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Bounding the composition length of

primitive permutation groups and

completely reducible linear groups

S.P. Glasby, Cheryl E. Praeger, Kyle Rosa, Gabriel Verret

Abstract. We obtain upper bounds on the composition length of a finite permutation

group in terms of the degree and the number of orbits, and analogous bounds for

primitive, quasiprimitive and semiprimitive groups. Similarly, we obtain upper bounds

on the composition length of a finite completely reducible linear group in terms of some

of its parameters. In almost all cases we show that the bounds are sharp, and describe

the extremal examples.

MSC 2000 Classification: 20B15, 20H30, 20B05

1. Introduction

The composition length of a finite group is the length of any composition series of the

group. It is sometimes viewed as a measure of its size or complexity. Often it is useful

to have bounds in terms of parameters relevant to the way the group is represented,

rather than the abstract group structure. In Subsection 1.1 we comment on the research

questions which motivated our investigation, we describe how our results relate to other

work, and mention some open questions.

We obtain upper bounds on the composition length of a finite permutation group in

terms of the degree and the number of orbits (Theorem 1.2), and analogous bounds for

primitive (Theorem 1.3), quasiprimitive and semiprimitive groups (Theorem 1.7). Simi-

larly, we obtain upper bounds on the composition length of a finite completely reducible

linear group in terms of some of its parameters (Theorem 1.4). We also show in almost all
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cases that our bounds are sharp, and describe all extremal examples. For this purpose,

we define the following concepts. A permutation group is primitive if it is transitive and

preserves no nontrivial partition of the set on which it acts; transitive permutation groups

that preserve some nontrivial point partition are said to be imprimitive.

Definition 1.1. Let S4 denote the symmetric group of degree 4 in its natural action

and let k be a non-negative integer.

◦ Let Tk = S4 ≀ · · · ≀ S4, the iterated imprimitive wreath product of k copies of S4.

◦ Let Pk = S4 ≀ Tk, in its primitive wreath product action.

◦ Let Lk = GL(2, 2) ≀Tk, viewed as an imprimitive linear subgroup of GL(22k+1, 2).

Note that Tk is a transitive group of degree 4k; in particular T0 = 1 has degree 1. Therefore

Pk is a primitive group of degree 44
k

which is abstractly isomorphic to Tk+1.

For a finite group G, let c(G) denote its composition length.

Theorem 1.2. If G is a permutation group of degree n with r orbits, then

c(G) 6
4

3
(n− r) .

Moreover, equality holds if and only if there exist nonnegative integers k1, . . . , kr such that

the orbits of G have sizes 4k1 , . . . , 4kr and G is permutationally isomorphic to Tk1×· · ·×Tkr

in its natural action.

Theorem 1.3. If G is a primitive permutation group of degree n, then

c(G) 6
8

3
log2 n−

4

3
.

Moreover, equality holds if and only if n = 44
k

for some k > 0 and G is permutationally

isomorphic to Pk.

These theorems depend on the finite simple group classification since the proof of

Theorem 1.3 uses Theorem 1.2, and the proof of Theorem 1.2 uses an order bound for

primitive groups from [20] which depends on the classification.

A group H of linear transformations of a vector space V is completely reducible if there

is a direct decomposition V = V1 ⊕ · · · ⊕ Vr, with r > 1, such that each Vi is H-invariant

and the restriction H|Vi
is irreducible. The Vi are the irreducible constituents of H .
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Theorem 1.4. If H is a completely reducible subgroup of GL(d, pf) with r irreducible

constituents V1, . . . , Vr, then

(1) c(H) 6

(

8

3
log2 p− 1

)

df − r

(

log2 f +
4

3

)

.

Moreover, equality holds if and only if one of the following occurs:

(a) pf = 2 and there exist positive integers k1, . . . , kr such that dim(Vi) = 22ki+1 and H is

linearly isomorphic to Lk1 × · · · × Lkr , or

(b) pf = 22, d = r and H is linearly isomorphic to GL(1, 4)d ∼= (C3)
d.

1.1. Context, discussion, and more results. For a finite group G of order m,

c(G) 6 log2(m), with equality if and only if G is a 2-group (with each composition factor

cyclic of order 2). Similarly each of the upper bounds in [3,4,7,20,22,25] on the orders

of finite primitive permutation groups G of degree n yields an upper bound for c(G) as

a function of n. The best of these order bounds [7, Theorem 6.1(S)], due to Cameron in

1981, depends on the finite simple group classification: namely a primitive group G of

degree n is of affine type, or is in a well understood family of primitive groups of product

action type, or satisfies |G| 6 nc log
2
log

2
n for a “computable constant c”.

In 1993, Pyber [24, Theorem 2.10] states that, for a primitive permutation group G

of degree n, c(G) 6 (2+ c) log2 n with c the constant in Cameron’s result. A proof of this

result appeared recently in [14, Corollary 6.7].1 It has been used in several investigations.

For example, it is used for the irreducible case of [18, Theorem C], which bounds the

composition length of finite completely reducible linear groups, and it is used in [9, p. 305]

to bound the invariable generation number for permutation groups. For the application

in [9] the result [18, Theorem C] is applied with the constant c = 2.25. The paper [14]

derives many bounds for permutation groups and linear groups G focussing on bounds for

|Out(G)|. In particular [14, Corollary 6.7] yields the bound c(G) 6 (2+ c) log2 n with the

constant c = log9(48 · 24
1/3) = 2.24 · · · , that is to say, c(G) 6 c′ log2 n with c′ = 4.24 · · · .

Our investigations began before [14] was published. Because we had been unable to

find a proof of Pyber’s result in the literature, and because of its diverse applications, we

decided to seek the best value for a constant c′ such that c(G) 6 c′ log2 n whenever G is

a primitive permutation group of degree n. Further, we wondered if we could find sharp

upper bounds and classify all groups attaining them. Our Theorem 1.3 achieves this, and

in particular shows that the best value for such a constant c′ is 8/3 = 2.66 · · · .

1The statement in [24, Theorem 2.10] refers to a paper “in preparation” (reference [Py5] in [24]).
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Whereas all the primitive permutation groups G achieving the bounds of Theorem 1.3

are of affine type, the primitive groups of degree n covered by Cameron’s “order upper

bound” nc log
2
log

2
n, are in particular not of affine type. The following companion result to

Theorem 1.3 gives a sharp upper bound on the composition length of non-affine primitive

groups, by which we mean primitive permutation groups with no nontrivial abelian normal

subgroups.

Theorem 1.5. If G is a non-affine primitive permutation group of degree n, then

c(G) 6 cna log2 n−
4

3
, where cna =

10

3 log2 5
= 1.43 · · ·

with equality if and only if n = 54
k

and G = S5 ≀ Tk in product action, for some k > 0.

We note the striking difference between the logarithmic upper bounds on c(G) for

primitive groups G in Theorems 1.3 and 1.5, and the linear bound for general permutation

groups in Theorem 1.2.

Problem 1.6. Which other infinite families of permutation groups have composition

lengths bounded above by a logarithmic function of the degree?

Our final main result gives examples of two such families. A permutation group is

quasiprimitive if each of its nontrivial normal subgroups is transitive. It is semiprimitive

if each of its normal subgroups is either semiregular or transitive. (A permutation group

is semiregular if the only element fixing a point is the identity.)

Theorem 1.7. Let G be a permutation group of degree n.

(a) If G is quasiprimitive but not primitive, then

c(G) 6 cna(log2 n− 1)−
4

3
= cna log2 n− 2.76 · · · where cna =

10

3 log2 5
= 1.43 · · · .

(b) If G is semiprimitive but not quasiprimitive, then c(G) 6 8
3
log2 n− 3.

We give infinitely many examples to show that the bound in Theorem 1.7(b) is best

possible (see Example 6.2). For a semiprimitive group G, a normal subgroup of G which

is minimal subject to being transitive, is called a plinth. If G is a semiprimitive group

which achieves the 8
3
log2 n − 3 bound in Theorem 1.7(b), then n is a power of 2 and

each plinth of G is a 2-group (Remark 6.1). Unfortunately the bound for quasiprimitive

groups is not sharp (Remark 6.3), and we do not even know the best constant c such
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that c(G) 6 c log2 n for a quasiprimitive group G of degree n which is not primitive. By

Theorem 1.7, c 6 cna = 1.43 · · · , and we give examples in Section 6 which show that

c > 31
12 log

2
5+9 log

2
3
= 0.73 · · · .

Problem 1.8. (a) Find a sharp upper bound on the composition length in terms of

the degree, for quasiprimitive permutation groups which are not primitive.

(b) Determine all semiprimitive groups which achieve the bound in Theorem 1.7(a).

(c) For G 6 Sn, with G semiprimitive and not quasiprimitive and with an insoluble plinth,

find a sharp upper bound for c(G) as a function of n.

The proof of Theorem 1.3 proceeds by considering various types of finite primitive

permutation groups. In particular a primitive subgroup G 6 Sym(Ω) = Sn may leave

invariant a cartesian decomposition Ω = ∆r for some smaller set ∆ and integer r > 2.

In this case n = mr where m = |∆|, and the group G is permutationally isomorphic

to a subgroup of the wreath product Sym(∆) ≀ Sr in product action. Moreover G must

project to a transitive subgroup of Sr, and for c(G) to be maximised we require the

composition length of this transitive subgroup of Sr to be as large as possible. In other

words, in order to prove Theorem 1.3 for these product action primitive groups we need

the bound (and extreme examples) from Theorem 1.2 for transitive groups. We note

that our result Theorem 1.2 extends early work by Fisher dating from 1974. Namely we

improve [10, Lemma 2] by proving that permutation groups of the form Tk1 × · · · × Tkr

are the only examples, with r orbits, for which equality occurs in the upper bound in

Theorem 1.2. (One reason for giving an independent proof is that there appears to be a

small error in the proof of [10, Lemma 2]: the sentence beginning “If G is transitive and

imprimitive” is incorrect.)

Another class of primitive groups which must be considered when proving Theorem 1.3

are those of affine type. These are groups of affine transformations of a finite vector

space and have the form N ⋊ G0, where N is the group of translations, and G0 is an

irreducible subgroup of linear transformations. Thus in order to prove Theorem 1.3 for

affine primitive groups we need the bound (and extreme examples) from Theorem 1.4 for

irreducible groups.

Our work on completely reducible groups also strengthens various results in the

literature. As early as 1974, Fisher [10, 11] obtained estimates for the polycyclic chief

lengths of linear groups (over arbitrary fields). More recent work by Lucchini et al.

[18, Theorem C], relying on the finite simple group classification, shows that, for a
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completely reducible subgroup G 6 GL(d, pf) (with p prime), c(G) 6 ccr(log2 p)dnf

for some constant ccr. Theorem 1.4 shows that the best possible constant ccr is 8/3. The

immediate motivation for our work was [12, Theorem 1] (on the number of composition

factors Cp) which suggested that it might be possible to find sharp upper bounds on c(G)

for all finite completely reducible groups.

2. Preliminaries

We say that H is a subdirect subgroup of G1 × · · · ×Gr if H projects onto each direct

factor. Given a group G1 and a transitive permutation group G2 of degree r, the wreath

product G1 ≀ G2 is B ⋊ G2 where B = B1 × · · · × Br
∼= Gr

1, with G2 acting naturally by

conjugation on the Bi. We say that H is a subwreath subgroup of G1 ≀ G2 if H projects

onto G2, and the normaliser in H of B1 projects onto B1.

Lemma 2.1. Let G be a finite group.

(a) If N P G, then c(N) 6 c(G) with equality if and only if N = G.

(b) If H is a subdirect subgroup of G1 × · · · ×Gr, then c(H) 6
∑r

i=1 c(Gi), with equality

if and only if H = G1 × · · · ×Gr.

(c) If G2 is transitive permutation group of degree r and H is a subwreath subgroup of

G1 ≀G2, then c(H) 6 r · c(G1) + c(G2), with equality if and only if H = G1 ≀G2.

Proof. (a) Clearly c(G) = c(N) + c(G/N) and c(G/N) = 0 if and only if N = G.

(b) Let H0 = H and, for 1 6 i 6 r, let Ki be the kernel of the projection map

πi : H → Gi, and Hi = H∩K1∩· · ·∩Ki. The normal series H = H0 Q H1 Q · · · Q Hr = 1

has factor groups
Hi−1

Hi

=
Hi−1

Hi−1 ∩Ki

∼=
Hi−1Ki

Ki

P
H

Ki

∼= Gi.

Therefore c(Hi−1/Hi) 6 c(Gi) by part (a), and so

c(H) =

r
∑

i=1

c(Hi−1/Hi) 6

r
∑

i=1

c(Gi) = c(G1 × · · · ×Gr).

If equality holds, then for each i, c(Hi−1/Hi) = c(Gi) which implies that Hi−1/Hi
∼= Gi by

part (a). In particular, |Hi−1/Hi| = |Gi| and so |H| =
∏r

i=1 |Hi−1/Hi| =
∏r

i=1 |Gi| = |G|

and thus H = G, as claimed.

(c) Write G1 ≀ G2 = B ⋊G2 where B = B1 × · · · × Br
∼= Gr

1 and G2 permutes the Bi

transitively by conjugation. Let K = H ∩B and let N be the normaliser of B1 in G1 ≀G2.
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Since H is a subwreath subgroup of G1 ≀G2, we have H/K ∼= G2 and H ∩N projects onto

B1. In particular,

c(H) = c(K) + c(G/K) = c(K) + c(G2).

For each i, let πi : B → Bi be the natural projection map and let Ki = πi(K). Since

B P N , we see K = H ∩B P H ∩N and therefore π1(K) P π1(H ∩N), that is K1 P B1.

Since G2 is transitive on {B1, . . . , Br}, we have that Ki P Bi for each i. Hence, part (a)

implies c(Ki) 6 c(Bi) = c(G1) for each i.

However, K is a subdirect subgroup of K1×· · ·×Kr by the definition of Ki. Therefore

by part (b), c(K) 6
∑r

i=1 c(Ki) = r · c(K1) 6 r · c(G1). Thus c(H) 6 r · c(G1) + c(G2).

We see that equality occurs only if c(Ki) = c(Bi), and hence Ki = Bi, for each i. Thus

K is a subdirect subgroup of B = B1×· · ·×Br, and c(K) = r · c(G1) =
∑r

i=1 c(Bi). This

implies that K = B by part (b), and hence that H = G1 ≀G2, as desired. �

Remark 2.2. Intransitive permutation groups give rise to subdirect subgroups, and

imprimitive permutation groups give rise to subwreath subgroups. △

We use the following order bounds, from [2, 16], on the outer automorphism group

Out(T ) of a nonabelian simple group T .

Lemma 2.3. Let T be a finite nonabelian simple group, and suppose that T has a

proper subgroup of index m. Then

(a) either |Out(T )| < m/2, or (T,m, |Out(T )|) = (A6, 6, 4), and

(b) |Out(T )| 6 log2 |T |.

Proof. If T = A6 then |Out(T )| = 4, and either m = 6 or m > 10. Thus part (a)

holds for A6. If T 6= A6, then by [2, Lemma 2.7(i)], |Out(T )| < m/2, so part (a) is proved.

Part (b) is proved in [16]. �

3. Proof of Theorem 1.2

Proof of Theorem 1.2. Let G be a permutation group of degree n with r orbits.

The proof is by induction on n. It is easy to check that the result holds for n = 1.

Suppose first that G is intransitive, that is r > 2. Let Ω1, . . . ,Ωr be the G-orbits

and let ni = |Ωi| for each i. Let Gi be the permutation group induced by G on Ωi. By
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induction, c(Gi) 6
4
3
(ni − 1). Since G is a subdirect subgroup of G1 × · · · ×Gr, it follows

from Lemma 2.1(b) and induction that

c(G) 6
r

∑

i=1

c(Gi) 6
r

∑

i=1

4

3
(ni − 1) =

4

3
(n− r),

with equality only if G = G1 × · · · ×Gr and c(Gi) =
4
3
(ni − 1) for each i. By induction,

Gi = Tki for some ki satisfying ni = 4ki and thus G = Tk1 × · · · × Tkr , as desired.

We may thus assume that G is transitive. Suppose that G is imprimitive and preserves

a block system B := {B1, . . . , Bs}, where 1 < s < n. Let G2 be the (transitive)

permutation group induced by G on B, and let G1 be the (transitive) permutation group

induced on B1 by the setwise stabiliser in G of B1. Then G is a subwreath subgroup of

G1 ≀G2 and hence, by Lemma 2.1(c), c(G) 6 s · c(G1)+ c(G2). Since G1, G2 are transitive

permutation groups of degree n/s and s, respectively, it follows by induction that

c(G) 6 s · c(G1) + c(G2) 6
4s

3

(n

s
− 1

)

+
4

3
(s− 1) =

4

3
(n− 1) ,

with equality only if G = G1≀G2, c(G1) =
4
3
(n
s
−1) and c(G2) =

4
3
(s−1). By induction, this

implies G1 = Tk1 and G2 = Tk2 for some integers k1 and k2 and thus G = Tk1 ≀Tk2 = Tk1+k2.

Finally, we assume that G is primitive. We used a database of primitive groups of

small degree (see [8]) to check that the bound is satisfied when n 6 24 and equality

holds only for T1 = S4. We thus assume that n > 25. If G contains the alternating

group of degree n, then c(G) 6 2 and again the result holds. We may thus assume that

this is not the case and, by [20, Corollary 1.4] we have |G| 6 2n−1. This implies that

c(G) 6 log2(2
n−1) = n− 1 < 4

3
(n− 1). This completes the proof of Theorem 1.2. �

4. Proof of Theorem 1.4

Proof of Theorem 1.4. Let H 6 GL(d, pf), such that H is completely reducible

on V = F
d
pf . We fix the prime p and use induction on pairs (d, f) which are ordered

lexicographically, where (d1, f1) < (d2, f2) means d1 < d2, or d1 = d2 and f1 < f2. The

case d = 1 below will serve as the base of our induction.

Case 0. d = 1. As GL(1, pf) ∼= Cpf−1 is cyclic, we have c(H) 6 c(GL(1, pf)). Here

d = r = 1 so it suffices to show that c(GL(1, pf)) 6
(

8
3
log2 p− 1

)

f − (log2 f + 4
3
) with

equality if and only if p = f = 2. Suppose first that p = 2. The claim is easily verified
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for f 6 3. For f > 4, as 2f − 1 is odd, we have

c(C2f−1) 6 log3(2
f − 1) < f log3 2 <

5

3
f − log2 f −

4

3
.

We may thus assume that p > 3. One can check that, for all positive f , we have

log2 f + 4
3
6

(

5
3
log2 p− 1

)

f and thus

c(Cpf−1) 6 log2(p
f − 1) < f log2 p 6

(

8

3
log2 p− 1

)

f −

(

log2 f +
4

3

)

.

This completes the proof of the case d = 1. From now on, we assume that d > 2. ✷

We divide the proof into cases mirroring Aschbacher’s classification of finite linear

groups [1] into nine classes C1, . . . , C9. The end of a case will be denoted by ✷.

Case 1. H ∈ C1. Here H is reducible. As H is completely reducible, it leaves

invariant a direct decomposition V = V1 ⊕ · · · ⊕ Vr with H acting irreducibly on each

of the Vi, and r > 2. Let di = dim(Vi) and Hi = H|Vi
. Note that Hi is an irreducible

subgroup of GL(Vi) and H is a subdirect subgroup of H1 ×H2 × · · · ×Hr. By induction,

c(Hi) 6

(

8

3
log2 p− 1

)

dif −

(

log2 f +
4

3

)

for each i. Since
∑r

i=1 di = d, Lemma 2.1(b) implies c(H) 6
∑r

i=1 c(Hi) and so

c(H) 6

(

8

3
log2 p− 1

)

df − r

(

log2 f +
4

3

)

,

with equality if and only if H = H1×· · ·×Hr and c(Hi) =
(

8
3
log2 p− 1

)

dif−
(

log2 f + 4
3

)

for each i. By induction, this occurs if and only if either pf = 2 and each Hi equals Lki

for some ki, or p
f = 22 and each Hi equals GL(1, 4). Since the value of pf is independent

of i, equality holds if and only if H is as in Theorem 1.4. ✷

From now on, we assume that r = 1, or equivalently, that H is irreducible.

Case 2. H ∈ C2. Here H is an imprimitive linear group. That is, H preserves a

nontrivial direct decomposition V = V1 ⊕ · · · ⊕ Vb, where d = ab, b > 2, and dim(Vi) = a

for each i. Let H2 be the permutation group induced by the action of H on {V1, . . . , Vb}

and let K be the kernel of this action. Note that H2 is transitive. Since H is irreducible,

the setwise stabiliser of V1 in H induces on V1 an irreducible subgroup H1 of GL(a, pf),

and K|V1
is normal in H1. Moreover H is conjugate to a subwreath subgroup of H1 ≀H2,

and so by Lemma 2.1(c), c(H) 6 b · c(H1) + c(H2). Since a < d, it follows by induction
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that c(H1) 6
(

8
3
log2 p− 1

)

af −
(

log2 f + 4
3

)

. By Theorem 1.2, c(H2) 6
4
3
(b− 1) hence

c(H) 6 b · c(H1) + c(H2) 6

(

8

3
log2 p− 1

)

df − b

(

log2 f +
4

3

)

+
4

3
(b− 1)

=

(

8

3
log2 p− 1

)

df −

(

b log2 f +
4

3

)

.

As r = 1, this expression is less than or equal to the upper bound in (1). Suppose now

that equality holds. This implies that b log2 f = log2 f and thus f = 1. Equality holding

also implies that c(H2) = 4
3
(b − 1) which, by Theorem 1.2, implies H2 = Tk2 for some

k2 > 1. Similarly, we must have c(H1) =
(

8
3
log2 p− 1

)

af −
(

log2 f + 4
3

)

. Since H1 is

irreducible, it follows by induction that pf = 2 and H1 = Lk1 for some k1 > 0. Finally,

Lemma 2.1(c) implies that

H = H1 ≀H2 = (GL(2, 2) ≀ Tk1) ≀ Tk2 = GL(2, 2) ≀ (Tk1 ≀ Tk2) = GL(2, 2) ≀ Tk1+k2 = Lk1+k2.✷

From now on, we assume that H is a primitive linear group.

Case 3. H ∈ C3. In this case, H preserves on V the structure of a b-dimensional

vector space V ′ over a field of order pfa, where d = ab and a > 2. Note that H is conjugate

to a subgroup of ΓL(b, pfa) = GL(b, pfa)⋊Ca. Let K = H ∩GL(b, pfa). Then H/K 6 Ca

and c(H) = c(K)+c(H/K) 6 c(K)+log2 a. By Clifford’s Theorem [19, Theorem 3.6.2],K

acts completely reducibly on V , and by [19, Theorem 1.8.4], K acts completely reducibly

on V ′, say with r′ irreducible constituents. Since b 6 d/2, the inductive hypothesis yields

c(K) 6

(

8

3
log2 p− 1

)

b(fa)− r′
(

log2(fa) +
4

3

)

=

(

8

3
log2 p− 1

)

df − r′
(

log2(fa) +
4

3

)

and thus

c(H) 6

(

8

3
log2 p− 1

)

df − r′
(

log2(fa) +
4

3

)

+ log2 a

=

(

8

3
log2 p− 1

)

df − r′
(

log2 f +
4

3

)

− (r′ − 1) log2 a.

As r′ > 1, the required inequality (1) for c(H) follows from this. Suppose now that

equality holds. It follows that r′ = 1 and c(K) =
(

8
3
log2 p− 1

)

b(fa)− r′
(

log2(fa) +
4
3

)

.

Since a > 2 and b < d, induction yields that K = GL(1, 4), so b = 1 and pfa = 22, which

implies that (p, f, a) = (2, 1, 2). Thus d = ab = 2, pf = 2, H/K = C2 and H ∼= ΓL(1, 4)

so H = GL(2, 2) = L0. This concludes the proof in the extension field case. ✷
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We subsequently assume that H preserves no extension field structure on V . Hence

H is absolutely irreducible. When (1) holds strictly, as below, equality is impossible.

Case 4. H ∈ C4. Here H is tensor decomposable. That is, H preserves a decomposi-

tion V = U ⊗W , where a := dim(U) > 2, b := dim(W ) > 2, and d = ab. We allow a = b.

ThusH 6 GL(U)◦GL(W ), andH projects onto irreducible subgroups ofH1 6 GL(U) and

H2 6 GL(W ). Hence H/Z(H) is a a subdirect subgroup H1×H2 6 GL(a, pf)×GL(b, pf).

By Lemma 2.1(b) we have c(H) 6 c(H1 ×H2). It follows by induction that

c(H) 6

(

8

3
log2 p− 1

)

af −

(

log2 f +
4

3

)

+

(

8

3
log2 p− 1

)

bf −

(

log2 f +
4

3

)

=

(

8

3
log2 p− 1

)

(a + b)f − 2

(

log2 f +
4

3

)

<

(

8

3
log2 p− 1

)

(ab)f −

(

log2 f +
4

3

)

. ✷

Assume now that Case 4 does not apply. As the C7 case is similar to C4 case, we treat

it next, and out of order.

Case 7. H ∈ C7. Here H is tensor imprimitive and tensor indecomposable. There-

fore H preserves a decomposition V = V1 ⊗ · · · ⊗ Vb, where d = ab, a > 2, b > 2,

and dim(Vi) = a for each i. Then H 6 K ⋊ Sb, where K = GL(V1) ◦ · · · ◦ GL(Vb)

contains the scalars Z ∼= Cpf−1 and K/Z = PGL(a, pf)b. Since H is not tensor decom-

posable, H/(H ∩ K) ∼= HK/K is a transitive subgroup of Sb, and so by Theorem 1.2,

c(H/(H ∩K)) 6 4
3
(b−1). The subgroups Hi of PGL(Vi) induced by H ∩K are permuted

transitively by H . Hence the Hi are irreducible and pairwise isomorphic. Induction and

Lemma 2.1(c) imply

c(H) 6 b

((

8

3
log2 p− 1

)

af − log2 f −
4

3

)

+
4

3
(b− 1)

=

(

8

3
log2 p− 1

)

(ab)f −

(

b log2 f +
4

3

)

<

(

8

3
log2 p− 1

)

(ab)f −

(

log2 f +
4

3

)

.

The final inequality uses the fact that ab 6 ab for a, b > 2. In summary, the desired bound

holds strictly, when H is tensor imprimitive. ✷

Case 5. H ∈ C5. Here H is realisable over a proper subfield, modulo scalars. That

is, f = ab with b > 2 and we may assume that H 6 Cpf−1 ◦GL(d, pa) where the subgroup
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Cpf−1 of non-zero Fpf -scalars meets GL(d, pa) in the subgroup of Fpa-scalars. Moreover,

N := H ∩GL(d, pa) is normal in H and

H

N
=

H

H ∩GL(d, pa)
∼=

HGL(d, pa)

GL(d, pa)
6

Cpf−1 ◦GL(d, pa)

GL(d, pa)
∼=

Cpf−1

Cpa−1

.

Therefore |H/N | 6 (pf − 1)/(pa − 1) < pf/(1
2
pa) = 2pf−a. Since N is an irreducible

subgroup of GL(d, pa) and a < f , the inductive hypothesis gives:

c(H) = c(N) + c(H/N) < c(N) + log2(2p
f−a)

6

(

8

3
log2 p− 1

)

da−

(

log2 a+
4

3

)

+ (f − a) log2 p+ 1.

In order to prove the desired bound (1) with strict inequality, it suffices to show

log2 f − log2 a + (f − a) log2 p+ 1 6

(

8

3
log2 p− 1

)

d(f − a).(2)

Since 1 6 a 6 f/2 and 2 6 d we have f 6 d(f − a) and it suffices to show

log2 f + (f − 1) log2 p+ 1 6

(

8

3
log2 p− 1

)

f.(3)

This is true when p = 2 since log2 f 6 2f/3 for f > 1. Suppose now that p > 3. Since

log2 f 6 f − 1 and 2 6 5
3
log2 p, we see that c(H) is strictly less than the bound in (1). ✷

From now on assume Case 5 does not apply.

Case 6. H ∈ C6. Here H is of symplectic type. Thus d = sa where s is a prime

dividing pf − 1, and H 6 Cpf−1 ◦ S.H0, where S is an extraspecial group of order s1+2a

whose center Cs is amalgamated in Cpf−1 ◦ S, and H0 6 Sp(2a, s). By [23, Table 4],

|Sp(2a, s)| 6 s2a
2+a so c(H0) 6 (2a2+ a) log2 s and c(H) < f log2 p+2a+ (2a2+ a) log2 s.

For convenience set z = 2a+ (2a2 + a) log2 s. We want to show that
(

8

3
log2 p− 1

)

saf − log2 f −
4

3
> f log2 p+ z.

Assume to the contrary this does not hold, that is to say,

(4)

(

8

3
saf − f

)

log2 p− saf − log2 f −
4

3
< z.

Since log2 p > 1 and 4f
3
> log2 f + 4

3
, equation (4) implies

(5)
5

3
saf −

7

3
f < z.
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As f > 1, (5) implies 5
3
sa − 7

3
< z which, in turn, implies sa ∈ {2, 22, 23, 24, 25, 3, 32, 5, 7}.

For fixed sa > 2 (and thus fixed z), (5) is a linear inequality with only finitely many

solutions in f . Similarly, for fixed sa and f , (4) is a linear inequality with only finitely

many solutions in log2 p. It is thus routine to find all the solutions to (4) with p and s

primes, f > 1 and sa > 2. (This can also easily be automated.) The solutions are:

(sa, pf ) ∈ {(2, 2), (2, 3), (2, 22), (2, 23), (3, 2), (3, 22), (32, 2),

(22, 2), (22, 3), (22, 22), (23, 2), (23, 3), (23, 22), (24, 2), (25, 2), (5, 2)}.

Since s divides pf − 1, the possibilities reduce to (sa, pf) ∈ {(2, 3), (3, 22), (22, 3), (23, 3)}.

Finally, using [6] we can determine the C6-subgroups of GL(2, 3), GL(3, 4), GL(4, 3) and

GL(8, 3); in all these cases, the bound (1) holds strictly. This concludes the C6 case. ✷

From Cases 1–7 we may assume that H 6∈ C1 ∪ · · · ∪ C7. We now define groups X and

Y satisfying X 6 H 6 Y depending on the nature of the form preserved by H . In Case 8

we treat the case where X 6 H 6 Y .

(a) H preserves no non-degenerate Hermitian, alternating or quadratic form on V , up to

scalar multiplication. Here d > 2, X = SL(d, pf) and Y = GL(d, pf).

(b) H preserves, a non-degenerate Hermitian form on V modulo scalars. Here d > 2, f is

even2, X = SU(d, pf) and Y = Cpf−1 ◦GU(d, pf).

(c) H preserves, modulo scalars, a non-degenerate alternating form but no non-degenerate

quadratic form on V . Here d > 4 is even, X = Sp(d, pf) and Y = Cpf−1 ◦GSp(d, pf).

(d) H preserves, modulo scalars, a non-degenerate quadratic form on V . Here d > 2,

X = Ωε(d, pf), where ε = ± if d is even and ε = ◦ if d is odd and Y = Cpf−1◦GO(d, pf).

If d is odd we additionally assume that q is odd, since X is irreducible on V .

Case 8. X 6 H 6 Y . First we consider the case where the derived groupX ′ modulo

scalars is not a nonabelian simple group. Then X is one of: (i) SL(2, 2), (ii) SL(2, 3), (iii)

SU(3, 22), (iv) Ω(3, 3), or (v) Ω+(4, pf). (i) If X = SL(2, 2), then Y = GL(2, 2) is soluble

and the upper bound of (1) holds strictly if H < Y , and exactly when H = Y = L0. (ii) If

X = SL(2, 3), then Y = GL(2, 3) is soluble, so c(H) 6 c(GL(2, 3)) = 5 which is strictly

less than the upper bound in (1). (iii) If X = SU(3, 22), then |Y | = |GU(3, 22)| = 23 · 34

and hence c(H) 6 c(Y ) = 7, and (1) holds strictly as 7 < 23
3
. (iv) If X = Ω(3, 3),

then |Y | = |{±1} × SO(3, 3)| = 24 · 3 and hence c(H) 6 c(Y ) = 5, again, (1) holds

strictly as 5 < 8 log2 3 −
13
3
. (v) Finally, suppose that X = Ω+(4, pf), and note that X

2Some authors use the notation SU(d, pf/2) and GU(d, pf/2) writing the square root of the field size.
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modulo scalars is the direct product X := PSL(2, pf)× PSL(2, pf), and H 6 Cpf−1.X.D8

if p is odd, and H 6 Cpf−1.X.C2 if p = 2. If pf = 2 or 3, then H 6 (S3 × S3).C2 or

C2.(A4 × A4).D8, and hence c(H) is at most 5 or 10, respectively. In each case this is

strictly less than the upper bound in (1). Suppose now that pf > 4. Since H contains

X , we have c(H) 6 c(Cpf−1) + c(X) + c(D8) < f log2 p + 5. This expression is less than
(

8
3
log2 p− 1

)

(4f)− log2 f − 4
3
for all pf > 4.

For all the other cases X , modulo scalars, is a nonabelian simple group X and using

information from [15, Table 2.1.C] about Out(X), we see that c(H) < 2f log2 p+log2 f+3,

and this is at most
(

8
3
log2 p− 1

)

df − log2 f − 4
3
if and only if

2 log2 f + 13/3

f
6

8d− 6

3
log2 p− d.

The left side is at most 13/3 (taking f = 1) while the right side is at least (5d − 6)/3

(taking p = 2), and 13/3 6 (5d − 6)/3 provided d > 4. Similarly considering the value

of the right side for p = 3, we see that the inequality holds for all d > 3 when p > 3.

This leaves the cases d = 2 and (d, p) = (3, 2). Suppose first that (d, p) = (3, 2). The

inequality is easily seen to hold for f > 3. Thus f 6 2 and H = X = SL(3, 2f) or

SU(3, 4), so c(H) 6 3 and the bound (1) holds strictly. Finally let d = 2, so pf > 4. Here

c(H) < 2f log2 p + 1, and this is strictly less than the upper bound in (1) for all pf > 4.

This concludes the proof in Case 8. ✷

We are now in the case where X 66 H 6 Y where the subgroups X and Y are defined

in the preamble to Case 8. We apply the Aschbacher classification [1] of subgroups of Y

which do not contain X . Given our analysis above, and by the definition of X , the only

remaining possibility is H , modulo scalars, is almost simple; and its quasisimple normal

subgroup S is absolutely irreducible and primitive on V . This case is called type C9.

Case 9. H ∈ C9. In this final case, H has a quasisimple normal subgroup S which is

absolutely irreducible and primitive on V . Thus, if Z is the subgroup of scalars in H and

T := S/(S ∩Z), then T P H/Z 6 Aut(T ) and T is a nonabelian simple group. Therefore

c(H) = c(S ∩ Z) + c(T ) + c(H/S) < f log2 p+ 1 + c(Out(T )).

Suppose first that c(Out(T )) 6 2 and thus c(H) < f log2 p + 3. It is not hard to

show that this is less than the upper bound in (1), unless (d, pf) = (3, 2) or d = 2. Since

GL(3, 2) contains no C9-subgroups, we must have d = 2. Here T = A5, p
f > 4, and

Out(T ) = C2. Thus c(H) < f log2 p+ 2, and this is less than the upper bound in (1).
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We may therefore assume that c(Out(T )) > 3. By considering the possibilities for T

when d = 3, we can then exclude the case d = 3 and so we assume that d > 4. The fact

that c(Out(T )) > 3 implies (using the classification of finite simple groups) that T is a

simple group of Lie type (keeping in mind the exceptional isomorphism A6
∼= PSL(2, 9)). It

follows from [17, Theorem 4.1] that |H/Z| 6 p3fd. By Lemma 2.3(b), |Out(T )| 6 log2 |T |,

and so |Out(T )| 6 3fd log2 p which yields

c(H) < f log2 p+ 1 + log2(3df) + log2 log2 p.

Suppose that the following inequality holds

(6) f log2 p+ 1 + log2 3 +
df

2
+ log2 log2 p 6

(

8

3
log2 p− 1

)

df −
f

2
−

4

3
.

Using (6) and the fact that log2 f 6
f
2
for f 6= 3, we see that, for f 6= 3,

c(H) < f log2 p+ 1 + log2 3 +
df

2
+ log2 log2 p 6

(

8

3
log2 p− 1

)

df −
f

2
−

4

3

6

(

8

3
log2 p− 1

)

df − log2 f −
4

3
,

as required. Consider the case when f = 3. Since d > 4 and p > 2 we have

7

3
+ 2 log2 3 6 11 6

(

7d

2
− 3

)

log2 p− log2 log2 p+
9d

2
(log2 p− 1) .

Rearranging gives the desired bound

c(H) < 3 log2 p + 1 + log2 3 +
3d

2
+ log2 log2 p 6

(

8

3
log2 p− 1

)

3d− log2 3−
4

3
.

Thus it remains to assume the opposite of (6). This is equivalent to

(7) 0 >
8

3
df log2 p− f log2 p−

3df

2
−

f

2
−

7

3
− log2 3− log2 log2 p.

For fixed d and f , the right side of (7) is an increasing function of p. Similarly, for fixed f

and p, the right side of (7) is an increasing function of d. Setting p = 2 and d = 4 shows

8

3
df log2 p− f log2 p−

3df

2
−

f

2
−

7

3
− log2 3− log2 log2 p

>
32f

3
− f − 6f −

f

2
−

7

3
− log2 3

=
19f

6
−

7

3
− log2 3.
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However, 19f
6

− 7
3
− log2 3 > 0 for f > 2 contrary to (7). Hence the solutions to (7) have

f = 1. It is easy to check that (7) is satisfied for (d, p, f) = (4, 2, 1) only. One can then

check that, if H 6 GL(4, 2) ∼= A8, then c(Out(T )) 6 2. This case was handled earlier.

This final argument completes the proof of both the C9 case, and Theorem 1.4. �

5. Proofs of Theorems 1.3 and 1.5

Proof of Theorem 1.5. The degree of a non-affine primitive group is at least 5,

and if G is such a group of degree 5 then G = A5 or S5, c(G) 6 2, and the bound

cna log2 n− 4
3
equals 10

3 log
2
5
log2 5−

4
3
= 2. Thus c(G) 6 cna log2 n− 4

3
holds with equality

if and only if G = S5, so the result holds if n = 5.

Assume now that n > 5 and that Theorem 1.5 holds for groups of degree less than n.

Let G be a non-affine primitive permutation group of degree n. We first treat the cases:

almost simple, and simple diagonal (which includes both types HS and SD in the type

descriptions in [21, Section 3]). Then we treat all other cases together since in these

remaining cases G is contained in a wreath product in product action. (This includes

types HC, TW, CD and PA as described in [21, Section 3].)

Case 1. Almost Simple. In this case, T P G 6 Aut(T ), where T is a nonabelian

simple group. Suppose first that T = A6. Then c(G) 6 3. If n > 10, then it follows that

cna log2 n − 4
3
= 10

3 log
2
5
(log2 5 + 1) − 4

3
> 3 > c(G). On the other hand if n < 10 then

n = 6, c(G) 6 2 (since then G 6 S6), and cna log2 n − 4
3
> 2. Thus Theorem 1.5 holds

with strict inequality if T = A6. Suppose now that T 6= A6. Then by Lemma 2.3,

c(G) 6 1 + c(Out(T )) 6 1 + log2 |Out(T )| < 1 + log2(n/2) = log2 n.

If n > 11 then log2 n < 1.4 log2 n − 4
3
< cna log2 n − 4

3
, as required. So assume that

6 6 n 6 10. For these degrees the possible almost simple groups are known and in all

case c(G) 6 2 (since T 6= A6), which is strictly less than cna log2 n− 4
3
.

Case 2. Simple Diagonal. In this case, the socle N of G (the product of the

minimal normal subgroups) has the form N = T k, where T is a nonabelian simple group,

k > 2, and n = |T |k−1. Further G/N is isomorphic to a subgroup H of Out(T )×Sk. Thus

H is a subdirect subgroup of H1×H2, for some H1 6 Out(T ) and H2 6 Sk. Furthermore,

either H2 is a transitive subgroup of Sk, or k = 2 and H2 = 1 (for types HS and SD

respectively). In either case, c(H2) 6
4
3
(k−1), by Theorem 1.2, and c(H) 6 c(H1)+c(H2)

by Lemma 2.1(b). Moreover, by Lemma 2.3(a), |Out(T )| < |T |/16, (since T has a
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subgroup of order at least 8 and hence of index at most |T |/8). Thus

c(G) = k + c(H) 6 k + c(H1) + c(H2)
1.2,2.3
6 k + log2

(

|T |

16

)

+
4

3
(k − 1)

=
7

3
k − 4 + log2 |T | −

4

3
=

7k − 12

3
+ log2 |T | −

4

3
.

Since cna > 1.4, it is sufficient to prove that this expression is at most

1.4 log2 n−
4

3
= 1.4(k − 1) log2 |T | −

4

3
=

7k − 12

5
log2 |T |+ log2 |T | −

4

3
.

This is true since log2 |T | > 5/3. Hence the bound holds strictly.

Case 3. Product Action. In this final case n = ab with b > 2, and G is a

subwreath subgroup of A ≀ B, where B is a transitive permutation group of degree b and

A is a primitive permutation group of degree a. Moreover, either A is almost simple (for

G of type PA), or of simple diagonal type (namely of type SD if G has type CD, and of

type HS if G has type HC or TW). In either of these cases, it follows by induction and

Cases 1 and 2 that c(A) 6 cna log2 a−
4
3
. Also, by Lemma 2.1(c), c(G) 6 b · c(A) + c(B).

Thus by Theorem 1.2,

c(G) 6 b · c(A) + c(B) 6 b

(

cna log2 a−
4

3

)

+
4

3
(b− 1) = bcna log2 a−

4

3
= cna log2 n−

4

3
,

and equality holds if and only if all of the following hold:

c(A) = cna log2 a−
4

3
, c(B) =

4

3
(b− 1) and c(G) = b · c(A) + c(B).

By induction, Theorem 1.2, and Lemma 2.1(c), it follows that G = A ≀ B, b = 4k and

B = Tk for some k > 1 (since b > 1), and A is one of the groups listed in Theorem 1.5.

Since A is almost simple or of simple diagonal type it follows that a = 5 and A = S5. Thus

n = 54
k

and G = S5 ≀ Tk in product action. This completes the proof of Theorem 1.5. �

Proof of Theorem 1.3. For n 6 4, the result can be checked by inspection. Note

that, for n = 4, the bound is met by G = P1 = S4. Henceforth assume that n > 5, that G

is a primitive permutation group of degree n, and inductively that Theorem 1.3 holds for

groups of degree less than n. If G is non-affine then, by Theorem 1.5, c(G) 6 cna log2 n−
4
3
.

Since cna <
8
3
, Theorem 1.3 holds with a strict inequality in this case.

Thus we may assume that G is of affine type, so n = pd for some prime p and integer

d > 1, and G = (Cp)
d
⋊ H where H is an irreducible subgroup of GL(d, p). Thus by
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Theorem 1.4, c(H) 6 (8
3
log2 p− 1)d− 4

3
, and therefore

c(G) = d+ c(H)
1.4
6 d+

(

8

3
log2 p− 1

)

d−
4

3
=

8d

3
log2 p−

4

3
=

8

3
log2 n−

4

3
.

Moreover, by Theorem 1.4 (and since H is an irreducible linear group over the field Fp),

equality occurs if and only if p = 2, d = 22k+1 = 2 · 4k for some k > 0, and H is linearly

isomorphic to Lk (recall n = pd 6= 4). Thus n = 2d = 44
k

with k > 1, and

G = C
2·4k

2 ⋊ Lk = (C2
2)

4k
⋊ (GL(2, 2) ≀ Tk) = (C2

2 ⋊GL(2, 2)) ≀ Tk
∼= S4 ≀ Tk = Pk. �

6. Proof and examples for Theorem 1.7

Proof. Let G 6 Sym(Ω) with n = |Ω|.

(a) Suppose first that G is quasiprimitive but not primitive. Let ∆ be a system of

maximal (proper) blocks of imprimitivity for G in Ω, and let d = |∆|. Then d 6 n/2

and d | n since G is imprimitive. Also, G∆ is primitive as ∆ is maximal. Since

G is quasiprimitive, the kernel of the action of G on ∆ is trivial, and so G ∼= G∆.

Thus G and G∆ have isomorphic socles. If G were of affine type, then soc(G) would

be abelian and regular. As soc(G∆) is abelian, it is regular on ∆. This proves that

n = |soc(G)| = |soc(G∆)| = d, a contradiction. Thus G is non-affine, and so, by

Theorem 1.5, we have the required bound

c(G) = c(G∆) 6 cna log2 d−
4

3
6 cna log2

n

2
−

4

3
= cna(log2 n− 1)−

4

3
.

(b) Let G 6 Sym(Ω) be semiprimitive but not quasiprimitive. As G is not quasiprim-

itive, G must have a nontrivial intransitive normal subgroup. Let M be a maximal such

normal subgroup of G, let Σ be the set of M-orbits, and let m = |M |. Since G is

semiprimitive and M is intransitive, we have GΣ ∼= G/M by [5, Lemma 2.4]. We now

show that GΣ is quasiprimitive. Suppose NΣ P GΣ where N P G. If N 6 M , then NΣ is

trivial. If N 66 M , then M < NM P G, and by the maximality of M , NM is transitive on

Ω, and hence NΣ is transitive on Σ. Therefore GΣ is quasiprimitive. Using the argument

in the previous paragraph, GΣ is isomorphic to a primitive permutation group of degree

dividing |Σ|.

Since M is an intransitive normal subgroup of the semiprimitive group G, M is

semiregular, and hence |Σ| = |Ω|/|M | = n/m. By the previous paragraph, GΣ is
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isomorphic to a primitive permutation group of degree r dividing n/m. By Theorem 1.3,

c(GΣ) 6 8
3
log2 r −

4
3
. As |M | = m > 2, the desired bound is proved as follows

c(G) = c(G/M) + c(M) = c(GΣ) + c(M) 6
8

3
log2 r −

4

3
+ c(M)

6
8

3
log2

( n

m

)

−
4

3
+ log2m =

8

3
log2 n−

4

3
−

5

3
log2m 6

8

3
log2 n−

9

3
. �

Remark 6.1. We claim that, if equality holds in Theorem 1.7(b), then n is a power

of 2, G is a {2, 3}-group (and hence soluble), and each plinth of G is a 2-group (see

the definition after Theorem 1.7 and [13, Corollary 3.11]). Suppose that equality holds in

Theorem 1.7(b) and hence in the displayed equation above. To start with, this means that

r = n/m and hence that GΣ is a primitive permutation group of degree n/m. Moreover

equality must hold in Theorem 1.3 for GΣ. Thus GΣ = Pk for some k and GΣ is of affine

type where n/m = 44
k

. Furthermore equality holding implies that c(M) = log2m, so M is

a 2-group and m is a 2-power. Thus n is a 2-power, and G is a (soluble) {2, 3}-group. Let

K be an arbitrary plinth of G, and let L be a normal subgroup of G, properly contained in

K, and maximal respect to these properties. By the definition of a plinth, L is intransitive

and hence semiregular. Hence L is a 2-group since n is a 2-power. Also it follows from

the maximality of L that K/L is a transitive minimal normal subgroup of G/L, and acts

faithfully on the set of, say r, L-orbits in Ω. Now r = n/|L|, and so r is a 2-power. Then

since G/L is soluble, its transitive minimal normal subgroup K/L must be an elementary

abelian group of 2-power order r. Hence K is a 2-group, proving the claim. △

Example 6.2. We will construct infinitely many groups H0, H1, . . . , for which the

bound in Theorem 1.7(b) is attained.

Consider GL(2, 3) as a permutation group of degree 8 on the set ∆ of non-zero vectors

of F2
3. Let k > 0 and let Hk = GL(2, 3) ≀ Tk act in its product action on ∆4k . Let Bk be

the base group of Hk (so that Hk = Bk ⋊ Tk), and let Zk be the center of Bk. As Tk has

degree 4k, we have Bk
∼= GL(2, 3)4

k

and Zk
∼= C4k

2 . View Zk as a vector space over the

field F2 with basis consisting of the generators of the 4k copies of Z(GL(2, 3)). Let Nk be

the codimension 1 subspace of Zk comprising vectors with coordinates summing to zero

in F2. Note that Nk is an intransitive normal subgroup of Hk.

Since GL(2, 3) is semiprimitive on ∆, Hk is semiprimitive on ∆4k , by [13, Theorem

9.7]. Hence Nk is semiregular on ∆4k . It follows by [13, Lemma 3.1] that Hk/Nk acts



20 S.P. GLASBY, CHERYL E. PRAEGER, KYLE ROSA, GABRIEL VERRET

faithfully and semiprimitively on the set Ω of Nk-orbits in ∆4k . Here Hk/Nk has degree

|Ω| =
84

k

|Nk|
=

(2 · 4)4
k

24k−1
= 2 · 44

k

while

c(Hk/Nk) = c(Hk)− c(Nk) = 5 · 4k +
4

3
(4k −1)− (4k −1) =

16

3
4k −

1

3
=

8

3
log2(2 · 4

4k)−3,

as in Theorem 1.7(b). Note also that Hk/Nk is not quasiprimitive on Ω since it has a

normal subgroup Zk/Nk of order 2 and, as |Ω| > 2, Zk/Nk is intransitive on Ω.

Remark 6.3. We show that the bound in Theorem 1.7(a), is never attained. Sup-

pose to the contrary that G is quasiprimitive of degree n, but not primitive, and that

c(G) = cna(log2 n − 1) − 4
3
. It follows from the proof of Theorem 1.7(a) that G acts

primitively on a set ∆ of n/2 blocks of imprimitivity each of size 2, and that the induced

primitive group G∆ is not affine, and c(G∆) achieves the upper bound of Theorem 1.5.

Thus G ∼= G∆ = S5 ≀Tk in product action and the stabiliser of a block δ ∈ ∆ is Gδ
∼= S4 ≀Tk.

Since G is quasiprimitive on n points, the stabiliser in N = (A5)
4k of a point α ∈ δ is a

subgroup of index 2 in Nδ
∼= (A4)

4k . However, no such subgroup exists. △

In Example 6.4 we provide an infinite family of quasiprimitive groups G which are not

primitive and are such that the composition lengths c(G) grow logarithmically with the

degree. The competing requirements for such a construction are (a) to use a simple group

such as A5 for the direct factors of the socle, and a group Tk permuting the factors of the

socle to make c(G) large relative to the degree; and (b) to define the point stabiliser to

ensure that the socle is transitive.

Example 6.4. Let k be a positive integer, and consider the group X = S5 ≀ Tk, which

has a primitive action of degree d = 54
k

on a set ∆, and satisfies c(X) = cna log2 d−
4
3
, by

Theorem 1.5. There is an element δ ∈ ∆ such that Xδ = S4 ≀ Tk where each factor S4 of

the base group of Xδ is the stabiliser in S5 of the point 5.

Let N = A
4k

5 , the unique minimal normal subgroup of X , and B = S
4k

5 , the base group

of X . Let B0 = S
4k

2 denote the subgroup of B which projects to 〈(1, 2)〉 on each factor S5

of B, so B = N ⋊B0. Also B0 6 Gδ and B0 normalises Nδ = A
4k

4 .

The transitive conjugation-action of the top group Tk on the 4k factors S5 of B

preserves a system of imprimitivity with 4k−1 blocks of size 4. Let D = Diag(S4
2) and

let M = D4k−1

be the subgroup of B0 such that the image of M under projection to S
4
2 is
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D, for each of the 4k−1 blocks of size 4. Then M is Tk-invariant, being constant on each

minimal block for Tk (of size 4).

Define G to be the subgroup G = N.M.Tk of X . Since G contains the top group Tk,

it follows that N is a minimal normal subgroup of G, and in fact it is the unique minimal

normal subgroup since CG(N) = CX(N) = 1. It is not difficult to see that Gδ = Nδ.M.Tk

is maximal and core-free in G, so G acts faithfully and primitively on ∆ of degree d = 54
k

.

We define a subgroup H of Gδ such that G acts quasiprimitively on the coset space

Ω = [G : H ]. Let O2(Nδ) ∼= (C2
2)

4k be the largest normal 2-subgroup of Nδ, and let

D1 = Diag(S4
3) (with S3 fixing points 4, 5) and M1 = D4k−1

1 , so M1 contains M and M1 is

Tk-invariant. Let H = O2(Nδ).M1.Tk. Then H is a subgroup of Gδ of index

|Gδ : H| = |Nδ : H ∩Nδ| = 34
k
−4k−1

= 33.4
k−1

.

Since Gδ is a core-free subgroup of G, so is H and hence G acts transitively and faithfully

on Ω. Moreover, the displayed equation implies that N is transitive on Ω. Since N is the

unique minimal normal subgroup of G, G is quasiprimitive (but not primitive) on Ω.

The degree is n = |Ω| = |∆||Gδ : H| = 54
k

· 33.4
k−1

= x4k , where x = 5 · 33/4. Thus

log2 n = 4k log2 x. Also (using Theorem 1.2)

c(G) = c(N) + c(M) + c(Tk) = 4k +4k−1+
4

3
(4k − 1) = 4k

(

1 +
1

4
+

4

3

)

−
4

3
=

31

12
4k −

4

3
.

It follows that c(G) = c log2 n− 4
3
, where c = 31

12 log
2
x
= 31

12 log
2
5+ 9 log

2
3
> 0.7358.
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[24] László Pyber, Asymptotic results for permutation groups, Groups and computation (New Brunswick,

NJ, 1991), 1993, pp. 197–219. ↑3

[25] Helmut Wielandt, Permutation groups through invariant relations and invariant functions, Lecture

Notes, Ohio State University, Columbus, 1969. ↑3

(Glasby, Praeger, Rosa) Centre for Mathematics of Symmetry and Computation, Univer-

sity of Western Australia, 35 Stirling Highway, Crawley 6009, Australia.

Email: Stephen.Glasby@uwa.edu.au URL: www.maths.uwa.edu.au/∼glasby/

Email: Cheryl.Praeger@uwa.edu.au; URL: www.maths.uwa.edu.au/∼praeger

Email: Kyle.Rosa@research.uwa.edu.au

(Verret) Department of Mathematics, The University of Auckland, Private Bag 92019,

Auckland 1142, New Zealand. Email: g.verret@auckland.ac.nz


	1. Introduction
	2. Preliminaries
	3. Proof of Theorem 1.2
	4. Proof of Theorem 1.4
	5. Proofs of Theorems 1.3 and 1.5
	6. Proof and examples for Theorem 1.7
	Acknowledgments
	References

