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brain injury and the mechanisms of life threatening events in infancy. His research helped to 

establish mild cooling as the first ever technique to reduce brain injury due to low oxygen levels at 

birth.  

 

 

 

ABSTRACT (250 words) 

Therapeutic hypothermia significantly improves survival without disability in near-term and full-term 

newborns with moderate-severe hypoxic-ischaemic encephalopathy. However, hypothermic 

neuroprotection is incomplete. The challenge now is to find ways to further improve outcomes. One 

major limitation to progress is that the specific mechanisms of hypothermia are only partly 

understood. Evidence supports the concept that therapeutic cooling suppresses multiple 

extracellular death signals, including intracellular pathways of apoptotic and necrotic cell death and 

inappropriate microglial activation. Thus, the optimal depth of induced hypothermia is that which 

effectively suppresses the cell death pathways after hypoxia-ischaemia, but without inhibiting 

recovery of the cellular environment. Thus mild hypothermia needs to be continued until the cell 

environment has recovered until it can actively support cell survival. This review highlights that key 

survival cues likely include the inter-related restoration of neuronal activity and growth factor 

release. This working model suggests that interventions that target overlapping mechanisms such as 

anticonvulsants are unlikely to materially augment hypothermic neuroprotection. We suggest that 

further improvements are most likely to be achieved with late interventions that maximise 

restoration of normal cell environment after therapeutic hypothermia, such as recombinant human 

erythropoietin or stem cell therapy. 
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INTRODUCTION 

Therapeutic hypothermia is now standard-care for infants with moderate to severe hypoxic-

ischaemic (HI) encephalopathy (HIE) (Azzopardi et al., 2012), with compelling evidence from 

randomised controlled trials that it improves survival and neurological outcomes into middle 

childhood (Jacobs et al., 2013; Natarajan et al., 2016) and reduces brain damage on modern imaging 

(Shankaran et al., 2015). Hypothermic neuroprotection is significant but incomplete, reducing the 

combined risk of death and severe disabilities at 18 months of age with ~12%, from 58 to 46% 

(Edwards et al., 2010). Thus, many infants still die or survive with major debilitating handicaps, 

despite therapeutic hypothermia.  

The empirical parameters for optimal neuroprotection are now well established, as previously 

reviewed in detail (Wassink et al., 2014). Therapeutic hypothermia needs to be induced as soon as 

possible in the first 6 hours after HI, optimally reducing brain temperature by no more than 3 to 5 °C, 

and then continued for ~72 hours.  Deeper cooling (by ~8.5C°), or shorter or longer periods of 

cooling than 72 hours reduces neuroprotection both in preclinical studies (Alonso-Alconada et al., 

2015; Davidson et al., 2015c; Davidson et al., 2017) and in a randomised clinical trial (Shankaran et 

al., 2017). The precise factors underlying these now well-known empirical factors are still unclear. 

Further, given that current cooling protocols are near-optimal, future progress depends on finding 

interventions that can complement hypothermia. In this review, we propose a mechanistic working 

model to help understand these parameters for hypothermic neuroprotection, and discuss which 

post-insult phases and specific mechanisms should be targeted to further improve outcomes. 

Hypoxic-ischaemic brain damage evolves over time 

The seminal finding that underpinned the development and translation of therapeutic hypothermia 

is that perinatal brain damage after HI is a process that evolves over time rather than a ‘static’ event. 

Hope and colleagues first showed with magnetic resonance spectroscopy in term neonates with 

moderate-severe HIE, that high-energetic substrates (i.e. phosphocreatine to inorganic 

orthophosphate, and ATP to total phosphorus) often normalised shortly after birth but then 

deteriorated again (Hope et al., 1984; Azzopardi et al., 1989), despite sufficient cerebral oxygenation 

and perfusion. Studies in newborn piglets then demonstrated that cerebral energetic failure after HI 

corresponded with progressive neuronal death (Martin et al., 2000).  

As illustrated by the abstract Figure, during severe HI (the ‘primary’ phase), there is gradual 

depletion of high-energetic phosphates and anoxic depolarisation. As energy-dependent 

mechanisms that maintain cellular homeostasis (e.g. Na+/K+ ATP-dependent pumps) begin to fail, 

cytotoxic oedema (i.e. cellular swelling) and extracellular accumulation of excitatory amino acids 

(EAAs) occurs, with unregulated calcium influx into neurons. This energetic metabolism and cell 

swelling typically recovers to near-normal values within 30-60 min after reperfusion and are then 
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sustained during a ‘latent’ phase for the following ~6 hours (Hope et al., 1984; Azzopardi et al., 1989; 

Gunn et al., 1997; Bennet et al., 2007b).  

After moderate-severe HI, the latent phase is followed by delayed deterioration after ~6-15 hours 

(the ‘secondary phase’), with development of stereotypic seizures, accumulation of excitotoxins and 

oedema (Figure 1), and gradual mitochondrial failure and spreading cell death (Gunn et al., 1997; 

Bennet et al., 2007b). This triphasic pattern has been shown in multiple species, including rodents, 

piglets and humans as reviewed (Wassink et al., 2014), and correlates with histological brain damage 

after HI (Williams et al., 1992; Blumberg et al., 1997; Vannucci et al., 2004). In newborn humans, the 

severity of loss of oxidative cerebral metabolism after HI is highly associated with death and adverse 

outcomes (Azzopardi et al., 1989; Roth et al., 1997). Finally, there is evidence of a ‘tertiary’ phase 

after HI, where chronic inflammation and epigenetics impair neural and glial regeneration, 

synaptogenesis and neurite outgrowth (Fleiss & Gressens, 2012).  

How does hypoxic-ischaemic brain damage spread? 

One of the striking features of HI-mediated brain damage is that cell dysfunction and death spreads 

over time from injured regions to areas that were originally intact (Thornton et al., 1998). The gap 

junctions that link adjacent cells to allow transport of small molecules, ions and second messengers 

(Davidson et al., 2015a), are formed through docking of hexamer hemichannels (connexons). These 

hemichannels are active under physiological conditions, and signal via regulated adenosine 

triphosphate (ATP) release.  

There is increasing evidence that severe HI triggers transient, unregulated opening of these 

connexon hemichannels, resulting in disrupted resting membrane potential, release of damaging 

ATP and glutamate levels (Ye et al., 2003; Kang et al., 2008), and uptake of water leading to cell 

swelling and rupture (Quist et al., 2000; Rodriguez-Sinovas et al., 2007). Supporting this concept, an 

intracerebroventricular infusion with a mimetic peptide that reversibly binds with the second 

extracellular binding loop on the connexin43 protein, at a dose that blocks hemichannels (O'Carroll 

et al., 2008), initiated from 90 minutes until 25 hours after profound asphyxia or cerebral ischaemia 

in preterm and near-term fetal sheep, reduced status epilepticus, and improved EEG restoration and 

neural and oligodendroglial survival (Davidson et al., 2012; Davidson et al., 2014). These data show 

that connexon hemichannels have a critical role during the early latent phase in propagating damage 

after HI. 

Mechanisms of delayed cellular death - programmed apoptosis 

Multiple factors are involved in the delayed development of cell death following initial recovery of 

cerebral oxidative metabolism after HI. These include activation of cell death pathways, withdrawal 

of trophic factors and secondary inflammation. In particular, the cell death pathways are activated 

through unregulated influx of calcium during anoxic depolarization, exposure to reactive oxidative 

species during reperfusion and other factors as reviewed in detail (Thornton et al., 2017).  
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Apoptosis can be triggered through intracellular and extracellular pathways (Figure 2), as reviewed 

in detail (Thornton et al., 2017).  The intracellular pathway involves excessive calcium influx and 

astrocytic growth factor withdrawal (Clawson et al., 1999), leading to increase translocation and 

interaction of pro-apoptotic proteins at the neuronal mitochondria. These apoptotic proteins, like 

the Bcl2-associated X (Bax) and truncated BH3-interacting-domain death agonist (tBid) proteins 

(Raemy & Martinou, 2014), produce pores in the outer mitochondrial membrane. This releases 

several pro-apoptogenic factors, including direct inhibitor of apoptosis-binding protein with low Pi 

(Diablo), second mitochondria-derived activator of caspase (Smac), apoptosis-inducing factor (AIF) 

and cytochrome-c from the mitochondrion (Wassink et al., 2014).  

Intra-mitochondrial calcium overload also facilitates cytochrome-c release through reactive oxygen 

species (Hagberg et al., 2014), and activates brain-specific calpains that degrade intracellular 

structural and signalling proteins (Bevers & Neumar, 2008). In addition, hypoxia-ischaemia activates 

extracellular death receptors that stimulate necroptosis or caspases-8 and -3 (Giulian et al., 1993). 

These molecular mechanisms are detailed in figure 2. In neonatal rats, caspase, Bax and cytochrome-

c inhibitors all provide partial neuroprotection, supporting a pathologic role for these intracellular 

mechanisms (Thornton et al., 2017). 

Mechanisms of delayed cellular death - programmed necrosis 

In the developing brain, necrosis after HI often demonstrates a variable morphology. This pattern 

typically involves cellular fragmentation, but there is increasing evidence that delayed necrotic 

cellular death is programmed (Northington et al., 2007). Necroptosis, for example, is mediated via 

inter-connected mechanisms that involve caspase-8, receptor-interacting protein kinases (RIPK) 1 

and 3 and the mixed lineage kinase domain-like pseudokinase (MLKL) (Rodriguez et al., 2016). These 

proteins have multiple and often opposing roles that participate in both apoptosis and necrosis 

(Northington et al., 2007). For example, RIPKs activate the inflammasome, which might underlie the 

robust neuro-inflammation triggered by HI (Man & Kanneganti, 2016), whereas MLKL has multiple 

functions, that include facilitating pore formation that cause the cell membrane to rupture (Wang et 

al., 2014), culminating in cell death with a necrotic phenotype. Supporting these data, treatment 

with necrostatin-1, a non-selective necroptotic inhibitor, reduced necrotic cellular death and 

oxidative damage to proteins in post-HI p10 mice (Northington et al., 2011a).  

Summary of the mechanisms of delayed cell death 

Taken together, it is clear from these findings that brain metabolism can recover to normal or near-

normal levels after even severe HI, but multiple, inter-related mechanisms are triggered that 

ultimately lead to delayed cellular death (Thornton et al., 2017).  
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THE MECHANISMS OF HYPOTHERMIC NEUROPROTECTION 

Induced hypothermia produces a graded reduction in cerebral metabolism of approx. ~5% per °C 

(Laptook et al., 1995). After resuscitation, tissue oxygenation and substrate delivery are restored 

(Gunn et al., 1997), and therefore it is improbable that reduced metabolism per se would be 

protective. However, it is important to reflect that the neuroprotective effects of cooling during HI 

are substantially greater than would be expected from a 15 to 20% reduction in metabolism. For 

example, in adult rats, cooling during cerebral ischaemia was associated with a dramatic reduction in 

major hippocampal neuronal loss compared with normothermia (6 ± 1% vs. 90 ± 17% dead neurons), 

for the same duration of neural depolarisation (Bart et al., 1998). This finding strongly indicates that 

hypothermia supports cell survival by suppressing active, intracellular cell death mechanisms rather 

than by reducing oxidative metabolism. There is considerable evidence that this interaction is critical 

for post-resuscitation neuroprotection, as discussed next. 

Hypothermia suppresses programmed cell death after hypoxia-ischaemia 

There is increasing evidence that induced hypothermia suppresses apoptotic and necrotic processes 

triggered after hypoxia-ischaemia (Wassink et al., 2014). For example, in vitro, intra-hypoxic 

hypothermia reduced apoptotic and necrotic morphologic death in developing neurons, and 

hypoxia-driven protein formation (Bossenmeyer-Pourie et al., 2000). Further, hypothermia also 

suppressed serum-deprivation and H2O2-induced neuronal apoptosis, with lesser caspases -3, -8 and 

-9 activation and cytochrome-c release, consistent with depressed intracellular and receptor-

induced apoptosis (Xu et al., 2002; Li et al., 2012). Consistent with this, in adult rats, induced 

hypothermia after transient global ischaemia was associated with upregulated anti-apoptotic Bcl2 

protein, and downregulated pro-apoptotic p53 protein (Zhang et al., 2010), with reduced neural 

necrosis and apoptosis. In adult rats with focal ischaemia, hypothermia also attenuated death 

receptor expression and caspase-8 activation (Liu et al., 2008), supporting its interaction with 

extracellular apoptosis, and suppressed genes implicated in inflammation (Nagel et al., 2012). 

In neonatal piglets, hypothermia started after severe HI reduced apoptotic but not necrotic cell 

death (Edwards et al., 1995), whereas hypothermic neuroprotection reduced caspase-3 and 

microglial activation in term-equivalent fetal sheep (Roelfsema et al., 2004). In neonatal rats, acute 

hypothermia after HI also reduced caspase-3 and increased X-linked inhibitor of apoptosis (XIAP) in 

the core ischaemic lesion, but not the penumbra, whereas AIF translocation was suppressed in both 

regions (Askalan et al., 2011), indicating that hypothermia interacts with both caspase-dependent 

and independent mechanisms. Finally, in neonatal rodents with HI, hypothermia attenuated 

macroscopic brain damage, with less necrotic and apoptotic neural death after 24 hours, and 

suppressed cytochrome-c release, caspase-3 and calpain activation in the cortex, hippocampus, 

thalamus and striatum (Ohmura et al., 2005). Thus, taken together, these data suggest that 

hypothermic neuroprotection in the developing brain is likely achieved through both anti-apoptotic 

and anti-necrotic mechanisms (Northington et al., 2011b).  
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Hypothermia suppresses inflammation after hypoxia-ischaemia 

Perinatal HI triggers an inflammation-based cascade, which increases the release of cytokines and 

interleukins (Hagberg et al., 2015). These factors potentiate developing cellular damage, either 

through neurotoxic-induced apoptosis or endothelial cell-propagated inflammation, with leukocytes 

infiltrating the post-ischaemic brain (Gunn et al., 2017). In experimental paradigms, post-insult 

hypothermia inhibits microglial activation, chemotaxis, and interleukin and pro-inflammation 

cytokine release, which might provide mitochondrial protection (Wassink et al., 2014). For example, 

cytokine-induced iNOS expression raises intracellular NO· levels, which competes with molecular 

oxygen for binding on cytochrome oxidase (Brown, 1997) and so depresses mitochondrial 

respiration. TNF-alpha and interferon-γ-mediated iNOS production also caused apoptosis and DNA 

damage in cultured oligodendrocytes (Druzhyna et al., 2005). Critically, hypothermia has a 

differential effect on the glial reaction to ischaemia, demonstrating potent microglial suppression 

but little effect on astroglia proliferation (Si et al., 1997). This suggests that hypothermic 

neuroprotection results, in part, from reducing ‘bad’ inflammation while not suppressing astroglial 

recovery.  

Hypothermia, excitotoxins and neuronal activity 

In contrast to their role during the primary and reperfusion phases, the importance of excitotoxins 

after reperfusion is questionable given that extracellular levels rapidly return to baseline values (Tan 

et al., 1996; Thoresen et al., 1997). Early studies of anti-excitotoxic agents found apparent 

protection but did not control for cerebral temperature (McDonald et al., 1987; Hattori et al., 1989). 

Critically, subsequent studies showed that glutamate blockade was associated with drug-induced 

hypothermia and controlling for temperature abolished neuroprotection (Ikonomidou et al., 1989; 

Engidawork et al., 2001). In the adult rodent, Nurse and Corbett showed that the apparent 

neuroprotective effect of NBQX, a glutamate antagonist administered from 1 hour after mild 

cerebral ischaemia, was directly associated with mild endogenous hypothermia for several days that 

developed an hour after drug administration (Nurse & Corbett, 1996), and that similar 

neuroprotection could be induced with application of the same hypothermia profile over 28 hours. 

Conversely, NBQX ‘neuroprotection’ was effectively abolished by maintaining normothermia. 

Furthermore, anti-excitotoxin therapy limited to the secondary phase did not reduce neuronal 

damage in the severely injured parasagittal cortex of fetal sheep, and had only limited 

neuroprotective effects in more mildly affected areas of the brain (Tan et al., 1992; Gressens et al., 

2011). 

Nevertheless, even with normal levels of extracellular glutamate, excitotoxicity may still play an 

indirect injurious role. Pathological hyperexcitability of glutamate receptors has been reported in 

P10 rats for many hours after HI, with improved neuronal outcome after receptor blockade (Jensen 

et al., 1998). Supporting this hypothesis, despite suppression of overall EEG activity for many hours 

after asphyxia, transient epileptiform activity was seen in the early recovery phase in preterm sheep 

fetuses that developed severe injury (George et al., 2004), which was correlated with the severity of 
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neuronal loss in the striatum and hippocampus (Dean et al., 2006b; Bennet et al., 2007c). 

Suppression of these EEG transients with a glutamate receptor antagonist partially reduced cellular 

loss (Dean et al., 2006a). Furthermore, neuroprotection with post-asphyxial moderate cerebral 

hypothermia in the preterm fetal sheep was associated with a marked reduction in the numbers of 

epileptiform transients in the first 6 hours after asphyxia, and reduced amplitude of delayed seizures 

(Bennet et al., 2007a). The combination of glutamate receptor antagonist infusion and mild 

hypothermia after severe asphyxia in preterm fetal sheep, however, showed non-additive 

neuroprotection, consistent with the suggestion that cooling is partly protective by attenuating this 

receptor hyperactivity (George et al., 2012). Further studies are needed to determine whether this is 

also the case after HI damage in the term-equivalent brain.  

Duration of cooling and recovery of EEG activity 

Recent studies in near-term fetal sheep have shown that when head cooling was started 3 hours 

after ischaemia, cooling until 72 hours was markedly more protective than cooling until 48 hours 

(Figure 3). Strikingly, rewarming at 48 hours after cerebral ischaemia was associated with marked 

deterioration of EEG power over the next 24 hours, and with greater numbers of microglia on 

histology at day 7 and substantially less improvement in overall neuronal survival compared to 

continued cooling until 72 hours (Davidson et al., 2017). This suggests that deleterious inflammation 

is still continuing between 48 and 72 hours after HI, and is reactivated or exacerbated by premature 

rewarming. It is of particular interest that in that animal study the spectral edge frequency of the 

EEG was still partially suppressed at 48 hours, and did not reach control values until around 72 

hours. Conversely, we have shown that extending cooling from 72 to 120 hours was not associated 

with any further improvement in EEG recovery, and indeed was associated with apparently impaired 

neuronal survival in some brain regions (Davidson et al., 2015c). This suggests for the first time that 

normalization of EEG activity is an important biomarker for how long therapeutic hypothermia needs 

to be continued. Local neural interconnections, with shorter connections between neurons, lead to 

higher frequency activity. Thus increasing cortical EEG frequency strongly infers improved cortical 

function. More speculatively, it also seems to support the hypothesis that EEG activity, i.e. cross-talk 

between neurons, represents an important aspect of gradual normalization of the cellular 

environment after hypoxia-ischaemia. 

Restoration of the neuronal environment: EEG activity and growth factors 

The factors underlying recovery of brain activity after injury are incompletely understood. In part it is 

related to reversal of functional depression of injured cells, and restoration of signalling between 

interconnected structures (Glassman & Malamut, 1976). Neuronal activity itself is critical for cell 

viability, and closely interacts with trophic growth factor release.  

Electrical activity is a vital part of maintaining neuronal homeostasis in target neurons (Koike et al., 

1989). Indeed there is some evidence that even abnormal activity can be beneficial in some settings. 

In rats, two electroconvulsive seizures within the first 24 hours after contusion accelerated recovery 
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of beam-walking, with less cerebral necrosis (Feeney et al., 1987). Further, in cats, brief stimulation 

with d-amphetamine after bilateral frontal cortex ablation was associated with persistent 

improvement in beam-walking (Sutton et al., 1989). Conversely, the suppression of EEG activity with 

gamma-aminobutyric (GABA) agonists such as diazepam and muscimol greatly impairs the recovery 

from cortical or striatal lesions (Schallert et al., 1990), which might relate to impaired 

synaptogenesis.  Synaptogenesis is in part dependent on brain activity (Saneyoshi et al., 2008), 

whereas the inhibition of neuronal activity impairs synaptogenesis (van Huizen et al., 1985).  

Endogenous growth factors play a complementary role with neural activity in supporting neural 

homeostasis. As well as the direct homeostatic effects of neuronal activity (Koike et al., 1989), neural 

stimulation also indirectly supports neuronal survival by promoting release of fibroblast growth 

factor (Mattson & Rychlik, 1990). Independently, during profound electrical suppression in vivo, 

endogenous growth factors help support neuronal survival (Anderson et al., 1988). After HI brain 

damage in neonatal rats, neurotrophic activity is initially suppressed (Clawson et al., 1999), but 

growth factor treatment markedly reduces post-HI brain damage in rodents and fetal sheep (Guan et 

al., 2003). Endogenous growth factor activity increases from around 3 to 5 days, reaching maximum 

expression at 8 to 15 days (Nieto-Sampedro et al., 1982; Guan et al., 2003). This induction of growth 

factors might help promote stabilization of the cellular environment and long-term neurorepair. 

Consistent with an important role for recovery of astrocytes in determining outcome of cerebral HI, 

there is some evidence in adult rodents that hypothermia after ischaemia and cardiac arrest is 

associated with increased expression of growth factors including glial-cell-line derived neurotrophic 

factor (GDNF), and brain-derived neurotropic factor (BDNF) and its tyrosine receptor kinase-B, in a 

temporal and regional-specific manner (Boris-Moller et al., 1998; D'Cruz et al., 2002; Schmidt et al., 

2003). Thus, at the least these data confirm that mild hypothermia does not suppress astroglial 

production of integral neurotrophins. Further research is essential to understand whether astroglial 

growth factor production is essential for long-term neurodevelopmental recovery after therapeutic 

hypothermia. 

 

A WORKING MODEL FOR HYPOTHERMIC NEUROPROTECTION 

Taken together, these experimental studies indicate that hypothermia actively prevents delayed cell 

death after profound HI by suppressing apoptotic and necrotic cellular death pathways and 

extracellular inflammation and so stabilizing mitochondrial function. To achieve long-term 

neuroprotection, this hypothermia-induced suppression needs to be continued until the 

extracellular environment provides a sufficient level of pro-survival cues.  

Key survival cues are EEG activity and growth factors. Hypothermia in part achieves this by 

differentially depressing microglia more than astrocytes (Si et al., 1997) and so allows neurotrophin 

activity to recover after HI. Further, although induced hypothermia somewhat suppresses 
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stereographic seizures it does not significantly inhibit recovery of EEG activity (Davidson et al., 2017). 

Critically, as discussed above, there is now compelling evidence that optimally hypothermia should 

be continued until high frequency EEG activity has been restored (Davidson et al., 2017). It is 

intriguing to note that the timing of recovery of this EEG frequency to baseline values during cooling 

in this study at ~72 h after ischaemia, also corresponds broadly with the known time delay before 

endogenous growth factors begin to be induced after hypoxia-ischaemia in adult and developing 

rodents (Guan et al., 2003). 

This model is consistent with the empirical observation that optimally the brain should be cooled by 

3 to 5 degrees, with loss of protection with deeper cooling (Alonso-Alconada et al., 2015). This is 

likely, at least in part, related to the finding that mild cooling selective suppressed microglial 

activation, whereas deeper cooling also suppresses astrocyte function and proliferation, and so 

might impair endogenous restoration of growth factors (Si et al., 1997). Potentially, it might also 

reflect greater suppression of neural function during deep hypothermia (Westover et al., 2015). This 

need to allow recovery of the cell environment before warming is consistent with the strong 

observation that cooling needs to be continued until normalization of EEG frequency (Davidson et 

al., 2015c; Davidson et al., 2017).  

The potential implications for combination therapies with hypothermia 

This working model suggests that future combined therapies should focus on promoting cellular 

homeostasis after hypothermia through long-term stimulation of survival cues like neurotrophins, 

differential suppression / stimulation of bad / good inflammation, plus functional integration of new 

neurons and oligodendroglial cells (i.e. with recombinant human erythropoietin (rEpo) or stem cell 

therapies). First, if EEG activity is indeed critical for restoration of the normal cell environment, then 

high dose anticonvulsant treatment, that suppresses background activity, is both likely to overlap 

with the mechanisms of therapeutic hypothermia, and so not provide additional neuroprotection 

but also has potential to impair long-term neural recovery.  

Consistent with these concerns, there is good evidence that in adult rats diazepam therapy after 

cerebral ischaemia does not augment hypothermic neuroprotection (Davies et al., 2004), and as 

discussed above that prolonged suppression can impair functional recovery (Schallert et al., 1990). 

Supporting this, the anticonvulsant topiramate (Lee et al., 2000), also did not improve death or 

neurological disability in a small phase-II trial in hypothermia-treated neonates with HIE, compared 

with hypothermia-treated babies alone (Filippi et al., 2018). Thus, there is an urgent need for highly 

targeted preclinical and clinical research that can resolve the real world impact.  

Similarly, an increasing number of animal studies have shown non-additive neuroprotection during 

immediate co-treatment with hypothermia. For example, in fetal sheep after cerebral ischaemia, 

connexon blockade reduced neuronal damage and restored EEG power (Davidson et al., 2012), but 

was non-additive to mild hypothermia (Davidson et al., 2015b). Intracerebral infusion with insulin 

growth factor-1 (IGF-1) increased post-ischaemic astroglial and oligodendrocyte survival in near-
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term fetal sheep (Guan et al., 2001), but treatment with delayed IGF-1 from 4.5 hours after ischemia 

plus hypothermia from 5.5 to 72 hours did not provide greater protection or caspase-3 depression 

than cerebral cooling alone (George et al., 2011). The noble gas Xenon, which has anti-apoptotic 

effects through the N-methyl-D-aspartate (NMDA) receptor (Zhuang et al., 2012), improved 

hypothermic protection in neonatal piglets after HI but not in a phase-II clinical trial (Chakkarapani et 

al., 2010; Azzopardi et al., 2015). This study is not conclusive since Xenon was not started until a 

median of 10 hours after birth (range; 4.0-12.6). Nevertheless, these data are suggestive that non-

additive neuroprotection partially resulted from overlapping mechanisms of action. 

By contrast, melatonin started 15 min after HI followed by hypothermia from 2 hours improved 

histological outcomes and recovery of high energy phosphates on MRS compared with hypothermia 

alone (Robertson et al., 2013). This result likely reflects melatonin’s potent anti-free radical effects, 

which will have been maximal during reperfusion from HI (Miller et al., 2005), but it is unclear 

whether it would have been equally effective if it had been started at the same time as hypothermia. 

Nevertheless, a pilot trial in human babies with HIE melatonin plus hypothermia reported that the 

combination was associated with improved survival at 6 months of age without neurological 

abnormalities compared to hypothermia alone (Aly et al., 2015). These preliminary findings are 

encouraging but need validation in larger trials.  

Neuroprotection and neurorepair - rEpo and stem cell therapies 

Residual or ‘persistent’ inflammation has been reported during or after hypothermia (Davidson et 

al., 2017). Thus, it is plausible that therapies with anti-inflammatory and / or pro-regenerative 

effects might augment hypothermic neuroprotection either during or after therapeutic hypothermia. 

In this respect, there is compelling preclinical evidence for benefit rEpo and stem cells (Bennet et al., 

2012; Juul & Pet, 2015). rEpo has anti-apoptotic, anti-oxidant, anti-excitotoxic and anti-inflammation 

effects in preclinical paradigms of neonatal brain damage (Rangarajan & Juul, 2014), promotes 

proliferation and maturation of oligodendrocytes and neurons (Sugawa et al., 2002; Iwai et al., 

2007), and stimulates growth factors (BDNF and GDNF) and angiogenesis (Li et al., 2007; Juul & Pet, 

2015), which is needed for neurorepair and normal neurodevelopment.  

Multiple experimental studies have reported rEpo-mediated neuroprotection with improved long-

term outcomes after HI, as reviewed (Wu & Gonzalez, 2015). For example, in preterm fetal sheep, 

rEpo infusion from 30 min until 72 hours after asphyxia improved neuronal and oligodendroglial loss, 

and electrophysiologic restoration (Wassink et al., 2017). In preterm infants, a recent meta-analysis 

found that early, prophylactic rEpo improved neurodevelopmental outcomes at 18-24 months 

(Fischer et al., 2017). Moreover, small randomised clinical trials in term neonates with HIE have 

demonstrated improved outcomes on modern imaging and neurological measures after treating 

with rEpo (Zhu et al., 2009; Elmahdy et al., 2010; Malla et al., 2017). These and initial clinical phase II 

trials on co-treatment with hypothermia are encouraging (Wu et al., 2016), but large definitive trials 

are awaited.  



 

 

 

This article is protected by copyright. All rights reserved. 

 

 

In addition, there is increasing evidence from in vitro and in vivo preclinical studies that stem / 

progenitor cells might have beneficial effects on outcomes after HI, as reviewed (Bennet et al., 

2012). For example, in newborn rabbit kits that received intrauterine ischaemia at 0.7 gestation 

(Drobyshevsky et al., 2015), treatment with human umbilical cord blood cells at birth resulted in a 

dose-dependent improvement in neurobehavioural outcomes. These stem cells improved functional 

outcomes without significant engraftment, suggesting that their effects were mediated by trophic or 

immunomodulation mechanisms. Similarly, in preterm fetal sheep, intranasal infusion with human 

amnion epithelial cells at 1, 3 and 10 days after HI reduced neuronal and white matter loss, and 

suppressed gliosis and caspase-3, with improved maturation of the cortical EEG (van den Heuij et al., 

2017). In postnatal day 7 rats, combined administration of mesenchymal stem cells with 

hypothermia, from six hours after HI, was associated with greater improvement on imaging and 

behavioural tests than either intervention alone (Park et al., 2015).  

Finally, one small double-blind randomised placebo- controlled trial in 96 children with cerebral 

palsy reported that treatment with umbilical cord blood plus rEpo attenuated neurocognitive and 

motor dysfunction at 6 months more than rehabilitation with or without rEpo (Min et al., 2013). 

Thus, stem cell therapies have potential as a treatment to improve recovery from HIE, whether in 

isolation or combined with hypothermia. 

CONCLUSIONS AND PERSPECTIVES 

The working model of the mechanisms of neuroprotection presented here suggests that immediate 

co-treatment of hypothermia with agents whose mechanisms overlap with those of hypothermia is 

unlikely to offer substantial benefit. Indeed, interventions such as high dose anticonvulsant therapy 

that suppress background neural activity may have potential to impair long-term neural recovery. 

We propose that research should focus on interventions that promote cellular homeostasis through 

long-term stimulation of survival cues like neurotrophins, selective suppression/stimulation of 

bad/good inflammation, plus integration of new functional cells.  Current evidence suggests that 

strategies that promote these outcomes such as stem cells and erythropoietin are the most likely to 

further improve the outcome of therapeutic hypothermia. 
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FIGURE LEGEND 

Abstract Figure - This graphical abstract shows the progressive phases of perinatal brain damage 

after severe hypoxia-ischaemia, and how interventions (i.e. hypothermia, rEpo and stem cells) 

interact with deleterious processes induced in these phases. Therapeutic cooling is effective at 

suppressing damaging mechanisms in the latent and second phases, including inflammation and 

trophic withdrawal, which helps stabilise neural mitochondria and thence provides neuroprotection. 

This hypothermia-induced suppression should be continued until cellular homeostasis and 

prosurvival signalling (e.g. growth factor and EEG restoration) has recovered. Future research should 

focus on preclinical treatments that further support these survival cues and suppress long-lasting 

injurious processes (i.e. persistent inflammation and epigenetic changes) in the third phase. rEpo 

and stem cells are promising candidates. 
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Figure 1 - The physiological effects of cerebral ischaemia for 30 min (from time zero), with or without 

cerebral cooling (indicated with the blue bar) induced from 3 until 72 hours after reperfusion in 

term-equivalent fetal sheep. The panels show, in descending order, temporal changes in extradural 

temperature (°C), cortical impedance (i.e. cellular swelling, as a percentage from baseline), and 

electroencephalographic power (EEG, decibel) in normothermia (black circles) and hypothermia 

groups (blue circles), compared to sham-ischaemia animals (white circles). Treatment with 

hypothermia suppressed the delayed rise in cytotoxic oedema (as measured with cortical 

impedance), and improved recovery of EEG power after resolution of the secondary seizures. Hz, 

hertz; dB, decibel.  
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Figure 2 - Flow chart to illustrate intracellular mechanisms associated with delayed programmed cell 

death after HI. The snowflakes illustrate likely targets for therapeutic hypothermia. AIF (apoptosis 

inducing factor). APAF (apoptosis protease activating factor). BID, BH3-interacting domain death 

agonist. tBID, truncated BH3-interacting domain death agonist. BAX, BCL-2-associated X protein. 

BAK, BCL2-antagonist/killer 1. BCL2, B-Cell lymphoma 2 protein family. BCL-XL, B-cell lymphoma-

extra-large. Cyto-c, cytochrome c. Diablo (direct inhibitor of apoptosis protein-binding protein). DISC, 

death-inducing signalling complex. Fas:  first apoptosis signal receptor. MLKL, Mixed lineage kinase 

domain-like pseudokinase. P53, tumour protein p53. ROS, reactive oxygen species. RIPK, receptor-

interacting serine/threonine-protein kinase. Smac, second mito-derived caspase activator. TNF, 

tumour necrosis factor receptor. TRAIL, TNF-related apoptosis-inducing ligand receptor.  

 

 

Figure 3 -The physiological effects of cerebral ischaemia for 30 min (from time zero), with or without 

cerebral cooling (indicated with the blue bar) induced from 3 hour until either 48 or 72 hours after 

reperfusion in term-equivalent fetal sheep. The panels show, in descending order, temporal changes 

in extradural temperature (°C), electroencephalographic power (EEG, decibel) and spectral edge 

frequency (Hertz) in ischaemia-normothermia (black circles), ischaemia-hypothermia 48 h (light blue 
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circles) and ischaemia-hypothermia 72 h groups (dark blue circles). EEG activity was suppressed in all 

groups during and immediately after ischaemia followed by a transient increase during seizures from 

8-48 h. EEG activity in the ischaemia-normothermia group remained low for the remainder of the 

experiment, whereas both hypothermia groups showed a significant recovery in power and spectral 

frequency from 24 to 72 h (p<0.05). Rewarming at 48 hours was associated with loss of EEG power in 

the ischaemia-48 h hypothermia group, which did not occur with rewarming at 72 h (p<0.05). Data 

are mean ± SEM, Hz, hertz; dB, decibel. 

 


