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Abstract 

Brain injury around birth is associated with nearly half of all cases of cerebral palsy. Although brain 

injury is multifactorial, particularly after preterm birth, acute hypoxia-ischaemia is a major 

contributor to injury. It is now well established that the severity of injury after HI is determined by a 

dynamic balance between injurious and protective processes. In addition, mothers who are at risk of 

premature delivery have high rates of diabetes and antepartum infection/inflammation and are 

almost universally given treatments such as antenatal glucocorticoids and magnesium sulphate to 

reduce the risk of death and complications after preterm birth. We review evidence that these 

common factors affect responses to fetal asphyxia, often in unexpected ways. For example, 

glucocorticoid exposure dramatically increases delayed cell loss after acute hypoxia-ischaemia, 

largely through secondary hyperglycaemia. This critical new information is important to understand 

the effects of clinical treatments of women whose fetuses are at risk of perinatal asphyxia. 

 

Graph Abstract: 

 

 

 

 

 

 



 

3 

 

 
This article is protected by copyright. All rights reserved. 

 
 

The global burden of hypoxic-ischaemic brain injury 

Hypoxic-ischaemic (HI) events at birth and during the first 28 days of life represent the single 

greatest contribution to overall disability worldwide. Overall, they account for one-tenth of all 

disability adjusted life years (DALY) (GBD 2016 Disease and Injury Incidence and Prevalence 

Collaborators, 2016), and preterm birth and neonatal encephalopathy are in the top 10 leading 

causes of DALY. Moreover, intrapartum-related death is the leading cause of neonatal mortality and 

the third leading cause of death in children under five (Liu et al., 2015). In practice, these statistics 

likely considerably under-estimate the impact of HI given that many countries do not have robust 

maternal and perinatal mortality and morbidity databases (Blencowe et al., 2016).  

Further, there is a need to improve precision around terms such as ‘birth asphyxia’, which lack 

specificity, to improve our understanding of the causal pathologies (Ariff et al., 2016). Imprecise 

terminology narrows our focus on when we consider injurious or life threatening HI may occur. The 

words birth and asphyxia, for example, tend to be become synonymous, leading us to focus on birth 

as the only time significant HI insults may happen. Yet, as we will discuss in this review, adverse 

events can affect the entire perinatal period, whether in isolation, acutely, chronically or in 

combination. For example, antenatal HI and other insults contribute to the antenatal origins of at 

least some cases of cerebral palsy (CP) (Tan, 2014; Shepherd et al., 2017) (see also Grigsby et al., in 

this issue), and impaired maturation of oligodendrocytes in the preterm brain (Back, 2015). While 

postnatal cardiorespiratory and metabolic dysfunction (Laptook, 2013) (see also the review by 

Bennet et al, in this issue), and intermittent or sustained systemic infection and inflammation are all 

significantly associated with later-life disability (Dammann & Leviton, 2014; Hagberg et al., 2015; 

Bennet et al., 2018). 

To reduce neonatal mortality and morbidity, as well as life-long disability, we need to address the 

significant global challenge of ensuring timely and equitable access to obstetric and neonatal care by 

trained staff, particularly in developing nations, although equity remains a problem even in many 

resource-rich nations (Tagin et al., 2015; Ariff et al., 2016). Further, creating maternal and perinatal 

mortality and morbidity databases will help determine risk factors and the success of interventions 

(Blencowe et al., 2016). Importantly, however, it is the advances we must make in our scientific 

understanding about the adaptation of the fetus and the neonate to adverse events (both injurious 

and endogenously protective) that will allow us to unravel the complexity of the pathological causes 

underpinning perinatal mortality and morbidity. Such advances are vital if we are to truly improve 

our detection of the at risk baby and for the development of treatments which will prevent death 

and prevent, reduce or repair injury.  

The purpose of this review is to highlight the scientific challenges we face in understanding the 

nature and timing of adverse perinatal insults such as HI and inflammation, their interaction with 

each other from fetal to newborn life, and how other factors such as clinical treatments and 

maternal health act to modify these interactions and thus outcomes. Our primary focus for the 

review is on the role of HI in neonatal encephalopathy and impaired neurodevelopmental 

disabilities.  
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Hypoxic-ischaemic challenges 

Hypoxia-ischaemia at birth 

While the causes of brain injury and impaired brain development are complex and multifactorial 

(Galinsky et al., 2017b), HI contributes to injury and impaired development in both preterm and 

term babies (Laptook, 2016; Gale et al., 2017; Huang et al., 2017) and represents around 50-80% of 

cases of neonatal encephalopathy (NE) (Ahearne et al., 2016). The majority of cases of NE occur in 

low-middle income countries (Lee et al., 2013; Tagin et al., 2015), and in developed countries, the 

prevalence of fetal asphyxia at delivery is around 25/1000 live births (Low, 2004), of which ~1-

3/1000 live births at term will develop early onset HI encephalopathy (HIE) (Lee et al., 2013; Gale et 

al., 2017).  

Few studies have evaluated HI events during preterm birth, but it has been suggested that the 

prevalence of asphyxia is around 73 per 1000 live births, of whom 50% are moderate or severe (Low 

et al., 2003). In relatively small, retrospective studies, the rates of HIE vary between 1.4/1000 

(Chalak et al., 2012), 5/1000 (Schmidt & Walsh, 2010), and 9/1000 (Salhab & Perlman, 2005). 

However, more recently, a large cohort of 115,502 deliveries in the USA between 2008 and 2011 

reported that HI in preterm birth maybe significantly higher with 37.3/1000 babies born before 37 

weeks of gestation reported as having moderate to severe HIE (Manuck et al., 2016). Importantly, 

this study demonstrated that mortality and morbidity rates rose significantly with falling gestational 

age at birth, such that infants born before 28 weeks of gestation had an overall rate of HIE of 

120/1000, underscoring the need to define age ranges when comparing studies.  

Differences between studies may relate to the size of the cohorts studied, how HI was defined, and a 

lack of standardised data collection (Laptook, 2016). Further, while determining if an injurious HI 

event has occurred can be difficult in term births (Ahearne et al., 2016; Ariff et al., 2016; Laptook, 

2016), it is much more difficult in preterm babies, particularly in infants <30 weeks of gestation 

(Logitharajah et al., 2009; Laptook, 2016). Thus, it is likely that HI at birth is underappreciated in very 

young preterm infants (Laptook, 2016). An example of how we may be under-reporting HIE in 

preterm infants is given by Logitharajah and colleagues who observed that around 30% of babies 

with HIE had a cord blood pH of >7.0 (Logitharajah et al., 2009), suggesting that studies such as that 

of Salhab et al, which included only babies with a pH of <7.0 may underestimate the number of 

babies affected by HI. Finally, postnatal cardio-respiratory compromise further complicates the 

diagnosis of HI at birth (Laptook, 2016).  

Antenatal hypoxia-ischaemia 

The studies discussed above have evaluated the occurrence of an HI occurring around the time of 

birth. However, HI insults may occur both before birth (e.g. in association with intrauterine growth 

retardation (IUGR)/small for gestational age (SGA) or with discrete HI), as well as after birth (e.g. 

apnoea), particularly in preterm infants (Streimish et al., 2012). IUGR/SGA is defined as birth weight 

below the 10th percentile (Ehrenkranz, 2007), and is seen in around 3-9% of all births in high income 

nations, and is more than six-fold higher in low-middle income countries (Lee et al., 2013; Miller et 

al., 2016). While many factors contribute to IUGR/SGA, including malnutrition and fetal 

chromosomal abnormalities, many cases relate to placental insufficiency leading to hypoxia as well 
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as reduced nutrition. IUGR/SGA is associated with an increased risk of death and, in survivors, with 

impaired neurodevelopment, CP, and increased risk for cardio-metabolic diseases (Ehrenkranz, 

2007; Streimish et al., 2012; Miller et al., 2016). The prevalence of CP increases, for example, from 

1.33 to 59.2/1000 live births in moderate-late preterm infants who weigh less than 1500g compared 

to 2500g (Hirvonen et al., 2014). 

Acute on chronic hypoxia-ischaemia 

Clinically, IUGR/SGA is associated with both chronic antenatal hypoxia, with basal hypercarbia and 

elevated lactate levels consistent with significant chronic placental impairment, and a higher risk of 

death and abnormal neurodevelopmental outcomes (Nicolaides et al., 1989; Arcangeli et al., 2012). 

The adverse outcomes are at least in part associated with increased vulnerability to HI at birth 

(Hayes et al., 2013). Consistent with this, in near-term fetal sheep, healthy normoxic fetuses adapt 

well to brief umbilical cord occlusions repeated every 5 minutes; a rate consistent with early labour, 

with minimal metabolic acidosis and stable hypertension during occlusion (Westgate et al., 2005). In 

contrast, fetuses with pre-existing but stable moderate hypoxia develop with severe metabolic 

acidosis and hypotension (Westgate et al., 2005). In turn, the intermitted hypotension during 

occlusions was associated with greater EEG suppression, inter-occlusion seizures, and more 

sustained cytotoxic cerebral oedema, consistent with early onset of neural injury (Wassink et al., 

2013). IUGR is associated with reduced stores of cardiac glycogen (Takahashi et al., 1995). Given that 

the ability of the fetus to survive prolonged asphyxia is highly associated with levels of cardiac 

glycogen (Shelley, 1961), it is likely that the early onset of hypotension during umbilical cord 

occlusion in fetuses with pre-existing hypoxia was associated with more rapid depletion of cardiac 

glycogen. Evolving myocardial injury may also have contributed particularly once hypotension was 

established during the series of occlusions (Gunn et al., 2000). 

Tolerance to acute asphyxia falls towards term 

Identifying acute HI insults before birth is more difficult, for obvious reasons. However, in the search 

of the pathological factors which cause injury, it is important to appreciate that immature animals, 

both term and preterm, show high cardiac and neural tolerance to HI (for review see (Bennet, 

2017)). An early observation of this phenomenon came from Robert Boyle and colleagues who 

demonstrated in 1670 that term newborn kittens could tolerate anoxia in a vacuum chamber for far 

longer than adult animals (Boyle, 1670). Studies in a variety of species, including humans, have since 

demonstrated that immature animals have greater cardiac glycogen stores that ensure the heart can 

continue to beat through an HI challenge (Shelley, 1961). It is notable that cardiac glycogen stores 

peak in fetal life around 0.5-0.6 of gestation (Shelley, 1961), suggesting the intriguing possibility that 

hypoxic challenges may be particularly common in preterm life. Higher glycogen stores facilitate 

anaerobic metabolism, and so, healthy preterm fetuses can survive much longer periods of HI 

induced by umbilical cord occlusion than their term counterparts (Bennet, 2017). Moreover, the 

preterm fetus can tolerate longer periods of hypoxia, hypoperfusion and hypotension before 

developing injury to the brain and other organs (Keunen et al., 1997; Quaedackers et al., 2004a; 

Quaedackers et al., 2004b; Wassink et al., 2007; Bennet, 2017).  
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However, even in the very preterm fetus, there comes a point when a sufficient duration of severe 

HI, hypoperfusion and hypotension will cause neural injury. A preterm fetus exposed to severe HI 

insult in-utero can continue to survive with evolving brain injury. Studies examining neural outcomes 

after severe HI in preterm fetal sheep have shown that by 72 hours there is diffuse white matter 

loss, subcortical neuronal injury and no cortical neuronal loss (Bennet et al., 2007; Wassink et al., 

2017). Diffuse white matter injury evolves over time involving degenerative, proliferative and 

arrested maturation processes. One week after prolonged cerebral ischaemia or severe HI in 

preterm fetal sheep, proliferation of oligodendrocyte progenitor cells restored the number of total 

oligodendrocytes (Riddle et al., 2011; Drury et al., 2014). However, newly formed pre-

oligodendrocytes failed to differentiate into mature oligodendrocytes and there was loss of white 

matter volume (Riddle et al., 2011).  

Chronic activation of microglia and astrogliosis persisted three weeks after severe HI in preterm fetal 

sheep, with the reduced number of mature, myelin-producing oligodendrocytes, altered myelination 

in the subcortical white matter tracts and reduced cortical thickness (van den Heuij et al., 2017). 

Furthermore, MRI data from preterm fetal sheep, four weeks after prolonged cerebral ischaemia, 

showed altered microstructural development of grey matter with reduced dendritic arbour 

complexity and spine density of cortical projection neurons and medium spiny neurons of caudate 

nucleus, and functional disturbance in glutamatergic signalling (Dean et al., 2013; McClendon et al., 

2014). The patterns of injury seen in preterm fetal sheep after HI are highly consistent with the 

spectrum of injury seen in contemporary cohorts of preterm infants (Buser et al., 2012; Ball et al., 

2015; Thomason et al., 2017).  

Further, milder insults, which are less easy to diagnose, can also have long-term adverse effects on 

the brain. Transient moderate hypoxia in preterm fetal sheep, at 0.65-0.7 gestation (equivalent to 

28-30 week human brain maturation), significantly impaired maturation of the fetal sub-plate 

neuron arborisation and activity (McClendon et al., 2017) with the impact on maturation related to 

the severity of hypoxia. Similarly, impaired brain development and delayed cerebral injury was seen 

after mild HI in preterm-equivalent neonatal rats at postnatal day (P) 3 (Sizonenko et al., 2003), and 

at P7 (Geddes et al., 2001). Thus, it is entirely feasible that HI insults can occur well before birth, 

which are undetected and which the fetus can survive and then continue to develop until either 

preterm or term birth. In turn brain injury or impairment sustained before birth may then be added 

to by HI events during birth. It is notable that fetal heart rate (FHR) monitoring; the gold standard for 

monitoring fetal well-being during labour (for review see (Lear et al., 2016)), assumes that without 

evidence to the contrary that the fetus being monitored is neurologically intact. Research is now 

being undertaken to begin to determine the effect of the fetal adaptation to HI insults in utero on 

FHR parameters (see Yamaguchi et al, this issue). 

Perinatal events are associated with approximately half of all cases of cerebral palsy (CP) (Reid et al., 

2016). Approximately 15 to 20% are related to acute HIE at term (Reid et al., 2016), while a third of 

cases are related to preterm birth (Committee on Understanding Premature Birth and Assuring 

Healthy Outcomes). In preterm neonates, the causes of brain injury are very complex, but a recent 

study has demonstrated perinatal HI-related risk factors such as acidaemia, and Apgar score are 

strongly associated with the development of periventricular white matter injury (Huang et al., 2017). 

Recent magnetic resonance imaging cohort studies of children with CP show that only ~13% have 
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normal imaging, and another 10% have malformations (Reid et al., 2014). Most of the remainder 

show overt white or grey matter injury or focal vascular insults. Thus, it is plausible that at least 

some children born at term with no apparent intrapartum risk factors had had undetected pre-

partum HI or infection\inflammation. Further, even in infants with known acute HIE at birth, over 

half also had antepartum risk factors (Badawi et al., 1998).  

Further, there is increasing evidence that late stillbirth before the onset of labour is presumptively 

related to impaired placental perfusion causing fetal HI. Rates of stillbirth have been reduced by 

targeting fetuses who show acute reductions in fetal movements (Stacey et al., 2011). Moreover, the 

New Zealand multicentre stillbirth case-control study recently showed that when mother went to 

sleep in the supine position the risk of stillbirth was increased (adjusted OR 3.7), independent from 

other common risk factors, and thus may be a modifiable risk factor (McCowan et al., 2017). The 

mechanism is likely reduced uterine perfusion. Consistent with this, in a study of healthy women in 

late pregnancy, the semi-recumbent and supine positions were associated with fetal sleep state 

switching to quiet sleep, in which fetal oxygen consuming activity is reduced with correspondingly 

reduced fetal heart rate variation (Stone et al., 2017).  

Postnatal hypoxia-ischaemia 

Apnoea of prematurity and periodic breathing cause repeated, mild hypoxic insults that are 

associated with neurodevelopmental and motor impairments (Schmidt et al., 2017) (also see Bennet 

et al, in this issue). Further, potential dysregulation of cerebral autoregulation in sick infants may 

lead to reduced cerebral perfusion and oxygenation (Vesoulis & Mathur, 2017). In preterm babies, 

perfusion and thus oxygenation may be complicated by their immature lungs and by persistent 

patent ductus arteriosus (Di Fiore et al., 2013). Periodic breathing and apnoea are more common in 

preterm babies, but breathing is also often irregular in term babies with HIE and may require 

ventilation; stable management of these infants remains a key challenge (Martinello et al., 2017). 

Cerebral desaturation during apnoeic periods may be sufficiently challenging to cerebral metabolism 

that there is EEG suppression (Low et al., 2012). The preterm brain may also be exposed to 

spontaneous periods of desaturation (Baerts et al., 2011), but correction with oxygen 

supplementation can lead to intermittent cerebral hyperoxia, which may itself be injurious (Baerts et 

al., 2011).  

Worryingly, many preterm babies continue to have periodic breathing (Decima et al., 2015) and 

persistent apnoea (Horne et al., 2017) after being discharged and these events are associated with 

cerebral desaturation, and thus may contribute to later life neurocognitive impairment (Decima et 

al., 2015; Horne et al., 2017). Such events are more prevalent around 2-3 and 5-6 months of life than 

during the first few weeks of life (Horne et al., 2017). Further, individuals born preterm are 3-4 times 

more likely as children and adults to experience sleep disordered breathing such as snoring and 

obstructive sleep apnea (Rosen et al., 2004). These pathological conditions can also causes 

intermittent hypoxia and are associated with learning and behavioural difficulties (Rosen et al., 

2004). 

Preclinical data support these findings. Mild, intermittent hypoxia given to rats P2 and P12, with 

follow-up to P18 and P22, was associated with evidence systemic and brain inflammation, impaired 
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white matter integrity, and metabolic changes consistent with hypoxia (Darnall et al., 2017). 

Repetitive apnoea in anaesthetised newborn piglets was associated with progressive cortical 

oxygenation (Schears et al., 2005) and evidence of cortical and subcortical injury (Mendoza-Paredes 

et al., 2008). Further, in a study where LPS was given to P2 rats who were then followed-up to P10, 

showed that inflammation may cause more episodes of periodic breathing, potentially by altering 

carotid body structure and function (Master et al., 2016). 

Recovery from hypoxic-ischaemic insults  

Contributing to the difficulty in determining whether an injurious insult has occurred is that injury 

evolves over time (Bennet et al., 2006; Iwata et al., 2008). As discussed below, external factors such 

as inflammation and clinical treatments can modulate how injury evolves, and affect the 

measurements used for diagnosis and prognosis. For example, therapeutic hypothermia for HIE 

significantly alters the temporal expression of seizures (Davidson et al., 2015a; Lynch et al., 2015). It 

is now well established in term infants and animals that there can be considerable cell survival after 

severe HI, followed by progressive evolution of bulk cell death over hours to days (Wyatt et al., 1989; 

Lorek et al., 1994). There are limited data on the post-HI evolution of injury in the preterm brain, 

however, preclinical data suggest that temporal changes in blood flow, cerebral oxygenation and 

seizures occur in a similar temporal pattern (Bennet et al., 2006; Bennet et al., 2010; Bennet et al., 

2012a).  

Latent phase 

Following reperfusion there is recovery of depleted high energy phosphates and at least partial 

resolution of cellular oedema in a so called ‘latent’ phase of recovery. The extent of recovery during 

this phase correlates with severity of injury (Iwata et al., 2008). The latent phase is further 

characterised by suppression of electroencephalographic activity (EEG), which is mediated by 

neuroinhibitors such as neurosteroids (Nguyen et al., 2004; Yawno et al., 2007), and upregulation of 

the sympathetic nervous system (Quaedackers et al., 2004a; Dean et al., 2006). Inhibition of these 

neuromodulators markedly increased cerebral injury, strongly suggesting that these endogenous 

responses are beneficial (Dean et al., 2006; Yawno et al., 2007). In addition to neuronal inhibition, 

multiple neuroendocrine responses also help protect the brain (Robertson et al., 2012). For example, 

in newborn piglets, P7 rats and fetal sheep there is release of melatonin early in the latent phase, 

and delayed upregulation of multiple anti-apoptotic growth factors such as erythropoietin (Epo) and 

insulin like growth factor 1 (IGF-1) in the secondary and tertiary phases after HI (Guan et al., 2003; 

Miller et al., 2005; Robertson et al., 2013; Ohls et al., 2015). 

Studies of the preterm fetal brain have shown, however, that EEG suppression is not complete. 

Epileptiform transient activity (e.g. sharp waves) is observed throughout the latent phase, peaking 

around 2-3 hours post-HI (Bennet et al., 2010). The maximum frequency of these events after HI is 

associated with cerebral deoxygenation and with the severity of neural injury (Bennet et al., 2006). 

These data suggest that transients may stress injured cells and propagate injury in a similar manner 

to spreading depolarisations (Hartings et al., 2017). Consistent with this, studies in sheep fetuses and 

multiple adult species (Davidson et al., 2012; Hartings et al., 2017; Kim et al., 2017) show that 

astrocytic and microglial responses contribute to spreading injury from the most severely affected 
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regions to previously undamaged areas of the brain, in part by opening of cell membrane channels 

such as connexin 43 hemichannels, leading to release of excitatory small molecules such as ATP and 

glutamate (Davidson et al., 2013; Hartings et al., 2017). 

EEG suppression during the latent phase is coupled with cerebral hypoperfusion, with data 

suggesting that this is coupled to reduced cerebral metabolism in immature (Jensen et al., 2006) and 

adult animals (Michenfelder & Milde, 1990). Hypoperfusion is also seen in peripheral organ beds, 

mediated by increased vascular resistance not hypotension (for review see (Bennet et al., 2012a). 

This is an important observation, as low blood pressure and hypoperfusion is a frequently seen in 

preterm newborns during the first few days after birth (Dempsey, 2017), and there is debate about 

the contribution of this apparent ‘cardiovascular instability’ to evolving injury and how to best to 

clinically manage haemodynamic changes (Dempsey, 2017). In part this relates to the variability in 

what is defined as normal blood pressure, but it is also clear that there is a poor relationship 

between blood pressure and blood flow (Dempsey, 2017), and low blood flow often does not change 

in response to increasing blood pressure and some cases treating hypotension is associated with 

adverse outcomes (Fanaroff et al., 2006; Dempsey, 2017). For some infants, low blood flow may in 

fact be a post-HI adaptation, as seen experimentally (Bennet et al., 2012a).  

Secondary and tertiary phases 

The latent phase is followed by a secondary deterioration in cerebral oxidative metabolism starting 

6-15 hours after birth (Azzopardi et al., 1989; Lorek et al., 1994; Gunn et al., 1997; Penrice et al., 

1997), due to failure of mitochondrial function (Leaw et al., 2017). This phase is associated with the 

onset of seizures in both preterm and term fetuses, and in the term fetus, where there is cortical 

neuronal maturation, there is secondary cortical cytotoxic oedema (Lorek et al., 1994; Gunn et al., 

1997; Penrice et al., 1997). The timing of energy failure after HI is tightly coupled with the 

appearance of histologic brain damage (Blumberg et al., 1997; Roth et al., 1997; Vannucci et al., 

2004), suggesting that it is primarily a function of evolving cell death (Figure 1). Neuroprotection 

treatments such as therapeutic hypothermia that are effective when started in the latent phase, 

progressively lose effectiveness when started during the secondary phase with efficacy rapidly lost 

thereafter (Gunn et al., 1997; Wassink et al., 2014). It is unclear why mitochondria become 

dysfunctional when the supply of oxygen is normal, but it does provide a target for treatment (Leaw 

et al., 2017).  

Blood flow changes in the secondary phase can be variable. Preterm fetal sheep studies show that 

central and peripheral hypoperfusion may resolve or partly resolve after asphyxia (Bennet et al., 

2012a), and CBF in human preterm babies naturally rises during the first three days of life (Meek et 

al., 1998). Preterm babies may be at risk of loss of cerebral autoregulation leading to impaired 

cerebral perfusion with low blood pressure (Vesoulis & Mathur, 2017), and blood flow can fluctuate 

during events like seizures with hypoperfusion seen in peripheral organs like the gut in preterm fetal 

sheep mediated by sympathetic activity (Bennet et al., 2012a). In preterm infants, increased 

systemic perfusion and cerebral blood flow is associated with increased risk for GMH-IVH in younger 

preterm babies (Noori et al., 2014). In term HIE infants and term fetal sheep, cerebral hyperaemia 

(oedema and increased cerebral blood flow) is observed (Meek et al., 1999; Greisen, 2014), and, 

perhaps counter-intuitively, increased CBF correlates with adverse outcomes (Meek et al., 1999). 
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The secondary phase resolves over 3-4 days post-HI into a tertiary phase of ongoing injury, involving 

repair and reorganisation which may last weeks to months and even years (Hagberg et al., 2015; 

Bennet et al., 2018), but there is also chronic inflammation and epigenetic changes lasting for weeks 

to months after injury that may prevent optimal neurorepair (Fleiss & Gressens, 2012; Galinsky et 

al., 2017b; Bennet et al., 2018). Key neuroprotection strategies in this phase include treating chronic 

inflammation and stimulation of endogenous factors which support proliferation, migration, and 

maturation of glia and neurons (Hagberg et al., 2015; Bennet et al., 2018). Treatments such as stem 

cell therapy have utility in this phase, given their multimodal effects in reducing inflammation and 

promoting release of trophic factors (Fleiss et al., 2014; van den Heuij et al., 2017; Bennet et al., 

2018). Further, there is a clear role for postnatal neurorehabilitation for optimising development of 

the neural network (Pitcher et al., 2009; Maitre, 2015) (see also Bennet et al, in this issue). 

Importantly, as part of the challenges we face, it is clear that early and accurate diagnosis of 

conditions such as CP make a significant difference to providing the right neurorehabilitation 

treatment in a timely manner (Novak et al., 2017). 

Modification of neural outcome by multiple insults 

A recent MRI study in preterm infants demonstrated that a synergy between prenatal and postnatal 

insults, such as intrauterine growth restriction and prolonged mechanical ventilation had a 

cumulative effect on white matter injury, as shown by lower white matter fractional anisotropy at 

term equivalent age, and impaired neurodevelopmental outcomes at 20 months corrected age 

(Barnett et al., 2018). In the section below we discuss how exposure to inflammation, antenatal 

treatments (e.g. glucocorticoids and magnesium sulphate), and maternal diabetes, obesity and other 

lifestyle factors may modulate fetal response to HI insults and resultant neural injury.  

Inflammation 

It is now recognised that fetal inflammation is associated with adverse life-long outcomes such as 

impaired neurodevelopment, particularly after preterm birth (Dammann & Leviton, 2014; Back, 

2015; Hagberg et al., 2015; Bennet et al., 2018). Inflammation of chorionic and amniotic membranes 

(chorioamnionitis), for example, is reported in nearly 95% of preterm births at 21 – 24 weeks of 

gestation, and in about 10% of deliveries at 33 – 36 weeks (Kim et al., 2015). While infection of the 

fetus occurs in approximately 20-30% of confirmed intrauterine infections (Cordeiro et al., 2015). 

Fetal inflammation (funisitis) and early neonatal bacteraemia have been shown to be independent 

risk factors for encephalopathy (Tann et al., 2017), and late onset bacteraemia (due to factors such 

as long-term indwelling catheters) in preterm infants during postnatal weeks 2-4 is associated with a 

greater risk of neurocognitive limitations at age 10 years (Bright et al., 2017). Further, there is some 

evidence from a cohort study of 8299 women that the combination of cord blood acidosis and 

maternal pyrexia independently greatly increased the risk of neonatal encephalopathy (Impey et al., 

2008). 

Currently, the mechanisms mediating the association between infection and inflammation and 

neonatal encephalopathy are unclear (Hagberg et al., 2015). However NE is strongly associated with 

elevations of pro-inflammatory mediators such as tumour necrosis factor (TNF)-α, interleukin (IL)-6, 

IL-8 and IL-1β and toll-like receptors (TLRs) in plasma and in the brain (Dammann & Leviton, 2014; 
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Hagberg et al., 2015; Bennet et al., 2018). Recent data from the Extremely Low Gestational Age 

Newborns (ELGANs) study measured pro-inflammatory cytokine patterns in whole blood of preterm 

infants <28 weeks gestation in the first month of life and demonstrated that elevated systemic levels 

of pro-inflammatory cytokines are associated with adverse neurological outcomes up to the age of 

10 years (Kuban et al., 2017), and that both antenatal and postnatal inflammation play a role (Yanni 

et al., 2017). Further, data suggest that in children with CP associated with white matter loss, early 

exposure to inflammation is associated with chronic inflammation and increased sensitivity to 

inflammatory mediators later in life (Lin et al., 2010). 

Perinatal inflammation can function as a second hit in preterm infants with SGA, acting to increase 

the risk of impaired neurodevelopmental outcomes (Leviton et al., 2013). Exposure to both sepsis 

and HI during the perinatal period increases the risk of cerebral palsy in very premature infants 

(Wang et al., 2014). Similarly, the combination of fetal growth restriction, denoting prenatal hypoxia 

and postnatal inflammation markedly increases the risk of impaired neurodevelopmental scores at 2 

years of age compared to either alone (Leviton et al., 2013). That two injurious insults are additive is 

not surprising, however, considerable data suggest that inflammation can modify the responses to 

an HI insult in both positive (tolerance) and negative (sensitisation) ways depending on the order, 

intensity and time of the insults (Hagberg et al., 2015; Bennet et al., 2018).  

Sensitisation  

Clinical data suggest that prior inflammatory stimulus can enhance metabolic decompensation 

during subsequent HI. For example, using NIRS in preterm infants Stark et al., showed that 

intrauterine inflammation was associated with an increase in cerebral oxygen consumption after 

birth (Stark et al., 2016). In preclinical studies, systemic inflammation induced with injection of TLR-2 

agonist Pam3CSK4, given 14 hours before an HI insult in P8 mice, increased loss of brain tissue and 

demyelination, potentially through suppression of ADP induced oxidative phosphorylation in 

mitochondria (Mottahedin et al., 2017). These data suggest that inflammation may play a role in the 

loss of mitochondrial function post-HI. Similarly, inflammation induced by the viral protein mimetic 

polyinosinic-polycytidylic acid (poly(I:C)) 14 hours before HI in P8 mice also increased injury and this 

was associated with increased pro-inflammatory cytokines and apoptotic proteins in the brain 

(Stridh et al., 2013). 

Exposure of P2 rat pups to lipopolysaccharide (LPS), a component of cell wall of gram negative 

bacteria, given 2 hours before HI augmented microglia activation, cerebral pro-inflammatory 

cytokines, blood brain barrier damage and white matter damage compared to HI alone (Wang et al., 

2010), with similar effects observed if LPS was given at 4 hours to P7 rats (Eklind et al., 2001) or 2 

and 72 hours pre-HI (Eklind et al., 2005). Similar results were observed when LPS was given 14 hours 

before HI, with evidence that injury involved TLR-4 and the recruitment of the MyD88 adaptor 

protein (Wang et al., 2009). Recently, fetal embryonic day 18 rat model of LPS and HI exposure 

demonstrated that the patterns of brain injury and motor function assessed one month after birth, 

were different between HI and HI+LPS, and HI with or without LPS produced patterns similar to 

those seen in infants with neural injury the clinical ELGANS study (Jantzie et al., 2014). All pups 

experienced gait abnormalities, with function worse in the HI group alone. LPS alone caused 

inflammation, but significantly less inflammation and injury than HI and HI+LPS, with greater acute 
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glial activation and inflammation seen after HI+LPS. HI alone, however, was associated with greater 

chronic white matter and axonal injury.  

Notably, in this study, the loss of myelin basic protein (a marker for myelination) was observed up to 

P15 in both HI and HI+LPS groups, but worsened beyond this time only in the HI alone group (Jantzie 

et al., 2014). These data further demonstrate the need to study the evolution of injury over time to 

understand the relative contributions of insults. Further, the data support the concept that HI insults 

alone can be associated with dysmaturation of oligodendrocytes and thus the development of 

subsequent myelination (Back, 2015), and may contribute to more severe or chronic white matter 

injury patterns. LPS appears to positively moderate the severity of HI injury, and this may occur 

through progressive restoration of Epo receptor and ligand expression observed in this study in the 

HI+LPS but not HI alone group (Jantzie et al., 2014).  

Tolerance 

In contrast to the studies demonstrating sensitisation by inflammation to greater HI mediated injury, 

several studies demonstrate that depending on the insult severity, the time interval between insults 

and maturational stage of the brain, the interaction between inflammation and HI insults can be 

protective. We have demonstrated in preterm fetal sheep that inflammation induced by chronic low-

dose infusion of LPS (100-250ng) for five days with superimposed 1g boluses was associated with 

white matter inflammation and loss of mature oligodendrocytes (Mathai et al., 2013; van den Heuij 

et al., 2014). However, exposure to inflammation was associated with a significant reduction in HI 

injury when an HI insult was given four hours after the last bolus of LPS (van den Heuij et al., 2014). 

Upregulated plasma concentrations of the anti-inflammatory IL-10 and cortisol may have 

contributed to neuroprotection (van den Heuij et al., 2014). Further, pre-treatment of preterm fetal 

sheep with a bolus dose of LPS (50–100 ng/kg) led to differentially regulated TLR mRNA expression 

and increased protein expression of interferon-beta when exposed to HI at 24 hours after LPS 

treatment, whereas no effect was seen with the time interval of 4 hours (Dhillon et al., 2015). In this 

study, LPS preconditioned fetuses had reduced loss of oligodendrocytes, with reduced microgliosis 

and astrogliosis, at 5 days after HI (Dhillon et al., 2015).  

Consistent with this, in P7 rats, exposure to LPS 24 hours before HI conferred protection, in contrast 

to increased injury seen when it was given 2, 4, 14 or 72 hours before HI (Eklind et al., 2005). This 

timing likely reflects, at least in part, the time needed for upregulation of type I interferon and 

interferon regulatory factors (Marsh et al., 2009). However, the dose of the inflammatory agent and 

the age of exposure are also important factors. For example, tolerance to HI is observed when LPS is 

given at P7, P9 or P14 (Eklind et al., 2005; Hickey et al., 2011), and in response to polyI:C at P5 

(Hickey et al., 2011; Shi et al., 2013), but not when LPS is given P3 and P5 rat pups, or Poly I:C given 

at P7 (Hickey et al., 2011; Shi et al., 2013). The differences may be due to the developmental 

differences in TLR induction (Shi et al., 2013). Consistent with this, preterm neonates (<30 weeks) 

have attenuated innate immune responses to TLR agonists in the first 28 days of age (Marchant et 

al., 2015). Consideration should also be given to the dose of LPS. In P7 rats, a 0.3mg/kg bolus dose of 

LPS given 24 hours before an HI insult increased injury, whereas a 0.05mg/kg bolus dose reduced 

injury and improved neurological outcomes, and this was associated with reduced microglial 

activation and pro-inflammatory cytokine production (Lin et al., 2009). 
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Exposure to hypoxia can also confer tolerance to subsequent insults. The neuroinflammatory 

response after HI was attenuated in P7 rats preconditioned with transient asphyxia in utero or mild 

hypoxia postnatally, and the interaction between the insults was found to be neuroprotective (Park 

et al., 2011; Vlassaks et al., 2013). A 3 hour period of 8% hypoxia alone 24 hours before an HI insult 

in P6-7 rats suppressed glial and pro-inflammatory cytokine production (Chen et al., 2015; Parmar & 

Jones, 2015). Intermittent periods of mild hypoxia have also been shown to cause preconditioning 

against later injurious HI in P7 rats (Ota et al., 1998). However, prolonged spontaneous mild 

hypoxemia for at least 5 days before carotid artery ischaemia in near-term fetal sheep did not alter 

brain injury (Davidson et al., 2015b). This negative finding suggests that gene induction by pre-

conditioning is transient and therefore resolves during chronic hypoxia.  

Modification of neural outcome by antenatal treatment 

Antenatal glucocorticoids and hyperglycaemia 

When considering factors which modulate the perinatal responses to HI, we should remember that 

the fetus and newborn are not naïve to clinical drugs treatments ranging from routine antenatal 

glucocorticoids and magnesium sulphate (MgSO4) and to postnatal steroids, pain and anti-seizure 

medications, sedatives and anaesthetics, and treatments such as glucose supplementation. The 

catch-22 is, of course, that many of the conditions being treated (e.g. seizures, pain and 

hypoglycaemia) themselves modulate outcomes. However, this does not mean the treatment per se 

is without effect.  

Glucocorticoids are routinely given to women at risk of preterm delivery to reduce mortality and 

morbidity associated with complications of being born prematurely. To date, there is no clear clinical 

information on the interaction between antenatal glucocorticoids and HIE in preterm infants, as such 

cases were excluded from many randomised controlled trials (Roberts et al., 2017). However, it is 

striking how diverse data from preclinical studies are on the effect of glucocorticoids on the 

adaptation to HI insults. Maternal administration of dexamethasone given 48 hours pre-HI had no 

effect on injury (Elitt et al., 2003). However, when given 15 minutes after HI in preterm fetal sheep 

dexamethasone increased injury (Koome et al., 2013), and this was associated with increased EEG 

activity and seizure activity, and evidence of uncoupling of CBF and cerebral metabolism as well as 

exacerbated hyperglycaemia (Lear et al., 2014). In contrast, when dexamethasone was given 4 hours 

pre-HI, there was a significant increase in neural injury, including induction of cystic lesions, despite 

evidence of reduced cytotoxic oedema during HI (Lear et al., 2018). Interestingly, glucocorticoids 

given to normal healthy preterm fetal sheep, who have not had HI, also causes dysregulation of EEG 

activity and can induce seizures (Davidson et al., 2011). 

Similarly, some studies in neonatal rats have also reported exacerbation of HI induced neural injury 

with prior dexamethasone exposure (Chang et al., 2013; Yeh et al., 2016). For example, 

administering a tapering course of dexamethasone 0.5, 0.3 and 0.1 mg/Kg on postnatal days 1-3 in 

neonatal rats, and subsequently subjecting them to HI on P7, caused greater loss of 

oligodendrocytes, reduced myelin thickness, and worse functional outcome in the long-term as 

compared to animals subjected to HI alone (Yeh et al., 2016). A role for increased excitotoxicity is 
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postulated as the effect of dexamethasone on HI mediated injury correlated with decreased 

glutamate transporter-1 (GLT-1)-mediated glutamate reuptake observed after HI (Chang et al.).  

In contrast, many studies in postnatal rats have shown neuroprotection with glucocorticoids given 4-

48 hours before HI (Barks et al., 1991; Chumas et al., 1993; Ekert et al., 1997; Dardzinski et al., 2000; 

Felszeghy et al., 2004; Ikeda et al., 2005; Feng et al., 2011), but no effect if given within 3 hours of an 

HI insult. Post-treatment is associated with no effect when given immediately, 24 or 48 hours post HI 

(Barks et al., 1991), or protection when given 2 hours post-HI (Harding et al., 2016). Differences in 

dose, timing of glucocorticoid administration and route of administration; e.g. 

intracerebroventricular injection (Harding et al., 2016) and intraperitoneal injection (Barks et al., 

1991) remain to be explored. It is noted, however, that clinically, antenatal steroid exposure is 

associated with risk of increasing adverse neurodevelopmental outcomes (Qin et al., 2017). Finally, 

Ikeda and colleagues have demonstrated in P6 rats, that the protection conferred by exposure to LPS 

24 hours before HI was prevented by co-administration of the glucocorticoid receptor blocker RU486 

(Ikeda et al., 2005).  

One significant effect of glucocorticoids is to increase glucose, and the differences between the 

perinatal rat and sheep data of the effects of HI mediated injury may be explained by differences in 

glucose handling in the newborn period between species, which is discussed in the next section. 

Developmental changes in glucose handling may also explain why pre-treatment with 

glucocorticoids in adult rats is usually associated with increased HI mediated brain injury, as 

reviewed (Bennet et al., 2012b).  

Glycaemia 

Term infants with HIE (Nadeem et al., 2011) and preterm infants (McKinlay et al., 2017; Sharma et 

al., 2017), show highly variable blood glucose levels during the early period after birth, and a current 

clinical challenge is to understand what constitutes euglycaemia and how fluctuating glucose may 

contribute to NE and thus how best to manage changes in glucose (Ogilvy-Stuart & Beardsall, 2010). 

Clinical data from term infants with HIE shows adverse neurodevelopmental outcomes associated 

with both hyperglycaemia and hypoglycaemia during the first day after birth (Chouthai et al., 2015; 

Basu et al., 2016). In preterm infants, hypoglycaemia is often followed by hyperglycaemia, mediated 

by insulin resistance and insulin deficiency (Ogilvy-Stuart & Beardsall, 2010). In preterm infants 

hyperglycaemia is associated with increased mortality (Alexandrou et al., 2010; van der Lugt et al., 

2010), adverse neurodevelopmental outcomes (van der Lugt et al., 2010), and injury to white matter 

(Alexandrou et al., 2010). Currently, the role of glycaemia in modulating HI in preterm births is not 

known. 

As with glucocorticoids, the data on the HI modulating effects of glucose are variable. In preterm 

fetal sheep increasing glucose to similar levels seen after dexamethasone produced the same severe 

cystic injury patterns as seen with dexamethasone (Lear et al., 2014; Lear et al., 2018). Given that 

post-HI dexamethasone was associated with more modest injury (Koome et al., 2013), this suggests 

that increased glucose compromises cellular function during the HI insult. In vitro evidence supports 

this concept and further suggests that increased opening of connexin hemichannels may be a key 

factor in the detrimental effects of hyperglycaemia during HI (Orellana et al., 2010). Similarly, 



 

15 

 

 
This article is protected by copyright. All rights reserved. 

 
 

hyperglycaemia during HI exacerbates neural injury in newborn piglets (LeBlanc et al., 1993), term-

equivalent fetal sheep (Petersson et al., 2004), and adult rats (Lin et al., 1998).  

In marked contrast, hyperglycaemia is independently protective and, at least in part, mediates the 

protective effects of dexamethasone in P7 rats after HI (Vannucci & Mujsce, 1992; Tuor et al., 1997). 

The most likely explanation for the age-related difference in rats, and the difference with other 

species is the much lower uptake of glucose into the neonatal rat brain (Vannucci, 1994; Vannucci et 

al., 1996). Therefore, the reassuring neuroprotective effects of dexamethasone for HI induced neural 

injury observed in neonatal rat studies might not translate into human infants. Consistent with this, 

a recent meta-analysis reported lack of evidence for antenatal glucocorticoid treatment to have a 

preventive effect on CP (Shepherd et al., 2017), and that both hypoglycaemia and hyperglycaemia 

were associated with adverse outcomes in term infants with HIE (Basu et al., 2016). Intriguingly, 

hyperglycaemia infants with HIE birth actually showed significantly greater improvement with 

therapeutic hypothermia compared to normothermia (Basu et al., 2017). This suggests either that 

infants with hyperglycaemia may have been in an early, more treatable phase of injury or that the 

injurious effects of hyperglycaemia on the brain may be treatable. Thus, there is an urgent need to 

better understand the impact of glucose management in preterm and sick babies.  

Magnesium sulphate 

Evidence from meta-analyses and systemic reviews show that MgSO4 administered to women at risk 

of preterm labour is associated with small, but significant reduction in the risk of CP at 18 months to 

2 years of age (Doyle et al., 2009). However, the long-term follow-up studies show that MgSO4 

treatment is not associated with significant improvement in neurodevelopmental outcomes at 

school age, although these were small studies (Chollat et al., 2014; Doyle et al., 2014). Preclinical 

studies in term equivalent animals of effects of MgSO4 for HIE have reported highly inconsistent 

outcomes, ranging from neuroprotection, to no effect or increased neuronal loss; it is highly likely 

that apparent neuroprotection was mediated by drug induced hypothermia (Galinsky et al., 2014).  

Magnesium’s primary neural effect is to inhibit glutamatergic signalling through binding its specific 

site on the N-methyl-D-aspartate receptor (Zeevalk & Nicklas, 1992). Consistent with this, reduced 

basal brain activity was reported in preterm infants treated with MgSO4 (Stark et al., 2015), and in 

preterm fetal sheep (Galinsky et al., 2016). There is some evidence for anti-oxidative and anti-

inflammatory effects for MgSO4 (Maulik et al., 1999; Sugimoto et al., 2012). In preterm fetal sheep, 

MgSO4 for 24 hours before and after asphyxia was associated with a significant reduction in basal 

EEG activity and seizure burden after asphyxia (see also Bennet et al., in this issue), but no effect on 

microglial activation, macrophage infiltration, astrogliosis or neuronal loss. Indeed, it was associated 

with increased loss of oligodendrocytes 72 hours after injury (Galinsky et al., 2017a). A recent study 

in P7 rats suggests that the interaction between MgSO4 and HI is time dependent, with 

neuroprotection seen when it was administered between 6 days and 12 hours before HI, but not at 3 

hours or 30 minutes before HI (Koning et al., 2017). This effect was likely mediated by improved 

mitochondrial resistance to HI. Overall, these studies suggest the impact of MgSO4 on HIE is complex 

and possibly time dependant. Thus, further careful investigation into the effects of MgSO4 in 

preterm and term-equivalent translation animal models is essential before undertaking large 

randomised clinical trials for HIE. 
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Maternal health and lifestyle associated risks 

A variety of maternal health and lifestyle factors can affect normal fetal development. Decades of 

research have confirmed the considerable potential for harm to the fetus associated with maternal 

alcohol intake and smoking, including impaired fetal neurodevelopment (Polanska et al., 2015). 

Despite public health warnings, however, it remains a challenge to improve rates of cessation. It is 

striking, for example, how many women in both developed and developing nations binge drink 

before and during pregnancy (Lange et al., 2017). Added to these perennial health problems, 

maternal obesity and diabetes are increasing (Langer, 2018). 

The previous section detailed experimental research which suggests that hyperglycaemia can 

increase the risk of perinatal brain injury after HI, suggesting that the clinical association between 

hyperglycaemia and adverse perinatal outcomes is at least partly causal. This is of particular concern 

given that there is a world-wide “epidemic” of obesity, such that in the United States and Germany, 

for example, at least half of all women are overweight or obese before and during pregnancy 

(Dudenhausen et al., 2015). Obesity is associated with increased risks of miscarriage, premature 

birth, stillbirth, and gestational diabetes (Kalliala et al., 2017), and both clinical and preclinical data 

show that maternal obesity is strongly associated with later life risk for cardiometabolic disease in 

offspring, highlighting the transgenerational risk of maternal obesity (Mehta et al., 2014; Nicholas et 

al., 2016). 

Maternal obesity before and during pregnancy is associated with impaired neurodevelopmental and 

behavioural and psychiatric outcomes in term and preterm offspring (Mehta et al., 2014; Reynolds et 

al., 2014; Edlow, 2017). The greater the maternal weight, the greater risk of adverse perinatal 

outcomes (Smid et al., 2016). Maternal obesity is associated with impaired white matter 

development in term infants assessed 2 weeks after normal delivery (Ou et al., 2015), and obesity 

and chorioamnionitis were independently correlated with periventricular white matter injury in 

preterm babies (Herzog et al., 2015). Obesity is associated with greater complications leading to an 
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increased risk for mortality, and adverse outcomes including seizures (Yao et al., 2017), this includes 

an increased risk of severe HI (Persson et al., 2014). Maternal obesity is often accompanied by an 

increased risk for gestational diabetes and both are also associated with poor placental perfusion 

and conditions such as pre-eclampsia that are associated with fetal inflammation, hypoxia and IUGR 

(Spradley, 2017). The factors that mediate the impact of obesity during development and which may 

interact with HI insults are multifactorial and include chronic neuroinflammation, oxidative stress, as 

well functional changes in maternal and perinatal insulin, glucose and leptin signalling (Edlow, 2017). 

Collectively this overview of some of the additive physiological and clinical factors the fetus and 

newborn are exposed to during and after an HI insult highlights the magnitude of the challenges that 

we face in dissecting mechanisms of action. While the challenge is substantial, this knowledge gives 

us many targets to base therapeutic strategies on. Some of them are commitments to lifestyle 

changes such as diet and exercise, which reduce obesity and can prevent gestational diabetes 

leading to improved pregnancy outcomes (Brown et al., 2017). Others require clinical interventions. 

In the final section below, we address potential therapeutic targets.  

Improving outcomes by augmenting endogenous protective responses 

As previously discussed, HI triggers multiple endogenous protective responses. Here we review two 

promising examples of how we can augment these responses to protect the perinatal brain.  

Melatonin 

Melatonin (N-acetyl-5-methoxytryptamine) is released from the pineal gland and helps entrain 

circadian rhythms (McMillen et al., 1995). A role for melatonin in modulating HI injury has been 

demonstrated in both adult and neonatal animals through anti-oxidant, anti-inflammatory and 

oxygen free radical scavenging effects (Hassell et al., 2015). In addition, melatonin also mediates 

systemic effects on vascular reactivity and immune system that may provide indirect 

neuroprotective effects (Colella et al., 2016).  

Fetuses receive melatonin through the placenta from mother and therefore they have a circadian 

melatonin rhythm (McMillen et al., 1995; Seron-Ferre et al., 2012). This is lost at birth, and neonates 

have low, arrhythmic levels of melatonin in plasma, until the pineal gland begins production 

(Kennaway et al., 1992). This absence of circadian release of melatonin for the first few weeks of life 

may help facilitate adaptation of the newborn to the physiological demands of the post-natal 

environment, including the need to eat regularly both day and night (Mirmiran et al., 2003). 
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Endogenous melatonin production is increased after traumatic brain injury in human adults and 

children (Marseglia et al., 2017), raising the possibility that endogenous melatonin may help protect 

the brain. Supporting this hypothesis, HI injury is significantly increased after pinealectomy in adult 

rats (Kilic et al., 1999), and exogenous administration of melatonin after HI reduced neural injury in a 

range of preclinical paradigms, as reviewed (Robertson et al., 2012). Similarly, an acute increase in 

endogenous melatonin levels was seen in newborn piglets after HI (Robertson et al., 2013). 

Interestingly, an injurious stimulus can also induce extra-pineal melatonin production in different 

organ systems, but it is not known if this would lead to an increase in circulating levels (Acuna-

Castroviejo et al., 2014).  

There is now consistent evidence in neonatal animals that exogenous melatonin can reduce HI brain 

injury (Robertson et al., 2012). In preterm fetal sheep, infusion of low-dose melatonin (0.1mg/kg 

bolus followed by 0.1 mg/kg/h for 6 hours) to the mother starting 15 minutes before severe global 

asphyxia induced by umbilical cord occlusion reduced microglia activation and improved survival of 

mature oligodendrocytes in the periventricular white matter at seven days after asphyxia (Drury et 

al., 2014). Critically, exogenous melatonin can also be protective after HI. For example, high-dose 

melatonin (20mg/kg) starting 10 minutes after asphyxia and continued for 6 hours was associated 

with slower recovery of fetal blood pressure but reduced numbers of activated microglia and cell 

death (Welin et al., 2007). Further, melatonin given to preterm fetuses from 2 to 6 hours after 

asphyxia reduced apoptosis, inflammation and oxidative metabolism (Yawno et al., 2017). 

Supporting this, a recent study in newborn lambs demonstrated that melatonin given either by IV 

injection or transdermal patch starting 30 minutes after acute asphyxia at birth reduced 

neuroinflammation, oxidative stress in white matter, and improved survival of mature 

oligodendrocytes and myelin density by ten days after HI (Aridas et al., 2018). Finally, in term piglets, 

exogenous infusion of high-dose melatonin starting 10 minutes after HI significantly augmented 

hypothermic neuroprotection (Robertson et al., 2013). Brain protection was dependent on the 

timing and dose of intravenous melatonin in the piglet, such that administration 2 hours after HI was 

less protective than when it was given at 10 minutes after HI. 

Clinically, a small randomised control trial has assessed the feasibility of using melatonin in 

combination with therapeutic hypothermia after HIE at term (Aly et al., 2015). Melatonin was given 

as five daily enteral doses (10mg/kg). The study found that melatonin during hypothermia was 

associated with a reduction in seizures, white matter abnormalities, and appeared to improve 

survival without neurological or developmental abnormalities at 6 months (Aly et al., 2015). These 

encouraging, preliminary data suggest that melatonin can improve neural outcomes, and its effects 

are not altered by hypothermia, which is seen with some potential treatments (Gunn & 

Groenendaal, 2016 ). 

However, despite the promising neuroprotective effects of melatonin caution is needed for its use to 

treat neonates with HIE. First, the reader should appreciate that preclinical studies examining 

neuroprotection with melatonin typically dissolved melatonin in ethanol. In one study in preterm 

fetal sheep, even a very small amount of ethanol had regional specific effects to improve neuronal 

survival in the caudate nucleus, but increased neuronal loss in regions of the hippocampus (Drury et 

al., 2014). Further, in P7 rats, an alternative solvent for melatonin, dimethyl sulfoxide, also affected 

cerebral energy metabolism and neurotransmitter concentrations as measured by MR spectroscopy 
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both in sham controls after HI (Berger et al., 2017). This illustrates the complexity of developing 

therapies for translation and highlights the urgent need for safe formulations of melatonin. 

Moreover, there is limited data on the pharmacokinetics of melatonin in preterm infants, the 

threshold dose of melatonin and optimal route for melatonin administration required for 

neuroprotection in neonates (Colella et al., 2016). Recent studies have demonstrated a different 

pharmacokinetic profile of melatonin in preterm infants compared with adults and children, 

therefore data from adult studies should be used with caution to guide neonatal administration 

(Merchant et al., 2013). Furthermore, melatonin metabolites might have unintended side effects like 

sedation (Colella et al., 2016). Different doses and treatment regimens of melatonin also need to be 

tested, to establish if substitutive or supra-physiological doses are required for an optimal 

neuroprotective effect. A recent study in newborn lambs showed that during the early postnatal 

period when endogenous melatonin levels are low, high-dose exogenous melatonin treatment 

interfered with the postnatal adaptation of adrenocortical function and heart development (Seron-

Ferre et al., 2017). Melatonin injections (0.25 mg/Kg) on postnatal days 1-5 altered clock-time 

related changes in levels of hormones and metabolic markers, affected the expression of clock genes 

and functional genes in adrenals and heart, and deceased heart/body weight ratio (Seron-Ferre et 

al., 2017). Although the long-term consequences of these changes are not known, these data 

suggest the need for more preclinical and clinical research on the systemic effects of melatonin 

treatment during the early postnatal period.  

Erythropoietin (Epo) 

By contrast with the very rapid release of melatonin, the endogenous growth factor Epo shows 

slower upregulation that is seen mainly during the secondary and tertiary phases after HI. Epo and 

Epo receptor protein expression were increased in the injured hemisphere of P7 rats at 24 hours and 

one week after HI (Sun et al., 2004). Similarly, Epo receptors were upregulated in the P2 rat brain 

after exposure to transient HI in-utero at embryonic day 18 (Mazur et al., 2010). In contrast, brain-

specific gene deletion (EpoR / Epo) renders neurons more susceptible to glutamate and hypoxia, and 

impairs cell survival after ischaemia (Chen et al., 2007). Moreover, there is evidence in adult mice 

that pre-conditioning with hypoxia before stroke was mediated by induction of endogenous Epo 

(Prass et al., 2003).  

Recently, elevated serum Epo concentrations were reported in full term infants exposed to perinatal 

asphyxia on days one and two after birth, and were associated with severity of HIE on MRI 

(Sweetman et al., 2017). Similarly, baseline endogenous Epo levels (pre-Epo infusion and therapeutic 

hypothermia) in term infants with moderate to severe injury undergoing hypothermia were 

positively correlated with injury in the basal ganglia and brainstem (Massaro et al., 2018). 

Endogenous upregulation of Epo after HI is delayed but prolonged, suggesting that it likely has a role 

both in limiting injury in the secondary phase and promoting neurorepair in the long-term. However, 

it should be noted that milder HI brain injury in non-human primates did not stimulate Epo 

production, despite causing injury, and this is one rationale for exogenous treatment strategies 

(Traudt et al., 2013). Thus, exogenous Epo treatment has potential to further improve outcomes. 
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Studies of exogenous treatment support this hypothesis. Delayed treatment with 5000 U/Kg human 

recombinant Epo (rEpo) at 24, 48 and 72 hours after HI in P7 rats was associated with decreased 

neuroinflammation and improved neural outcome (Sun et al., 2005). Furthermore, delayed 

treatment with rEpo starting 48 hours after HI in P7 rats did not reduce tissue volume loss, and yet 

increased oligodendrogenesis at five days after HI, with improved oligodendrocyte maturation, 

reduced white matter injury and increased neurogenesis at 14 days after injury (Iwai et al., 2010). In 

preterm fetal sheep, a prolonged infusion of rEpo from 30 minutes to 72 hours after severe HI 

improved electrophysiological and cerebrovascular recovery in association with reduced apoptosis 

and inflammation, three days after HI (Wassink et al., 2017).  

Clinically, postnatal treatment with Epo as monotherapy or in combination with therapeutic 

hypothermia improved neurodevelopmental outcomes in several trials of term neonates with 

hypoxic-ischaemic brain injury (Zhu et al., 2009; Rogers et al., 2014; Wu et al., 2016; Malla et al., 

2017). A recent meta-analysis of 1133 very preterm infants ( 32 weeks gestation) randomised to 

early Epo for neuroprotection found reduced incidence of severely impaired neurodevelopmental 

scores at 18-24 months post menstrual age, odds ratio 0.51 (P < 0.005), with a number needed to 

treat of 14 (Fischer et al., 2017). 

Conclusions 

Preclinical studies have provided significant evidence for interaction between multiple insults 

modifying neural outcome after asphyxia and have demonstrated that time and dose dependent 

interactions could act in synergy to exacerbate or attenuate the damage induced by HI. However, 

there is only limited clinical data examining the effect of multiple interactions on 

neurodevelopmental outcome. In addition, there is a significant gap in knowledge of mechanisms 

underlying the interactions between various factors. There are additional factors that contribute to 

the modulation of HI outcomes not discussed in this review, such as the role of the peripheral 

immune system, fetal parity, and importantly fetal sex. Nevertheless, the evidence presented above 

highlights the importance of assessing the effect of multiple hits on neural outcomes in infants with 

HIE. Potentially, identification of high-risk groups can inform the development of future treatments. 

Furthermore, there is a need for more preclinical studies examining the efficacy of neuroprotective 

treatments for injury induced with multiple insults to examine the realistic clinical scenario. 

Identification of endogenous neuroprotective mechanisms has provided a rationale for exogenous 

treatment with these factor agents to further augment neuroprotective effects. It remains to be 

determined if multiple treatments given in a similar temporal profile to their endogenous 

upregulation will have an optimal neuroprotective effect.  
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Figure Legend 

Figure 1. Schematic diagram illustrating the phases of evolving hypoxic-ischaemic (HI) brain injury. 

Examples of when endogenous neuroprotective factors are released are shown at the top. Examples 

of factors which modify the perinatal adaptation to HI are shown below. Factors that can increase 

neural injury or risk of neurodevelopmental impairment are denoted by up arrows, while factors 

associated with evidence for decreased injury and impairment are denoted by down arrows. SNS 

(sympathetic nervous system), insulin-like growth factor 1 (IGF-1), electroencephalographic activity 

(EEG).  
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