Bounding the composition length of primitive permutation groups and completely reducible linear groups

S. P. Glasby, Cheryl E. Praeger, Kyle Rosa, Gabriel Verret

Abstract

We obtain upper bounds on the composition length of a finite permutation group in terms of the degree and the number of orbits, and analogous bounds for primitive, quasiprimitive and semiprimitive groups. Similarly, we obtain upper bounds on the composition length of a finite completely reducible linear group in terms of some of its parameters. In almost all cases we show that the bounds are sharp, and describe the extremal examples.

MSC 2000 Classification: 20B15, 20H30, 20B05

1. Introduction

The composition length of a finite group is the length of any composition series of the group. It is sometimes viewed as a measure of its size or complexity. Often it is useful to have bounds in terms of parameters relevant to the way the group is represented, rather than the abstract group structure. In Subsection 1.1 we comment on the research questions which motivated our investigation, we describe how our results relate to other work, and mention some open questions.

We obtain upper bounds on the composition length of a finite permutation group in terms of the degree and the number of orbits (Theorem 1.2), and analogous bounds for primitive (Theorem 1.3), quasiprimitive and semiprimitive groups (Theorem 1.7). Similarly, we obtain upper bounds on the composition length of a finite completely reducible linear group in terms of some of its parameters (Theorem 1.4). We also show in almost all

Date: December 18, 2017.
cases that our bounds are sharp, and describe all extremal examples. For this purpose, we define the following concepts. A permutation group is primitive if it is transitive and preserves no nontrivial partition of the set on which it acts; transitive permutation groups that preserve some nontrivial point partition are said to be imprimitive.

Definition 1.1. Let S_{4} denote the symmetric group of degree 4 in its natural action and let k be a non-negative integer.

- Let $T_{k}=\mathrm{S}_{4} \imath \cdots \imath \mathrm{~S}_{4}$, the iterated imprimitive wreath product of k copies of S_{4}.
- Let $P_{k}=\mathrm{S}_{4} \imath T_{k}$, in its primitive wreath product action.
- Let $L_{k}=\mathrm{GL}(2,2) \imath T_{k}$, viewed as an imprimitive linear subgroup of GL $\left(2^{2 k+1}, 2\right)$.

Note that T_{k} is a transitive group of degree 4^{k}; in particular $T_{0}=1$ has degree 1 . Therefore P_{k} is a primitive group of degree $4^{4^{k}}$ which is abstractly isomorphic to T_{k+1}.

For a finite group G, let $c(G)$ denote its composition length.
Theorem 1.2. If G is a permutation group of degree n with r orbits, then

$$
c(G) \leqslant \frac{4}{3}(n-r)
$$

Moreover, equality holds if and only if there exist nonnegative integers k_{1}, \ldots, k_{r} such that the orbits of G have sizes $4^{k_{1}}, \ldots, 4^{k_{r}}$ and G is permutationally isomorphic to $T_{k_{1}} \times \cdots \times T_{k_{r}}$ in its natural action.

Theorem 1.3. If G is a primitive permutation group of degree n, then

$$
c(G) \leqslant \frac{8}{3} \log _{2} n-\frac{4}{3} .
$$

Moreover, equality holds if and only if $n=4^{4^{k}}$ for some $k \geqslant 0$ and G is permutationally isomorphic to P_{k}.

These theorems depend on the finite simple group classification since the proof of Theorem 1.3 uses Theorem 1.2, and the proof of Theorem 1.2 uses an order bound for primitive groups from [20] which depends on the classification.

A group H of linear transformations of a vector space V is completely reducible if there is a direct decomposition $V=V_{1} \oplus \cdots \oplus V_{r}$, with $r \geqslant 1$, such that each V_{i} is H-invariant and the restriction $\left.H\right|_{V_{i}}$ is irreducible. The V_{i} are the irreducible constituents of H.

THEOREM 1.4. If H is a completely reducible subgroup of $\mathrm{GL}\left(d, p^{f}\right)$ with r irreducible constituents V_{1}, \ldots, V_{r}, then

$$
\begin{equation*}
c(H) \leqslant\left(\frac{8}{3} \log _{2} p-1\right) d f-r\left(\log _{2} f+\frac{4}{3}\right) \tag{1}
\end{equation*}
$$

Moreover, equality holds if and only if one of the following occurs:
(a) $p^{f}=2$ and there exist positive integers k_{1}, \ldots, k_{r} such that $\operatorname{dim}\left(V_{i}\right)=2^{2 k_{i}+1}$ and H is linearly isomorphic to $L_{k_{1}} \times \cdots \times L_{k_{r}}$, or
(b) $p^{f}=2^{2}, d=r$ and H is linearly isomorphic to GL $(1,4)^{d} \cong\left(\mathrm{C}_{3}\right)^{d}$.
1.1. Context, discussion, and more results. For a finite group G of order m, $c(G) \leqslant \log _{2}(m)$, with equality if and only if G is a 2 -group (with each composition factor cyclic of order 2). Similarly each of the upper bounds in $[3,4,7,20,22,25]$ on the orders of finite primitive permutation groups G of degree n yields an upper bound for $c(G)$ as a function of n. The best of these order bounds [7, Theorem 6.1(S)], due to Cameron in 1981, depends on the finite simple group classification: namely a primitive group G of degree n is of affine type, or is in a well understood family of primitive groups of product action type, or satisfies $|G| \leqslant n^{c \log _{2} \log _{2} n}$ for a "computable constant c ".

In 1993, Pyber [24, Theorem 2.10] states that, for a primitive permutation group G of degree $n, c(G) \leqslant(2+c) \log _{2} n$ with c the constant in Cameron's result. A proof of this result appeared recently in [14, Corollary 6.7]. ${ }^{1}$ It has been used in several investigations. For example, it is used for the irreducible case of [18, Theorem C], which bounds the composition length of finite completely reducible linear groups, and it is used in [9, p. 305] to bound the invariable generation number for permutation groups. For the application in [9] the result [18, Theorem C] is applied with the constant $c=2.25$. The paper [14] derives many bounds for permutation groups and linear groups G focussing on bounds for \mid Out $(G) \mid$. In particular [14, Corollary 6.7] yields the bound $c(G) \leqslant(2+c) \log _{2} n$ with the constant $c=\log _{9}\left(48 \cdot 24^{1 / 3}\right)=2.24 \cdots$, that is to say, $c(G) \leqslant c^{\prime} \log _{2} n$ with $c^{\prime}=4.24 \cdots$.

Our investigations began before [14] was published. Because we had been unable to find a proof of Pyber's result in the literature, and because of its diverse applications, we decided to seek the best value for a constant c^{\prime} such that $c(G) \leqslant c^{\prime} \log _{2} n$ whenever G is a primitive permutation group of degree n. Further, we wondered if we could find sharp upper bounds and classify all groups attaining them. Our Theorem 1.3 achieves this, and in particular shows that the best value for such a constant c^{\prime} is $8 / 3=2.66 \cdots$.

[^0]Whereas all the primitive permutation groups G achieving the bounds of Theorem 1.3 are of affine type, the primitive groups of degree n covered by Cameron's "order upper bound" $n^{c \log _{2} \log _{2} n}$, are in particular not of affine type. The following companion result to Theorem 1.3 gives a sharp upper bound on the composition length of non-affine primitive groups, by which we mean primitive permutation groups with no nontrivial abelian normal subgroups.

ThEOREM 1.5. If G is a non-affine primitive permutation group of degree n, then

$$
c(G) \leqslant c_{\mathrm{na}} \log _{2} n-\frac{4}{3}, \quad \text { where } c_{\mathrm{na}}=\frac{10}{3 \log _{2} 5}=1.43 \cdots
$$

with equality if and only if $n=5^{4^{k}}$ and $G=\mathrm{S}_{5} \downarrow T_{k}$ in product action, for some $k \geqslant 0$.

We note the striking difference between the logarithmic upper bounds on $c(G)$ for primitive groups G in Theorems 1.3 and 1.5, and the linear bound for general permutation groups in Theorem 1.2.

Problem 1.6. Which other infinite families of permutation groups have composition lengths bounded above by a logarithmic function of the degree?

Our final main result gives examples of two such families. A permutation group is quasiprimitive if each of its nontrivial normal subgroups is transitive. It is semiprimitive if each of its normal subgroups is either semiregular or transitive. (A permutation group is semiregular if the only element fixing a point is the identity.)

Theorem 1.7. Let G be a permutation group of degree n.
(a) If G is quasiprimitive but not primitive, then

$$
c(G) \leqslant c_{\mathrm{na}}\left(\log _{2} n-1\right)-\frac{4}{3}=c_{\mathrm{na}} \log _{2} n-2.76 \cdots \quad \text { where } c_{\mathrm{na}}=\frac{10}{3 \log _{2} 5}=1.43 \cdots .
$$

(b) If G is semiprimitive but not quasiprimitive, then $c(G) \leqslant \frac{8}{3} \log _{2} n-3$.

We give infinitely many examples to show that the bound in Theorem 1.7(b) is best possible (see Example 6.2). For a semiprimitive group G, a normal subgroup of G which is minimal subject to being transitive, is called a plinth. If G is a semiprimitive group which achieves the $\frac{8}{3} \log _{2} n-3$ bound in Theorem 1.7(b), then n is a power of 2 and each plinth of G is a 2 -group (Remark 6.1). Unfortunately the bound for quasiprimitive groups is not sharp (Remark 6.3), and we do not even know the best constant c such
that $c(G) \leqslant c \log _{2} n$ for a quasiprimitive group G of degree n which is not primitive. By Theorem 1.7, $c \leqslant c_{\mathrm{na}}=1.43 \cdots$, and we give examples in Section 6 which show that $c \geqslant \frac{31}{12 \log _{2} 5+9 \log _{2} 3}=0.73 \cdots$.

Problem 1.8. (a) Find a sharp upper bound on the composition length in terms of the degree, for quasiprimitive permutation groups which are not primitive.
(b) Determine all semiprimitive groups which achieve the bound in Theorem 1.7(a).
(c) For $G \leqslant \mathrm{~S}_{n}$, with G semiprimitive and not quasiprimitive and with an insoluble plinth, find a sharp upper bound for $c(G)$ as a function of n.

The proof of Theorem 1.3 proceeds by considering various types of finite primitive permutation groups. In particular a primitive subgroup $G \leqslant \operatorname{Sym}(\Omega)=\mathrm{S}_{n}$ may leave invariant a cartesian decomposition $\Omega=\Delta^{r}$ for some smaller set Δ and integer $r \geqslant 2$. In this case $n=m^{r}$ where $m=|\Delta|$, and the group G is permutationally isomorphic to a subgroup of the wreath product $\operatorname{Sym}(\Delta) \imath \mathrm{S}_{r}$ in product action. Moreover G must project to a transitive subgroup of S_{r}, and for $c(G)$ to be maximised we require the composition length of this transitive subgroup of S_{r} to be as large as possible. In other words, in order to prove Theorem 1.3 for these product action primitive groups we need the bound (and extreme examples) from Theorem 1.2 for transitive groups. We note that our result Theorem 1.2 extends early work by Fisher dating from 1974. Namely we improve [10, Lemma 2] by proving that permutation groups of the form $T_{k_{1}} \times \cdots \times T_{k_{r}}$ are the only examples, with r orbits, for which equality occurs in the upper bound in Theorem 1.2. (One reason for giving an independent proof is that there appears to be a small error in the proof of [10, Lemma 2]: the sentence beginning "If G is transitive and imprimitive" is incorrect.)

Another class of primitive groups which must be considered when proving Theorem 1.3 are those of affine type. These are groups of affine transformations of a finite vector space and have the form $N \rtimes G_{0}$, where N is the group of translations, and G_{0} is an irreducible subgroup of linear transformations. Thus in order to prove Theorem 1.3 for affine primitive groups we need the bound (and extreme examples) from Theorem 1.4 for irreducible groups.

Our work on completely reducible groups also strengthens various results in the literature. As early as 1974 , Fisher $[\mathbf{1 0}, \mathbf{1 1}]$ obtained estimates for the polycyclic chief lengths of linear groups (over arbitrary fields). More recent work by Lucchini et al. [18, Theorem C], relying on the finite simple group classification, shows that, for a
completely reducible subgroup $G \leqslant \mathrm{GL}\left(d, p^{f}\right)$（with p prime），$c(G) \leqslant c_{\text {cr }}\left(\log _{2} p\right) d n f$ for some constant c_{cr} ．Theorem 1.4 shows that the best possible constant c_{cr} is $8 / 3$ ．The immediate motivation for our work was［12，Theorem 1］（on the number of composition factors C_{p} ）which suggested that it might be possible to find sharp upper bounds on $c(G)$ for all finite completely reducible groups．

2．Preliminaries

We say that H is a subdirect subgroup of $G_{1} \times \cdots \times G_{r}$ if H projects onto each direct factor．Given a group G_{1} and a transitive permutation group G_{2} of degree r ，the wreath product G_{1} 亿 G_{2} is $B \rtimes G_{2}$ where $B=B_{1} \times \cdots \times B_{r} \cong G_{1}^{r}$ ，with G_{2} acting naturally by conjugation on the B_{i} ．We say that H is a subwreath subgroup of G_{1} 久 G_{2} if H projects onto G_{2} ，and the normaliser in H of B_{1} projects onto B_{1} ．

Lemma 2．1．Let G be a finite group．
（a）If $N \leqslant G$ ，then $c(N) \leqslant c(G)$ with equality if and only if $N=G$ ．
（b）If H is a subdirect subgroup of $G_{1} \times \cdots \times G_{r}$ ，then $c(H) \leqslant \sum_{i=1}^{r} c\left(G_{i}\right)$ ，with equality if and only if $H=G_{1} \times \cdots \times G_{r}$ ．
（c）If G_{2} is transitive permutation group of degree r and H is a subwreath subgroup of $G_{1} \prec G_{2}$ ，then $c(H) \leqslant r \cdot c\left(G_{1}\right)+c\left(G_{2}\right)$ ，with equality if and only if $H=G_{1} \prec G_{2}$ ．

Proof．（a）Clearly $c(G)=c(N)+c(G / N)$ and $c(G / N)=0$ if and only if $N=G$ ．
（b）Let $H_{0}=H$ and，for $1 \leqslant i \leqslant r$ ，let K_{i} be the kernel of the projection map $\pi_{i}: H \rightarrow G_{i}$ ，and $H_{i}=H \cap K_{1} \cap \cdots \cap K_{i}$ ．The normal series $H=H_{0} \triangleq H_{1} \triangleq \cdots \triangleq H_{r}=1$ has factor groups

$$
\frac{H_{i-1}}{H_{i}}=\frac{H_{i-1}}{H_{i-1} \cap K_{i}} \cong \frac{H_{i-1} K_{i}}{K_{i}} \triangleq \frac{H}{K_{i}} \cong G_{i} .
$$

Therefore $c\left(H_{i-1} / H_{i}\right) \leqslant c\left(G_{i}\right)$ by part（a），and so

$$
c(H)=\sum_{i=1}^{r} c\left(H_{i-1} / H_{i}\right) \leqslant \sum_{i=1}^{r} c\left(G_{i}\right)=c\left(G_{1} \times \cdots \times G_{r}\right) .
$$

If equality holds，then for each $i, c\left(H_{i-1} / H_{i}\right)=c\left(G_{i}\right)$ which implies that $H_{i-1} / H_{i} \cong G_{i}$ by part（a）．In particular，$\left|H_{i-1} / H_{i}\right|=\left|G_{i}\right|$ and so $|H|=\prod_{i=1}^{r}\left|H_{i-1} / H_{i}\right|=\prod_{i=1}^{r}\left|G_{i}\right|=|G|$ and thus $H=G$ ，as claimed．
（c）Write $G_{1} 乙 G_{2}=B \rtimes G_{2}$ where $B=B_{1} \times \cdots \times B_{r} \cong G_{1}^{r}$ and G_{2} permutes the B_{i} transitively by conjugation．Let $K=H \cap B$ and let N be the normaliser of B_{1} in G_{1} 乙 G_{2} ．

Since H is a subwreath subgroup of $G_{1} \swarrow G_{2}$, we have $H / K \cong G_{2}$ and $H \cap N$ projects onto B_{1}. In particular,

$$
c(H)=c(K)+c(G / K)=c(K)+c\left(G_{2}\right)
$$

For each i, let $\pi_{i}: B \rightarrow B_{i}$ be the natural projection map and let $K_{i}=\pi_{i}(K)$. Since $B \unlhd N$, we see $K=H \cap B \unlhd H \cap N$ and therefore $\pi_{1}(K) \boxtimes \pi_{1}(H \cap N)$, that is $K_{1} \triangleleft B_{1}$. Since G_{2} is transitive on $\left\{B_{1}, \ldots, B_{r}\right\}$, we have that $K_{i} \vDash B_{i}$ for each i. Hence, part (a) implies $c\left(K_{i}\right) \leqslant c\left(B_{i}\right)=c\left(G_{1}\right)$ for each i.

However, K is a subdirect subgroup of $K_{1} \times \cdots \times K_{r}$ by the definition of K_{i}. Therefore by part (b), $c(K) \leqslant \sum_{i=1}^{r} c\left(K_{i}\right)=r \cdot c\left(K_{1}\right) \leqslant r \cdot c\left(G_{1}\right)$. Thus $c(H) \leqslant r \cdot c\left(G_{1}\right)+c\left(G_{2}\right)$.

We see that equality occurs only if $c\left(K_{i}\right)=c\left(B_{i}\right)$, and hence $K_{i}=B_{i}$, for each i. Thus K is a subdirect subgroup of $B=B_{1} \times \cdots \times B_{r}$, and $c(K)=r \cdot c\left(G_{1}\right)=\sum_{i=1}^{r} c\left(B_{i}\right)$. This implies that $K=B$ by part (b), and hence that $H=G_{1} \prec G_{2}$, as desired.

REmARK 2.2. Intransitive permutation groups give rise to subdirect subgroups, and imprimitive permutation groups give rise to subwreath subgroups.

We use the following order bounds, from $[2,16]$, on the outer automorphism group $\operatorname{Out}(T)$ of a nonabelian simple group T.

Lemma 2.3. Let T be a finite nonabelian simple group, and suppose that T has a proper subgroup of index m. Then
(a) either $|\operatorname{Out}(T)|<m / 2$, or $(T, m,|\operatorname{Out}(T)|)=\left(\mathrm{A}_{6}, 6,4\right)$, and
(b) $|\operatorname{Out}(T)| \leqslant \log _{2}|T|$.

Proof. If $T=\mathrm{A}_{6}$ then $|\operatorname{Out}(T)|=4$, and either $m=6$ or $m \geqslant 10$. Thus part (a) holds for A_{6}. If $T \neq \mathrm{A}_{6}$, then by [2, Lemma 2.7(i)], $|\operatorname{Out}(T)|<m / 2$, so part (a) is proved. Part (b) is proved in [16].

3. Proof of Theorem 1.2

Proof of Theorem 1.2. Let G be a permutation group of degree n with r orbits. The proof is by induction on n. It is easy to check that the result holds for $n=1$.

Suppose first that G is intransitive, that is $r \geqslant 2$. Let $\Omega_{1}, \ldots, \Omega_{r}$ be the G-orbits and let $n_{i}=\left|\Omega_{i}\right|$ for each i. Let G_{i} be the permutation group induced by G on Ω_{i}. By
induction, $c\left(G_{i}\right) \leqslant \frac{4}{3}\left(n_{i}-1\right)$. Since G is a subdirect subgroup of $G_{1} \times \cdots \times G_{r}$, it follows from Lemma 2.1(b) and induction that

$$
c(G) \leqslant \sum_{i=1}^{r} c\left(G_{i}\right) \leqslant \sum_{i=1}^{r} \frac{4}{3}\left(n_{i}-1\right)=\frac{4}{3}(n-r),
$$

with equality only if $G=G_{1} \times \cdots \times G_{r}$ and $c\left(G_{i}\right)=\frac{4}{3}\left(n_{i}-1\right)$ for each i. By induction, $G_{i}=T_{k_{i}}$ for some k_{i} satisfying $n_{i}=4^{k_{i}}$ and thus $G=T_{k_{1}} \times \cdots \times T_{k_{r}}$, as desired.

We may thus assume that G is transitive. Suppose that G is imprimitive and preserves a block system $\mathcal{B}:=\left\{B_{1}, \ldots, B_{s}\right\}$, where $1<s<n$. Let G_{2} be the (transitive) permutation group induced by G on \mathcal{B}, and let G_{1} be the (transitive) permutation group induced on B_{1} by the setwise stabiliser in G of B_{1}. Then G is a subwreath subgroup of G_{1} 亿 G_{2} and hence, by Lemma 2.1(c), $c(G) \leqslant s \cdot c\left(G_{1}\right)+c\left(G_{2}\right)$. Since G_{1}, G_{2} are transitive permutation groups of degree n / s and s, respectively, it follows by induction that

$$
c(G) \leqslant s \cdot c\left(G_{1}\right)+c\left(G_{2}\right) \leqslant \frac{4 s}{3}\left(\frac{n}{s}-1\right)+\frac{4}{3}(s-1)=\frac{4}{3}(n-1),
$$

with equality only if $G=G_{1} 2 G_{2}, c\left(G_{1}\right)=\frac{4}{3}\left(\frac{n}{s}-1\right)$ and $c\left(G_{2}\right)=\frac{4}{3}(s-1)$. By induction, this implies $G_{1}=T_{k_{1}}$ and $G_{2}=T_{k_{2}}$ for some integers k_{1} and k_{2} and thus $G=T_{k_{1}} \imath T_{k_{2}}=T_{k_{1}+k_{2}}$.

Finally, we assume that G is primitive. We used a database of primitive groups of small degree (see [8]) to check that the bound is satisfied when $n \leqslant 24$ and equality holds only for $T_{1}=\mathrm{S}_{4}$. We thus assume that $n \geqslant 25$. If G contains the alternating group of degree n, then $c(G) \leqslant 2$ and again the result holds. We may thus assume that this is not the case and, by [20, Corollary 1.4] we have $|G| \leqslant 2^{n-1}$. This implies that $c(G) \leqslant \log _{2}\left(2^{n-1}\right)=n-1<\frac{4}{3}(n-1)$. This completes the proof of Theorem 1.2.

4. Proof of Theorem 1.4

Proof of Theorem 1.4. Let $H \leqslant \mathrm{GL}\left(d, p^{f}\right)$, such that H is completely reducible on $V=\mathbb{F}_{p^{f}}^{d}$. We fix the prime p and use induction on pairs (d, f) which are ordered lexicographically, where $\left(d_{1}, f_{1}\right)<\left(d_{2}, f_{2}\right)$ means $d_{1}<d_{2}$, or $d_{1}=d_{2}$ and $f_{1}<f_{2}$. The case $d=1$ below will serve as the base of our induction.

Case $0 . d=1$. As $\mathrm{GL}\left(1, p^{f}\right) \cong \mathrm{C}_{p^{f}-1}$ is cyclic, we have $c(H) \leqslant c\left(\operatorname{GL}\left(1, p^{f}\right)\right)$. Here $d=r=1$ so it suffices to show that $c\left(\operatorname{GL}\left(1, p^{f}\right)\right) \leqslant\left(\frac{8}{3} \log _{2} p-1\right) f-\left(\log _{2} f+\frac{4}{3}\right)$ with equality if and only if $p=f=2$. Suppose first that $p=2$. The claim is easily verified
for $f \leqslant 3$. For $f \geqslant 4$, as $2^{f}-1$ is odd, we have

$$
c\left(\mathrm{C}_{2^{f}-1}\right) \leqslant \log _{3}\left(2^{f}-1\right)<f \log _{3} 2<\frac{5}{3} f-\log _{2} f-\frac{4}{3} .
$$

We may thus assume that $p \geqslant 3$. One can check that, for all positive f, we have $\log _{2} f+\frac{4}{3} \leqslant\left(\frac{5}{3} \log _{2} p-1\right) f$ and thus

$$
c\left(\mathrm{C}_{p^{f}-1}\right) \leqslant \log _{2}\left(p^{f}-1\right)<f \log _{2} p \leqslant\left(\frac{8}{3} \log _{2} p-1\right) f-\left(\log _{2} f+\frac{4}{3}\right)
$$

This completes the proof of the case $d=1$. From now on, we assume that $d \geqslant 2$.
We divide the proof into cases mirroring Aschbacher's classification of finite linear groups [1] into nine classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{9}$. The end of a case will be denoted by \square.

Case 1. $H \in \mathcal{C}_{1}$. Here H is reducible. As H is completely reducible, it leaves invariant a direct decomposition $V=V_{1} \oplus \cdots \oplus V_{r}$ with H acting irreducibly on each of the V_{i}, and $r \geqslant 2$. Let $d_{i}=\operatorname{dim}\left(V_{i}\right)$ and $H_{i}=\left.H\right|_{V_{i}}$. Note that H_{i} is an irreducible subgroup of GL $\left(V_{i}\right)$ and H is a subdirect subgroup of $H_{1} \times H_{2} \times \cdots \times H_{r}$. By induction,

$$
c\left(H_{i}\right) \leqslant\left(\frac{8}{3} \log _{2} p-1\right) d_{i} f-\left(\log _{2} f+\frac{4}{3}\right)
$$

for each i. Since $\sum_{i=1}^{r} d_{i}=d$, Lemma 2.1(b) implies $c(H) \leqslant \sum_{i=1}^{r} c\left(H_{i}\right)$ and so

$$
c(H) \leqslant\left(\frac{8}{3} \log _{2} p-1\right) d f-r\left(\log _{2} f+\frac{4}{3}\right)
$$

with equality if and only if $H=H_{1} \times \cdots \times H_{r}$ and $c\left(H_{i}\right)=\left(\frac{8}{3} \log _{2} p-1\right) d_{i} f-\left(\log _{2} f+\frac{4}{3}\right)$ for each i. By induction, this occurs if and only if either $p^{f}=2$ and each H_{i} equals $L_{k_{i}}$ for some k_{i}, or $p^{f}=2^{2}$ and each H_{i} equals GL(1,4). Since the value of p^{f} is independent of i, equality holds if and only if H is as in Theorem 1.4.

From now on, we assume that $r=1$, or equivalently, that H is irreducible.
Case 2. $H \in \mathcal{C}_{2}$. Here H is an imprimitive linear group. That is, H preserves a nontrivial direct decomposition $V=V_{1} \oplus \cdots \oplus V_{b}$, where $d=a b, b \geqslant 2$, and $\operatorname{dim}\left(V_{i}\right)=a$ for each i. Let H_{2} be the permutation group induced by the action of H on $\left\{V_{1}, \ldots, V_{b}\right\}$ and let K be the kernel of this action. Note that H_{2} is transitive. Since H is irreducible, the setwise stabiliser of V_{1} in H induces on V_{1} an irreducible subgroup H_{1} of $\operatorname{GL}\left(a, p^{f}\right)$, and $\left.K\right|_{V_{1}}$ is normal in H_{1}. Moreover H is conjugate to a subwreath subgroup of H_{1} 亿 H_{2}, and so by Lemma 2.1(c), $c(H) \leqslant b \cdot c\left(H_{1}\right)+c\left(H_{2}\right)$. Since $a<d$, it follows by induction
that $c\left(H_{1}\right) \leqslant\left(\frac{8}{3} \log _{2} p-1\right)$ af $-\left(\log _{2} f+\frac{4}{3}\right)$. By Theorem 1.2, $c\left(H_{2}\right) \leqslant \frac{4}{3}(b-1)$ hence

$$
\begin{aligned}
c(H) \leqslant b \cdot c\left(H_{1}\right)+c\left(H_{2}\right) & \leqslant\left(\frac{8}{3} \log _{2} p-1\right) d f-b\left(\log _{2} f+\frac{4}{3}\right)+\frac{4}{3}(b-1) \\
& =\left(\frac{8}{3} \log _{2} p-1\right) d f-\left(b \log _{2} f+\frac{4}{3}\right) .
\end{aligned}
$$

As $r=1$, this expression is less than or equal to the upper bound in (1). Suppose now that equality holds. This implies that $b \log _{2} f=\log _{2} f$ and thus $f=1$. Equality holding also implies that $c\left(H_{2}\right)=\frac{4}{3}(b-1)$ which, by Theorem 1.2, implies $H_{2}=T_{k_{2}}$ for some $k_{2} \geqslant 1$. Similarly, we must have $c\left(H_{1}\right)=\left(\frac{8}{3} \log _{2} p-1\right) a f-\left(\log _{2} f+\frac{4}{3}\right)$. Since H_{1} is irreducible, it follows by induction that $p^{f}=2$ and $H_{1}=L_{k_{1}}$ for some $k_{1} \geqslant 0$. Finally, Lemma 2.1(c) implies that
$H=H_{1} \imath H_{2}=\left(\operatorname{GL}(2,2) \imath T_{k_{1}}\right) \imath T_{k_{2}}=\operatorname{GL}(2,2) \imath\left(T_{k_{1}} \imath T_{k_{2}}\right)=\operatorname{GL}(2,2) \imath T_{k_{1}+k_{2}}=L_{k_{1}+k_{2}} . \square$
From now on, we assume that H is a primitive linear group.
Case 3. $H \in \mathcal{C}_{3}$. In this case, H preserves on V the structure of a b-dimensional vector space V^{\prime} over a field of order $p^{f a}$, where $d=a b$ and $a \geqslant 2$. Note that H is conjugate to a subgroup of $\Gamma \mathrm{L}\left(b, p^{f a}\right)=\mathrm{GL}\left(b, p^{f a}\right) \rtimes \mathrm{C}_{a}$. Let $K=H \cap \mathrm{GL}\left(b, p^{f a}\right)$. Then $H / K \leqslant \mathrm{C}_{a}$ and $c(H)=c(K)+c(H / K) \leqslant c(K)+\log _{2} a$. By Clifford's Theorem [19, Theorem 3.6.2], K acts completely reducibly on V, and by [19, Theorem 1.8.4], K acts completely reducibly on V^{\prime}, say with r^{\prime} irreducible constituents. Since $b \leqslant d / 2$, the inductive hypothesis yields

$$
\begin{aligned}
c(K) & \leqslant\left(\frac{8}{3} \log _{2} p-1\right) b(f a)-r^{\prime}\left(\log _{2}(f a)+\frac{4}{3}\right) \\
& =\left(\frac{8}{3} \log _{2} p-1\right) d f-r^{\prime}\left(\log _{2}(f a)+\frac{4}{3}\right)
\end{aligned}
$$

and thus

$$
\begin{aligned}
c(H) & \leqslant\left(\frac{8}{3} \log _{2} p-1\right) d f-r^{\prime}\left(\log _{2}(f a)+\frac{4}{3}\right)+\log _{2} a \\
& =\left(\frac{8}{3} \log _{2} p-1\right) d f-r^{\prime}\left(\log _{2} f+\frac{4}{3}\right)-\left(r^{\prime}-1\right) \log _{2} a .
\end{aligned}
$$

As $r^{\prime} \geqslant 1$, the required inequality (1) for $c(H)$ follows from this. Suppose now that equality holds. It follows that $r^{\prime}=1$ and $c(K)=\left(\frac{8}{3} \log _{2} p-1\right) b(f a)-r^{\prime}\left(\log _{2}(f a)+\frac{4}{3}\right)$. Since $a \geqslant 2$ and $b<d$, induction yields that $K=\operatorname{GL}(1,4)$, so $b=1$ and $p^{f a}=2^{2}$, which implies that $(p, f, a)=(2,1,2)$. Thus $d=a b=2, p^{f}=2, H / K=\mathrm{C}_{2}$ and $H \cong \Gamma \mathrm{~L}(1,4)$ so $H=\mathrm{GL}(2,2)=L_{0}$. This concludes the proof in the extension field case.

We subsequently assume that H preserves no extension field structure on V. Hence H is absolutely irreducible. When (1) holds strictly, as below, equality is impossible.

Case 4. $H \in \mathcal{C}_{4}$. Here H is tensor decomposable. That is, H preserves a decomposition $V=U \otimes W$, where $a:=\operatorname{dim}(U) \geqslant 2, b:=\operatorname{dim}(W) \geqslant 2$, and $d=a b$. We allow $a=b$. Thus $H \leqslant \mathrm{GL}(U) \circ \mathrm{GL}(W)$, and H projects onto irreducible subgroups of $H_{1} \leqslant \mathrm{GL}(U)$ and $H_{2} \leqslant \mathrm{GL}(W)$. Hence $H / \mathbb{Z}(H)$ is a a subdirect subgroup $H_{1} \times H_{2} \leqslant \mathrm{GL}\left(a, p^{f}\right) \times \mathrm{GL}\left(b, p^{f}\right)$. By Lemma 2.1(b) we have $c(H) \leqslant c\left(H_{1} \times H_{2}\right)$. It follows by induction that

$$
\begin{aligned}
c(H) & \leqslant\left(\frac{8}{3} \log _{2} p-1\right) a f-\left(\log _{2} f+\frac{4}{3}\right)+\left(\frac{8}{3} \log _{2} p-1\right) b f-\left(\log _{2} f+\frac{4}{3}\right) \\
& =\left(\frac{8}{3} \log _{2} p-1\right)(a+b) f-2\left(\log _{2} f+\frac{4}{3}\right) \\
& <\left(\frac{8}{3} \log _{2} p-1\right)(a b) f-\left(\log _{2} f+\frac{4}{3}\right) .
\end{aligned}
$$

Assume now that Case 4 does not apply. As the \mathcal{C}_{7} case is similar to \mathcal{C}_{4} case, we treat it next, and out of order.

Case 7. $H \in \mathcal{C}_{7}$. Here H is tensor imprimitive and tensor indecomposable. Therefore H preserves a decomposition $V=V_{1} \otimes \cdots \otimes V_{b}$, where $d=a^{b}, a \geqslant 2, b \geqslant 2$, and $\operatorname{dim}\left(V_{i}\right)=a$ for each i. Then $H \leqslant K \rtimes \mathrm{~S}_{b}$, where $K=\operatorname{GL}\left(V_{1}\right) \circ \cdots \circ \mathrm{GL}\left(V_{b}\right)$ contains the scalars $Z \cong \mathrm{C}_{p^{f}-1}$ and $K / Z=\operatorname{PGL}\left(a, p^{f}\right)^{b}$. Since H is not tensor decomposable, $H /(H \cap K) \cong H K / K$ is a transitive subgroup of S_{b}, and so by Theorem 1.2, $c(H /(H \cap K)) \leqslant \frac{4}{3}(b-1)$. The subgroups H_{i} of $\operatorname{PGL}\left(V_{i}\right)$ induced by $H \cap K$ are permuted transitively by H. Hence the H_{i} are irreducible and pairwise isomorphic. Induction and Lemma 2.1(c) imply

$$
\begin{aligned}
c(H) & \leqslant b\left(\left(\frac{8}{3} \log _{2} p-1\right) a f-\log _{2} f-\frac{4}{3}\right)+\frac{4}{3}(b-1) \\
& =\left(\frac{8}{3} \log _{2} p-1\right)(a b) f-\left(b \log _{2} f+\frac{4}{3}\right) \\
& <\left(\frac{8}{3} \log _{2} p-1\right)\left(a^{b}\right) f-\left(\log _{2} f+\frac{4}{3}\right) .
\end{aligned}
$$

The final inequality uses the fact that $a b \leqslant a^{b}$ for $a, b \geqslant 2$. In summary, the desired bound holds strictly, when H is tensor imprimitive.

Case 5. $H \in \mathcal{C}_{5}$. Here H is realisable over a proper subfield, modulo scalars. That is, $f=a b$ with $b \geqslant 2$ and we may assume that $H \leqslant \mathrm{C}_{p^{f}-1} \circ \mathrm{GL}\left(d, p^{a}\right)$ where the subgroup
 $N:=H \cap \mathrm{GL}\left(d, p^{a}\right)$ is normal in H and

$$
\frac{H}{N}=\frac{H}{H \cap \mathrm{GL}\left(d, p^{a}\right)} \cong \frac{H \mathrm{GL}\left(d, p^{a}\right)}{\mathrm{GL}\left(d, p^{a}\right)} \leqslant \frac{\mathrm{C}_{p^{f}-1} \circ \mathrm{GL}\left(d, p^{a}\right)}{\mathrm{GL}\left(d, p^{a}\right)} \cong \frac{\mathrm{C}_{p^{f}-1}}{\mathrm{C}_{p^{a}-1}} .
$$

Therefore $|H / N| \leqslant\left(p^{f}-1\right) /\left(p^{a}-1\right)<p^{f} /\left(\frac{1}{2} p^{a}\right)=2 p^{f-a}$. Since N is an irreducible subgroup of $\mathrm{GL}\left(d, p^{a}\right)$ and $a<f$, the inductive hypothesis gives:

$$
\begin{aligned}
c(H) & =c(N)+c(H / N)<c(N)+\log _{2}\left(2 p^{f-a}\right) \\
& \leqslant\left(\frac{8}{3} \log _{2} p-1\right) d a-\left(\log _{2} a+\frac{4}{3}\right)+(f-a) \log _{2} p+1
\end{aligned}
$$

In order to prove the desired bound (1) with strict inequality, it suffices to show

$$
\begin{equation*}
\log _{2} f-\log _{2} a+(f-a) \log _{2} p+1 \leqslant\left(\frac{8}{3} \log _{2} p-1\right) d(f-a) \tag{2}
\end{equation*}
$$

Since $1 \leqslant a \leqslant f / 2$ and $2 \leqslant d$ we have $f \leqslant d(f-a)$ and it suffices to show

$$
\begin{equation*}
\log _{2} f+(f-1) \log _{2} p+1 \leqslant\left(\frac{8}{3} \log _{2} p-1\right) f \tag{3}
\end{equation*}
$$

This is true when $p=2$ since $\log _{2} f \leqslant 2 f / 3$ for $f \geqslant 1$. Suppose now that $p \geqslant 3$. Since $\log _{2} f \leqslant f-1$ and $2 \leqslant \frac{5}{3} \log _{2} p$, we see that $c(H)$ is strictly less than the bound in (1).

From now on assume Case 5 does not apply.
Case 6. $H \in \mathcal{C}_{6}$. Here H is of symplectic type. Thus $d=s^{a}$ where s is a prime dividing $p^{f}-1$, and $H \leqslant \mathrm{C}_{p^{f}-1} \circ S$. H_{0}, where S is an extraspecial group of order $s^{1+2 a}$ whose center C_{s} is amalgamated in $\mathrm{C}_{p^{f}-1} \circ S$, and $H_{0} \leqslant \operatorname{Sp}(2 a, s)$. By [23, Table 4], $|\operatorname{Sp}(2 a, s)| \leqslant s^{2 a^{2}+a}$ so $c\left(H_{0}\right) \leqslant\left(2 a^{2}+a\right) \log _{2} s$ and $c(H)<f \log _{2} p+2 a+\left(2 a^{2}+a\right) \log _{2} s$. For convenience set $z=2 a+\left(2 a^{2}+a\right) \log _{2} s$. We want to show that

$$
\left(\frac{8}{3} \log _{2} p-1\right) s^{a} f-\log _{2} f-\frac{4}{3} \geqslant f \log _{2} p+z
$$

Assume to the contrary this does not hold, that is to say,

$$
\begin{equation*}
\left(\frac{8}{3} s^{a} f-f\right) \log _{2} p-s^{a} f-\log _{2} f-\frac{4}{3}<z . \tag{4}
\end{equation*}
$$

Since $\log _{2} p \geqslant 1$ and $\frac{4 f}{3} \geqslant \log _{2} f+\frac{4}{3}$, equation (4) implies

$$
\begin{equation*}
\frac{5}{3} s^{a} f-\frac{7}{3} f<z \tag{5}
\end{equation*}
$$

As $f \geqslant 1$, (5) implies $\frac{5}{3} s^{a}-\frac{7}{3}<z$ which, in turn, implies $s^{a} \in\left\{2,2^{2}, 2^{3}, 2^{4}, 2^{5}, 3,3^{2}, 5,7\right\}$. For fixed $s^{a} \geqslant 2$ (and thus fixed z), (5) is a linear inequality with only finitely many solutions in f. Similarly, for fixed s^{a} and f, (4) is a linear inequality with only finitely many solutions in $\log _{2} p$. It is thus routine to find all the solutions to (4) with p and s primes, $f \geqslant 1$ and $s^{a} \geqslant 2$. (This can also easily be automated.) The solutions are:

$$
\begin{aligned}
\left(s^{a}, p^{f}\right) \in\{ & (2,2),(2,3),\left(2,2^{2}\right),\left(2,2^{3}\right),(3,2),\left(3,2^{2}\right),\left(3^{2}, 2\right) \\
& \left.\left(2^{2}, 2\right),\left(2^{2}, 3\right),\left(2^{2}, 2^{2}\right),\left(2^{3}, 2\right),\left(2^{3}, 3\right),\left(2^{3}, 2^{2}\right),\left(2^{4}, 2\right),\left(2^{5}, 2\right),(5,2)\right\}
\end{aligned}
$$

Since s divides $p^{f}-1$, the possibilities reduce to $\left(s^{a}, p^{f}\right) \in\left\{(2,3),\left(3,2^{2}\right),\left(2^{2}, 3\right),\left(2^{3}, 3\right)\right\}$. Finally, using [6] we can determine the \mathcal{C}_{6}-subgroups of $\operatorname{GL}(2,3), \operatorname{GL}(3,4), \operatorname{GL}(4,3)$ and $\operatorname{GL}(8,3)$; in all these cases, the bound (1) holds strictly. This concludes the \mathcal{C}_{6} case.

From Cases $1-7$ we may assume that $H \notin \mathcal{C}_{1} \cup \cdots \cup \mathcal{C}_{7}$. We now define groups X and Y satisfying $X \leqslant H \leqslant Y$ depending on the nature of the form preserved by H. In Case 8 we treat the case where $X \leqslant H \leqslant Y$.
(a) H preserves no non-degenerate Hermitian, alternating or quadratic form on V, up to scalar multiplication. Here $d \geqslant 2, X=\mathrm{SL}\left(d, p^{f}\right)$ and $Y=\mathrm{GL}\left(d, p^{f}\right)$.
(b) H preserves, a non-degenerate Hermitian form on V modulo scalars. Here $d>2, f$ is even $^{2}, X=\mathrm{SU}\left(d, p^{f}\right)$ and $Y=\mathrm{C}_{p^{f}-1} \circ \mathrm{GU}\left(d, p^{f}\right)$.
(c) H preserves, modulo scalars, a non-degenerate alternating form but no non-degenerate quadratic form on V. Here $d \geqslant 4$ is even, $X=\operatorname{Sp}\left(d, p^{f}\right)$ and $Y=\mathrm{C}_{p^{f}-1} \circ \operatorname{GSp}\left(d, p^{f}\right)$.
(d) H preserves, modulo scalars, a non-degenerate quadratic form on V. Here $d>2$, $X=\Omega^{\varepsilon}\left(d, p^{f}\right)$, where $\varepsilon= \pm$ if d is even and $\varepsilon=\circ$ if d is odd and $Y=\mathrm{C}_{p^{f}-1} \circ \mathrm{GO}\left(d, p^{f}\right)$. If d is odd we additionally assume that q is odd, since X is irreducible on V.

CaSe 8. $X \leqslant H \leqslant Y$. First we consider the case where the derived group X^{\prime} modulo scalars is not a nonabelian simple group. Then X is one of: (i) $\mathrm{SL}(2,2)$, (ii) $\mathrm{SL}(2,3)$, (iii) $\mathrm{SU}\left(3,2^{2}\right)$, (iv) $\Omega(3,3)$, or (v) $\Omega^{+}\left(4, p^{f}\right)$. (i) If $X=\mathrm{SL}(2,2)$, then $Y=\mathrm{GL}(2,2)$ is soluble and the upper bound of (1) holds strictly if $H<Y$, and exactly when $H=Y=L_{0}$. (ii) If $X=\mathrm{SL}(2,3)$, then $Y=\mathrm{GL}(2,3)$ is soluble, so $c(H) \leqslant c(\mathrm{GL}(2,3))=5$ which is strictly less than the upper bound in (1). (iii) If $X=\mathrm{SU}\left(3,2^{2}\right)$, then $|Y|=\left|\mathrm{GU}\left(3,2^{2}\right)\right|=2^{3} \cdot 3^{4}$ and hence $c(H) \leqslant c(Y)=7$, and (1) holds strictly as $7<\frac{23}{3}$. (iv) If $X=\Omega(3,3)$, then $|Y|=|\{ \pm 1\} \times \mathrm{SO}(3,3)|=2^{4} \cdot 3$ and hence $c(H) \leqslant c(Y)=5$, again, (1) holds strictly as $5<8 \log _{2} 3-\frac{13}{3}$. (v) Finally, suppose that $X=\Omega^{+}\left(4, p^{f}\right)$, and note that X

[^1]modulo scalars is the direct product $\bar{X}:=\operatorname{PSL}\left(2, p^{f}\right) \times \operatorname{PSL}\left(2, p^{f}\right)$, and $H \leqslant \mathrm{C}_{p^{f}-1} \cdot \bar{X} . \mathrm{D}_{8}$ if p is odd, and $H \leqslant \mathrm{C}_{p^{f}-1} \cdot \bar{X} . \mathrm{C}_{2}$ if $p=2$. If $p^{f}=2$ or 3 , then $H \leqslant\left(\mathrm{~S}_{3} \times \mathrm{S}_{3}\right) . \mathrm{C}_{2}$ or $\mathrm{C}_{2} .\left(\mathrm{A}_{4} \times \mathrm{A}_{4}\right) . \mathrm{D}_{8}$, and hence $c(H)$ is at most 5 or 10 , respectively. In each case this is strictly less than the upper bound in (1). Suppose now that $p^{f} \geqslant 4$. Since H contains X, we have $c(H) \leqslant c\left(\mathrm{C}_{p^{f}-1}\right)+c(\bar{X})+c\left(\mathrm{D}_{8}\right)<f \log _{2} p+5$. This expression is less than $\left(\frac{8}{3} \log _{2} p-1\right)(4 f)-\log _{2} f-\frac{4}{3}$ for all $p^{f} \geqslant 4$.

For all the other cases X, modulo scalars, is a nonabelian simple group \bar{X} and using information from [15, Table 2.1.C] about $\operatorname{Out}(\bar{X})$, we see that $c(H)<2 f \log _{2} p+\log _{2} f+3$, and this is at most $\left(\frac{8}{3} \log _{2} p-1\right) d f-\log _{2} f-\frac{4}{3}$ if and only if

$$
\frac{2 \log _{2} f+13 / 3}{f} \leqslant \frac{8 d-6}{3} \log _{2} p-d
$$

The left side is at most $13 / 3$ (taking $f=1$) while the right side is at least $(5 d-6) / 3$ (taking $p=2$), and $13 / 3 \leqslant(5 d-6) / 3$ provided $d \geqslant 4$. Similarly considering the value of the right side for $p=3$, we see that the inequality holds for all $d \geqslant 3$ when $p \geqslant 3$. This leaves the cases $d=2$ and $(d, p)=(3,2)$. Suppose first that $(d, p)=(3,2)$. The inequality is easily seen to hold for $f \geqslant 3$. Thus $f \leqslant 2$ and $H=X=\operatorname{SL}\left(3,2^{f}\right)$ or $\mathrm{SU}(3,4)$, so $c(H) \leqslant 3$ and the bound (1) holds strictly. Finally let $d=2$, so $p^{f} \geqslant 4$. Here $c(H)<2 f \log _{2} p+1$, and this is strictly less than the upper bound in (1) for all $p^{f} \geqslant 4$. This concludes the proof in Case 8.

We are now in the case where $X \nexists H \leqslant Y$ where the subgroups X and Y are defined in the preamble to Case 8. We apply the Aschbacher classification [1] of subgroups of Y which do not contain X. Given our analysis above, and by the definition of X, the only remaining possibility is H, modulo scalars, is almost simple; and its quasisimple normal subgroup S is absolutely irreducible and primitive on V. This case is called type \mathcal{C}_{9}.

CaSe 9. $H \in \mathcal{C}_{9}$. In this final case, H has a quasisimple normal subgroup S which is absolutely irreducible and primitive on V. Thus, if Z is the subgroup of scalars in H and $T:=S /(S \cap Z)$, then $T \geqq H / Z \leqslant \operatorname{Aut}(T)$ and T is a nonabelian simple group. Therefore $c(H)=c(S \cap Z)+c(T)+c(H / S)<f \log _{2} p+1+c(\operatorname{Out}(T))$.

Suppose first that $c(\operatorname{Out}(T)) \leqslant 2$ and thus $c(H)<f \log _{2} p+3$. It is not hard to show that this is less than the upper bound in (1), unless $\left(d, p^{f}\right)=(3,2)$ or $d=2$. Since $\mathrm{GL}(3,2)$ contains no \mathcal{C}_{9}-subgroups, we must have $d=2$. Here $T=\mathrm{A}_{5}, p^{f} \geqslant 4$, and $\operatorname{Out}(T)=\mathrm{C}_{2}$. Thus $c(H)<f \log _{2} p+2$, and this is less than the upper bound in (1).

We may therefore assume that $c(\operatorname{Out}(T)) \geqslant 3$. By considering the possibilities for T when $d=3$, we can then exclude the case $d=3$ and so we assume that $d \geqslant 4$. The fact that $c(\operatorname{Out}(T)) \geqslant 3$ implies (using the classification of finite simple groups) that T is a simple group of Lie type (keeping in mind the exceptional isomorphism $\mathrm{A}_{6} \cong \operatorname{PSL}(2,9)$). It follows from $\left[17\right.$, Theorem 4.1] that $|H / Z| \leqslant p^{3 f d}$. By Lemma 2.3(b), $|\operatorname{Out}(T)| \leqslant \log _{2}|T|$, and so $|\operatorname{Out}(T)| \leqslant 3 f d \log _{2} p$ which yields

$$
c(H)<f \log _{2} p+1+\log _{2}(3 d f)+\log _{2} \log _{2} p .
$$

Suppose that the following inequality holds

$$
\begin{equation*}
f \log _{2} p+1+\log _{2} 3+\frac{d f}{2}+\log _{2} \log _{2} p \leqslant\left(\frac{8}{3} \log _{2} p-1\right) d f-\frac{f}{2}-\frac{4}{3} . \tag{6}
\end{equation*}
$$

Using (6) and the fact that $\log _{2} f \leqslant \frac{f}{2}$ for $f \neq 3$, we see that, for $f \neq 3$,

$$
\begin{aligned}
c(H)<f \log _{2} p+1+\log _{2} 3+\frac{d f}{2}+\log _{2} \log _{2} p & \leqslant\left(\frac{8}{3} \log _{2} p-1\right) d f-\frac{f}{2}-\frac{4}{3} \\
& \leqslant\left(\frac{8}{3} \log _{2} p-1\right) d f-\log _{2} f-\frac{4}{3}
\end{aligned}
$$

as required. Consider the case when $f=3$. Since $d \geqslant 4$ and $p \geqslant 2$ we have

$$
\frac{7}{3}+2 \log _{2} 3 \leqslant 11 \leqslant\left(\frac{7 d}{2}-3\right) \log _{2} p-\log _{2} \log _{2} p+\frac{9 d}{2}\left(\log _{2} p-1\right)
$$

Rearranging gives the desired bound

$$
c(H)<3 \log _{2} p+1+\log _{2} 3+\frac{3 d}{2}+\log _{2} \log _{2} p \leqslant\left(\frac{8}{3} \log _{2} p-1\right) 3 d-\log _{2} 3-\frac{4}{3}
$$

Thus it remains to assume the opposite of (6). This is equivalent to

$$
\begin{equation*}
0>\frac{8}{3} d f \log _{2} p-f \log _{2} p-\frac{3 d f}{2}-\frac{f}{2}-\frac{7}{3}-\log _{2} 3-\log _{2} \log _{2} p \tag{7}
\end{equation*}
$$

For fixed d and f, the right side of (7) is an increasing function of p. Similarly, for fixed f and p, the right side of (7) is an increasing function of d. Setting $p=2$ and $d=4$ shows

$$
\begin{aligned}
& \frac{8}{3} d f \log _{2} p-f \log _{2} p-\frac{3 d f}{2}-\frac{f}{2}-\frac{7}{3}-\log _{2} 3-\log _{2} \log _{2} p \\
& \geqslant \frac{32 f}{3}-f-6 f-\frac{f}{2}-\frac{7}{3}-\log _{2} 3 \\
& =\frac{19 f}{6}-\frac{7}{3}-\log _{2} 3
\end{aligned}
$$

However, $\frac{19 f}{6}-\frac{7}{3}-\log _{2} 3 \geqslant 0$ for $f \geqslant 2$ contrary to (7). Hence the solutions to (7) have $f=1$. It is easy to check that (7) is satisfied for $(d, p, f)=(4,2,1)$ only. One can then check that, if $H \leqslant \operatorname{GL}(4,2) \cong \mathrm{A}_{8}$, then $c(\operatorname{Out}(T)) \leqslant 2$. This case was handled earlier. This final argument completes the proof of both the \mathcal{C}_{9} case, and Theorem 1.4.

5. Proofs of Theorems 1.3 and 1.5

Proof of Theorem 1.5. The degree of a non-affine primitive group is at least 5 , and if G is such a group of degree 5 then $G=\mathrm{A}_{5}$ or $\mathrm{S}_{5}, c(G) \leqslant 2$, and the bound $c_{\mathrm{na}} \log _{2} n-\frac{4}{3}$ equals $\frac{10}{3 \log _{2} 5} \log _{2} 5-\frac{4}{3}=2$. Thus $c(G) \leqslant c_{\mathrm{na}} \log _{2} n-\frac{4}{3}$ holds with equality if and only if $G=\mathrm{S}_{5}$, so the result holds if $n=5$.

Assume now that $n>5$ and that Theorem 1.5 holds for groups of degree less than n. Let G be a non-affine primitive permutation group of degree n. We first treat the cases: almost simple, and simple diagonal (which includes both types HS and SD in the type descriptions in [21, Section 3]). Then we treat all other cases together since in these remaining cases G is contained in a wreath product in product action. (This includes types HC, TW, CD and PA as described in [21, Section 3].)

Case 1. Almost Simple. In this case, $T \geqq G \leqslant \operatorname{Aut}(T)$, where T is a nonabelian simple group. Suppose first that $T=\mathrm{A}_{6}$. Then $c(G) \leqslant 3$. If $n \geqslant 10$, then it follows that $c_{\mathrm{na}} \log _{2} n-\frac{4}{3}=\frac{10}{3 \log _{2} 5}\left(\log _{2} 5+1\right)-\frac{4}{3}>3 \geqslant c(G)$. On the other hand if $n<10$ then $n=6, c(G) \leqslant 2$ (since then $G \leqslant \mathrm{~S}_{6}$), and $c_{\mathrm{na}} \log _{2} n-\frac{4}{3}>2$. Thus Theorem 1.5 holds with strict inequality if $T=\mathrm{A}_{6}$. Suppose now that $T \neq \mathrm{A}_{6}$. Then by Lemma 2.3,

$$
c(G) \leqslant 1+c(\operatorname{Out}(T)) \leqslant 1+\log _{2}|\operatorname{Out}(T)|<1+\log _{2}(n / 2)=\log _{2} n
$$

If $n \geqslant 11$ then $\log _{2} n<1.4 \log _{2} n-\frac{4}{3}<c_{\mathrm{na}} \log _{2} n-\frac{4}{3}$, as required. So assume that $6 \leqslant n \leqslant 10$. For these degrees the possible almost simple groups are known and in all case $c(G) \leqslant 2$ (since $T \neq \mathrm{A}_{6}$), which is strictly less than $c_{\text {na }} \log _{2} n-\frac{4}{3}$.

Case 2. Simple Diagonal. In this case, the socle N of G (the product of the minimal normal subgroups) has the form $N=T^{k}$, where T is a nonabelian simple group, $k \geqslant 2$, and $n=|T|^{k-1}$. Further G / N is isomorphic to a subgroup H of $\operatorname{Out}(T) \times \mathrm{S}_{k}$. Thus H is a subdirect subgroup of $H_{1} \times H_{2}$, for some $H_{1} \leqslant \operatorname{Out}(T)$ and $H_{2} \leqslant \mathrm{~S}_{k}$. Furthermore, either H_{2} is a transitive subgroup of S_{k}, or $k=2$ and $H_{2}=1$ (for types HS and SD respectively). In either case, $c\left(H_{2}\right) \leqslant \frac{4}{3}(k-1)$, by Theorem 1.2, and $c(H) \leqslant c\left(H_{1}\right)+c\left(H_{2}\right)$ by Lemma 2.1(b). Moreover, by Lemma 2.3(a), $|\operatorname{Out}(T)|<|T| / 16$, (since T has a
subgroup of order at least 8 and hence of index at most $|T| / 8)$. Thus

$$
\begin{aligned}
c(G) & =k+c(H) \leqslant k+c\left(H_{1}\right)+c\left(H_{2}\right) \stackrel{1.2,2.3}{\leqslant} k+\log _{2}\left(\frac{|T|}{16}\right)+\frac{4}{3}(k-1) \\
& =\frac{7}{3} k-4+\log _{2}|T|-\frac{4}{3}=\frac{7 k-12}{3}+\log _{2}|T|-\frac{4}{3} .
\end{aligned}
$$

Since $c_{\mathrm{na}}>1.4$, it is sufficient to prove that this expression is at most

$$
1.4 \log _{2} n-\frac{4}{3}=1.4(k-1) \log _{2}|T|-\frac{4}{3}=\frac{7 k-12}{5} \log _{2}|T|+\log _{2}|T|-\frac{4}{3}
$$

This is true since $\log _{2}|T| \geqslant 5 / 3$. Hence the bound holds strictly.
Case 3. Product Action. In this final case $n=a^{b}$ with $b \geqslant 2$, and G is a subwreath subgroup of $A<B$, where B is a transitive permutation group of degree b and A is a primitive permutation group of degree a. Moreover, either A is almost simple (for G of type PA), or of simple diagonal type (namely of type SD if G has type CD , and of type HS if G has type HC or TW). In either of these cases, it follows by induction and Cases 1 and 2 that $c(A) \leqslant c_{\mathrm{na}} \log _{2} a-\frac{4}{3}$. Also, by Lemma 2.1(c), $c(G) \leqslant b \cdot c(A)+c(B)$. Thus by Theorem 1.2,
$c(G) \leqslant b \cdot c(A)+c(B) \leqslant b\left(c_{\mathrm{na}} \log _{2} a-\frac{4}{3}\right)+\frac{4}{3}(b-1)=b c_{\mathrm{na}} \log _{2} a-\frac{4}{3}=c_{\mathrm{na}} \log _{2} n-\frac{4}{3}$, and equality holds if and only if all of the following hold:

$$
c(A)=c_{\mathrm{na}} \log _{2} a-\frac{4}{3}, \quad c(B)=\frac{4}{3}(b-1) \quad \text { and } \quad c(G)=b \cdot c(A)+c(B)
$$

By induction, Theorem 1.2, and Lemma 2.1(c), it follows that $G=A 乙 B, b=4^{k}$ and $B=T_{k}$ for some $k \geqslant 1$ (since $b>1$), and A is one of the groups listed in Theorem 1.5. Since A is almost simple or of simple diagonal type it follows that $a=5$ and $A=\mathrm{S}_{5}$. Thus $n=5^{4^{k}}$ and $G=\mathrm{S}_{5} \imath T_{k}$ in product action. This completes the proof of Theorem 1.5.

Proof of Theorem 1.3. For $n \leqslant 4$, the result can be checked by inspection. Note that, for $n=4$, the bound is met by $G=P_{1}=\mathrm{S}_{4}$. Henceforth assume that $n \geqslant 5$, that G is a primitive permutation group of degree n, and inductively that Theorem 1.3 holds for groups of degree less than n. If G is non-affine then, by Theorem $1.5, c(G) \leqslant c_{\text {na }} \log _{2} n-\frac{4}{3}$. Since $c_{\mathrm{na}}<\frac{8}{3}$, Theorem 1.3 holds with a strict inequality in this case.

Thus we may assume that G is of affine type, so $n=p^{d}$ for some prime p and integer $d \geqslant 1$, and $G=\left(\mathrm{C}_{p}\right)^{d} \rtimes H$ where H is an irreducible subgroup of $\operatorname{GL}(d, p)$. Thus by

Theorem 1.4, $c(H) \leqslant\left(\frac{8}{3} \log _{2} p-1\right) d-\frac{4}{3}$, and therefore

$$
c(G)=d+c(H) \stackrel{1.4}{\leqslant} d+\left(\frac{8}{3} \log _{2} p-1\right) d-\frac{4}{3}=\frac{8 d}{3} \log _{2} p-\frac{4}{3}=\frac{8}{3} \log _{2} n-\frac{4}{3} .
$$

Moreover, by Theorem 1.4 (and since H is an irreducible linear group over the field \mathbb{F}_{p}), equality occurs if and only if $p=2, d=2^{2 k+1}=2 \cdot 4^{k}$ for some $k \geqslant 0$, and H is linearly isomorphic to L_{k} (recall $n=p^{d} \neq 4$). Thus $n=2^{d}=4^{4^{k}}$ with $k \geqslant 1$, and

$$
G=\mathrm{C}_{2}^{2 \cdot 4^{k}} \rtimes L_{k}=\left(\mathrm{C}_{2}^{2}\right)^{4^{k}} \rtimes\left(\mathrm{GL}(2,2) \imath T_{k}\right)=\left(\mathrm{C}_{2}^{2} \rtimes \mathrm{GL}(2,2)\right) \imath T_{k} \cong \mathrm{~S}_{4} \imath T_{k}=P_{k}
$$

6. Proof and examples for Theorem 1.7

Proof. Let $G \leqslant \operatorname{Sym}(\Omega)$ with $n=|\Omega|$.
(a) Suppose first that G is quasiprimitive but not primitive. Let Δ be a system of maximal (proper) blocks of imprimitivity for G in Ω, and let $d=|\Delta|$. Then $d \leqslant n / 2$ and $d \mid n$ since G is imprimitive. Also, G^{Δ} is primitive as Δ is maximal. Since G is quasiprimitive, the kernel of the action of G on Δ is trivial, and so $G \cong G^{\Delta}$. Thus G and G^{Δ} have isomorphic socles. If G were of affine type, then $\operatorname{soc}(G)$ would be abelian and regular. As $\operatorname{soc}\left(G^{\Delta}\right)$ is abelian, it is regular on Δ. This proves that $n=|\operatorname{soc}(G)|=\left|\operatorname{soc}\left(G^{\Delta}\right)\right|=d$, a contradiction. Thus G is non-affine, and so, by Theorem 1.5, we have the required bound

$$
c(G)=c\left(G^{\Delta}\right) \leqslant c_{\mathrm{na}} \log _{2} d-\frac{4}{3} \leqslant c_{\mathrm{na}} \log _{2} \frac{n}{2}-\frac{4}{3}=c_{\mathrm{na}}\left(\log _{2} n-1\right)-\frac{4}{3} .
$$

(b) Let $G \leqslant \operatorname{Sym}(\Omega)$ be semiprimitive but not quasiprimitive. As G is not quasiprimitive, G must have a nontrivial intransitive normal subgroup. Let M be a maximal such normal subgroup of G, let Σ be the set of M-orbits, and let $m=|M|$. Since G is semiprimitive and M is intransitive, we have $G^{\Sigma} \cong G / M$ by [5, Lemma 2.4]. We now show that G^{Σ} is quasiprimitive. Suppose $N^{\Sigma} \vDash G^{\Sigma}$ where $N \geqq G$. If $N \leqslant M$, then N^{Σ} is trivial. If $N \nless M$, then $M<N M \lessgtr G$, and by the maximality of $M, N M$ is transitive on Ω, and hence N^{Σ} is transitive on Σ. Therefore G^{Σ} is quasiprimitive. Using the argument in the previous paragraph, G^{Σ} is isomorphic to a primitive permutation group of degree dividing $|\Sigma|$.

Since M is an intransitive normal subgroup of the semiprimitive group G, M is semiregular, and hence $|\Sigma|=|\Omega| /|M|=n / m$. By the previous paragraph, G^{Σ} is
isomorphic to a primitive permutation group of degree r dividing n / m. By Theorem 1.3, $c\left(G^{\Sigma}\right) \leqslant \frac{8}{3} \log _{2} r-\frac{4}{3}$. As $|M|=m \geqslant 2$, the desired bound is proved as follows

$$
\begin{aligned}
c(G) & =c(G / M)+c(M)=c\left(G^{\Sigma}\right)+c(M) \leqslant \frac{8}{3} \log _{2} r-\frac{4}{3}+c(M) \\
& \leqslant \frac{8}{3} \log _{2}\left(\frac{n}{m}\right)-\frac{4}{3}+\log _{2} m=\frac{8}{3} \log _{2} n-\frac{4}{3}-\frac{5}{3} \log _{2} m \leqslant \frac{8}{3} \log _{2} n-\frac{9}{3} .
\end{aligned}
$$

Remark 6.1. We claim that, if equality holds in Theorem $1.7(\mathrm{~b})$, then n is a power of $2, G$ is a $\{2,3\}$-group (and hence soluble), and each plinth of G is a 2 -group (see the definition after Theorem 1.7 and [13, Corollary 3.11]). Suppose that equality holds in Theorem 1.7(b) and hence in the displayed equation above. To start with, this means that $r=n / m$ and hence that G^{Σ} is a primitive permutation group of degree n / m. Moreover equality must hold in Theorem 1.3 for G^{Σ}. Thus $G^{\Sigma}=P_{k}$ for some k and G^{Σ} is of affine type where $n / m=4^{4^{k}}$. Furthermore equality holding implies that $c(M)=\log _{2} m$, so M is a 2 -group and m is a 2 -power. Thus n is a 2 -power, and G is a (soluble) $\{2,3\}$-group. Let K be an arbitrary plinth of G, and let L be a normal subgroup of G, properly contained in K, and maximal respect to these properties. By the definition of a plinth, L is intransitive and hence semiregular. Hence L is a 2 -group since n is a 2-power. Also it follows from the maximality of L that K / L is a transitive minimal normal subgroup of G / L, and acts faithfully on the set of, say r, L-orbits in Ω. Now $r=n /|L|$, and so r is a 2 -power. Then since G / L is soluble, its transitive minimal normal subgroup K / L must be an elementary abelian group of 2-power order r. Hence K is a 2-group, proving the claim.

Example 6.2. We will construct infinitely many groups H_{0}, H_{1}, \ldots, for which the bound in Theorem 1.7(b) is attained.

Consider GL $(2,3)$ as a permutation group of degree 8 on the set Δ of non-zero vectors of \mathbb{F}_{3}^{2}. Let $k \geqslant 0$ and let $H_{k}=\operatorname{GL}(2,3) \imath T_{k}$ act in its product action on $\Delta^{4^{k}}$. Let B_{k} be the base group of H_{k} (so that $H_{k}=B_{k} \rtimes T_{k}$), and let Z_{k} be the center of B_{k}. As T_{k} has degree 4^{k}, we have $B_{k} \cong \mathrm{GL}(2,3)^{4^{k}}$ and $Z_{k} \cong \mathrm{C}_{2}^{4^{k}}$. View Z_{k} as a vector space over the field \mathbb{F}_{2} with basis consisting of the generators of the 4^{k} copies of $Z(\operatorname{GL}(2,3))$. Let N_{k} be the codimension 1 subspace of Z_{k} comprising vectors with coordinates summing to zero in \mathbb{F}_{2}. Note that N_{k} is an intransitive normal subgroup of H_{k}.

Since $\mathrm{GL}(2,3)$ is semiprimitive on Δ, H_{k} is semiprimitive on $\Delta^{4^{k}}$, by [13, Theorem 9.7]. Hence N_{k} is semiregular on $\Delta^{4^{k}}$. It follows by [13, Lemma 3.1] that H_{k} / N_{k} acts
faithfully and semiprimitively on the set Ω of N_{k}-orbits in $\Delta^{4^{k}}$. Here H_{k} / N_{k} has degree

$$
|\Omega|=\frac{8^{4^{k}}}{\left|N_{k}\right|}=\frac{(2 \cdot 4)^{4^{k}}}{2^{4^{k}-1}}=2 \cdot 4^{4^{k}}
$$

while
$c\left(H_{k} / N_{k}\right)=c\left(H_{k}\right)-c\left(N_{k}\right)=5 \cdot 4^{k}+\frac{4}{3}\left(4^{k}-1\right)-\left(4^{k}-1\right)=\frac{16}{3} 4^{k}-\frac{1}{3}=\frac{8}{3} \log _{2}\left(2 \cdot 4^{4^{k}}\right)-3$, as in Theorem 1.7(b). Note also that H_{k} / N_{k} is not quasiprimitive on Ω since it has a normal subgroup Z_{k} / N_{k} of order 2 and, as $|\Omega|>2, Z_{k} / N_{k}$ is intransitive on Ω.

Remark 6.3. We show that the bound in Theorem 1.7(a), is never attained. Suppose to the contrary that G is quasiprimitive of degree n, but not primitive, and that $c(G)=c_{\mathrm{na}}\left(\log _{2} n-1\right)-\frac{4}{3}$. It follows from the proof of Theorem 1.7(a) that G acts primitively on a set Δ of $n / 2$ blocks of imprimitivity each of size 2 , and that the induced primitive group G^{Δ} is not affine, and $c\left(G^{\Delta}\right)$ achieves the upper bound of Theorem 1.5. Thus $G \cong G^{\Delta}=\mathrm{S}_{5}\left\langle T_{k}\right.$ in product action and the stabiliser of a block $\delta \in \Delta$ is $G_{\delta} \cong \mathrm{S}_{4}\left\langle T_{k}\right.$. Since G is quasiprimitive on n points, the stabiliser in $N=\left(\mathrm{A}_{5}\right)^{4^{k}}$ of a point $\alpha \in \delta$ is a subgroup of index 2 in $N_{\delta} \cong\left(\mathrm{A}_{4}\right)^{4^{k}}$. However, no such subgroup exists.

In Example 6.4 we provide an infinite family of quasiprimitive groups G which are not primitive and are such that the composition lengths $c(G)$ grow logarithmically with the degree. The competing requirements for such a construction are (a) to use a simple group such as A_{5} for the direct factors of the socle, and a group T_{k} permuting the factors of the socle to make $c(G)$ large relative to the degree; and (b) to define the point stabiliser to ensure that the socle is transitive.

Example 6.4. Let k be a positive integer, and consider the group $X=\mathrm{S}_{5} \imath T_{k}$, which has a primitive action of degree $d=5^{4^{k}}$ on a set Δ, and satisfies $c(X)=c_{\mathrm{na}} \log _{2} d-\frac{4}{3}$, by Theorem 1.5. There is an element $\delta \in \Delta$ such that $X_{\delta}=S_{4} \imath T_{k}$ where each factor S_{4} of the base group of X_{δ} is the stabiliser in S_{5} of the point 5 .

Let $N=\mathrm{A}_{5}^{4^{k}}$, the unique minimal normal subgroup of X, and $B=\mathrm{S}_{5}^{4^{k}}$, the base group of X. Let $B_{0}=\mathrm{S}_{2}^{4^{k}}$ denote the subgroup of B which projects to $\langle(1,2)\rangle$ on each factor S_{5} of B, so $B=N \rtimes B_{0}$. Also $B_{0} \leqslant G_{\delta}$ and B_{0} normalises $N_{\delta}=\mathrm{A}_{4}^{4^{k}}$.

The transitive conjugation-action of the top group T_{k} on the 4^{k} factors S_{5} of B preserves a system of imprimitivity with 4^{k-1} blocks of size 4 . Let $D=\operatorname{Diag}\left(\mathrm{S}_{2}^{4}\right)$ and let $M=D^{4^{k-1}}$ be the subgroup of B_{0} such that the image of M under projection to S_{2}^{4} is
D, for each of the 4^{k-1} blocks of size 4 . Then M is T_{k}-invariant, being constant on each minimal block for T_{k} (of size 4).

Define G to be the subgroup $G=N . M . T_{k}$ of X. Since G contains the top group T_{k}, it follows that N is a minimal normal subgroup of G, and in fact it is the unique minimal normal subgroup since $C_{G}(N)=C_{X}(N)=1$. It is not difficult to see that $G_{\delta}=N_{\delta} \cdot M \cdot T_{k}$ is maximal and core-free in G, so G acts faithfully and primitively on Δ of degree $d=5^{4^{k}}$.

We define a subgroup H of G_{δ} such that G acts quasiprimitively on the coset space $\Omega=[G: H]$. Let $O_{2}\left(N_{\delta}\right) \cong\left(\mathrm{C}_{2}^{2}\right)^{4^{k}}$ be the largest normal 2-subgroup of N_{δ}, and let $D_{1}=\operatorname{Diag}\left(\mathrm{S}_{3}^{4}\right)$ (with S_{3} fixing points 4,5$)$ and $M_{1}=D_{1}^{4^{k-1}}$, so M_{1} contains M and M_{1} is T_{k}-invariant. Let $H=O_{2}\left(N_{\delta}\right) \cdot M_{1} \cdot T_{k}$. Then H is a subgroup of G_{δ} of index

$$
\left|G_{\delta}: H\right|=\left|N_{\delta}: H \cap N_{\delta}\right|=3^{4^{k}-4^{k-1}}=3^{3.4^{k-1}}
$$

Since G_{δ} is a core-free subgroup of G, so is H and hence G acts transitively and faithfully on Ω. Moreover, the displayed equation implies that N is transitive on Ω. Since N is the unique minimal normal subgroup of G, G is quasiprimitive (but not primitive) on Ω.

The degree is $n=|\Omega|=|\Delta|\left|G_{\delta}: H\right|=5^{4^{k}} \cdot 3^{3.4^{k-1}}=x^{4^{k}}$, where $x=5 \cdot 3^{3 / 4}$. Thus $\log _{2} n=4^{k} \log _{2} x$. Also (using Theorem 1.2)
$c(G)=c(N)+c(M)+c\left(T_{k}\right)=4^{k}+4^{k-1}+\frac{4}{3}\left(4^{k}-1\right)=4^{k}\left(1+\frac{1}{4}+\frac{4}{3}\right)-\frac{4}{3}=\frac{31}{12} 4^{k}-\frac{4}{3}$.
It follows that $c(G)=c \log _{2} n-\frac{4}{3}$, where $c=\frac{31}{12 \log _{2} x}=\frac{31}{12 \log _{2} 5+9 \log _{2} 3}>0.7358$.

Acknowledgments

We would like to thank the Centre for the Mathematics of Symmetry and Computation for its support, as this project grew from a problem posed by the first author at the annual CMSC retreat in 2017. The first two authors gratefully acknowledge the support of the Australian Research Council Discovery Grant DP160102323. The third author thanks the Australian Government for the support of a Research Training Program grant.

References

[1] Michael Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math. 76 (1984), 469-514. $\uparrow 9,14$
[2] Michael Aschbacher and Robert M. Guralnick, On abelian quotients of primitive groups, Proc. Amer. Math. Soc. 107 (1989), 89-95. $\uparrow 7$
[3] László Babai, On the order of uniprimitive permutation groups, Ann. of Math. (2) 113 (1981), 553568. $\uparrow 3$
[4] _, On the order of doubly transitive permutation groups, Invent. Math. 65 (1981/82), 473-484. $\uparrow 3$
[5] Áron Bereczky and Attila Maróti, On groups with every normal subgroup transitive or semiregular, J. Algebra 319 (2008), 1733-1751. $\uparrow 18$
[6] John N. Bray, Derek F. Holt, and Colva M. Roney-Dougal, The maximal subgroups of the lowdimensional finite classical groups, London Mathematical Society Lecture Note Series, vol. 407, Cambridge University Press, Cambridge, 2013. With a foreword by Martin Liebeck. $\uparrow 13$
[7] Peter J. Cameron, Finite permutation groups and finite simple groups, Bull. London Math. Soc. 13 (1981), 1-22. $\uparrow 3$
[8] Hannah J. Coutts, Martyn Quick, and Colva M. Roney-Dougal, The primitive permutation groups of degree less than 4096, Comm. Algebra 39 (2011), 3526-3546. $\uparrow 8$
[9] Eloisa Detomi and Andrea Lucchini, Invariable generation of permutation groups, Arch. Math. (Basel) 104 (2015), 301-309. $\uparrow 3$
[10] R. K. Fisher, The polycyclic length of linear and finite polycyclic groups, Canad. J. Math. 26 (1974), 1002-1009. $\uparrow 5$
[11] , The number of non-solvable sections in linear groups, J. London Math. Soc. (2) 9 (1974/75), 80-86. $\uparrow 5$
[12] Michael Giudici, S. P. Glasby, Cai Heng Li, and Gabriel Verret, The number of composition factors of order p in completely reducible groups of characteristic p, J. Algebra 490 (2017), 241-255. $\uparrow 6$
[13] Michael Giudici and Luke Morgan, A theory of semiprimitive groups, available at arXiv:1603.00187. $\uparrow 19$
[14] Robert M. Guralnick, Attila Maróti, and László Pyber, Normalizers of primitive permutation groups, Adv. Math. 310 (2017), 1017-1063. $\uparrow 3$
[15] Peter Kleidman and Martin Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, vol. 129, Cambridge University Press, Cambridge, 1990. $\uparrow 14$
[16] Stefan Kohl, A bound on the order of the outer automorphism group of a finite simple group of given order, available at https://stefan-kohl.github.io/preprints/outbound.pdf. Accessed: 2017-11-14. $\uparrow 7$
[17] Martin W. Liebeck, On the orders of maximal subgroups of the finite classical groups, Proc. London Math. Soc. (3) 50 (1985), 426-446. $\uparrow 15$
[18] A. Lucchini, F. Menegazzo, and M. Morigi, On the number of generators and composition length of finite linear groups, J. Algebra 243 (2001), 427-447. $\uparrow 3,5$
[19] Klaus Lux and Herbert Pahlings, Representations of groups, Cambridge Studies in Advanced Mathematics, vol. 124, Cambridge University Press, Cambridge, 2010. A computational approach. $\uparrow 10$
[20] Attila Maróti, On the orders of primitive groups, J. Algebra 258 (2002), 631-640. $\uparrow 2,3,8$
[21] Cheryl E. Praeger, The inclusion problem for finite primitive permutation groups, Proc. London Math. Soc. (3) 60 (1990), 68-88. $\uparrow 16$
[22] Cheryl E. Praeger and Jan Saxl, On the orders of primitive permutation groups, Bull. London Math. Soc. 12 (1980), 303-307. $\uparrow 3$
[23] Cheryl E. Praeger and Ákos Seress, Probabilistic generation of finite classical groups in odd characteristic by involutions, J. Group Theory 14 (2011), 521-545. $\uparrow 12$
[24] László Pyber, Asymptotic results for permutation groups, Groups and computation (New Brunswick, NJ, 1991), 1993, pp. 197-219. $\uparrow 3$
[25] Helmut Wielandt, Permutation groups through invariant relations and invariant functions, Lecture Notes, Ohio State University, Columbus, 1969. $\uparrow 3$
(Glasby, Praeger, Rosa) Centre for Mathematics of Symmetry and Computation, University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia.
Email: Stephen.Glasby@uwa.edu.au URL: www.maths.uwa.edu.au/~glasby/
Email: Cheryl.Praeger@uwa.edu.au; URL: www.maths.uwa.edu.au/~praeger
Email: Kyle.Rosa@research.uwa.edu.au
(Verret) Department of Mathematics, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand. Email: g.verret@auckland.ac.nz

[^0]: ${ }^{1}$ The statement in [24, Theorem 2.10] refers to a paper "in preparation" (reference [Py5] in [24]).

[^1]: ${ }^{2}$ Some authors use the notation $\mathrm{SU}\left(d, p^{f / 2}\right)$ and $\mathrm{GU}\left(d, p^{f / 2}\right)$ writing the square root of the field size.

