
Further Explorations in State-Space Search for

Optimal Task Scheduling

Michael Orr & Oliver Sinnen

Department of Electrical and Computer Engineering

The University of Auckland

New Zealand

Email: morr010@aucklanduni.ac.nz

Abstract—The problem of task scheduling with communication
delays is NP-hard. State-space search algorithms such as A*
have been shown to be a promising approach to solving this
problem optimally. A recently proposed state-space model for
task scheduling, known as Allocation-Ordering (AO), allows
state-space search methods to be applied to the problem of
optimal task scheduling without the need for duplicate avoid-
ance mechanisms. This paper examines the performance of two
parallel search algorithms when applied to both the AO model
and the older ELS state-space model. This suggests that its use
may provide an advantage with many different variations on
state-space search. This paper explores the application of AO
to some of these variants, namely depth-first branch-and-bound
(DFBnB) and parallel search. We also present an update to
the formulation of AO that prevents invalid states from being
considered during a search. An evaluation shows that AO gives
a clear advantage to DFBnB and allows greater scalability for
parallel search algorithms. The update to AO’s formulation has
no significant impact on performance either way.

I. INTRODUCTION

Efficient schedules are crucial to allowing parallel systems

to reach their maximum potential. This work addresses the

classic problem of task scheduling with communication delays,

known as P |prec, cij |Cmax using the α|β|γ notation [1].

This problem models a program as a directed acyclic graph

of tasks, giving precedence constraints and communication

delays, which must be arranged onto a set of processors in

order to produce a schedule of minimum length. Solving this

problem optimally is NP-hard [2], and therefore there is no

currently known method for which the work required to do

so does not grow exponentially with the number of tasks. As

such, this problem is usually handled with heuristic solutions,

of which a large number have been developed. [3], [4], [5], [6].

The quality of these solutions relative to the optimal cannot

be guaranteed, however. [7].

The complexity of the problem usually discourages attempts

at optimal solving, but possession of an optimal schedule

can make an important difference for time-critical applica-

tions. Without optimal solutions, it is also very difficult to

evaluate the quality of approximation methods. Branch-and-

bound algorithms such as A* have shown some promise in

finding optimal schedules, with two notable state-space models

having been proposed: exhaustive list scheduling [8], and

allocation-ordering[9]. AO, the more recent model, has the

advantageous property of being duplicate-free. This property

suggests that AO should be more appropriate for the use of

parallel state-search algorithms, as it removes the need for

certain data structures which would otherwise cause contention

between threads. It also suggests that AO may give improved

performance for search algorithms that do not traditionally

have the capacity for duplicate avoidance, such as depth-first

branch-and-bound. In this paper, we explore the potential of

the AO model when applied to these variants of branch-and-

bound, and evaluate its performance in comparison to the ELS

model. We also propose a change to the formulation of the

AO state-space which prevents invalid states from ever being

considered during a search, and therefore avoids performing

unnecessary work regarding these states.

Section II provides important background information on

the problem, branch-and-bound methods, and the state-space

models used for task scheduling. Section III describes a previ-

ous limitation of the AO model, and an update to fix it. Section

IV describes the application of DFBnB to the AO model, while

Section V describes the parallel search algorithms that were

used to evaluate the new state-space model. Finally, Section

VI presents the conclusions of the paper.

II. BACKGROUND

A. Task Scheduling Model

The problem addressed in this work is the scheduling of

a task graph G = {V,E,w, c} on a set of processors P .

G is a directed acyclic graph (or DAG). Each node n ∈ V
is a task belonging to the task graph. Tasks represent an

indivisible block of work that must be performed by a program

represented by G. Each task ni has a weight w(ni) which

represents the computation time needed to complete that task.

An edge eij ∈ E represents that task nj relies on task ni; data

output from ni is required as an input for nj , and therefore nj

cannot begin execution until ni has finished and communicated

the necessary data to nj . Each edge eij has a weight c(eij)
which represents the communication time needed to transmit

the necessary data from ni to nj . The target system for

our schedule consists of a finite number of homogeneous

dedicated processors, P . Each pair of processors pi,pj ∈ P
possess an identical communication link. All communication

can be performed concurrently and without contention. Local

communication, from pi to pi, has no cost.

 2

 2

 3

a

cb

d
 2

 3

 1

 2 1

Figure 1: A simple task graph.

Figure 2: A valid schedule for the simple task graph of Fig. 1.

We aim to produce a schedule S = {proc, ts}, where

proc(n) gives the processor to which n is assigned, and ts(n)
gives the start time of n. A valid schedule is one for which

all tasks in G are assigned a processor and a start time,

and which satisfies two conditions for each task. The first

condition, known as the processor constraint, requires that each

processor is executing at most one task at any given time.

The second condition, known as the precedence constraint,

requires that a task n may only begin execution once all of

its parents have finished execution, and the necessary data has

been communicated to proc(n). An optimal schedule is one

for which the total execution time is the lowest possible.

B. Branch-and-Bound

Branch-and-bound is a family of search algorithms com-

monly used to solve combinatorial optimisation problems.

Through search, they implicitly enumerate all solutions to

a problem, and thereby both find an optimal solution and

prove that it is optimal [10]. Each node in the search tree,

usually referred to as a state, represents a partial solution

to the problem. Given a partial solution represented by a

state s, some operation is applied to produce new partial

solutions which are closer to a complete solution. Performing

this operation to find the children of s is known as branching.

Additionally, every state must be bounded: a cost function f
is used to evaluate each state, where f is defined such that

f(s) is a lower bound on the cost of any solution that can be

reached from s. These bounds allow the search to be guided

away from unpromising solutions, as a single state can be used

to judge the entire subtree that proceeds from it.

The most well known variant of branch-and-bound is a best-

first search method known as A* [11]. A* has the major

advantage that it is optimally efficient; using the same cost

function f , no search algorithm could find an optimal solution

while examining fewer states (disregarding states which have

the same f -value as the optimal). A* relies on the cost

function f to always provide an underestimate. This means

it is guaranteed that f(s) ≤ f∗(s), where f∗(s) is the true

lowest cost of any state in the subtree proceeding from s.

Depth-first branch-and-bound (DFBnB) is a variant of

branch-and-bound which uses a depth-first search strategy,

moving as far into the state-space as possible before back-

tracking to try other paths. Just as with A*, a cost function

f is used to evaluate each state s, producing a lower bound

f(s) on the quality of any solution which could be reached

from s. When DFBnB first encounters a state sc representing

a complete solution, the cost f(sc) is recorded as fbest.
Subsequently, if a state is encountered such that f(s) ≥ fbest,
the search will not proceed to that state’s children; we have

already found a solution at least as good as any that can be

reached from this state. If another complete solution sci is

encountered, and f(sci) < fbest, then fbestis overwritten with

f(sci). The search ends when no further states can be reached

with f(s) < fbest. At this point, the complete solution with

cost fbesthas been proven to be optimal.

The most obvious advantage of DFBnB when compared

with A* is its much lower memory requirements. The best-

first nature of A* necessitates the maintenance of a priority

queue requiring O(bd) space (where d refers to the depth of

the state-space and b is its average branching factor), while a

depth-frst search requires only states on the current path and

their children to be in memory at any given time, using O(bd)
space. In the case of task scheduling, this means the memory

requirement of A* scales exponentially with the number of

tasks, while for DFBnB it scales only linearly. This fact

suggests another advantage: since the data structures used in

depth-first search (usually a stack) tend to be much smaller

and simpler, operations performed on them are expected to

take less time. This is likely to mean that a depth-first search

can process states at a faster rate than a best-frst search.

Naturally, DFBnB also has several disadvantages when

compared to A*. The first is that, since it is a depth-first

search, it cannot be applied to state-spaces of infinite depth

without careful modification. As both AO and ELS have a

finite (and relatively shallow) depth, this is not important

to our application. Another disadvantage is that, unlike A*,

DFBnB is not optimally efficient. Like A*, DFBnB will always

examine every state which has f(s) less than the optimal

solution, but it is likely that DFBnB will also examine states

with f(s) greater than the optimal solution, which A* will

never examine. Indeed, the only case in which DFBnB will

not examine extraneous states is if the very first complete

solution it encounters is also optimal. This does not mean that

DFBnB is guaranteed to examine more states in total than A*;

if A* happens to examine a greater proportion of the states

where f(s) is equal to the optimal solution, it can still end

up doing more work. Such situations, however, are strongly

implementation-dependent and unpredictable. It is prudent to

assume that, for an arbitrary problem instance, DFBnB is

likely to perform more work overall.

C. Exhaustive List Scheduling State-Space

Exhaustive list scheduling is a state-space model for optimal

task scheduling which bears a strong resemblance to list

scheduling heuristic methods for approximate task scheduling.

In this model, each state is a partial schedule. Each task is

either scheduled or unscheduled in each state. If a task is

scheduled, then it has been assigned to a processor and given

a start time. If a task is unscheduled, it may be “free” or not

free. A task is free if all of its dependencies have been met;

that is, if all of its parents have already been scheduled. At

each step, the model branches by placing any free task onto

any processor. The full set of children of a state s therefore

represent all possible free tasks that could have been chosen,

and all possible processors they could have been placed on [8].

In this way, the model simulates all possible decisions that a

list scheduling algorithm could make.

Branch-and-bound methods are most effective when the

state-space they are searching has the property that all subtrees

are disjoint. This means that there is only one path from the

root of the tree to any state in the state-space. This is also

equivalent to saying that there is only one way of reaching any

given state. When this is not the case, we refer to any paths that

lead to a state already visited ’duplicates’. Equivalently, any

state reached which has already been encountered is termed

a ’duplicate’ state. If duplicate states are not detected, then

the search algorithm can perform a substantial amount of

unnecessary work: not only might they examine one duplicate

state when an alternate path is found, they may also proceed

to re-explore the entire subtree rooted at that state. Detecting

duplicate states requires keeping a record of those states

which have already been visited, which represents a significant

investment of memory.

Unfortunately, the ELS strategy creates a lot of potential

for duplicated states [12]. One type which are fundamental to

the model are independent decision duplicates. Tasks which

are independent of each other can be selected for scheduling

in different orders, but be assigned to the same processors

in each case. Performing the same scheduling decisions in

a different order constitutes taking a different path to reach

the same partial schedule, and therefore a duplicate state.

These duplicates can only be avoided by enforcing a specific

sequence onto these scheduling decisions. There is no known

a

b c d

e f

g

P P1 2

A B

P P1 2

A B

C

P P1 2

A B

D

P P1 2

A B

C

P P1 2

A B

D

Figure 3: Branching in the ELS state space.

P P1 2

A B

P P1 2

A B

C

P P1 2

A B

DC

P P1 2

A B

D

Figure 4: Independent decision duplicates.

method by which this can be achieved under the ELS model,

while still allowing all possible schedules to be reached.

D. Allocation-Ordering State-Space

Allocation-Ordering (AO) is a new state-space model [9]

constructed such that a specific order is enforced on all

scheduling decisions, and therefore the duplicates found in

ELS do not exist. The model is named for the two distinct

phases in which it creates a schedule: first Allocation, where

each task is assigned to a processor, and then Ordering, where

a

a
a

a

o

o

o

o o
o o

o o

Figure 5: Branching in the AO state-space.

a sequence is decided for the set of tasks allocated to each

processor. As it first decides how tasks are grouped together on

processors, this model bears a resemblance to the scheduling

approximation methods known as clustering, whereas ELS

resembles list scheduling.

In the Allocation phase, a partition of the set of tasks

is built iteratively, with the maximum number of subsets in

the partition being the number of processors available for

scheduling. At each step, the current task can either be added

to one of the existing subsets, or used to begin a new subset.

This process allows all possible groupings of the tasks to be

reached, with only one possible path to each grouping.

The Ordering phase begins with a complete allocation. From

there, it proceeds in a manner similar to ELS, but on a per-

processor basis. For a processor pi, a task ni allocated to pi
is considered to be “free” for ordering if there is no task nj

also on pi which is an ancestor of ni in the task graph G. At

each step, one task is selected from among all those which

are currently free on pi, and placed next in order. This is

repeated until all tasks on pi have been given a place in the

sequence. The decision of which processor to order a task

on next can be made arbitrarily, but it must be deterministic

such that the processor which is selected can be determined

entirely by the depth of the current state. Once this process has

been completed for all processors, a complete schedule can be

derived, simply by giving each task its earliest possible start

time given the processor and place in sequence it has been

assigned.

By assigning each task to a processor ahead of time, and

enforcing a strict order in which the processors are considered,

this model eliminates the possibility of independent decision

duplicates. In ELS it was possible to place task n1 on p1 and

then n2 on p2, but equally valid to place n2 on p2 before

placing n1on p1. AO can force p1 to be considered before p2,

making only the first sequence of decisions a possibility.

E. Other Optimal Solution Methods

Another combinatorial optimisation technique which has

been applied to this task scheduling problem is integer linear

programming (ILP). This involves formulating the problem

instance as a linear program, a series of simultaneous lin-

ear equations, where the variables are constrained to inte-

ger values. A number of possible ILP formulations of the

P |prec, cij |Cmax problem have been proposed [13], [14], [15],

with similarly promising results as branch-and-bound. Neither

technique has been shown to have a significant advantage over

the other in terms of the size of task scheduling problem that

they can solve practically.

III. AVOIDING INVALID STATES IN AO

In the AO model, there are some cases in which the

combination of valid local orders for all processors produce

an overall schedule with an invalid global ordering [9]. To

explain why this happens, we model a partial schedule as

a graph showing all of the dependencies between tasks. For

a task graph G, a partial schedule S′can be represented by

augmenting G to produce a partial schedule graph GS′ . We

begin with the graph G. Say that in S′, a task n1 is ordered

on processor p1, and a task n2 is also ordered on p1, but

later in the sequence. We check for the edge e12 in the task

graph. If e12 /∈ E, we add e12to E. This new edge represents

that, according to the ordering defined by our partial schedule,

n2must begin after n1. This can be considered as a new type

of dependency, which we call an ordering dependency, as

opposed to the original communication dependencies in G.

Once edges have been added corresponding to all ordered

tasks in S′, we have our graph GS′ . The presence of a cycle

in this graph indicates that the ordering is invalid, as a cycle

of dependencies is unsatisfiable. Since the graph G is acyclic,

and if ni is an ancestor of nj in G then the ordering edge eji
cannot be created, it is necessary that any cycle in GS′ will

contain at least two ordering edges.

Previously, such states were removed from consideration

during the search as their cyclic nature made their f -values

increase infinitely during calculation, until they passed an

upper bound for the schedule length and it was clear they

could be ignored. However, it is possible for a state to exist in

which no cycle yet exists, but for which it is inevitable that a

cycle will be created as the ordering process continues. Say,

for example, that the introduction of edge eij would create a

cycle in GS′ , but in S′ the task ni has already been ordered

while nj has not. In order for the schedule to be completed,

nj must eventually be ordered, at which point a cycle will

be formed. Here, S′represents an entire subtree of states from

which no valid schedule can be reached. None of these states

can be selected as the optimal solution, so this does not present

a threat to the accuracy of the search process. However, it

does represent a potentially substantial amount of wasted work

performed by the search algorithm. Ideally the formulation of

the AO model would be such that it allows the creation of any

valid solution, and only valid solutions.

The key to avoiding this unnecessary work is the observation

that, given that ni has been ordered and nj has not, it

is inevitable that njmust eventually be ordered later than

ni. Therefore, for all descendents of this partial schedule

in which nj is ordered, the ordering edge eij must be in

GS′ . We can therefore define a more useful augmented task

graph, G∗

S′ , which ’looks ahead’ to determine cycles that must

inevitably occur. In this graph, the ordering edge eij exists if

proc(ni) = proc(nj) and either nj is ordered later than ni,

or ni has been ordered and nj has not.

To avoid these cycles, we propose a modification to the

condition we use to determine if a task is free to be ordered.

The new condition is this: a task ni on processor pi is free

to be ordered if it has no ancestors in graph G∗

S′ which are

also on pi and have not already been ordered in S′. In the

original formulation of AO, this condition used only the graph

G. However, the ordering edges specific to the partial solution

S′ must be considered equally with the communication edges

that are common to all partial solutions. The creation of a

cycle in G∗

S′ requires that an ordering edge is introduced from

a task ni to task nj , where ni was already reachable from nj

using at least one ordering edge. By definition, this means that

nj is the ancestor of ni in G∗

S′ . Therefore, according to the

new condition, ni cannot be considered free until nj has been

ordered, meaning that the edge eij can never be introduced

and the cycle can never be formed. By treating the ordering

dependencies created during the ordering process in the same

way as the original communication dependencies, we ensure

that states with an invalid global ordering cannot be reached.

We implemented this change by maintaining a record of

G∗

S′with each state in the form of a transitive closure matrix.

Whenever a new task is ordered, the transitive closure is

updated to reflect the new ordering dependencies. We can then

use this matrix to determine which tasks are free when creating

the children of a state.

A. Evaluation

To determine empirically the impact of this change to the

formulation of the AO model, we performed A* searches on a

set of task graphs using versions of the model both with and

without this change. Task graphs were chosen corresponding

to a wide variety of program structures. Approximately 270

graphs with 21 tasks were selected. These graphs were a

mix of the following DAG structure types: Independent, Fork,

Join, Fork-Join, Out-Tree, In-Tree, Pipeline, Random, Series-

Parallel, and Stencil. We attempted to find an optimal schedule

using both 2 and 4 processors, once each for both versions

of AO, giving a total of over 1000 trials. The algorithms

were implemented in the Java programming language. All tests

were run on a Linux machine with 4 Intel Xeon E7-4830 v3

@2.1GHz processors. The tests were single-threaded, so they

would only have gained marginal benefit from the multi-core

system. The tests were allowed a time limit of 10 minutes to

complete. Each search was started in a new JVM instance, to

remove the possibility of previous searches impacting them

through garbage collection and JIT compilation.

Figure 6 shows the results of these tests. Both versions of

AO were able to solve approximately 80% of the problem

instances within 10 minutes, without a significant difference in

performance. This suggests that the presence of invalid states

in the original formulation did not have much of a negative

impact on average. It also suggests, however, that the addition

of the transitive closure and associated operations did not

Invalid States No Invalid States

%
 S

o
lv

e
d

0
2
0

4
0

6
0

8
0

1
0
0

79 81

Figure 6: Comparing the performance of AO with and without

invalid states.

significantly slow down the implementation of the new AO

formulation.

IV. DEPTH-FIRST BRANCH AND BOUND

When applying DFBnB to a state-space containing duplicate

states, there are two possible approaches: ignore the duplicates,

or implement a duplicate-detection mechanism. If we ignore

duplicate states, we are likely to greatly increase the amount

of work necessary to find the optimal solution. A depth-first

search will examine every possible path in the state-space:

this could mean that entire sub-trees are explored many times

over. On the other hand, the addition of a duplicate-detection

mechanism will largely negate the main advantage of DFBnB

over A*, that being its much lower memory requirement.

In order to avoid repeating work, the search algorithm must

keep a record of states it has already examined. Although

many strategies could exist for deciding exactly which states

should be remembered, any strategy that is maximally effective

at detecting duplicates will require O(bd) memory, just as

A* does. With such an implementation of DFBnB requiring

an exponentially growing amount of memory, and not being

optimally efficient, it is hard to imagine a situation in which

it would be preferable to A*.

For those reasons, it seems likely that DFBnB would

perform significantly better on AO, a duplicate-free state-

space, than it would on ELS, a state-space with duplicates.

If this is true, then the use of AO could make DFBnB a

more practical option for optimal task scheduling, making its

benefits available for situations where memory is the more

constraining factor.

A. Evaluation

To empirically evaluate the hypothesis that AO would allow

better performance from depth-first branch-and-bound, we

performed DFBnB searches on a set of task graphs using each

state-space model. Task graphs were chosen corresponding to

a wide variety of program structures. A total of 71 graphs

with 21 tasks were selected. We attempted to find an optimal

schedule using both 2 and 4 processors, once each for both

N
e
it
h
e
r

B
o
th

A
O

 O
n
ly

E
L
S

 O
n
ly

AO vs. ELS with DFBnB

% Solved By

0 20 40 60 80 100

24

40

36

0

Figure 7: Comparing the performance of DFBnB using AO

and ELS.

state-space models, giving a total of 142 trials per model.

The algorithms were implemented in the Java programming

language. Existing implementations of both ELS and AO were

utilised. All tests were run on a Linux machine with 4 Intel

Xeon E7-4830 v3 @2.1GHz processors. The tests were single-

threaded, so they would only have gained marginal benefit

from the multi-core system. The tests were allowed a time

limit of 10 minutes to complete. Each search was started in

a new JVM instance, to remove the possibility of previous

searches impacting them through garbage collection and JIT

compilation.

Figure 7 shows the results of these tests. DFBnB was able to

solve 40% of the problem instances within 10 minutes for both

models, and 24% of problem instances could not be solved

within ten minutes using either model. The remaining 36% of

problem instances were able to be solved only when using the

AO model. There were no instances which were only solved

using the ELS model. This clearly demonstrates that DFBnB

gained an advantage when using the AO model - in fact, almost

twice as many optimal schedules were able to be found when

using AO than when using ELS.

V. PARALLEL SEARCH

As the AO model is duplicate-free, it does not require the

use of a duplicate-detection mechanism, or any of the data

structures associated with one. In a parallelised implementa-

tion of branch-and-bound, these data structures require syn-

chronisation between workers, adding greatly to the potential

for contention and likely limiting overall speedup. Therefore,

without the need for duplicate detection, it seems probable that

parallel branch-and-bound could be more effective when used

with the AO model than with the ELS model.

We have implemented simple shared-memory parallel ver-

sions of both A* and DFBnB. In both cases, each worker

thread possesses its own data structure from which states are

retrieved to be examined, and to which child states are added.

In the case of A*, this is a heap-based priority queue, while for

DFBnB it is a linked-list-based deque. The A* implementation

also has the option of using a closed list, shared between

all the workers for the purposes of duplicate detection. The

data structure used is Java’s ConcurrentHashMap, a thread-safe

hash map designed for high concurrency. In each algorithm,

workers will only examine states with a lower f -value than

their currently best known solution. After every hundred

thousand states, they will check to see if any other worker has

discovered a better solution. With depth-first search, solutions

are expected to be discovered very often early on, and less so

as the optimal is approached. With A*’s best-first approach,

the opposite is expected, with no solutions at all found until

near the end of the search. For both algorithms, the search

is finished once all workers have no states remaining with

f -values lower than the current best-known solution. This

solution has then been proven to be optimal.

Both algorithms use work-stealing to aid with load-

balancing: when a worker has exhausted all potentially useful

work to be done from its own data structure, it visits another

worker’s data structure and takes a state from it. For DFBnB,

a state is stolen from the back end of the deque. This both

minimises the chance of contention between the stealer and

the victim, and maximises the total amount of work stolen -

since states at the tail of the deque are highest up in the state-

space, they lead to the largest subtrees. This will hopefully

ensure that the stealer does not have to steal again soon after.

For A*, it is the current best state in the victim’s priority

queue that is taken - meaning that it is the most likely state

present to lead to the optimal solution, and therefore most

likely to represent useful work. By contrast, stealing from

the back of the queue could yield a very low quality state

which, if it is useful to examine it at all, is relatively unlikely

to lead to a significantly sized worthwhile subtree. For both

approaches, the victims of stealing are selected randomly.

Compared to some deterministic methods, this lowers the

chance that a worker will be serially victimised and slowed

down by others, and requires little communication between

threads for a decision to be made.

A. Evaluation

To empirically evaluate the hypothesis that AO would

allow better performance for parallel search algorithms, we

performed parallel searches on a set of task graphs using the

parallel implementations of A* and DFBnB. Task graphs were

chosen corresponding to a wide variety of program structures.

A total of 30 graphs with 21 tasks were selected, with each

of these graphs being known to take at least 5 minutes to

solve by a serial A* algorithm. This decision was made so that

there would be significant potential for reduction in time taken

by the parallel versions. These graphs included Fork, Out-

Tree, Pipeline, Random, Series-Parallel and Stencil structures.

We attempted to find an optimal schedule using 4 processors,

with both state-space models, with 1, 2, 4, 8, 16 and 24

worker threads, once each for each parallel algorithm. This

gave a total of 696 trials. The algorithms were implemented

0
2
0

4
0

6
0

8
0

1
0
0

Percent Solved with A*

Number of Threads

P
e
rc

e
n
t
S

o
lv

e
d

1 2 4 8 16 24

AO

ELS

ELS (DD)

(a) A*

0
2
0

4
0

6
0

8
0

1
0
0

Percent Solved with DFBnB

Number of Threads

P
e
rc

e
n
t
S

o
lv

e
d

1 2 4 8 16 24

AO

ELS

(b) DFBnB

Figure 8: Comparing the performance of parallel algorithms

using AO and ELS.

in the Java programming language. Existing implementations

of both ELS and AO were utilised. All tests were run on

a Linux machine with 4 Intel Xeon E7-4830 v3 @2.1GHz

processors. This system has a total of 48 cores. The processes

were restricted to a subset of cores, depending on the number

of worker threads, such that the threads were concentrated on

as few of the 4 processors as possible. Initial tests showed this

to be more effective than spreading threads evenly among the

processors, presumably as the locality allowed them to share

a cache. The tests were allowed a time limit of 10 minutes

to complete. Each search was started in a new JVM instance,

to remove the possibility of previous searches impacting them

through garbage collection and JIT compilation.

Figure 8 shows the results of these tests. In figure 8a, we

see that parallel A* achieved greater scalability when using

the AO model than with ELS. Parallel A* allows AO to

solve an additional 10% of problem instances, scaling up to

8 threads. ELS achieves similar improvement when duplicate

detection is not used; however, its absolute performance is

much worse. When duplicate detection is used, the absolute

performance of ELS is more comparable to that of AO, but

no benefit can be observed from the parallelisation. Figure 8b

shows that ELS benefits only marginally from parallel DFBnB,

while AO demonstrates similar improvements, and absolute

performance, as observed with parallel A*. The absolute

performance of ELS is clearly inferior to that of AO when

using this duplicate-ignoring solution method.

VI. CONCLUSIONS

For optimal task scheduling using branch-and-bound, there

are two notable state-space models which can be used. The

first, exhaustive list scheduling, is limited by its high potential

for producing duplicate states. This means this state-space

requires either significantly more memory, if we choose to

avoid duplicates, or significantly more time, if we choose not

to. The second model, allocation-ordering, does not contain

duplicates. We considered that this might be advantageous

to a wide variety of branch-and-bound methods. We also

presented an update to the formulation of AO which removed a

potentially large number of invalid states from the state-space.

An empirical evaluation showed that removing invalid states

from the AO state-space did not make a significant impact

on its average performance. This suggests that searches using

the older version of AO were probably not encountering a

significant number of invalid states. On the other hand, this

evaluation showed that the implementation tweaks necessary

to avoid invalid states did not add sufficient complexity to the

algorithm to outweigh the time saved by avoiding them. Over-

all, the new formulation of the AO model is more theoretically

complete, without negative effects on the performance of the

model.

Our evaluation showed that AO was greatly superior to ELS

when used with DFBnB, solving nearly twice as many problem

instances within the time limit. We also saw that AO allowed

greater improvements in the number of problems solved with

parallel versions of A* and DFBnB.

REFERENCES

[1] B. Veltman, B. J. Lageweg, and J. K. Lenstra, “Multiprocessor Schedul-
ing with Communication Delays,” Parallel Computing, vol. 16, no. 2-3,
pp. 173–182, 1990.

[2] V. Sarkar, Partitioning and scheduling parallel programs for multipro-

cessors. MIT press, 1989.
[3] T. Hagras and J. Janecek, “A high performance, low complexity al-

gorithm for compile-time task scheduling in heterogeneous systems,”
Parallel Computing, vol. 31, no. 7, pp. 653–670, 2005.

[4] T. Yang and A. Gerasoulis, “List scheduling with and without commu-
nication delays,” Parallel Computing, vol. 19, no. 12, pp. 1321–1344,
1993.

[5] J.-J. Hwang, Y.-C. Chow, F. D. Anger, and C.-Y. Lee, “Scheduling
Precedence Graphs in Systems with Interprocessor Communication
Times,” SIAM J. Comput., vol. 18, no. 2, pp. 244–257, 1989.

[6] O. Sinnen, Task Scheduling for Parallel Systems (Wiley Series on Parallel

and Distributed Computing). Wiley-Interscience, 2007.
[7] M. Drozdowski, Scheduling for Parallel Processing. Springer Publishing

Company, Incorporated, 1st ed., 2009.
[8] A. Z. Semar Shahul and O. Sinnen, “Scheduling task graphs optimally

with A*,” Journal of Supercomputing, vol. 51, pp. 310–332, Mar. 2010.
[9] M. Orr and O. Sinnen, “A duplicate-free state-space model for optimal

task scheduling,” in Proc. of 21st Int. European Conference on Parallel

and Distributed Computing (Euro-Par 2015), vol. 9233 of Lecture Notes

in Computer Science, (Vienna, Austria), Springer, 2015.
[10] A. Bundy and L. Wallen, “Branch-and-bound algorithms,” in Catalogue

of Artificial Intelligence Tools (A. Bundy and L. Wallen, eds.), Symbolic
Computation, pp. 12–12, Springer Berlin Heidelberg, 1984.

[11] N. J. N. P. E. Hart and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems,

Science, and Cybernetics, vol. SSC-4, no. 2, pp. 100–107, 1968.
[12] O. Sinnen, “Reducing the solution space of optimal task scheduling,”

Computers & Operations Research, vol. 43, no. 0, pp. 201 – 214, 2014.
[13] A. A. El Cadi, R. B. Atitallah, S. d. Hanafi, N. Mladenović, and

A. Artiba, “New mip model for multiprocessor scheduling problem with
communication delays,” Optimization Letters, pp. 1–17, 2014.

[14] S. Venugopalan and O. Sinnen, “Optimal linear programming solutions
for multiprocessor scheduling with communication delays,” in Proc.

of 12th Int. Conference on Algorithms and Architectures for Parallel

Processing (ICA3PP 2012), vol. 7439 of Lecture Notes in Computer

Science, (Fukuoka, Japan), pp. 129–138, Springer, Sept. 2012.
[15] S. Mallach, “Improved mixed-integer programming models for multi-

processor scheduling with communication delays,” 2016.

