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Abstract—In scheduling theory and parallel computing
practice, programs are often represented as directed acyclic
graphs. Finding a makespan-minimising schedule for such
a graph on a given number of homogenous processors
(P|prec, ¢ij|Cmas) is an NP-hard optimisation problem.
Among the many proposed heuristics, the two dominant
approaches are list-scheduling and cluster-scheduling (based
on clustering), whereby clustering targets an unlimited number
of processors at its core. Given their heuristic nature, many
experimental comparisons exist. However, their overwhelming
majority compares algorithms within but not across categories.
Hence it is not clear how cluster-scheduling, for a limited
number of processors, performs relative to list scheduling or
how list scheduling, for an unlimited number of processors,
performs against clustering. This study addresses these open
questions by comparing a large set of representative algorithms
from the two approaches in an extensive experimental evalu-
ation. The algorithms are discussed and studied in a modular
nature, categorizing algorithms into components. Some of the
included algorithms are previously unpublished combinations
of these techniques. This approach also permits to study the
separate merit of techniques like task insertion or lookahead.
The results show that simple low-complexity algorithms are
surprisingly competitive and that more sophisticated algo-
rithms only exhibit their strengths under certain conditions.

I. INTRODUCTION

In parallel processing, an important effort is to maximise
the efficiency of program (or workload) schedules. Tasks in
the program that can execute independently are scheduled
to processors and time slots in a way that takes advantage of
available processing power and minimises the total length
of execution. In scheduling theory [34], [8] and in runtime
environments [6], [3], programs are represented as a di-
rected acyclic graph (DAG) where nodes represent atomic
tasks and edges represent communications between them. A
communication happens when a task provides (as its output)
the inputs required for another task, creating a precedence
relationship. Processors are assumed to be homogeneous
and fully connected, and take time to communicate with
each other.

Finding the optimal task schedule for a given DAG and
number of processors (P|prec, ¢;j|Cpmaqs in ] B]y-notation)
is intractable (a strongly NP-hard problem [34]) and many
heuristic methods to find a solution exist. There are two very
dominant solution approaches. One is list-scheduling which
produces a schedule in one pass. Another one is cluster-
scheduling, sometimes called clustering, where tasks are
first grouped into clusters that are best executed together on
the same processor to avoid extensive communication, and
subsequent steps develop a schedule from that assignment.
A fundamental difference between the two approaches is
that list-scheduling normally targets a limited number of

processors but clustering targets an unlimited number. To
make the latter useful for a limited number of processors,
methods exist to map and schedule the clusters to a limited
number of processors [32], [30], [40], [23], [41]. Many
algorithms have been proposed for each of the approaches
and they have been compared in many studies as will be
discussed below. However, the vast majority of the stud-
ies only compared algorithms within their categories, e.g.
limited-processor schedulers against each other or clustering
algorithms against each other. An open question is whether
schedulers based on clustering provide an advantage over
simpler one pass list-schedulers for a limited number of
processors. Also, how well do list-scheduling algorithms
perform for an unlimited number of processors (i.e. number
of processor set to number of tasks)? These are two of the
questions (section II-C) which this study intends to answer.

Many comparisons of scheduling algorithms can be found
both on their own and accompanying other work [1], [17],
[26], [15], [7]. Few of them have set out to compare list-
scheduling and cluster-scheduling together. [15], [7] do not
include cluster-schedulers. [1] treats clustering and schedul-
ing to limited processors as different classes of problems
which they are on their own. [26] compares both types of
schedulers on unlimited processors. [30], [29], [31] briefly
uses both types of schedulers to benchmark new algorithms.
[17] compares both approaches but adds randomisation to
algorithms. [23] only discusses methods within cluster-
scheduling.

This work compares the two approaches with an exten-
sive experimental study using a large set of representative
algorithms from each class and a large set of graphs, with
many different structures, sizes and other parameters. The
algorithms are constructed and implemented in a modular
way, breaking them down into different techniques that were
proposed across the literature. For example, the general
list-scheduling approach is separated from task priorities
and techniques like lookahead, which are considered as
modular features that can be used or not used with a given
algorithm. Techniques are recombined where they have not
been before, to evaluate unexplored combinations.

Section II formally defines the scheduling model, gives
an overview of the considered algorithms and defines our
experimental aims. Sections III and IV study the different
algorithmic techniques and components of list-scheduling
and cluster-scheduling, respectively. The setup of the simu-
lation experiments is presented in section V followed by
the evaluation is section VI. We conclude the paper in
section VII.



II. SCHEDULING

A program to be parallelised is represented as a weighted
directed acyclic graph (DAG) called a task graph, where
nodes are indivisible units of work called tasks and edges are
communications between tasks. The node and edge weights
respectively give the computation and communication costs.
In a complete schedule, every task n is allocated a processor
proc(n) and start time start(n), with the condition that all
of n’s incoming communications arrive on proc(n) before
start(n), meaning all of n’s input data are available. This
requires the tasks to execute in a topological order. The
target system modelled is one where processors are homo-
geneous and fully connected with no network contention or
processing cost for communications. Tasks take the same
time to complete on all processors, as do communications
between all pairs of processors. Communications within
processors are instant and their costs are “zeroed”.

A. Definitions

Inputs to the problem can be given as the tuple
(V,E,w,c, P). Tts elements are (in this order) the set
of tasks, set of edges, vector of task costs, matrix of
communication costs, and set of processors, where the first
four makes up task graph G. The outputs are processor
allocations proc : V. — P and start times start : V. — N°,
Table I summarises these notations. The functions succ
and pred are derived from G. Some useful concepts are
introduced next.

Table I
NOTATIONS USED IN SCHEDULING DISCUSSION

l Notation [ Meaning
W Computation cost of task n
Cij Cost of communication from task 7 to task j
suce(n) Children (successors) of task n
pred(n) Parents (predecessors) of task n
proc(n) Processor to which task n is assigned
start(n) Start time of task n

Ready task — A task is ready when all of its parents have
been scheduled. This is used when tasks are scheduled in
topological order.

Data ready time — of a task n on processor p, tq,-(n, p), is
the time at which all of n’s incoming communications arrive
at p from scheduled parents. Let S be scheduled tasks in
the following definition.

p=nproc(i) 0

tar(n, p) = max;
dr( p) i€pred(n)NS { start(i) +w; + Cin

otherwise

Earliest start time (EST) — (or ASAP start time) of a
ready task n, est(n), is the earliest time at which n may
begin executing on any processor. The following is a list-
scheduling definition, where available(p,n) is the earliest
time at which processor p can fit n, whether behind all other
tasks or into a gap (insertion strategy III-B1).

est(n) = ;réig(max({available(p, n), tar(n,p)}))

The EST of n on a specific processor p is defined as
est(n,p) = max({available(p,n),ta-(n,p)}).

Top-level — of a task n, tlevel(n), is the length of the
longest path through the DAG from a source task (including
itself) to n. It can be recursively defined as follows.

n € sources 0

tlevel(n) =

otherwise max (tlevel(i) + w; + ¢;n)

i€pred(n)
Bottom-level — of a task n, blevel(n), is the length of the
longest path from n to any sink task (including n and the
sink task). It is recursively defined as follows.

n € sinks wy

blevel(n) =

otherwise  max (blevel(j) + cn j) + wp

jEsuce(n)

Critical path — this is the longest path from a source task
to a sink task through the DAG, including all computation
and communication costs.

The allocated bottom(top)-level/critical path is the
bottom(top)-level/critical path calculated with communica-
tions within processors having no cost.

Pseudo-edges — (virtual edges) are zero-weight edges
added to the original DAG to reflect additional precedence
constraints due to sequential execution within processors.
Some algorithms use pseudo-edges in calculations of allo-
cated top and bottom levels.

B. Algorithms Overview

Two main approaches to task scheduling using this model
are list-scheduling and cluster-scheduling.

List-scheduling assigns priorities to tasks, and schedules
them in a topological order in decreasing priority. Priorities
can be static and remain constant for a DAG, or be dynamic
and change with the schedule. Tasks are normally scheduled
to processors which give them the earliest start times,
but there are lookahead techniques which can be applied
(section III-B2). Algorithm 1 shows the general structure of
list-scheduling.

Algorithm 1: List-scheduling

while there are tasks to be scheduled do
Identify a highest priority task n (e.g. from a list);
Choose a processor p for n;
Schedule n on p at est(n,p);

end

Cluster-scheduling involves several steps where list-
scheduling has one. These are clustering, cluster-merging,
and task-ordering within clusters. The aim of clustering
is to group the tasks into any number of clusters where
tasks in the same cluster are set to be scheduled on the
same processor, and to do this in a way that best balances
the reduction of inter-processor communications with the
parallelism of task executions. This is often approached
as a problem of scheduling the DAG onto an unlimited
number of processors, where tasks scheduled onto the same



processor are grouped into a cluster. In the cluster-merging
phase, clusters are merged so that their number matches
the number of available processors. Since all processors are
identical, the merged clusters are arbitrarily mapped onto
processors. In the final task-ordering phase, task orderings
are determined to obtain a schedule. Algorithm 2 shows
the cluster-scheduling procedure. Since cluster-schedulers
make it their focus to reduce communications, they should
be more effective on communication-intensive graphs.

Algorithm 2: Cluster-scheduling

CLUSTERING:
Group the tasks into a set of clusters C';
CLUSTER-MERGING:
while |C| > numberofprocessors do
| Merge a number of clusters in C';
end

Map each cluster to a different processor;
TASK-ORDERING:
Order tasks within clusters to produce a schedule.
Alternately, schedule tasks in some order and use the
processor allocations;

Table 1T

TASK PRIORITY SCHEMES (STATIC) IN LIST-SCHEDULING

Description

[ Code [ Reference [

Complexity

The following is an outline of the algorithms that are used
in this study. In addition to those schedulers used in their
original forms as presented in literature, there are other ones
that are mixtures of techniques taken from those algorithms
and others, which have not been explored.

Both cluster-scheduling and list-scheduling can be mod-
ularised into independent components that can be combined
in different ways. Cluster-scheduling is naturally split into
three stages, normally with one algorithm for each stage.
List-scheduling can also be split into two parts, a task
priority scheme and a task placement scheme, both of
which are often independent of each other. The task priority
scheme is the basis on which the list-scheduler decides the
order that tasks are scheduled in. The task placement scheme
is the method by which the scheduler places an examined
task onto a processor and start time allocation. Tables II
and IIT show a list of static priority schemes and a list of
placement schemes used respectively. They are described in
more detail in section III. Dynamic priority list-schedulers
are shown separately in table IV, because using lookahead
with them (section III-B2a) is not as straightforward. Tables
V, VI, and VII show some clustering algorithms, cluster-
merging algorithms, and intra-cluster task-ordering algo-
rithms respectively. All the complexities given are amortised
time complexities. V' is the number of nodes in the graph,
E is the number of edges, W is the width of the graph (the
highest possible number of ready tasks at once), P is the
number of processors, and C' is the number of clusters.

The tables only include the representative algorithms used
in this study. Some algorithms were not used because they
work with slightly less information [25], [21], or more
information in a way that does not translate [2], [10], [13],
[16], [24], [27], [37]. Figure 1 shows a summary of all
the schedulers used in the experiment and how they have
been composed from different algorithms and techniques.
List-scheduling algorithms that exist in literature exactly as
they have been put together here also have their names and

highest blevel first bl [39], [36] O(E + Vieg W)
highest blevel + tlevel tlbl [36] O(E + V1egW)
first
Critical-Path-Node- cpn [19] O(Elog E + VliogV)
Directed
Decisive Path Scheduling dps [28] O(Elog E + VliogV)
(variant of cpn)
Table III
TASK PLACEMENT SCHEMES IN LIST-SCHEDULING
Description Code Reference Complexity Complexity
(no insertion) (insertion)
Scheduling to est [36] O(E + o(V?)
EST-processor Vlog P)
Critical Child cc [20] O(E +VP) o(V?)
lookahead
Children Weighted cwe [5] O(V(E + o(Vv?3)
EST lookahead VP))
Children Latest cle [5] O(V(E + o(V?)
EST lookahead V P))
Table IV
DYNAMIC PRIORITY LIST-SCHEDULERS
Description Code Reference Complexity Complexity
(no insertion) (insertion)
Earliest Times First etf [14], O(V(log W+ -
[29] log P) + E)
Dynamic Level dls [33] o(?) o(V?)
Scheduling
etf with critical child | etfcc - O(VWP(V+ Not used
lookahead E))
dls with critical dlsce - O(VWP(V+ Not used
child lookahead E))
Table V
CLUSTERING ALGORITHMS
Description [ Code [ Reference [ Complexity
Dominant Sequence dsc [40] O(VQ) (version in
Clustering study)
Dynamic Critical Path dep [20] o(V?)
Linear Clustering Ic [18] O(V(E+V))
Table VI
CLUSTER-MERGING ALGORITHMS
Description [ Code [ Reference [ Complexity
Adapted List-scheduling Is [32] O(PC(V + E))
Guided Load Balancing glb [30] O((V+ E)C))
(version in study)
Table VII

TASK-ORDERING METHODS

Description [ Code [ Reference [ Complexity
Highest bottom-level first bl [32] O(E + V1og W)
Earliest EST first etf [41] O(V(logW +
log P) + E)




sources from literature identified. The name codes for the
algorithms are concatenations of the codes for their com-
ponents (in the order the components have been described).
The string “ins” added to the end of a list-scheduler means
that the algorithm uses insertion in its placement scheme.
The cluster-merger with code “glbro” is the version of “glb”
that ignores task orders produced by the clustering phase
and re-orders tasks using bottom-level. It is included for
comparison with “glb” which makes use of task orders from
the clustering phase (section IV-B1). Some techniques are
featured less because of bad performance, but instances of
them are left in for comparison.

C. Experimental Aim

The major questions we want answers to in our experi-

mental evaluation can be summarised as follows:

o« How does
scheduling?

o How does list-scheduling compare with clustering al-
gorithms when scheduling to an unlimited number of
processors?

« Some list-scheduling components have not been evalu-
ated on their own merits ("cpn", "tlbl", "cc"), are they
good by themselves?

o Are there better task priorities for list-scheduling than
the simple and effective bottom-level?

o How much better is list-scheduling with lookahead?

« How much better is list-scheduling with insertion?

o Are there particular combinations of list-scheduling
techniques that are better than usual?

list-scheduling compare with cluster-

IITI. LIST-SCHEDULING

List-scheduling examines tasks in some order and gives
a processor and start time to each examined task. This can
be divided into two components, the task priority scheme,
which determines the order in which tasks are listed and
scheduled, and the task placement scheme which takes any
given task to be scheduled and finds a processor and start
time for it [34]. There are a range of options for both
components, these will be described next.

A. Task Priority

Task priorities in list-scheduling can be static or dynamic.
Static priorities do not change with the schedule and are
computed once for the entire scheduling process, dynamic
priorities are updated with the schedule. A static priority
list-scheduler can have a priority list that is traversed to
give tasks to schedule in decreasing priority. The list has
to follow topological order. If the priority does not and
a task’s descendant can have equal or higher priority than
itself, then ready tasks can be inserted into a priority queue
which is dequeued to give tasks to schedule. For dynamic
priorities, the scheduler has to re-compute the priority for
free tasks when selecting one of them to schedule, since the
priorities have potentially changed. This makes use of more
information but increases complexity.

1) Static Priorities in Algorithms:

a) HEFT and MCP: Heterogeneous Earliest Finish
Times (HEFT) [36] and Modified Critical Path (MCP) [39]
use the bottom-level as their priority metrics. Their priority
lists are ordered in descending bottom-level, and where there
are ties, HEFT breaks them randomly and MCP breaks
them with the bottom-levels of descendants. This study uses
HEFT’s version where ties are broken randomly, this should
be effectively the same as MCP’s alternative because ties in
bottom-level will be rare in the graph sets used. This priority
list takes O(E + V log W) time to build.

b) CPOP: The Critical Path on a Processor (CPOP)
algorithm [36] uses the sum of the top-level and bottom-
level as the priority metric, ordering tasks in decreasing
tlevel + blevel. This one uses the priority queue like
described earlier. This priority list also takes O(E+V log V')
time to construct.

c) CPND: A task ordering scheme named Critical-
Path-Node-Dominate (CPND) are used in [19]. The scheme
recognizes three categories of nodes: the Critical Path Nodes
(CPNs) which are nodes belonging to a critical path, the
In-Branch Nodes which are nodes that lead to a CPN, and
the Out-Branch Nodes (OBN) which belong to neither of
the previous two. It empties a stack (into the priority list)
which is initialized with all CPNs (with source CPN on top),
popping the top node when it has no unlisted parents and
pushing the unlisted parents otherwise. After all the CPNs
have been added to the list and therefore all the IBNs, what
remains are the OBNs which can be added in some order. An
order is also needed for the unlisted parents of an examined
node when they are pushed into the stack. An original
version in [19] orders unlisted parents by decreasing bottom-
level, breaking ties by ordering in increasing top-level, and
orders OBNs by decreasing bottom-level. A priority list
constructed in this way takes O(Elog E + ViogV') time.

Some have used the idea of this technique and changed
IBN and OBN orderings. One of these variants is the
algorithm Decisive Path Scheduling (DPS) [28]. It first
examines unlisted parents which are most constraining to
the task’s top-level — parents which have the highest top-
level plus the cost of their communication to the task. In
giving priority to the constraining parents and reducing their
start times, the start time of the task itself, which is related
to its top-level, should be reduced as well. This priority list
also takes O(Elog E + ViogV') time to build.

2) Dynamic Priorities in Algorithms: ETF and DLS are
two list scheduling algorithms with dynamic task priorities.
The dynamic attribute in their priorities is the task’s EST in
the partial schedule, which is defined in section II.

a) ETF: ETF (Earliest Time First) [14] prioritizes
tasks with the smallest EST, ties are broken by choosing
tasks with higher computation bottom-levels. A quality of
ETF is that it tends to minimize gaps in the schedule. At
any time, the earliest starting task is guaranteed to leave
the smallest gap in execution on the processor providing its
EST if scheduled to it, since no other task can start earlier
there or anywhere else, including those which will be freed
after scheduling any current free tasks.

The principle of EST scheduling has already been ex-
plored in task graph scheduling without communication
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Figure 1. Algorithm composition table of algorithms tested in the experiment



costs [12], where algorithms can be formulated as event
based, where an event is the completion of at least one task.

b) DLS: DLS (Dynamic Level Scheduling) [33] de-
fines an attribute called the dynamic level which is the
task’s bottom-level minus its EST, and chooses tasks which
maximize it. It could be seen as a compromise between min-
imizing the earliest start time and maximizing the bottom-
level. Its complexity including placement is O(V?2).

B. Task Placement

1) Standard Task Placement: In list-scheduling, a stan-
dard processor choice for an examined task is one that
allows the EST for the task. An EST can be found for
either inserting or appending the task to the schedule.
Appending the task means to schedule it behind all other
tasks previously scheduled to its processor, at the earliest
time when its incoming data are ready and the processor
has become indefinitely idle. With this method, the only
processor choice is between the one which sends the latest
finishing communication to the task and the one which
finishes the earliest. Its complexity is O(V log P+ E) [31].

Using insertion to find a start time for a task is to
insert it in an idle gap between the execution times of
previously scheduled tasks in the schedule. This has a
higher complexity of O(V?2) but allows earlier start times
to be found. Finding an EST with insertion for each task
requires examining the time slots of all tasks scheduled
before it to find gaps, which takes O(V?) time, and finding
the data ready times takes the same time as scheduling
without insertion. Many list scheduling algorithms use the
insertion strategy to find ESTs, in particular ones with static
priorities. However, insertion is like revising the order of
examination of the tasks and it proves the existence of better
ones that could have produced the same result but just by
appending the tasks. It could be argued that the appropriate
task selection would create less opportunities for insertion,
making the technique less useful. The ETF algorithm is an
example where insertion cannot be applied at all, because
no task should be able to start earlier than any previously
scheduled ones, otherwise it would have been scheduled
before them.

The Critical Path on a Processor algorithm mentioned in
section ITI-A1 also uses an approach that assigns all tasks
on the critical path to the same processor, and otherwise
assigns tasks to their EST processors in the normal way.
This does not increase complexity.

2) Lookahead Placement Schemes : Apart from the stan-
dard placement scheme of assigning each task to its earliest-
start-time processor, there exist others which could perform
better but with higher time complexities. They are generally
lookahead techniques, which try to gauge the impact of
processor choices for an examined task beyond its own start
time and on the tasks scheduled after it.

a) Critical Child Lookahead Technique in DCP: DCP
(Dynamic Critical Path) [20] is a clustering algorithm that is
similar in format to list-scheduling and has sometimes been
called one, but it does not schedule to a limited number of
processors and a conversion for it is not straightforward. It

uses a lookahead technique in processor selection which is
easily adapted to be used in list scheduling in the following
form. To evaluate a processor choice, it considers the task’s
own start time on that processor as well as the earliest
start time of its critical child if it were to be scheduled
after the task is scheduled to that processor. The critical
child is one that is on the longest path through the task
and determines the task’s bottom-level, meaning that it has
the highest bottom-level plus the cost of the communication
from the task to itself, out of all the children. It is possible
that the critical child has other unscheduled parents, so only
an estimate of its earliest start time is used which is taken
by ignoring the missing communications from unscheduled
parents. In selecting a processor, the algorithm minimizes
the sum of the start time of the examined task on the
selected processor and the EST of its critical child if the
task is scheduled to that processor. Its time complexity is
O(E +V P) when used without insertion, and O(V?) when
used with insertion [38].

This lookahead placement scheme is tried with priority
schemes from the algorithms ETF and DLS, with appro-
priate changes to them. Both algorithms’ priority schemes
are dependent on their placement schemes, so when their
placement scheme is changed to critical child lookahead,
their priorities have to be redefined around the critical child
lookahead scheme. For ETF’s priority scheme, this means
to apply the critical child lookahead to all candidate tasks to
be scheduled, and to select one that gives the minimum EST
sum. In short, the EST sum from critical child lookahead
replaces the normal EST. The same applies to DLS’s priority
scheme, the EST sum replaces the normal EST in its metric
blevel — EST. These are only done without insertion,
and both have been implemented with O(VW P(V + E))
complexity [38].

b) Children-Latest-EST and Children-Weighted-EST
Lookahead Techniques: Several lookahead schemes for list
scheduling were suggested in [5]. They are for heteroge-
neous systems but are useful in homogeneous systems too.
One of them is the Children-latest-EST lookahead which
places the examined task to a processor that minimizes
the latest of all ESTs of the task’s children. Another one
is the Children-weighted-EST lookahead which minimizes
the sum of the ESTs of the children, each weighted with
the child’s bottom-level. In the same way as in the critical
child lookahead, unscheduled parents are ignored when
calculating the children’s ESTs. These lookahead schemes
take O(V (E 4V P)) time when used without insertion, and
O(V3) time when used with insertion. Additional levels of
lookahead applied recursively were found not to have much
potential [5].

IV. CLUSTER-SCHEDULING

Clustering algorithms are largely algorithms that produce
schedules for an unlimited number of processors, each one
executing a cluster of tasks. Their results can be adapted
to a limited number of processors by merging the clusters.
Cluster-scheduling involves three steps. The first one is
a clustering algorithm which clusters tasks together that



communicate extensively, for them to execute on the same
processor. The cluster-merging step merges clusters until
there is one processor for each cluster. The task-ordering
step provides an ordering for tasks within clusters, which
finishes the schedule. The following describes some meth-
ods that exist for each step, including all the ones used in
the experiments.

A. Clustering

a) LC: LC (Linear Clustering) [18] was an early
technique. It assigns the critical path to an individual cluster
and removes the nodes and incident edges of the path from
consideration, and this is repeated using the longest path
through the unexamined nodes of the task graph at each
iteration, continuing until all nodes have been assigned to a
cluster. LC has complexity O(V(E + V)).

b) DSC: DSC (Dominant Sequence Clustering) [40] is
a more complex algorithm. It uses the critical path like LC,
but also more heuristics and more complex methods than
LC. Dominant sequence is another name for the allocated
critical path with pseudo-edges included.

Described as scheduling to an unlimited number of clus-
ters, it schedules tasks in a topological order and minimizes
under certain constraints the start time of each one at the
point it is scheduled, through the choice of the cluster to be
scheduled to and by sometimes relocating its parents. Task
priorities are defined as the sum of their top and bottom
levels, which is the length of the longest path through them.
At every iteration, the free task with the highest priority
is selected and scheduled to one of two cluster choices:
a unit cluster by itself, or (appended to) the cluster of its
parent sending the latest finishing communication to it (the
constraining parent), depending on where it can start earlier.
If placed to the cluster with its constraining parent, its
other parents are then examined in decreasing order of their
communication arrival times and moved to the same cluster
if the resulting data ready time for the task is able to be
reduced by the zeroed communication (despite the parent’s
own delayed start time) and they do not have other children
(as to not cause cascading changes). The top-level here is
updated for relocated tasks which increases complexity from
the original to O(V?2). DSRW in the algorithm is not used
in our study because it did not improve performance [38].

c¢) DCP: DCP (Dynamic Critical Path) [20] is an
algorithm with complexity O(V?3). It also uses the sum of
top and bottom levels as the task priority, both are allocated-
levels with pseudo-edges and updated in every iteration.
At each iteration, the algorithm schedules a task with the
highest priority (this would not be in topological order).
There would be multiple such tasks with the same priority
as they lie on the same path which is longest through
all of them, so the highest one (i.e. with the lowest top-
level) is chosen. To keep candidate clusters to only those
which would allow communications to be zeroed, with the
exception of a new cluster which guarantees a start time at
the data ready time, they are set to only the ones containing
the scheduled parents or children of the chosen task, in
addition to a new cluster. In choosing the best cluster to

schedule to, the algorithm uses the sum of the ESTs of the
task and its critical child when tentatively scheduled to the
same candidate clusters. The critical child is one that is on
the longest path through the task, out of all the unscheduled
children. The algorithm uses squeeze when finding an EST
for the examined task (not its critical child), and only if it is
on the critical path. Squeezing is to insert the task anywhere
on that cluster, pushing forward the execution times of other
tasks if needed, on the condition that no tasks are delayed so
much that the schedule length is increased (i.e. the EST of
the delayed task plus its bottom-level is less than the current
schedule length). The original algorithm also tries to save
clusters by fitting non-critical tasks into existing clusters if
possible, avoiding new clusters even if those tasks have to
start later on clusters that do not help them. This would save
processors if DCP’s schedule to unlimited processors is to
be used directly, but it does not benefit cluster-scheduling,
where tasks should only be clustered if they have to, so this
feature is not used here.

B. Cluster-Merging

1) Load balancing approaches: Define the load of a pro-
cessor as the total computation cost of tasks in the clusters
assigned to it. An easy approach to cluster-merging is to
balance the processor load, examining clusters in decreasing
order of their total computation costs and assigning each
one to the least loaded processor, merging it with clusters
assigned to the same processor. This can be called load-
balancing. Its complexity is O(C'logC' + V).

Load balancing is not reliable when the loads in con-
sideration start at different times in parallel (because of
data ready time). For example, if processor A has load 2
units occupying times 0-2 units, processor B has load 1
unit occupying times 2-3 units, a cluster Z with a series
of tasks that start at time 3 units would start earlier on
processor A even though A has higher load, because A’s
load does not coincide with Z’s load (in terms of earliest
start times), whereas on B, B and Z’s loads would delay each
other. Guided Load balancing (GLB) [30] maps clusters to
processors in increasing order of their earliest start times
so that processor loads at any time are more representative
of how they would affect the start time of the mapped
cluster, since they execute at similar times. A schedule has
to be created from the clusters to determine their start times.
Normally the tasks would be ordered in decreasing bottom-
level to obtain the schedule, but they could also use some
of their original ordering from the clustering algorithm, so
both versions are used (The one which completely reorders
tasks is under the code “glbro”). In the version implemented
in this paper, the schedule is updated at each iteration so it
has complexity O((V + E)C)).

2) Merging by list-scheduling adaptation: [32] uses a
technique that directly extends list-scheduling. It examines
tasks in a priority order as in list scheduling, but assigns
each one with its entire cluster to the processor which
minimizes the resulting schedule length when it is merged
with other clusters assigned to that processor. If a task’s
cluster has already been assigned to a processor, then it



follows that assignment. A schedule has to be constructed
to evaluate each potential processor choice. The algorithm
has complexityO(PC(V + E)).

C. Task-Ordering with Processor Allocations

The strategies used to order tasks in list-scheduling are
applied here also. One of them is to use the bottom-level,
and its allocated version since the processor assignments
are known. This has the same complexity as when used in
list-scheduling, which is O(F + V' log V).

A method called Ready Critical Path [41] chooses to
schedule tasks which can start the earliest, so that gaps are
avoided, and breaks ties with the allocated bottom-level. It
is the same strategy as in ETF list scheduling. As with ETF
its complexity can be O(V (log W + log P) + E) [29].

V. EXPERIMENTAL SETUP

In this section we describe the workload and setup of the
simulation experiments, whose results are discussed in the
next section.

The input graphs are generated with a variety of structures
and methods of assigning weights. The majority ranges
from 50 to 500 nodes, a few structures have up to 1151.
The graphs have Communication to Computation Ratios
(CCR) of 0.1, 1, and 10. The CCR is defined as the
ratio of the sum of all communication costs to the sum
of all computation costs, and measures the importance of
communication delays in the workload. The graphs are
tested with processor counts of 2, 8, 32, 128, 256, and 512,
or as high as that goes without exceeding the node count of
the graph. There are in total 1600 graphs tested.

A. Graph Structures
Table VIII lists the employed graph structures.

Table VIII
GRAPH STRUCTURES
Category [ Graph (with number of) [ Referencel
regular in-trees (84), out-trees (84), series-parallel -
structures (216), pipeline (15), fork (60), join (60),
fork-join (84)
random Erdos-Rényi (216), layer by layer (216), fan-in [9]
graphs fan-out (216), intersecting orders (216)
application FFT (15), Gauss (9), Cholesky (15), Stencil -
graphs (15)
application CyberShake (15), Epigenomics (15), Montage [4]
graphs (15), Inspiral (15), Sipht (15)
application matrix solver (3), robot control (3), SPEC [35]
graphs fpppp (3)

The graph structures used include random structures and
regular structures, as well as those from real workloads of
parallelised applications. Regular structures include fork-
join graphs , in-trees and out-trees, series-parallel (SP)
graphs, and pipeline graphs. Graphs of real applications in-
clude ones derived from stencil computing, the fast Fourier
transform, Gaussian elimination, and Cholesky factorisation.
In addition, specialised parallel computing applications were
taken from the graph set described in [35] and scientific
workflows described in [4].

Random graphs are generated using four different meth-
ods (aggregated in [9] and discussed in more detail): gen-
eration by matrix (Erdos-Rényi), fan-in fan-out, layer by
layer [35], and intersecting total orders. Generating random
graphs “by matrix” involves committing the tasks to a
topological order and then going through the triangular
matrix of possible edges between them, creating each one
with an identical and set probability. Generating graphs
“layer-by-layer” involves grouping the tasks into ordered
layers, and then adding edges from each task to tasks in
the layers below it, with a set probability for each edge.
The “fan-in fan-out” method starts with a source task and
then goes through a probabilistic sequence of operations
of either adding several children to an existing task or
adding a task with several existing parents, all within the
limits of maximum and in and out degrees. Generation
by “intersecting total orders” intersects randomly generated
total orders to produce a partial order, and then applies a
transitive reduction on that partial order before creating a
graph from it.

Using these different methods of generating random
graphs serves to balance out certain graph characteristics
that each method tends to produce. For example, the matrix
method will add more edges to and from tasks in the
middle of its topological order because they have more
possible edges, creating a denser middle. Another case is
that no transitivity exists in graphs produced by intersecting
total orders, because of applying the transitive reduction to
them (otherwise there are too many), while many transitive
relations are produced by the matrix method.

B. Graph Weight Generation

For node and edge weights, the generation of the graphs
involves both random weights, and regular weights with
respect to the graph structure, where they are applicable.
Three distributions were used in the generation of random
weights: a uniform distribution, a Gamma distribution, and
a bimodal distribution made from two Gamma distributions
(Table IX). Gamma distributions give non-negative values
and a right skew, this resembles approximations of real
workload weight distributions [22].

Table IX
WEIGHT GENERATION PARAMETERS
[ Distribution [ Range [ Modes
Uniform 10 - 100 -
Gamma 100 - 300 ~200
Bimodal (2 Gammas) | 50 - 250 | ~100, ~200

[ Regular weight type [ Graph structures

Uniform node weights
Uniform edge weights
Weights from nature of program

stencil, FFT, pipeline
stencil, FFT, pipeline, Cholesky, Gauss
Cholesky, Gauss, trees

The uniform distribution spans one order of magnitude, so
its weights are diverse. In the Gamma distribution, weights
are more concentrated. The bimodal distribution represents
a situation where there are two task types with different
weight ranges.



Two ways were used to generate edge weights. One
generates them as the node weights have been generated.
Another one uses the weights of incident nodes to influence
the weight of the edge, with the assumption that the volume
of computation has an effect on the volume of inputs and
outputs involved. Here this is done by first generating a
value random value R (generated with same method as node
weight), and then multiplying it by the sum of the weights
wp, and w; of the head and tail node, respectively, raised
to a fractional powler (%) to make its effect weaker, hence

cen = R(wp, + wy) 2. Edge weights are scaled at the end to
give the required CCR.

All combinations of these methods were included in
generating the graphs. In addition, the following regular
weight patterns were applied (Table IX). Stencil, FFT,
and pipeline graphs all have uniform computation costs
and uniform communication costs, based on their actual
algorithms. Cholesky factorization and Gaussian elimination
graphs have non-uniform node weight patterns based on
their algorithms, and uniform communication costs. Trees,
in addition to being generated with random weights, also
have versions where their weights increase towards the
root (the source for out-trees and sink for in-trees), and
each node has a cost equal to the computation cost of the
rest of its subtree. This represents a natural pattern in tree
workloads where data is continually divided or combined
then reprocessed, like the combine phase in a divide and
conquer algorithm, e.g. mergesort.

VI. EXPERIMENTAL EVALUATION

The performances of the algorithms on each problem
(graph and processor count for limited processors) are
measured with the lengths of their schedules normalised
to the length of the best schedule found by all investigated
algorithms for that problem (the normalised schedule length
- NSL), which keeps the results on a consistent scale and
highlights differences between the performances relative to
each other. The boxplots used are Tukey boxplots which
means the whiskers are the lowest and highest data points
within 1.5 times the interquartile range from the boxes. The
plots are colour coded to help with readability. Plots of list-
schedulers are coloured while those of cluster-schedulers
are greyscale. List-schedulers with the same task priority
share the same colour and cluster-schedulers with the same
clusterer have the same greyscale shade.

Due to space limitations, we present representative and
interesting results in following, please refer to ([38]) for
extensive results. While the comparison focuses on the
quality of the produced schedules (i.e. their schedule length)
we also measured and present the runtimes of the algorithms
in section VI-A4 to allow some evaluation of cost-benefit
trade-off, complementing the given runtime complexities of
the algorithms.

A. Scheduling to Limited Processors

Figures 2, 3, and 4 show boxplots for results on all
random, real-application, and series-parallel (SP) graphs

with CCRs 0.1, 1, and 10 respectively. The data points are
normalised schedule lengths for the algorithms on problems
in those graph sets. Random, real-application, and SP graphs
can be viewed as the general set that provides diversity
and realism. By themselves, their results also have similar
trends. Problem instances for random graphs outnumber the
other types by roughly 2 to 1. The algorithms are close in
performance at low CCR, but become more varied as CCR
increases.
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Figure 2. Boxplots for results on all random, real-application, and SP
graphs with CCR 0.1
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Figure 3. Boxplots for results on all random, real-application, and SP
graphs with CCR 1.0
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Figure 4. Boxplots for results on all random, real-application, and SP
graphs with CCR 10.0

Figures 5 and 6 show performance profiles for the algo-
rithms on these graph types with CCRs 0.1 and 10 respec-
tively. Performance profiles were proposed as a means to



compare optimisation algorithms [11]. They plot the fraction
of all results (y-axis) equal to or better than an NSL against
that NSL (x-axis). Performance profiles compactly show for
which fraction of the results an algorithm achieves a certain
quality or overhead compared with the best algorithm for
each input instance. A similar colour scheme to the boxplots
are used. The point at 1 NSL shows the proportion of results
by an algorithm that match the best (so they are best or tied-
best). The profiles sometimes overtake each other, which
shows that the overtaking algorithm has less results that are
better but also less that are worse, at the point of overtake,
for example, a few cluster-schedulers overtake non-insertion
list-schedulers at around the 90th percentile, having better
results for their last 10 percentiles. Most algorithms have
almost all of their results better than a 2 NSL. The plots
are truncated at 1.86 NSL for readability, a few profiles
do not finish at that point but the difference is small and
they belong to overall bad performers.. The algorithms with
extreme outliers are the worst performers in general.

Let us now discuss the results, addressing the experimen-
tal aims stated in section II-C.

1) List-Scheduling  vs  Cluster-Scheduling: List-
scheduling is better than cluster-scheduling at CCRs
of 0.1 and 1 as can be observed in the boxplots and
performance profiles of figures 2 to 6. The relative
performance of cluster-scheduling improves with CCR. At
a CCR of 10, certain cluster-schedulers are the best out
of all schedulers but are still only marginally better than
list-schedulers using lookahead (cpn/dps with cwe/cc with
insertion), which are the best list-schedulers at that CCR.
In the performance profiles for CCR 10 results, shown in
figure 6, a cluster-scheduler (dsc-glb-etf) occupies the top
of the band of profiles for a large range that is between
its 25th and 95th percentiles, having the lowest NSL
for almost all percentiles in that range. However, there
are lookahead list-schedulers (cpn/dps with cwe/cc with
insertion) which practically perform the same, following
its profile very closely.

At high CCR, some cluster-schedulers (dsc with glb/ls
with etf) are particularly effective at fork and join struc-
tures, which make up trees and series-parallel graphs. List-
schedulers have difficulty with those unless they use looka-
head techniques which are very helpful for join structures.
Figures 7 and 8 show results for in-trees at 1 CCR and
10 CCR. The advantage for cluster-schedulers only comes
at 10 CCR. Although the under-performing list-schedulers
can improve by scheduling reversed in-trees as out-trees
and reversing the schedule back, they would still be worse.
This cluster-scheduler advantage is much smaller on out-
trees (shown in figure 9), series-parallel graphs (figure 10),
and fork-joins. In all cases cluster-scheduling is worse for
lower CCRs.

2) List-Scheduler Comparisons: Refer again to figures
2, 3, and 4, for results on general graphs. At lower CCRs,
the best schedulers are dynamic priority list-schedulers, in
particular “dls-ins” (DLS with insertion) and ETFE. ETF has
lower complexity than “dls-ins” and is also slightly better.
For CCRs 1 and 10 this is visible from the boxplots. For

CCR 0.1 it can be seen from the performance profile in
figure 5 that ETF has the highest number of best results by
a wide margin.

ETF becomes inconsistent at CCR 10, it still has the
highest number of best results which can be seen in figure
6, but its results are spread out with its higher percentiles
being worse than those for list-schedulers using lookahead.
Static priority lookahead list-schedulers are the best list-
schedulers at high CCR considering their average and worst
case performances.

No particular combination of techniques stands out very
much. The following can be noted about specific techniques.

a) Task Priority: Bottom-level (“bl”) is the best task
priority at 0.1 and 1 CCR. However, at a CCR of 10, the
best list-schedulers use variants of CPND (“cpn”, “dps”),
which are noticeably better than bottom-level priority. This
is only with list-schedulers that use insertion, CPND and
bottom-level perform similarly at 10 CCR if insertion is not
used.

Generally, tlevel + blevel is the least effective list-
scheduling priority. It adds the top-level to its priority
metric, which is the opposite of what ETF and DLS do,
since top-level roughly corresponds to the task’s start time.
However, it sometimes does well when not used with the
critical-path-on-processor placement technique like in its
original algorithm, such as on series-parallel graphs with
high CCR, shown in figure 10.

b) Insertion: At 0.1 and 1 CCR (figures 2 and 3),
the performance increase from using insertion compared
to not using insertion is small for their best and average
cases. Their medians are practically the same. For a large
fraction of results at these CCRs, list-scheduling without
insertion gives good performance that cannot be improved
upon. However, list-scheduling with insertion always gives
much better worst case performance. Insertion’s benefit
increases with CCR. At CCR 10 (figure 4), it has noticeably
better average case performance. It also seems to benefit
schedulers with CPND task priority more than it does for
ones with bottom-level priority.

¢) Lookahead: As with insertion, simpler schedulers
already perform well at low CCRs so there is not much
room for improvement from using lookahead at 0.1 and 1
CCR (figures 2 and 3). At these CCRs, lookahead does not
improve worst case performance either. However, its benefit
increases with CCR and it becomes useful at 10 CCR, where
it gives the best list-schedulers.

Out of the lookahead techniques used, critical-child
lookahead (“cc”) and children-weighted-est lookahead
(“cwe”) are the ones which are effective. Performance
is similar between them, with children-weighted-est being
slightly better. The children-latest-est lookahead (“cle”)
is much less effective, although it was shown to give
good performance on heterogeneous processors for which
it was created [5]. Lookahead does not work well when
used with dynamic priority list-schedulers (“dlscc”, “etfcc”).
The critical-path-on-processor placement scheme (“‘cpop”)
is also shown to be ineffective.

Lookahead techniques are especially good on join struc-
tures, as they were designed for. This can be seen in results
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Figure 9. Boxplot for results on out-trees with CCR 10.0
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Figure 10. Boxplot for results on series-parallel graphs with CCR 10.0

for in-trees (8) and series-parallel graphs (10).

3) Cluster-Scheduler Comparisons: The DSC clustering
algorithm gives the best cluster-schedulers, although it is
seen in the next section that other algorithms can give better
clusterings as schedules to unlimited processors. DSC is
also particularly good relative to other algorithms on in-
trees (8), because of its technique of relocating parents
for join structures when the parents have only one child.
Generally, DCP is close second in performance and LC is
farther behind.

Merging clusters with GLB is better than with adapted
list-scheduling, when both are used with EST (“etf”) task
ordering. This difference is actually more significant than
between the two best clusterers, DSC and DCP, but reduces
with increasing communications. Merging by list-scheduling
seems to work better with LC. For GLB, there is minimal
difference between using task orders from the clustering step
(“glb”) and reordering the tasks (“glbro”). EST task ordering
is a significant improvement over bottom-level ordering and
this difference is the most significant of all three stages.

4) Runtimes: Figure 11 shows typical runtimes for the
algorithms on graphs of node size 500. Runtimes more than
1000 milliseconds are rounded to 3 significant figures. The
runtimes of clustering algorithms have also been included,
to separate them from those of later stages (merging and
ordering) which can be much longer. Our implementations
of the algorithms may deviate from the complexities listed
(to reduce implementation effort), and significant ones are
marked with asterisks. As can be seen, the runtimes differ
very significantly across the algorithms. Cluster-merging
can be particularly slow because of the high complexity
methods (cluster-merging) involved, and the large numbers
of clusters generated by clustering algorithms (DCP has
been adjusted so that it does not try to save clusters at all).
However, the best cluster-schedulers are not the slowest ones
and have comparable speed to lookahead list-schedulers.
Dynamic list-schedulers are the most effective in terms of
the performance achieved with their runtimes.

Algorithm Time (ms) |Algorithm Time (ms)  JAlgorithm Time (ms)
bl-est 2 bl-cc-ins* 70 etfcc 639
bl-cle* 53 bl-cpop-ins 5 dcp-glb-bl* 618
bl-cwe* 59 tIbl-est-ins 6 dcp-glb-etf 589
bl-cc 18 tibl-cpop-ins 8 dcp-Is-etf 14200
tibl-est 3 tibl-cwe-ins* 338 dcpx-glb-etf 624
tibl-cwe* 54 |cpn-est-ins 5 dcpx-ls-etf 13800
cpn-est 2 cpn-cwe-ins* 339 |dsc-glb-etf 145
cpn-cwe* 53 |cpn-cc-ins* 70 |dsc-ls-etf 6800
cpn-cc 20 |dps-est-ins 4 dsc-glbro-etf 144
dps-est 2 dps-cwe-ins* 333 |ic-glb-etf 2090
dps-cwe* 50 dps-cc-ins* 70 Ic-Is-etf 2530
dps-cc 19 dls-ins 296  |dcp 344
bl-est-ins 8 dls 6 dcpx 318
bl-cle-ins* 332 discc 1160  |dsc 2
bl-cwe-ins* 329 etf* 6 Ic 121

* Non-optimal implementation with impact on runtime

Figure 11. Algorithm runtimes in milliseconds

B. Scheduling to Unlimited Processors

We now compare the algorithms’ performance when
targeting an unlimited number of processors, which is the
natural element of clustering algorithms. Scheduling to
unlimited processors is also addressed here as clustering.
The list-schedulers are made to schedule to an unlimited



number of processors (by setting the number of available
processors to equal the number of tasks), and are compared
in this regard with the clustering algorithms by themselves
(so there are no merging or ordering steps). All the clusterers
used in this study also work by producing schedules to
unlimited processors. Figures 12 and 13 show boxplots for
the clustering results on random, real-application, and SP
graphs with CCRs 1 and 10 respectively. The clusterers are
better here, although the lookahead list-schedulers are also
very good and list-schedulers in general are not far behind.
LC is the simplest method and does not do well because it
cannot reduce multiple incoming or outgoing communica-
tions on one node, which is especially bad at high CCR. The
results for CCR 0.1 (not shown here) are all extremely close
to each other and to the lower bound. Scheduling without
communication cost to an unlimited number of processors
has easy optimum solutions and low CCR resembles it.
For clustering, the only benefit that insertion brings to list-
scheduling is fitting more tasks onto each processor (cluster)
which avoids communications when communication costs
are high, otherwise it gives no advantages.
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Figure 12. Boxplot for clustering results on random, real-application, and
SP graphs with CCR 1.0
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Figure 13. Boxplot for clustering results on random, real-application, and
SP with CCR 10.0

DSC is optimal for fork and join graphs [40], DCP
performs well on them too. In list-scheduling, lookahead
techniques perform very well for join graphs as they have
been designed for, and on fork graphs the tlevel + blevel
priority gives optimal list-schedulers because it uses edge
weights while others do not, and it is similar to DSC in that

situation. DSC is close to optimal on fork-join graphs. Just
as in scheduling to limited processors, clustering algorithms
and lookahead list-schedulers have an advantage on in-trees.
Only clustering algorithms can give the best performance
on out-trees. The high CCR sets the algorithms apart since
clustering is about managing communications and reducing
them, and clustering algorithms do not have an advantage
at high CCR only because of their approach, like it is for
cluster-scheduling to limited processors.

VII. CONCLUSION

This study set out to compare list-scheduling and cluster-
scheduling. To do this, representative algorithms were im-
plemented and compared in a large experimental study,
and a systematic categorisation of algorithms was made
based on their modular nature, with unpublished algorithms
included in the experiment as combinations of modules, and
the modules assessed individually. Cluster-schedulers start
with reducing communications, and it is demonstrated that
their performance increases with communication volume.
However, the best cluster-schedulers are only marginally
better than list-scheduling at a communication to compu-
tation ratio (CCR) of 10, and at lower CCRs list-scheduling
is better. Cluster-schedulers have a more obvious advantage
over list-scheduling at high CCR on fork and join structures
which can be made extreme on trees. ETF is the best
scheduler at low CCR while cluster-schedulers along with
lookahead list-schedulers perform better at high CCR. When
list-schedulers are compared with clustering algorithms by
themselves for their ability to schedule to an unlimited
number of processors, clustering algorithms are shown to
be better in that case for their specific purpose.
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