
Supporting Asynchronization in OpenMP for
Event-Driven Programming

Xing Fan, Oliver Sinnen and Nasser Giacaman
fxin927@aucklanduni.ac.nz, {o.sinnen,n.giacaman}@auckland.ac.nz

Department of Electrical and Computer Engineering
University of Auckland, New Zealand

Abstract

The event-driven programming pattern is pervasive in a wide range
of modern software applications. Unfortunately, it is not easy to achieve
good performance and responsiveness when developing event-driven ap-
plications. Traditional approaches require a great amount of programmer
effort to restructure and refactor code, to achieve the performance speedup
from parallelism and asynchronization. Not only does this restructuring
require a lot of development time, it also makes the code harder to debug
and understand. We propose an asynchronous programming model based
on the philosophy of OpenMP, which does not require code restructuring
of the original sequential code. This asynchronous programming model is
complementary to the existing OpenMP fork-join model. The coexistence
of the two models has potential to decrease developing time for parallel
event-driven programs, since it avoids major code refactoring. In addi-
tion to its programming simplicity, evaluations show that this approach
achieves good performance improvements consistent with more traditional
event-driven parallelization.

Keywords: OpenMP, parallel programming model, event-driven programming,
asynchronous programming

1 Introduction
OpenMP is the de facto standard for shared memory parallel programming. Its
evolution and new specification extensions have gradually increased its popular-
ity in recent years, and now OpenMP programming is widely used in different
types of high-performance computing. However, there are still some barriers
which make OpenMP not very suitable for an increasingly essential class of
software development: the development of interactive desktop applications and
mobile apps. As multi-core devices have become commonplace for the average
consumer, especially in the era of ubiquitous computing, it is reasonable to draw

the attention of the parallel programming model for the development of every-
day applications. Achieving this will allow a larger subset of software apps to
really experience the benefit of parallel execution on multi-core devices.

With the interactive nature of these desktop applications and mobile apps,
the program flow is executed according to events generated during runtime,
known as the event-driven model. Event-driven frameworks are examples of
inversion of control [13], which assists developers by only requiring them to
be responsible for implementing the event handlers (or callback functions). Al-
though there are various frameworks that differ in regards to their implementing
languages and supported platforms, the underlying mechanism is very similar.
From the programmer’s perspective, they do not need to understand the under-
lying runtime and its event dispatching, therefore the core part of the applica-
tion development is implementing the handling routines to reach the required
functionality of the application.

In an event-driven application, an event dispatching thread (EDT) is solely
responsible to drive the event-loop. Once the application is launched, the run-
time support listens for events generated, and queues the event if it is bound to
any handling code or callback function the developer implemented. The callback
function is then executed by the EDT. If a particular event handling callback
function is time-consuming, the EDT will not be able to handle another event in
the event-loop until it finishes execution of the callback function. The problem
emerges when the callback function is CPU-intensive or I/O-bound, with the
long execution time of the callback function affecting responsiveness of the over-
all application. For batch-like programs, the motivation for using parallelization
techniques is always to decrease the wall clock time. But when it comes to the
event-driven programs, performance is not only evaluated by the reduction of
wall clock time. Instead of focusing on execution speedup, maintaining a bet-
ter responsiveness (and therefore positive user experience) is the main reason
programmers incorporate concurrency.

Due to its focus of accelerating compute-intensive and batch-like programs,
OpenMP mainly stresses on the parallelization of loops and symmetrical data
processing. Under this consideration, the fork-join model has always been inti-
mately infused into OpenMP, and continues to remain strongly integrated [27].
The fork-join model works well for batch programs and CPU-intensive compu-
tations; when the program is launched, its execution rarely interacts with I/O.
This is because the workload and work flow is largely pre-defined, allowing for
easier reasoning regarding the work distribution. Unfortunately, there are key
drawbacks in the traditional OpenMP fork-join model making it incompatible
with the co-use of the event-driven programming model.

By its nature, all callback functions are executed by EDT when the binding
event is generated in the event-handling framework. The first challenge fac-
ing programmers is conceptually justifying whether a particular computation
should be classified as a parallelization candidate. Traditionally, for batch-like
programs, programmers would rarely consider parallelizing computations that
last only a few seconds. But with interactive event-driven applications, even
computations lasting only a few hundred milliseconds demand concurrency to

avoid the appearance of an unresponsive application. For OpenMP to be em-
braced for these mainstream applications, the introduction of additional over-
head for the concurrency of shorter computational spurts needs to be less of a
dilemma for programmers.

Regardless of the overhead, the fork-join model presents a much more funda-
mental issue for event-driven applications. Even with the potential speedup ben-
efits, the traditional fork-join model forces the master thread (which would be
the EDT in event-driven applications) to participate in the work-sharing region.
This immediately goes against the policies of event-handling frameworks, as the
EDT spends a noticeable amount of time away from the event-loop (thereby
delaying responses for subsequent events in the application). The traditional
way event-handling applications solve this responsiveness problem is by explic-
itly offloading the time-consuming execution to background threads and then
enabling the EDT to return to the event loop to handle another event. While
this has long been the standard practice in the realm of event-based applica-
tions, it is deprived of the elegance of OpenMP, particularly the paradigm of
incremental parallelization that avoids major code restructuring.

Initially, it may appear that OpenMP presents an asynchronous solution
with its task directive. However, a block surrounded by a task directive will be
asynchronously executed by the OpenMP thread group; an orphaned task direc-
tive will execute sequentially unless it is surrounded by a parallel directive. This
means the effectiveness of OpenMP tasks are confined within an OpenMP par-
allel region, conforming to the fork-join model that OpenMP adopts. Since the
parallel directive does not provide any option to achieve asynchronization with
the parallel region (for example, there is no nowait or async clause), this means
that the main thread is forced to wait until every thread in the parallel team
finishes its work. This inherently synchronous “join” aspect of OpenMP makes
it difficult to integrate OpenMP with the event-driven programming paradigm.

Upon this event-driven programming background, as a clarification, we de-
fine synchronous if every event handler is directly processed by the EDT se-
quentially. Asynchronous is defined as the event handling being offloaded as
a task from the EDT to a background thread, but the task is done sequentially.
Parallelization is distinguished from asynchronous, and refers to execution of
a handler with multiple background threads. In synchronous parallel, mul-
tiple worker threads are utilized, but this parallelization is foregrounded with
the EDT assuming role of master thread. In comparison, asynchronous par-
allel means that the event handling code is offloaded to the background, and
then executed in parallel. In this regards, the EDT does not participate in the
parallelization.

In this paper, we first formally define the cumbersome, yet necessary, restruc-
turing that is demanded to achieve concurrency in an event-driven application.
We then propose a simple but expressive programming model for asynchronous
programming, especially for event-driven programming. An asynchronous ex-
ecutor model is introduced in the spirit of OpenMP, to overcome the hassles
associated with code restructuring. We show that using this model simplifies,
as well as unifies, the parallelization and concurrency of event-driven applica-

tions. The integration of this model with the traditional fork-join model enables
for a wider range of target applications for OpenMP. This allows applications
that require both asynchronous execution (for event-handling responsiveness)
and parallel acceleration (for reduced computational times) to seriously con-
sider OpenMP. The semantic design pattern strictly follows the philosophy of
OpenMP, in which adding directives does not influence the original correctness
of the sequential execution.

These concepts have been implemented for Pyjama1, an open-source tool
for OpenMP-like directives for Java [43]. Its source-to-source compiler and its
runtime support help programmers to quickly develop applications with the
asynchronization and parallelization support.

The reminder of this paper is structured as follows. Section 2 reviews the
background of developing high-performance event-driven applications, and the
difficulties are discussed especially for the development of GUI applications. Sec-
tion 3 presents the proposed programming model, as an extension of OpenMP,
and expatiates how this model can help programmers to develop responsive
event handlers in an efficient way. In Section 4, a discussion of the implementa-
tion of the compiler and its runtime is provided. Section 5 shows the evaluation
of this proposed approach. Section 6 discusses the related work and Section 7
concludes.

2 Background
This section mainly investigates the background of event-driven programming
approaches, and also discusses the difficulties and challenges of developing high
performance event-based applications.

2.1 Event-driven programming
A wide range of applications are written based on the event-driven programming
model, from desktop and mobile applications (apps) to web services. Different
from traditional batch-type programs, event-driven applications do not have a
predefined runtime execution sequence. For batch-type programs, given input
data, the computations are generally executed until completion without requir-
ing further input from the user. Furthermore, the computations performed tend
to be rather regular, in that repetitive computations are performed on a vast
amount of data (ideal candidate for parallelization). On the contrary, execu-
tion of an event-driven application is achieved by an infinite loop (known as
the event-loop) with associated event listeners. When a registered event hap-
pens, the listener triggers the callback function implemented by programmers.
Due to this major difference, “performance” can mean something different to
batch-like programs as it does to event-driven programs. Batch-like programs
mainly stress on absolute execution time, requiring computations are completed
as quickly as possible. For event-driven programs, responsiveness (perceived

1Pyjama is an open-source project which is available at http://parallelit.org

performance) of the application’s interactivity is a major key factor when eval-
uating its usability ([10, 22, 40, 42]). In Figure 1(i), each triangle represents an
event request and the execution of its callback function is represented as a rect-
angle box with the same color the triangle has. The commencement of request2
is delayed until the handling of previous events are completed, resulting in an
unresponsive application.

In order to achieve good event-dispatching performance and a better user-
experience with regards to responsiveness, various solutions exist. The most
traditional approach is known as thread-per-request [34]. In this approach, the
time-consuming event handling is directly delegated to a newly-spawned back-
ground thread. This allows the EDT to directly exit from the event handler,
enabling it to handle another event request, hence achieving the desired respon-
siveness. The first drawback is of this traditional approach is the heightened
software development experience demanded to effectively multi-thread. There
is also the salient drawback of non-scalability, since excessively creating threads
could decrease the application’s performance, as well as the overall system per-
formance due increased scheduling demands and increased overhead associated
with thread context switching [35].

Figure 1(ii) shows an improved solution making use of tasking concepts and
thread pools, instead of creating a new thread preemptively for every event-
handler. This involves submitting the long-running code as a task to an ex-
ecutor bound to a thread pool that limits the maximum number of concurrent
threads. The executor manages the thread number, thus reducing the threading
overhead and improving overall performance when a large number of tasks need
to be executed. While this approach addresses the overhead concerns associated
with the threading model, it still demands strong conceptual understanding and
experience from software developers to parallelize their applications. The dom-
inant conceptual challenge underpinning these models is that a task submission
to an executor means operations depending on the result of the task are not
allowed to be executed until the task is finished. While this dependency can
be achieved by using a blocking waiting operation until the task is finished, it
defeats the initial purpose of introducing concurrency if the waiting thread is
the EDT. Therefore, the accepted practice is to bind a completion handler to
the task, such that the continuing operations will be executed asynchronously
when the task is finished.

In addition to the challenge discussed above, another restriction imposed on
programmers is that graphical user interface (GUI) components are not thread-
safe and access is strictly confined to the EDT. Inside the event handling code,
programmers need to identify and separate code segments to ensure thread-
safety. For example, in most GUI application frameworks, updates to the GUI
should only be executed by the EDT. Disrespecting this rule could result in
the user interface exhibiting inconsistency or even errors [45]. Consequently,
this means that if handling code is submitted to a worker executor, the thread
context may still need to be switched intermittently to the EDT for operations
related to GUI updates. This requires further event posting to the EDT with
binding callback functions for the display of intermediate results progress.

request1 request2 request3

EDT

Time

(i) Unresponsive single-threaded event processing

request1 request2 request3

EDT

Worker1

Worker2

Time

(ii) Responsive multi-threaded event processing

Figure 1: In an event-driven application, the EDT plays the role of the main
thread responding to events. An essential requirement is to maximize the idle-
ness of the EDT, so programmers are required to transform single-threaded event
processing to multi-threaded event processing to increase the responsiveness of
the EDT.

2.2 Language-related dependencies
Implementing event-driven applications largely depends on the application’s lan-
guage and programming framework. The general aim of the application devel-
oper would be to achieve the logic shown in Figure 2. Here, a time-consuming
computation is offloaded to the background, while progress updates and final no-
tification still need to be executed by the EDT. Figure 3 and Figure 4 show two
specific implementations using Java SwingWorker [29] and C# Asynchronous
Programming Model (APM) [24] respectively. Java SwingWorker enables pro-
grammers to identify the operations need to be executed as background tasks
or foreground updates, by implementing its class interfaces. As a comparison,
the programming style of APM is known as Continuation Passing Style (CPS)
[5] and all the continuations of the following operations are asynchronously trig-
gered when the previous operations finish. However, the drawback of using
CPS (especially for procedural languages) is prominent. The code refactoring
required to achieve this functionality requires fragmenting the original callback
function, where the fragmented statements are wrapped by auxiliary functions.
As a consequence, even though the flow logic of the ButtonOnClick() callback
function is exactly the same in both implementations, the code structures and
API required to achieve this are very different.

This diversity makes it difficult for programmers to write uniform and con-
sistent source code. When porting an application from one platform to another
platform, although the programming logic remains the same, the code refactor-
ing requires a great amount of work and programming knowledge.

request

EDT

Worker

Time

S1

S2

S3

S4

Figure 2: An example of event handling logic, where a time-consuming compu-
tation involves background components (S1 and S3), with a foreground progress
update (S2), before a concluding foreground computation (S4).

void ButtonOnClick() {
SwingWorker<String, Integer> worker =
new SwingWorker<String, Integer>(){

protected String doInBackground(){
// S1
publish();
// S3

}
protected void process(List<Integer> updates){

// S2
}
protected void done() {

// S4
}

}
worker.execute();

}

Figure 3: Java asynchronous programming with SwingWorker.

public class AsyncWorker{
public IAsyncResult BeginS1(){

// S1
}
public IAsyncResult BeginS3(){

// S3
}

}
void S1CallBack(IAsyncResult result) {

Dispatcher.BeginInvoke(()=>{
// S2
worker.BeginS3(S3CallBack);

});
}
void S3CallBack(IAsyncResult result) {

Dispatcher.BeginInvoke(()=>{
// S4

});
}
void ButtonOnClick() {

AsyncWorker worker = new AsyncWorker();
worker.BeginS1(S1CallBack, result);

}

Figure 4: C# AMP-style programming.

2.3 Notation Representation
This section formally defines the restructuring required to achieve concurrency
in an event-driven application. The basic components are firstly defined as
follows:

• e→ F is defined as an event handler binding in which every time event e
occurs, the callback function F is to be invoked.

• F(T) specifies that the function call is invoked by thread T .

• F ::= {S1, S2, S3, ..., Sn} represents the expansion of function F to repre-
sent a total of n statements in that function.

• Each statement S can be a primitive statement P or another function call
F , namely S ::= P |F .

• S(T) indicates that statement S needs to be executed by thread T .

If there is no concurrency expressed within a function call F(T), all the state-
ments inside F are executed by thread T . In this regards, the total exe-
cution time of this function is the sum of the execution of each statement:
t(F(T)) = t(S1(T)) + t(S2(T)) + t(S3(T)) + ... + t(Sn(T)). If the invoking
thread T is the EDT, denoted as Tedt, this means the application is unrespon-
sive for the period of t(F(T edt)). As the EDT is executing F , it cannot respond
to other events or requests during this time.

In regards to refactoring and asynchronization:

• F =⇒r F ′ is defined as a code refactoring of function F .

• F|A is defined as an asynchronous execution of function F .

For the approach of preemptive multi-threading or task submission, for each
e→ F(Tedt) there is a refactoring F(Tedt) ::= {S1, S2, S3, ..., Sn} =⇒r F ′(Tb) |A
such that F ′(Tb) ::= {S1, S2, S3, ..., Sn}. Here, Tb is a background thread that
has been delegated all statements of the original function. Ideally the handling
time of the EDT is decreased to zero (t(F(Tedt)) = 0), allowing the EDT more
free time to handle other events. However, the refactoring is typically more
complicated as some statements are thread-affiliated. For example, the formal
definition of Figure 2’s callback function can be represented as F(Tedt) ::=
{S1, S2(Tedt), S3, S4(Tedt)}, where statements S2 and S4 must only be executed
by the EDT. For this situation, a correct and efficient computing offloading of
S1 and S3 could lead to a great amount of code refactoring and programming
effort:

F ::= {S1, S2(Tedt), S3, S4(Tedt)} =⇒r

F ′ ::= {ecomplete(F1(Tb))→ F2(Tedt),F1(Tb)|A }, (p 1)

F2 ::= {S2, ecomplete(F3(Tb))→ F4(Tedt),F3(Tb)|A}, (p 2)

F1 ::= {S1},F3 ::= {S3},F4 ::= {S4} (p 3)

Firstly, the original callback function above is refactored such that S1 be-
comes an asynchronous call by wrapping it with a newly created auxiliary
function F1, executed by Tb. The completion of S1 is then bound with the
asynchronous invocation of S2, which need to be executed by the EDT (p1).
Similarly, after finishing S2, the completion of F3 is bound to the invocation of
F4, while executing F3 asynchronously (p2).

This approach successfully decreases the handling time of the EDT to t(F(Tedt)) =
t(S2(Tedt))+ t(S4(Tedt)). However, the code refactoring required to achieve this
functionality requires fragmenting the original callback function, where the frag-
mented statements are wrapped by auxiliary functions (F1~F4).

This example illustrates that a high-performance event-driven handler im-
plementation is difficult, especially with the combination of parallelization and
asynchronization. Besides the creation of thread pool executors and submitting
tasks to the appropriate executors, excessive callback function binding, nesting
and efforts for the thread executing switching make the logic of the control flow
obscure. This traditional approach makes it difficult to get clean and maintain-
able code for multi-threaded event-based programs. Another salient drawback
of using callback function listening is its increased debugging complexity.

3 Programming Model
The motivation of the semantic design proposed in this section is to provide an
OpenMP-like directive-based interface to facilitate event-driven programming.
The proposal is in line with two principles. First, the directive addition con-
forms with the philosophy of OpenMP, by which the directives can be directly
applied on the original sequential version of the code without code restructuring.
When the directives are triggered by a supported compiler, the execution bene-
fits from concurrent execution. When the directives are disabled or ignored by
unsupported compilers, the code still retains its correctness when executed se-
quentially. Second, the newly introduced directives are compatible with existing
OpenMP directives. With the combination of different directives, programmers
are able to express different forms of parallelization and concurrency logic.

3.1 Directive Syntax Extensions

#pragma omp target [clause[[,]clause]...]
structured-block

clause:
target-property-clause
asynchronous-property-clause
data-handling-clause
if-clause

where target-property-clause is one of the following:
device(device-number) virtual(name-tag)

where asynchronous-property-clause is one of the following:
nowait name_as(name-tag) await

where data-handling-clause is one of the following:
firstprivate(list) shared(list)

and if-clause is:
if(scalar-expression)

Figure 5: Extended target directive.

The proposed syntax (Figure 5) is inspired by the Accelerator Model introduced
to the OpenMP 4.0 specification, namely the target directive. The purpose of
the target directive is to utilize available accelerators in addition to multi-core
processors on the system. The target directive offloads the computation of its
code block to a specified accelerator, if a device clause is followed. If the target
device is not explicitly specified, the target code block will be submitted to the
default accelerator, which is decided by the ICV (Internal Control Variable)
default-device-var.

Virtual target. The original target directive can only be validated when
the host has accelerators (e.g. GPU), which means a valid target must be a phys-
ical device. However, our proposed extension of the target syntax introduces

Host

Memory

...
#pragma omp target device(0)
{
<target code>
}
...

Device 0

Memory

...
<adapted target code>
...

Device 1

Memory

1

2

3

4

5

(i) Conceptual model of device target.
Host

Memory

...
#pragma omp target virtual(a)
{
<target code>
}
...

Virtual Target a
...
<target code>
...

Virtual Target b
1

2

3

(ii) Conceptual model of virtual target.

Figure 6: Conceptual difference between virtual target and device target.

the concept of virtual target, by which a target directive can be followed by a
virtual clause, instead of a device clause. A virtual target means the compu-
tation is not offloaded to a real physical device. Instead, it is a software-level
executor capable of offloading the target block from the thread which encoun-
ters this target directive. Conventionally, a device target has its own memory
and data environment, therefore the data mapping and synchronization are nec-
essary between the host and the target. That is why normally some auxiliary
constructs or directives such as target data and target update are used when
using target directives. In contrast, a virtual target actually shares the same
memory as the host holds, so the data context remains the same when entering
the target code block. Figure 6 shows the conceptual differences between the
device target and virtual target. Generally, a virtual target is a syntax-level
abstraction of a thread pool executor, such that the target block is executed
by the executor specified by the target-name.

Target block scheduling. By default, an encountering thread may not
proceed past the target code block until it is finished by either the device target
or virtual target. However, a more flexible and expressive control flow of the
encountering thread can be achieved by adopting the asynchronous-property-
clause. The consideration behind this is, a target block can also be regarded as
a task with an asynchronous nature. Section 3.2.2 will specifically explain the
different scheduling clauses that influence the processing of the program.

void buttonOnClick() {
Panel.showMsg("Started EDT handling");
Info info = Panel.collectInput();
//#omp target virtual(worker) nowait
{

int hscode = getHashCode(info);
downloadAndCompute(hscode);
//#omp target virtual(edt)
Panel.showMsg("Finished!");

}
}
void downloadAndCompute(int hs) {

Buffer buf = networkDownload(hs);
Image img = formatConvert(buf);
//#omp target virtual(edt)
Panel.displayImg(img);

}

Figure 7: Semantic example of using virtual target directive.

3.2 Semantic Model
Since our implementation is based on Java, and Java does not support pragma
conditional compilation, the directive begins with //#omp. It means that com-
pilers that do not support the semantics will safely ignore the directives by
regarding them as comments. On the contrary, a supporting compiler will in-
terpret the directives and compile the code as a parallelized version.

3.2.1 Semantics of target offloading

We demonstrate the usage of target virtual directives by showing a piece of
pseudo code of an event handler implementation. In Figure 7, when a button is
clicked, the callback function buttonOnClick() is triggered. Firstly the function
updates a message to GUI to indicate the start of the processing. Then a series of
time-consuming operations are processed according to the inputs from the GUI.
In this example the operations involve downloading a file from the network and
then performing image processing on the downloaded raw data. Afterward, the
image is rendered to the GUI and a finished message is updated.

If the directives are ignored, the entire code will be executed by the thread
which invoked the callback function, i.e. the EDT. For a compliant compiler,
the entire callback function will be executed by the cooperation of two virtual
target executors (edt, worker). In this situation, the handling time of the EDT
decreases because the EDT only spends time on the operations which should be
necessarily executed by the EDT. Other operations are smartly offloaded to the
worker executor, without breaking the original code structure and logic. The
benefit of using virtual target semantics involves four key aspects:

Thread-context awareness. A code block guarded by a specified target
virtual directive shows its preference of execution by a specified type of thread,

or executor. If the encountering thread has the same property as the virtual
target specified, the target virtual directive is simply ignored. Otherwise, the
directive compels the encountering thread to relinquish control of the code block
and do a runtime thread-context switch to the specified target. The thread-
context awareness property of the target virtual construct smartly confines
the authorization of the code block execution to specified type of thread. For
example, for GUI applications, a GUI update code block guarded by a target
virtual(edt) will ensure that all the operations related to the GUI are executed
by the event dispatching thread.

Execution offloading. Delegating code to another virtual target offloads
work from the current thread, therefore alleviating the computational burden
from the encountering thread. For a function invocation, if some parts of the
function are delegated to other virtual targets, the actual execution time for the
thread which invoked the function will be decreased. This aspect is extremely
important in the scenario of event dispatching. Work offloading enables the
EDT to spend less time on the event handler, allowing it to dispatch more
events in the application.

Data-context sharing. Using a standard target directive means offload-
ing the code to an actual hardware accelerator, therefore the data transferring
and data synchronization is necessary. Instead, using a virtual target means
code is offloaded to a software-level executor. Since all virtual targets share the
same memory, there is no need to copy data from main memory to the acceler-
ators memory. This simplifies usage of the target virtual directive, since it
is not necessary to do heavy data copying or even variable passing when using
a virtual target switch (if the OpenMP default(shared) data clause is speci-
fied). All the operations inside a target block share the intuitive data context
as if the target directive does not exist.

Intuitive continuation-passing. Adding target virtual directives mod-
ifies the source code from a sequential version to an asynchronous (and possibly
parallel) version, while still maintaining clean programming logic. The end of a
target block is intuitively followed by operations which depend on it. Although
a target block has the nature of asynchronous execution when the operations
following it should not be executed until the target block is completed, the
continuation of the target block does not require any code refactoring for a
completion-event callback function binding. Since the continuation logic is still
represented in the sequential code, it dramatically reduces the work of code
refactoring to achieve asynchronization and parallelization.

3.2.2 Semantics of asynchronous execution

The purpose of a target virtual(worker) directive is to offload work from the
current thread to a virtual target executor. If the current thread cannot proceed
during execution of the target block, and simply halts its execution, there is
no actual performance advantage from the target block offloading. Therefore,
instead of busy waiting, an asynchronous execution is applied for the target
block. The asynchronous execution can be categorized into the three types

default (wait) nowait name_as/wait await

target virtual

Target Blockwait

target virtual nowait

Target Block

Finish

target virtual name as(t)

wait(t)

Target Block

Finish

target virtual await

Unrelated
Handler

Processing
Target Block

Finish

Figure 8: Different asynchronous modes, by using different asynchronous-
property-clauses.

illustrated in Figure 8, by using different modes for the asynchronous-property-
clause:

• Default (wait). If no asynchronous-property-clause is specified, then no
asynchronous execution occurs. The encountering thread will busy-wait
until the target code block is finished by the specified target. If the ex-
ecuting time of the target block is noticeably long, this is not the ideal
approach because the encountering thread cannot do anything useful dur-
ing this time. Also, in the case of event handling threads, this results in an
unresponsive application. However, this wait corresponds to the standard
OpenMP behavior of the target directive.

• nowait. The encountering thread directly skips the target block and leaves
the target block as an asynchronous task, then continues executing state-
ments following the block. There is no notification when the task is fin-
ished. The nowait clause is usually used when there is no further opera-
tions which depend on the result of the asynchronous task. Therefore, the
code block can be safely invoked and ignored. This is useful for broad-
casting interim updates, where the broadcasting thread does not need to
wait for a response from listeners.

• name_as/wait. The encountering thread directly skips the target block
and leaves the target block as an asynchronous task, then continues ex-
ecuting statements following the block. Unlike nowait, a task identifier
name-tag is created that enables the encountering thread to explicitly
synchronize with the task by using the associated wait(name-tag) clause
later in the code. Notice that different target blocks are allowed to share
the same name-tag, such that when the wait clause is applied with that
name-tag, the encountering thread suspends until all the name-tag asyn-
chronous target block instances finish.

• await. The await asynchronization policy is a wait policy, with the im-
portant difference that during the wait period the control flow jumps out
of the current function and back to its caller. When the target code is
finished, the function resumes its execution from where it previously sus-
pended. Conceptually, the purpose of using await is, while the target

block is being executed by the respective virtual target, the encounter-
ing thread is able to return to the event loop (to process other events)
or to the task pool (to process other tasks); this is known as Unrelated
Handler Processing. This has the advantage of keeping the encountering
thread active by processing other meaningful workload instead of blocking
or busy waiting. Also, if the encountering thread is the EDT, it enables
the EDT to process more events during this time. The code dependency is
also naturally represented since the original code sequence is preserved for
each event handler; the continuation of an asynchronous execution is in-
tuitive without any need for explicitly binding completion event handlers.
Since nested function calls are possible within an event handler, functions
may recursively suspend their executions due to an innermost await target
block. A more detailed explanation of this situation is discussed in Section
3.2.3.

3.2.3 Semantics of using await and async function

For most cases, the await asynchronization policy is the most convenient way
for programmers to express the dependencies between code. Unlike wait, which
requires programmers to manually guarantee the completion of its corresponding
name_as target code blocks, the code followed by an await target block will be
automatically scheduled by the runtime when this await target block finishes.

The await property of a target block changes the behavior of the control flow
in the current function, since the function yields its execution to the caller when
the target block is being executed. As a consequence, the function containing
await has a resumable (asynchronous) nature itself, and is therefore known as
an async function. Calling an async function is different from calling an syn-
chronous function, because asynchronous functions “return immediately” to the
caller before the function’s computation is actually completed (due to the nature
of asynchronous execution). Therefore, the caller selects the call type, denoting
whether it should (i) invoke the function asynchronously (and therefore continue
on the statement following the function call without waiting for the completion
of the asynchronous function), or (ii) also yield its execution and the control flow
back to the caller’s caller and resuming only when the asynchronous function
completes. Recursively, a function invoking an async function using the latter
approach is endowed with a resumable(asynchronous) nature also.

#pragma omp async-call asynchronous-property-clause(function-declaration [[,]function-declaration]...)
structured-block

where asynchronous-property-clause is one of the following:
nowait name_as(name-tag) await

Figure 9: Definition of async-call directive, for the purpose of calling async
function in different ways.

In order to distinguish the two types of ways to invoke an async function,

void int bar1(Info info) {
before();
a = foo(1) + foo(2);
after();

}

//#omp async
void int bar2(Info info) {

before();
//#omp async-call await(int foo(int))
{

a = foo(1) + foo(2);
}
after();

}
//#omp async
int foo(int work) {

//#omp target virtual(worker) await
{

cpu_bound_computation(work);
}

}

Figure 10: Semantic example of using await directive.

the async-call construct (Figure 9) is introduced. The directive is followed
by an asynchronous-property-clause, then a list of function declarations, and
then a code block. All the function calls in the code block that are declared
in the function list, will be invoked according to the asynchronous-property-
clause. If nowait or name_as is applied, the function is invoked asynchronously
and the caller continues with the statements following the function call. The
wait(name-tag) directive is able to explicitly wait for the completion of its paired
name_as(name-tag) asynchronous function call. If await is applied, the caller
yields its execution until the declared async function is completed, and then the
the caller gets the return value from the function and the execution continues.

Figure 10 shows an example of the use of the async-call await construct. In
this example, the function foo() is marked as an async function because inside
this function, a target virtual await block is used. In function bar1(), the foo()
is invoked in a normal way, which means function bar1() synchronously invokes
foo() functions and get the return values. As a comparison, the function bar2()
invokes function foo() inside an await construct, which causes the suspension
of bar2() when waiting the return from foo() invocations. At the same time,
since bar2() is endowed as a resumable(asynchronous) nature, when using await
construct, function bar2() is also marked as an async function.

Formally, we define a function as an async function when:

1. There are one or more omp target virtual await constructs inside this func-
tion; and/or

2. There are one or more omp async-call await constructs inside the function.

await
async function or
virtual target

Caller

Scheduler

Executor

Finish

call 1

susp
end

2

re
su
m
e

4 5

3

retu
rn

Figure 12: The control flow of using of awaits directive.

#pragma omp async
function-declaration

Figure 11: Definition of async directive, for the purpose of annotating an async
function.

An async function should be explicitly annotated, to inform the programmers
that this function can be invoked in different ways. This is achieved using omp
async, to notify the compiler to do the necessary prepossessing (Figure 11). It
also informs programmers that the invocation of this function may be different
from normal function calls. Invoking this function in the standard way causes
it to execute synchronously as would be expected. Instead, if this function is
invoked with an async-call await construct, the caller function also becomes an
async function.

Figure 12 illustrates the conceptual map of awaiting an async function. 1

indicates a caller invokes an async function by using async-call await. This async
function is supposed to contain one or more async-call await or target virtual
await directives. During the execution of this async function, if there is another
async function awaiting or a target block should to be awaited, the execution is
delegated by the corresponding executor (can be a specified thread or a thread
group), and the caller suspends its execution (2). When the function/target
block completes (3), the runtime scheduler enables the caller to resume from
the previous suspended point. Then the caller continues its execution (4) with
the following execution. This suspend/resume procedure may repeat several
times, depending on the number of await directives. Finally the caller gets the
return from the async function call (5).

3.2.4 Semantics of using exception handling

Exception handling is one type of error recovery mechanism which is widely
used in high level languages such as Java. By using try-catch blocks, it presents
a readable and intuitive control flow since the error-handling code is separated
from the normal execution code, and can be categorized according to the type
of exceptions/errors. However, the semantics of try-catch is designed for the
synchronous execution model: when an exception occurs inside a try block, the
thread encountering the exception immediately checks for a corresponding catch
block. If it exists, the encountering thread executes the error-handling code and
then resumes to the normal execution flow. Otherwise, if there is no appropriate
handler found, it propagates this exception to its caller.

When using target virtual blocks, problems may emerge. First, a target
virtual directive may change the thread which executes the following block; the
thread that encounters the exception could be different from the thread that
handles the exception. Second, if asynchronization is applied, the execution
of a target virtual block may happen in a future time, therefore when an ex-
ception happens from the target virtual block, it already loses the control of
its surrounded try-catch block; although the try and catch blocks are placed
lexically correct, semantically the handler is too late due to the async nature.

To overcome these problems and provide a clear specification, the semantic
rules of using the try-catch block together with target virtual blocks are defined
below:

• If the exception is supposed to be handled and recovered within the target
block, a try-catch block should be used inside the target virtual block.
This does not break the synchronous execution model since the exception
handing thread is the same as the exception encountering thread. This
rule is consistent with OpenMP’s exception handling requirements [12];

• If an exception escapes from its inner most surrounding target virtual
block, the exception will be re-thrown at the nearest synchronization point.
A synchronization point is defined as the point which ensures that the
execution of the target block is finished. For await, the synchronization
point is the point directly after the target code block. For name_as,
the synchronization point is where its paired wait directive is placed. If
an uncaught exception occurs during execution of the target block, the
runtime support does not throw it immediately. Instead, this exception is
stored and will be re-thrown until the synchronization point is met. Notice
the thread which initially threw the exception can be different from the
thread which encounters the re-thrown exception, because of the possible
thread context changes.

• If a target virtual block uses the nowait asynchronous clause, there is no
chance for it to be re-thrown, since there is no way to verify its com-
pletion. In this case, all the exceptions escaped from the target block
will be automatically handled by the runtime by printing the stack trace,

Name virtual_target_register() virtual_target_create()

Parameters tname:String tname:String, n:Integer

Description The thread which invokes this

function will be registered as a

virtual target named tname.

Creating a worker virtual target

with maximum of n threads, and its

name is tname.

Table 1: Runtime functions to create virtual targets in Pyjama.

and allowing the program to continue. This is consistent with exception
handling in event-handling frameworks such as Java Swing’s EDT.

3.3 Runtime Library Routines
Parallelism in the traditional OpenMP fork-join model is triggered by a parallel
directive. The lifecycle of a thread group is strictly confined within a parallel
region, so the parallelism cannot span two or more function calls. On the con-
trary, in order to suit the event-driven programming model and for all event
handlers to co-use a parallel region, the task executor model is used. A vir-
tual target is essentially a thread pool executor, or an event dispatching thread,
and its lifecycle lasts throughout the program. Conceptually, a virtual target
represents a type of execution environment defining its thread affiliation (to en-
sure operations not thread-safe are only executed by a specified thread), and
scale (confine the number of threads of a thread pool). This design enables
programmers to flexibly submit different code snippets to different execution
environments. This section describes the additional OpenMP APIs supported
by Pyjama, which are used for managing virtual targets at the runtime.

Every virtual target used in the directive requires either a registration or
a creation (Table 1). For example, in a Java Swing GUI application, the
master thread is the Event Dispatching Thread. In order to notify the com-
piler regarding the master thread as a virtual target edt, a registering function
virtual_target_register(“edt”) should be executed at the initializing stage
(e.g. the constructor of the graphic interface). Similarly, creating a new virtual
target can be achieved by a creation function. For instance, invoking function
virtual_target_create(“worker”, 5), will create a new virtual target called
worker which has maximum thread number of 5.

Registering dispatching mechanisms Registering an EDT as a virtual tar-
get requires specifying the task dispatching mechanism to the Pyjama runtime,
otherwise the runtime cannot post runnable tasks to the EDT targets. However,
the dispatching mechanism depends on the GUI framework. In the current ex-
perimental version of Pyjama, three types of event-driven GUI framework are
already supported, namely Java Swing [31], Android [18] and JavaFX [33]. For
other frameworks, programmers are required to specify the task dispatching
interface that the framework provides.

4 Implementation Overview
This section discusses the implementation of the proposed programming model
in Pyjama, which is an OpenMP-like implementation for Java. Pyjama mainly
constitutes two parts. First is the source-to-source compiler which supporting
traditional OpenMP directives and the extended directives this paper proposed,
transforming the sequential Java source code into parallel code. Second is the
runtime system, which provides the underlining thread-pool creation, manage-
ment and task scheduling, as well as all the OpenMP runtime functions.

4.1 Compilation
The semantics of Pyjama is essentially a standard Java with a comment-based
OpenMP extension. The Pyjama compiler performs a source-to-source trans-
lation. The standard Java code (i.e. the code not annotated with Pyjama’s
OpenMP directives) is retained without any changes. All other code blocks an-
notated with OpenMP directives are transformed into parallel Java code. The
final Java file generated is compiled into Java bytecode using a standard Java
compiler.

The compiler’s underlying parser is generated using JavaCC [32] (the parser
generating tool), where the OpenMP directives extended the standard Java
grammar. The parsing generates an abstract syntax tree (AST) of the Pyjama
source code, where the Visitor Pattern [39] is used to traverse the AST to
generate the target source code. This section provides an overview of how an
OpenMP target block or an async method is converted to the destination code.

Auxiliary Class Generation An auxiliary class is an inner class of the cur-
rent compilation unit, which contains all the running information of a target
block or an async method. In general, each target virtual code block is refac-
tored into an inner class, and this inner class inherits an abstract class called
TargetTask. The abstract interface call() is implemented to include the user
code. Meanwhile, the class contains several data fields which store the informa-
tion and track the execution status of this target block; Figure 13 illustrates all
the noticeable fields. Meanwhile, all the variables which are used in the target
block are also required as field variables in the auxiliary class, and they should
be passed in and initialized by the auxiliary class constructor.

Generating code with states If a target block or a method contains any
await target blocks, or await constructs, the generated auxiliary class may con-
tain states. The interface call() will be implemented with states, by which the
control flow of call() can be resumed to different positions according to the
state number. This makes the target block or async function flexible enough to
suspend and resume during its execution at appropriate continuation points.

//#omp async
int asyncCall()

public abstract class TargetTask<T> implements Callable<T>{
//which virtual target should invoke this task.
private VirtualTarget caller;
//the callback function should be triggered when this task finishes.
private CallbackInfo callWhenFinish;
//the flag indicating if this task is finished.
private volatile boolean isFinished;
//the return value, only available for async functions.
private T result;
//the current state of the execution, only available when the call needs awaits.
private int state;
//the interface the subclass should implement.
public abstract T call() throws Exception;

}
class CallbackInfo {

//the continuation call.
TargetTask<?> callback;
//who calls this continuation.
VirtualTarget caller;

}

Figure 13: The overview of the TargetTask Class.

{
int result;
//#omp await (int foo(int a))
{

result += foo(1) + foo(2);
}
//#omp target virtual(edt)
{

Panel.update(result);
}
return result + bar(1);

}

For each await invocation, an instance of its paired auxiliary class is ini-
tialized with arguments. The entire process is separated by states. The state
of the control flow cannot process until the current awaiting call is finished.
During this waiting, the control flow returns back to its caller. By using an
on-completion-handler, the control flow resumes to the appropriate continua-
tion point according to its current state. Finally, at the end of the process, the
result of the async method is settled by using the setResult() method:

public void call() {
switch(OMP_state) {
case 1:
OMP_AwaitFunctionResult_foo_0 = new _OMP_StateMachine_foo(1);

OMP_AwaitFunctionResult_foo_0.setOnCompleteCall(this,
PjRuntime.getVirtualTargetOfCurrentThread());

PjRuntime.runTaskDirectly(OMP_AwaitFunctionResult_foo_0);
this.OMP_state++;
return null;

case 2:
OMP_AwaitFunctionResult_foo_1 = new _OMP_StateMachine_foo(2);
OMP_AwaitFunctionResult_foo_1.setOnCompleteCall(this,

PjRuntime.getVirtualTargetOfCurrentThread());
PjRuntime.runTaskDirectly(OMP_AwaitFunctionResult_foo_1);
this.OMP_state++;
return null;

case 3:
result += OMP_AwaitFunctionResult_foo_0.getResult() +

OMP_AwaitFunctionResult_foo_1.getResult();
OMP_TargetTaskRegion_0 = new _OMP_TargetTaskRegion_0();
if (PjRuntime.currentThreadIsTheTarget("edt")) {
PjRuntime.runTaskDirectly(OMP_TargetTaskRegion_0);
this.OMP_state++;

} else {
OMP_TargetTaskRegion_0.setOnCompleteCall(this,

PjRuntime.getVirtualTargetOfCurrentThread());
this.OMP_state++;
return null;

}
default:
this.setResult(result + bar(1));
this.setFinish();
return null;

}
}

Target block invocation In the generated code, the invocation of every tar-
get block or async method is converted to the invocation of its paired auxiliary
class. First, an instance of its auxiliary class is initialized, with proper argu-
ments. Second, the block is scheduled by the runtime routine according to its
asynchronous-property-clause. For example, consider the following code snippet:

Label.setText("Start Processing Task!");
//#omp target virtual(worker) await
{

compute_half1(); // S1
//#omp target virtual(edt) nowait
{

Label.setText("Task half finished"); // S2
}
compute_half2(); // S3

}
Label.setText("Task finished"); // S4

The call() interface is implemented by code inside the target code block,
in favor of generating the auxiliary class which extends TargetTask. The data
context and variables referenced by the user code are stored into this generated
class (for simplicity, the demo code omits the field variables). The target region
instance is then submitted to the Pyjama runtime, which is responsible for
dispatching the target code block to the appropriate virtual target.

class TargetRegion_0() extends TargetTask {
public void call() {
compute_half1(); // S1
TargetRegion _omp_tr_1 = new TargetRegion_1();
PjRuntime.invokeTargetBlock("edt", _omp_tr_1, Async.nowait); // S2
compute_half2(); // S3

}
}
Label.setText("Start Processing Task!"); // S4
TargetRegion _omp_tr_0 = new TargetRegion_0();
OMP_TargetTaskRegion_0.setOnCompleteCall(this, "worker");
PjRuntime.invokeTargetBlock("worker", _omp_tr_0, Async.await);
Label.setText("Task finished");

4.2 Runtime
The runtime support includes the runtime functions and the underlining target
task dispatching mechanism.

4.2.1 Target block scheduling

During execution of the program, target blocks are dynamically dispatched by
the Pyjama runtime. The logic of invoking a target block is presented in Algo-
rithm 1. The runtime routine first checks if the submitting thread is already a
member of the virtual target executor’s thread group (line 7). If yes, it means
the target block is already in the context of the virtual target execution envi-
ronment, so it is executed synchronously by the current thread (line 8). If the
asynchronous-property-clause is nowait or name_as (line 11), the main thread
exits the procedure (line 12) to directly execute the statements following the
target block. If the asynchronous-property-clause is await, the caller suspends
its execution; once the target block is finished, the caller continues its execution
from where it was suspended, which will be executed by the same thread or
executor (lines 15-17). Otherwise, the thread waits for the target block to finish
(line 18).

4.2.2 Post to different virtual targets

Using Pyjama runtime requires a mechanism to dispatch events and tasks to the
EDT. The approach of posting tasks to the EDT is decided by the particular
GUI framework and platform. Figure 2 reveals how the current Pyjama version

Algorithm 1 Target block code execution.
1: T : current thread
2: C: current caller function
3: E: target executor
4: B: target block
5: a: asynchronous property
6: procedure invokeTargetBlock(T ,C,E,B,a)
7: if T ∈E then
8: B.exec() . execute B synchronously by T
9: else E.post(B) . post B to E asynchronously

10: end if
11: if a is nowait or name_as then
12: return . directly return to caller
13: end if
14: if a is await then
15: C.suspend()
16: B.setOnCompleteCall(C,T) . continuation binding
17: return
18: else T .wait() . default option
19: end if
20: end procedure

Algorithm 2 Post target block to different types of virtual target.
1: E: target executor
2: B: target block
3: procedure post(E,B)
4: if E is registeredEDT then
5: switch E do
6: case Swing
7: SwingUtilities.invokeLater((Runnable)B);
8: case Android
9: Handler uiHandler = new Handler(Looper.getMainLooper());

10: uiHandler.post((Runnable)B);
11: case JavaFX
12: Platform.runLater((Runnable)B);
13: else E.post(B) . post B to a non-EDT target
14: end if
15: end procedure

supports three different types of GUI frameworks. The Pyjama compiler gen-
erates the appropriate target code according to the platform the programmer
specifies.

4.2.3 Exception handling support

In order to support the asynchronous exception handling, the user code is sur-
rounded by a try-catch block in the implementation of the call() function. Any
exception escaped from the target virtual block is stored by the runtime, and
then the target block is marked as completed. After any appropriate synchro-
nization point is reached, the getResult() function is invoked. Before returning
the result, the runtime checks for any stored exception. If yes, the exception is
re-thrown at this point, and then the encountering thread is able to handle it.

public void call(){
try{
userCode.run();

} catch (Exception) {
this.thrown = new Throwable(e);
this.setFinish();

}
}
public T getResult(){
if (null != this.thrown) {
throw thrown;

}
return this.result;

}

5 Evaluation
This section provides the evaluations of the proposed approach for event-driven
programming. Three case studies are presented.

5.1 Java GUI event handling
Modern real-world applications/apps usually require a high computational abil-
ity without losing any responsiveness. For example, consider a mobile visual-
realism application constantly capturing images from the camera and then ap-
plying the image rendering or processing (e.g. augmented reality) for the user.
In order to achieve a smooth user experience, the processing of each frame
should be as short as possible, especially when many images are captured in a
short period. Here, scenarios are simulated in which a GUI application is under
different loads of event handling, and the benchmarks measure the ability of
handling events by different approaches.

The first evaluation compares the different methods for offloading time-
consuming work to the background, while maintaining a responsive GUI. Since

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

%
 o
f
re
sp
o
n
se
 t
im

e
 c
o
m
p
ar
e
d
 t
o

se
q
u
e
n
ti
al

Crypt RayTracer MonteCarlo Series

Figure 14: Average event response time, as a proportion of the sequential ver-
sion, using different offloading approaches and computational kernels (lower is
better).

the benchmarks are performed under the Java Swing GUI framework, three dif-
ferent approaches are compared: SwingWorker, ExecutorService (using SwingUtil-
ities when necessary) and Pyjama. Each benchmark adopts a computational
kernel selected from the Java Grande Benchmark suite [41] (since the kernel can
be parallelized by using traditional OpenMP directives), to simulate the time-
consuming computational work within event handlers. Selected were Crypt,
RayTracer, MonteCarlo and Series. There are GUI updates before and after
the kernel execution. As discussed before, those GUI related operations are re-
quired to be executed in the EDT. As the application utilizes a GUI component,
the benchmarks are performed on a typical desktop machine (in this case an
i5-3570 quad-core Intel processor, with 8M cache, up to 3.90 GHz clock rate).
Oracle’s Java 1.8.0_66 VM is used throughout the benchmarks.

The benchmarks are categorized by the kernels. For each benchmark, the
event is bound with an execution of its kernel. Every benchmark is run 10 rounds
with different request loads, ranging from 10 requests/sec to 100 requests/sec.
The response time shows the time flow from the event firing to the finish of
its event handling. The average response time of all events shows a general
efficiency of processing of event handling. To show how different approaches
decrease the average response time, compared to the sequential version, differ-
ent offloading approaches are presented. We also show the synchronous parallel
version (in default using 3 worker threads), in which only the computational
kernels are parallelized and the EDT still does part of the computing job when
handling the events. Therefore, the EDT in the synchronous parallel approach
is actually unresponsive for a longer time compared to other approaches. The
underlying implementation of SwingWorker maintains a default 10-thread-max
thread pool. Figure 14 depicts the results, showing the average response times
in proportion to sequential versions. The results show that Pyjama has a com-
parable (or in some cases better) event response time compared to the other
manual approaches, especially when three worker threads execute the kernels in

20 40 60 80 100

0
10

20
30

40
50

60
70

crypt

Workload (requests/sec)

R
es

po
ns

e
co

un
t w

ith
in

 5
 s

ec

● ● ● ● ● ●
● ● ● ●●

● ● ● ● ● ● ● ● ●

●

●
● ●

●
●

● ●
● ●

●

● ●
● ● ●

●
● ●

●

20 40 60 80 100

0
10

20
30

40
50

60

monteCarlo

Workload (requests/sec)

R
es

po
ns

e
co

un
t w

ith
in

 5
 s

ec

●
●

● ● ● ● ● ● ● ●

● ● ● ● ● ●
●

● ● ●

●

● ● ● ●
● ● ●

● ●

●

● ● ●
●

●
●

● ●
●

20 40 60 80 100

0
10

20
30

40
50

60

series

Workload (requests/sec)

R
es

po
ns

e
co

un
t w

ith
in

 5
 s

ec

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ●
● ●

● ● ●
●

●

● ●
● ●

● ●
● ● ●

20 40 60 80 100

0
5

10
15

20

rayTracer

Workload (requests/sec)

R
es

po
ns

e
co

un
t w

ith
in

 5
 s

ec

● ● ● ●

●

● ● ● ●

●

●

● ● ● ● ●

● ●

● ●

●

● ●

● ●

●

● ● ● ●

● ● ● ●

●

● ●

●

● ●

●

●

●

●

Sequential
Synchronous parallel
SwingWorker

Pyjama−1 worker
Pyjama−2 workers
Pyjama−3 workers

ExecutorService−1 thread
ExecutorService−2 threads
ExecutorService−3 threads

Figure 15: 5-second response count under different request work loads (higher
is better).

the background. It is also interesting to observe that the execution of kernels in
parallel (but synchronously) is inferior to an asynchronous execution with the
same number of threads when comparing the response times.

In a GUI application, if responding to an event trigger exceeds 5 seconds, the
application is deemed unusable [42]. Using this rule of thumb, Figure 15 counts
the number of event responses that complete within 5 seconds, depending on
different event request loads. Event requests are kept consistent for each sequen-
tial version, since it reaches the maximum handling ability of single-threaded
sequential versions. SwingWorker shows inconsistent performance as the re-
quest load differs, which may be attributed to its underlying scheduling policy
of its thread pool tasks. The ExecutorService shows a performance degradation
when more events happen in the same time unit. It may be attributed to the
accumulated overhead by task submissions of the underlying implementation of
ExecutorService. In contrast, Pyjama’s virtual target offloading keeps a consis-
tent and high response rate. This shows that the implementation of Pyjama’s
runtime is more suitable for offloading more tasks under the scenario of heavy
workloads of event handling.

5 10 15

No. of concurrency threads

T
hr

ou
gh

pu
t (

re
sp

on
se

s/
se

c)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

10

20

30

40

50

60

70

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
● ●

● ●
● ● ● ●

● ●

●
●

●

●

Pyjama
Jetty
Pyjama+asynchronous parallel
Jetty+asynchronous parallel

Figure 16: Throughput scaling comparison between Jetty and Pyjama.

5.2 Web service event handler
The purpose of this benchmark is to evaluate the scalability of Pyjama’s virtual
targets runtime for a different type of event. We implement an HTTP service
that provides data encryption to web users. Every time a user sends input
data with an HTTP request, the server performs a calculation and returns the
result via the HTTP response. The encryption computation can be parallelized
by adopting traditional OpenMP directives. The web server is implemented
using two approaches. The first uses Pyjama’s virtual target to offload the
time-consuming computations to worker threads. The second uses Jetty’s [2]
thread-pool framework, which adopts a thread-per-request policy but reuses a
fixed number of threads from a thread pool. This experiment is run on a 16-
core Intel Xeon 2.4GHz SMP machine with 64 GB memory, and Java 1.8.0_66
HotSpot 64-Bit Server VM.

The load benchmark is set up with 100 virtual users, with each user send-
ing a constant number of requests. The throughput measures the application’s
ability to process requests. Figure 16 describes that both Jetty and Pyjama
have good scaling performance as the number of concurrency worker threads
increases. When the parallelization of each event (using //#omp parallel) is
used in combination with either Jetty or Pyjama, it initially results in dramat-
ically better throughput. Yet, as the number of concurrency worker threads is
increased, the throughput levels off at just under 50 responses/sec. The non-
parallelized versions achieve better throughput when the number of concurrency
workers gets above 13. This result is reasonable, because every parallelization
computation spawns its own set of worker threads. With the increased amount
of computation requests, the total number of threads in the system soars to a
high value and it leads to a great overhead of thread scheduling.

Frame
buffer

Format
conversion

Gray-scale
algorithm

Camera UI

Figure 17: The work flow of the experimental app.

Name Lines of Code Refactoring Frames Processed Per Minute Responsive UI
EDT(single thread) 17 - 78 no

AsyncWorker 29 yes 103 yes
Pyjama 19 no 106 yes

Table 2: The comparison of three approaches, with regard to programming
effort and performance.

5.3 Android application
This section presents a case study of using Pyjama on the Android platform.
The purpose of this case study is to evaluate the effectiveness of using Pyjama
to boost the performance and responsiveness of a mobile application.

The scenario of this experiment is using a demo Android app to process the
images collected from the camera device on the fly. When the app starts, the
program constantly picks one frame from the camera frame buffer and applies
a gray scale image processing using Catalano Framework [6], then the app up-
dates the result of the processing to the user interface. This application was
evaluated on a Nexus 4 with 1.5 GHz quad-core, running Android 4.4.4 OS. For
a single round of the image processing, in which the frame size is 460800 bytes,
it takes around 200ms to convert camera compatible format NV21 to image
processing library compatible format Bitmap. Then the gray scale processing
takes approximately 250ms and the UI update takes about 20ms (Figure 17).

The event handler is implemented in three different approaches, and for each
the LoC (Lines of Code) and FPPM (Frames Processed Per Minute) are com-
pared in Table 2. The first approach is the single-threaded implementation, in
which case the EDT is responsible for all the background computations and UI
updates. This leads to low performance and bad responsiveness of the UI, since
the UI is frozen during the background computation. The second approach uses
Android’s AsyncWorker class to offload the computation asynchronously to a
background thread. While this gains better performance in terms of FPPM, but
it requires code refactoring. The final approach, using Pyjama, gains the com-
petitive performance improvement but without the refactoring effort required
in AsyncWorker.

Since Pyjama is directive-based, it promotes an incremental programming
approach enabling programmers to retain the sequential code. Therefore, it

avoids code restructuring, the variable scope and programming context also do
not change. In summary, Pyjama is effectively automatically generating asyn-
chronous code native to the application, this means programmers witness the
equivalent performance boosts they can expect from a manual refactoring, but
with minimal programming effort over the original single-threaded implementa-
tion.

6 Related Work

6.1 Asynchronization
Asynchronous programming is traditionally used in single-threaded applications
to achieve cooperative multitasking [11]. Unlike parallel programming that cre-
ates multiple threads, this programming model employs a single background
thread. As such, the purpose of introducing asynchronization is not to make
the program run faster. Instead, it is used when an event handling thread needs
to wait for time-consuming computations or I/O. In this manner, the thread
can still progress since the control flow is switched to another task.

Libraries. Many languages provide build-in or extended library inter-
faces to support asynchronous programming. For example, C++11 provides
std::async, while Java provides the Future interface [28] building asynchronous
computations. Java NIO libraries [30] provide non-blocking and asynchronous
I/O operations. Microsoft .NET provides three types of asynchronous pro-
gramming patterns [25]: (1) Asynchronous Programming Model (APM); (2)
Event-based Asynchronous Pattern (EAP); (3) Task-based Asynchronous Pat-
tern (TAP).

Frameworks. The implementation of an asynchronous task usually applies
an event-driven programming pattern, of which the continuation of the task is
transformed as a callback function which will be triggered when asynchronous
operations finish. This idea has been adopted to many different languages and
frameworks, especially for the sake of high-performance network server develop-
ing. For example, libevent [23] is an asynchronous event-based network applica-
tion framework written in C, adopting proactor pattern [36], which is an object
behavioral pattern of the combination of I/O multiplexing [38] and asynchronous
event dispatching. Similarly, other frameworks written in other languages (e.g.
[3, 1, 4]) become increasingly popular in recently years.

Languages support. Unlike libraries, language-level support for asyn-
chronization tends to require less code restructuring. Fischer et al. [14] pro-
posed TaskJava, a backward-compatible extension to Java. By introducing new
keywords (i.e. spawn, async, wait), TaskJava expresses the complicated asyn-
chronous logic control flow using intuitive sequential programming style. Sim-
ilarly, the .NET framework also introduces paired async/await keywords [26].
New language designs also tend to support asynchronization. For example, P
[9] is a domain-specific language for the modeling of state machines, and all
machines communicate via asynchronous events. Eve [15] is another parallel

event-oriented language for the development of high-performance I/O appli-
cations. Other language-level concepts such as the actor model [20, 19] and
co-routines [8] provide variations to asynchronization.

6.2 Task-based Parallelism
The task-based parallelization model is usually implemented to overcome the
performance issues of the threading model. A fixed thread pool substitutes
preemptive thread-creation when a computational task is needed. The thread
pool technique encapsulates the underlying threading and scheduling [37] and
provides interfaces for task submissions. Some languages support tasks at a
language level, such as Cilk [16] and JCilk [7]. While OpenMP provides the
task directive [27], the lifetime of a task is confined inside a parallel region.
In addition to the actual parallelization, handling task dependencies and code
restructuring is another challenge faced. Parallel Task [17], as a language ex-
tension of Java, supports task creation and dependency handling. OoOJava [21]
and DOJ [44] both introduce the task keyword to achieve out-of-order execution
of the code blocks, with the support of automatic dependency analysis between
tasks.

7 Conclusion
This paper proposed a hybrid model for the combination of asynchronization
and parallelization, as an extension of OpenMP. The idea is implemented in
Pyjama, an OpenMP compiler and runtime support for Java. The model facili-
tates the development of event-driven programs, especially for GUI applications,
to achieve better responsiveness and event handling acceleration. Strictly fol-
lowing the philosophy of OpenMP, the semantic design of this model does not
interfere with the original sequential programming logic. With the help of a sup-
porting compiler, the additional directives generate event handling code to exe-
cute asynchronously and offload computations away from the event dispatching
thread. Evaluations show that single-threaded event dispatching can be quickly
upgraded to a higher performing multi-threaded event dispatching, by reducing
event handling response time. Performance achieved by the proposed directive
based approach is equal and often superior to manual implementations.

References
[1] Grizzly project. Available at: https://grizzly.java.net/, February

2016.

[2] Jetty project. Available at: https://eclipse.org/jetty/, February 2016.

[3] Netty: an asynchronous event-driven network application framework.
Available at: http://netty.io, February 2016.

[4] Nodejs. Available at: https://nodejs.org/, February 2016.

[5] Andrew W Appel. Compiling with continuations. Cambridge University
Press, 2006.

[6] Diego Catalano. Catalano Framework: a framework for scientific com-
puting for Java and Android. https://github.com/DiegoCatalano/
Catalano-Framework, 2016.

[7] John S. Danaher, I.-Ting Angelina Lee, and Charles E. Leiserson. Pro-
gramming with exceptions in JCilk. Science of Computer Programming,
63(2):147 – 171, 2006. Special issue on synchronization and concurrency in
object-oriented languages.

[8] Ana Lúcia De Moura, Noemi Rodriguez, and Roberto Ierusalimschy. Corou-
tines in lua. Journal of Universal Computer Science, 10(7):910–925, 2004.

[9] Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer, Sriram Raja-
mani, and Damien Zufferey. P: safe asynchronous event-driven program-
ming. ACM SIGPLAN Notices, 48(6):321–332, 2013.

[10] David Duis and Jeff Johnson. Improving user-interface responsiveness de-
spite performance limitations. In Compcon Spring’90. Intellectual Leverage.
Digest of Papers. Thirty-Fifth IEEE Computer Society International Con-
ference., pages 380–386. IEEE, 1990.

[11] Ralf S. Engelschall. Portable multithreading: The signal stack trick for
user-space thread creation. In Proceedings of the Annual Conference on
USENIX Annual Technical Conference, ATEC ’00, pages 20–20, Berkeley,
CA, USA, 2000. USENIX Association.

[12] Xing Fan, Mostafa Mehrabi, Oliver Sinnen, and Nasser Giacaman. Excep-
tion handling with OpenMP in object-oriented languages. In International
Workshop on OpenMP, pages 115–129. Springer, 2015.

[13] Mohamed Fayad and Douglas C. Schmidt. Object-oriented application
frameworks. Commun. ACM, 40(10):32–38, October 1997.

[14] Jeffrey Fischer, Rupak Majumdar, and Todd Millstein. Tasks: language
support for event-driven programming. In Proceedings of the 2007 ACM
SIGPLAN symposium on Partial evaluation and semantics-based program
manipulation, pages 134–143. ACM, 2007.

[15] Alcides Fonseca, João Rafael, and Bruno Cabral. Eve: A parallel event-
driven programming language. In Euro-Par 2014: Parallel Processing
Workshops, pages 170–181. Springer, 2014.

[16] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implemen-
tation of the cilk-5 multithreaded language. In Proceedings of the ACM
SIGPLAN 1998 Conference on Programming Language Design and Imple-
mentation, PLDI ’98, pages 212–223, New York, NY, USA, 1998. ACM.

[17] N. Giacaman and O. Sinnen. Task parallelism for object oriented programs.
In Parallel Architectures, Algorithms, and Networks, 2008. I-SPAN 2008.
International Symposium on, pages 13–18, May 2008.

[18] Google. Android. Available at: https://www.android.com/, June 2016.

[19] Philipp Haller and Martin Odersky. Scala actors: Unifying thread-based
and event-based programming. Theoretical Computer Science, 410(2):202–
220, 2009.

[20] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor
formalism for artificial intelligence. In Proceedings of the 3rd international
joint conference on Artificial intelligence, pages 235–245. Morgan Kauf-
mann Publishers Inc., 1973.

[21] James Christopher Jenista, Yong hun Eom, and Brian Charles Demsky.
Ooojava: Software out-of-order execution. In Proceedings of the 16th ACM
Symposium on Principles and Practice of Parallel Programming, PPoPP
’11, pages 57–68, New York, NY, USA, 2011. ACM.

[22] Milan Jovic and Matthias Hauswirth. Listener latency profiling: Measuring
the perceptible performance of interactive java applications. Science of
Computer Programming, 76(11):1054–1072, 2011.

[23] Nick Mathewson and Niels Provos. libevent. Available at: http://
libevent.org, February 2016.

[24] Microsoft. Asynchronous Programming Model. Available at: https://
msdn.microsoft.com/en-us/library/ms228963%28v=vs.110%29.aspx,
February 2016.

[25] Microsoft. Asynchronous Programming Patterns. Available at: https://
msdn.microsoft.com/en-us/library/jj152938%28v=vs.110%29.aspx,
February 2016.

[26] Semih Okur, David L Hartveld, Danny Dig, and Arie van Deursen. A study
and toolkit for asynchronous programming in c#. In Proceedings of the 36th
International Conference on Software Engineering, pages 1117–1127. ACM,
2014.

[27] OpenMP Architecture Review Board. OpenMP application program inter-
face 4.5, November 2015.

[28] Oracle. Java 7 future interface. Available at: http://docs.oracle.
com/javase/7/docs/api/java/util/concurrent/Future.html, Febru-
ary 2016.

[29] Oracle. Java 7 swingworker. Available at: http://docs.oracle.com/
javase/7/docs/api/javax/swing/SwingWorker.html, February 2016.

[30] Oracle. Java I/O, NIO, and NIO.2. Available at: http://docs.oracle.
com/javase/7/docs/api/java/util/concurrent/Future.html, Febru-
ary 2016.

[31] Oracle. Java Swing Package. Available at: https://docs.oracle.com/
javase/7/docs/api/javax/swing/package-summary.html, June 2016.

[32] Oracle. JavaCC Project. Available at: https://java.net/projects/
javacc, June 2016.

[33] Oracle. JavaFX Client Platform. Available at: http://docs.oracle.com/
javase/8/javase-clienttechnologies.htm, June 2016.

[34] Vivek S Pai, Peter Druschel, and Willy Zwaenepoel. Flash: An efficient and
portable web server. In USENIX Annual Technical Conference, General
Track, pages 199–212, 1999.

[35] David Pariag, Tim Brecht, Ashif Harji, Peter Buhr, Amol Shukla, and
David R Cheriton. Comparing the performance of web server architectures.
In ACM SIGOPS Operating Systems Review, volume 41, pages 231–243.
ACM, 2007.

[36] Irfan Pyarali, Tim Harrison, Douglas C Schmidt, and Thomas D Jordan.
Proactor-an object behavioral pattern for demultiplexing and dispatching
handlers for asynchronous events. 1997.

[37] Larry Rudolph, Miriam Slivkin-Allalouf, and Eli Upfal. A simple load bal-
ancing scheme for task allocation in parallel machines. In Proceedings of the
Third Annual ACM Symposium on Parallel Algorithms and Architectures,
SPAA ’91, pages 237–245, New York, NY, USA, 1991. ACM.

[38] Douglas C Schmidt. Reactor–an object behavioral pattern for demultiplex-
ing and dispatching handlers for synchronous events. 1995.

[39] Markus Schordan. The language of the visitor design pattern. Journal of
Universal Computer Science, 12(7):849–867, 2006.

[40] Ben Shneiderman. Response time and display rate in human performance
with computers. ACM Computing Surveys (CSUR), 16(3):265–285, 1984.

[41] L.A. Smith, J.M. Bull, and J. Obdrizalek. A parallel java grande benchmark
suite. In Supercomputing, ACM/IEEE 2001 Conference, pages 6–6, Nov
2001.

[42] Niraj Tolia, David G Andersen, and Mahadev Satyanarayanan. Quantifying
interactive user experience on thin clients. Computer, 39(3):46–52, 2006.

[43] Vikas, Nasser Giacaman, and Oliver Sinnen. Pyjama: OpenMP-like imple-
mentation for java, with gui extensions. In Proceedings of the 2013 Interna-
tional Workshop on Programming Models and Applications for Multicores
and Manycores, PMAM ’13, pages 43–52, New York, NY, USA, 2013. ACM.

[44] Stephen Yang, James C Jenista, Brian Demsky, et al. Doj: Dynamically
parallelizing object-oriented programs. In ACM SIGPLAN Notices, vol-
ume 47, pages 85–96. ACM, 2012.

[45] Sai Zhang, Hao Lü, and Michael D Ernst. Finding errors in multithreaded
gui applications. In Proceedings of the 2012 International Symposium on
Software Testing and Analysis, pages 243–253. ACM, 2012.

