach. The time window branching procedure evaluates 13 nodes before

the departure times in the aircraft routing problem are synchronised. The crew

pairing problem for this set of re-timed flights does not yield any improvements

in crew pairing cost. The departure times the crew would “like” to operate

are infeasible from an aircraft routing perspective and hence it is difficult

to find departure times in the aircraft routing problem that are “similar” to

the ones preferred by crew. The set of re-timings finally determined in the

aircraft routing problem does not allow a cost decrease for the crew pairing

solution. For a single day however, crew pairing costs can be reduced by

4.6% compared to the best solution of the iterative approach. This is achieved

by re-timing one flight by 5 minutes and five flights by 10 minutes. The

improvement is enabled by only solving a single day and hence not needing

any further synchronisation constraints. This demonstrates the difficulties

caused by synchronisation constraints for solving the time window problem

over multiple days for a varying schedule.

These results show that solutions can be greatly improved by changing the

departure times of only very few flights. This, however, can only be achieved if

the departure times that are preferably operated by the crew are likely to result

in a feasible (or almost feasible) aircraft routing solution. If departure times

of many other flights must be changed to enable a feasible and synchronised

aircraft routing solution it is likely that the positive effects on the crew pairing

costs of some days are annihilated by negative effects on other days. If no

improved synchronised solution can be found, the un-synchronised solution

can nevertheless give good insights into the structure of a schedule that is

efficient to operate from a crew pairing cost and robustness perspective.

Figure 6.4 shows one day of solution 3 of the time window branch-and-bound

approach with AklWlg flights fixed, 10 minute windows, for the first officer

scenario, summer 2006. As described above, 2 time groups are re-timed by 10

minutes in this solution, resulting in 10 re-timed flights, 2 on each weekday.

The screen-shot displays the 2 flights that are departing 10 minutes later than

originally scheduled in pink. The re-timing enables a feasible crew connection

between flight 402 from WLG (Wellington) to AKL (Auckland) and flight 513

from AKL to CHC (Christchurch). Screen-shot 6.5 shows the solution without

re-timing. Flight 402 is connected to flight 415 which results in a very short
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and, hence, inefficient crew pairing. Additionally, the crew must stay overnight

in Wellington before operating flight 402. The same behaviour can be observed

on 4 of the 5 weekdays. By re-timing the flights as shown in Figure 6.4 the

short and inefficient crew pairing can be eliminated from the solution and hence

the solution requires 4 man days less to operate the schedule. This example

demonstrates clearly how the cost of the solution can be improved by almost

2% by making only minor adjustment to the schedule.

Figure 6.4. Screen-shot of time window branch-and-bound solution (iteration
3), AklWlg flights fixed, ±10 minute windows, for first officer scenario, sum-
mer 2006.
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Figure 6.5. Screen-shot of iterative approach solution (iteration 3) without
time windows for first officer scenario, summer 2006.





Conclusion

We present a model and two new solution methods to solve the robust and

integrated aircraft routing and crew pairing problem. We propose an iterative

approach that is coupling the two problems heuristically and can quickly gen-

erate a series of solutions with low crew pairing costs and low aircraft change

costs. We therefore expect the solutions to be operationally robust. Addition-

ally, no monetary value needs to be attached to robustness a priori. Instead,

the trade-off between costs and robustness can be observed and a preferred

solution can be implemented. Although optimality of the solutions cannot be

guaranteed, a lower bound on the optimal crew pairing cost is provided by

the algorithm. We obtain solutions that incur less crew pairing costs and are

significantly more robust than solutions currently used in practice. This is a

great improvement compared to the sequential method where the crew pairing

problem is solved for a fixed aircraft routing solution. We have seen in Chapter

4 that in such a solution approach robustness can only be improved by accept-

ing an increase in crew pairing cost. In an extension of the iterative approach,

we are able to consider multiple crew groups with only minor modifications.

We propose a Dantzig-Wolfe decomposition approach to solve the robust and

integrated aircraft routing and crew pairing problem to optimality. Solving

the problem to optimality is computationally expensive. Also, to identify

a robust solution in the approach, we need to associate a monetary value

with non-robustness. The run times of an optimisation approach are much

longer than the run times of the iterative approach. This is the case even

though only a single problem is solved in the optimisation approach with fixed

weights for cost and robustness while the iterative approach generates multiple

solutions with varying trade-off between cost and robustness. The optimisation

approach is useful in determining that the iterative approach solutions are of
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very good quality with an average optimality gap over all problem instances

of less than 1%. The iterative approach can be substituted by an optimisation

approach once run times decrease due to improvements in the optimisation

algorithm or computer hardware. It remains complicated to incorporate a rule

such as limiting the number of aircraft changes per duty period (DPACLim

rule) into any optimisation approach because the rule requires to compare

individual routings and pairings. Due to the results presented in this thesis

the rule was relaxed by Air New Zealand and robustness is now ensured by

imposing penalties for restricted aircraft changes. We observe that there is

no significant disadvantage in using Dantzig-Wolfe decomposition compared

to Benders decomposition in terms of running time. We also show that the

problem becomes much harder to solve if the weight for robustness is increased

in the objective function.

In Chapter 6 we enhance the formulation by allowing flexibility for the de-

parture times of some flights. We show that large additional gains in crew

pairing cost and robustness can be made when aircraft routing and crew pair-

ing problems are considered in the schedule design phase. A slightly perturbed

schedule can lead to significant improvements of aircraft routing and crew pair-

ing solutions. This problem is complex due to the requirement to synchronise

departure times on different days of the schedule. We therefore propose two

heuristic solution methods that provide good solutions to the problem. When-

ever the problem is very hard to solve, the heuristic may fail to improve solu-

tion quality. Nevertheless, an un-synchronised solution is useful in indicating

possible improvements in crew pairing cost.

We demonstrate in the computational experiments of Chapters 5 and 6 that

it is indeed possible to solve the integrated formulations without disturbing

the set partitioning structures of the individual problems. We therefore can

employ existing and efficient solution methods to solve the individual problems

in an integrated model.

As the main focus of this thesis is to solve a real world application, data sets

provided by Air New Zealand were used to measure the performance of the

solution approaches. All rules imposed by Air New Zealand are satisfied in the

solutions we generate. At the time this thesis is finalised, Air New Zealand

is using the iterative approach in their production environment. This enables
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them to operate highly efficient schedules without facing the risk of a major

operational breakdown as experienced by Easyjet in 2002. The implementation

would not have been possible without considering all rules of a real world appli-

cation in this research project. If instead a mathematical model is considered

that simplifies some of the restrictions, an actual implementation in practice

becomes much more difficult. Until optimisation methods are improved, we

need to use sensible heuristic decision making methods to some extent in com-

bination with optimisation methods in order to include all restrictions. Despite

using data from a New Zealand domestic schedule, the proposed methods are

general enough so that we expect similar results for other airlines that operate

in a similar environment, i.e. a domestic schedule with routings and pairings

containing many flights per day and many short turn times.

Future research includes the integration of other airline scheduling problems,

i.e. fleet assignment and crew rostering into an integrated problem. Most

importantly, passenger flow should also be considered in an integrated model.

Often, an aircraft is delayed because of passengers connecting to the flight are

arriving on a delayed flight. Considering passenger flow in the model therefore

may greatly improve the robustness of the solutions.

We consider two different robustness measures in this thesis: consecutive min-

imal turns operated by the aircraft and aircraft changes operated by the crew

when turn time is below some restricted time. Simulations show that these

measures are good indicators for on-time performance of the operated sched-

ule. It can be useful to consider additional robustness measures such as the

number of move-up crews. More sophisticated measures could be considered

that take complicated recovery procedures into account.

Finally, the operational counterpart of the problem should be investigated.

Since the iterative approach is very fast, it can be used to calculate alterations

of routings and pairings once disruptions occur in practice and the planned so-

lutions become invalid. In such a case decisions on how to change the schedule

to recover from the disruption must be made quickly. Ideally, the approach

could be used to simultaneously re-route aircraft, crew, and passengers in an

automated fashion.
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