

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

A Novel Electric Fence Energizer: Design and Analysis

By

Duleepa J. Thrimawithana

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engineering

Department of Electrical and Computer Engineering The University of Auckland New Zealand June 2008

Abstract

Continual advancements in technology have led to the development of reliable, efficient and economical farm management systems, many of which utilize electric fences for effective control of farm animals. An electric fence system constitutes a conducting fence structure that is energized by a high voltage signal generated from an electric fence energizer. Modern electric fence energizers employ a pulsed power supply together with an appropriate high voltage charging scheme to generate high voltage pulses that energize the fence structure. The high voltage pulse delivers a non-lethal electric shock to an animal that comes into contact with the fence, and the consequent psychological impact on the animal is such that it is less likely to come into contact with the fence again.

The complexity associated with modelling electric fence systems has hindered the development of proper mathematical tools that aid their design and optimization, and as a consequence, electric fence systems are currently designed using empirical rules together with a trial and error design approach. This Thesis therefore aims to fulfil this need by presenting new technologies and mathematical tools that can be used to design both intelligent and optimized electric fence systems. It presents a comprehensive study on electric fencing systems, which includes a detailed mathematical analysis on pulse propagation properties of electric fence networks and the development of high performance fence energizers that incorporates new pulses power supply technologies and high voltage charging schemes.

With regard to the pulsed power technologies, two novel topologies with the ability to adapt their output pulse shape according to the fence conditions are proposed. The performance of these technologies is analyzed mathematically, and verified experimentally. In comparison to

III

the existing fence energizer technology, energizers that are based on the proposed pulsed power supply designs are superior in performance. Furthermore, a novel Buck-Boost pushpull parallel-resonant converter technique, which is suitable for charging high voltage storage capacitors in an energizer, is also presented. The proposed technique allows for the push-pull parallel-resonant converter to operate with a frequency dependent variable voltage gain over a wide load range while maintaining zero voltage switching (ZVS). The operation of the converter is analyzed mathematically and verified experimentally to validate the proposed technique.

In order to gain an insight into the propagation characteristics of electric fence networks, the Thesis presents a comprehensive mathematical model. The model uses the propagation properties of fence networks with frequency dependent distributed line parameters to obtain analytical solutions for the propagation function in the frequency-domain. As these analytical solutions are complex in nature, they are solved numerically to obtain time-domain solutions, the accuracy of which are verified through experiments and simulations.

The mathematical tools and new technologies proposed in the thesis can be used to design electric fence systems that are more efficient and effective than the existing systems. In addition, the tools proposed are also expected to aid the design of electric fence based communication channels for intelligent farm management systems.

IV

To my loving Father, Mother and Sisters There are many people who have helped me in numerous ways to succeed in my PhD studies over the past three years. Although I wish to express my sincere gratitude to all of them, individually, I use this limited space to thank a few people who I should specifically mention in recognition of their invaluable support and guidance offered to me.

First and foremost, I wish to offer my deepest and sincere gratitude to my supervisor, Dr. Udaya K. Madawala, for all the valuable advice and guidance offered to me during the course of my studies. He has always been very friendly, supportive, and enthusiastic, which made my studies much more pleasurable and interesting.

Secondly, I wish to express my gratitude to the R&D engineers at Tru-Test Ltd. Particularly, Bob Woodhead, Pieter Lunenburg, Nick Fenwick, Chris Keith, Philip Ramsey and Rene Wollkopf for their helpful technical support extended to me during the past few years of my studies. Furthermore, I am indebted to Tru-Test Ltd. for lending me all the necessary laboratory equipment and providing me with financial assistance.

In addition, I would like to thank Technology for Industry Fellowship (TIF), New Zealand for bestowing a scholarship and the University of Auckland for providing financial assistance to participate at the IECON'06, PEDS'07, IPEC'07 and ICIT'08 conferences, by offering a Graduate Research Fund (GRF) and a Postgraduate Research Student Support (PReSS) fund.

I wish to offer my sincere appreciation to Prof. Allan Williamson for offering a part-time lectureship position, providing me with financial assistance to continue my research into the fourth year.

I would like to thank Prof. Michael O'Sullivan and Assoc. Prof. Sing Kiong Nguang for the valuable advice offered on numerical analysis techniques.

I wish to express my special thanks to Thilini Thrimawithana, Amali Thrimawithana, Sujani Thrimawithana, Thusitha Mabotuwana, Thiranjith Weerasinghe, Sujeewa Wannigama and Malsha Kularatna for proof reading the thesis.

Finally, I would like to convey my genuine gratitude to my loving father, mother, former teachers, sisters and friends for their thoughtful support offered to me throughout my academic life.

Duleepa J Thrimawithana Auckland June 2008

Table of Contents

Abstract III				
Acknow	Acknowledgements			
Table of	Table of Contents VIII			
List of	ז igures	XII		
List of	רables	KVI		
Nomen	zlature	KVII		
Chapte	r 1 Introduction			
1.1	An Introduction to Electric Fence Technology 1	l		
1.2	Evolution of Electric Fence Technology5	5		
1.3	Scope of the Thesis 1	1		
1.4	References 1	6		
Chapte	r 2 HV Pulsed Power Technology			
2.1	Present State of Fence Energizer Technology 1	8		
2.2	HV Pulsed Power Systems 2	21		
2	2.1 Direct Discharge Type Pulse Generator	25		
2	2.2 Pulse Transformer Type Pulse Generator	28		
2	2.3 Marx Generator Type Pulse Generator	31		
2	2.4 Vector Inversion Type Pulse Generator	33		
2	2.5 A Summary on Properties of HVPPS	35		
2.3	Conclusions	36		
2.4	References	37		
Chapte	3 Vector Inversion Generators			
3.1	Principle of Operation4	10		
3.2	A Simplified Model 4	12		
3.3	The Derivation of Solutions4	16		
3.4	Verification of Simplified model 5	51		
3.5	A Generalized Model	53		
3.6	Verification of Generalized Model5	55		

3.7	Conclusions	60
3.8	References	61
Chapt	ter 4 A Novel Fence Energizer	
4.1	Introduction	62
4.2	Implementation of a Novel Fence Energizer	64
4.3	Results and Discussion	69
4.4	Conclusions	71
4.5	References	72
Chapt	ter 5 A Novel HV Pulse Generator	
5.1	Introduction	74
5.2	The Proposed Topology	76
5.3	Theoretical Analysis	
5.4	Results and Discussion	
5.5	Conclusions	
5.6	References	
Chapt	ter 6 A Novel Buck-Boost PPRC	
6.1	High Voltage Charging Schemes	92
6.2	Quasi Resonant Converters	
6.3	Resonant Converter	
6.4	A Novel Buck-Boost PPRC	
(6.4.1 Boost Mode of Operation	
(6.4.2 Analysis on the Boost Mode	
(6.4.3 Results on Boost Mode	111
(6.4.4 Normal Mode of Operation	
(6.4.5 Analysis on the Normal Mode	
(6.4.6 Results on Normal Mode	
6.5	Conclusions	
6.6	References	
Chapt	ter 7 PPRC Operation in Buck Mode	
7.1	Buck Mode of Operation	
72	Analysis on the Buck Mode	136

7.2	Ana	lysis on the Buck Mode	136
	7.2.1	Operation when Both Switches are Turned-off	137

	7.2.2	Operation when One Switch is Turned-on	139
	7.2.3	Determination of Constants	140
7.3	Resi	ults and Discussion	
7.4	Con	clusions	
7.5	Refe	erences	150
Chap	ter 8	A Generalized Fence Model	
8.1	Intro	oduction	153
8.2	Mod	lelling the Electric Fence	155
	8.2.1	Derivation of Line Parameters	
	8.2.2	Frequency-Domain Analytical Solution	
	8.2.3	Modelling Multiple Discontinuities	
	8.2.4	Time-Domain Numerical Solution	
	8.2.5	Limitations of the Model	
8.3	Resi	ults and Discussion	
	8.3.1	Simple Fence Structures	
	8.3.2	Complicated Fence Structures	
	8.3.3	Effects of Earth Return Currents	
	8.3.4	Safety Aspects	
8.4	Con	clusions	
8.5	Refe	erences	
Chap	ter 9	A Simplified Fence Structure	
9.1	Mod	lelling a Single-Wire Fence	195
	9.1.1	Derivation of Line Parameters	198
	9.1.2	Frequency-Domain Analytical Solution	
	9.1.3	Modelling Multiple Discontinuities	
	9.1.4	Time-Domain Numerical Solution	
9.2	Resi	ults and Discussion	
	9.2.1	Line Voltages and Currents	
	9.2.2	Frequency Dependence of Line Parameters	
	9.2.3	Shock Voltage	
9.3	Con	clusions	
9.4	Refe	erences	

Chapter 10 Conclusions

10.1 General Conclusions	
10.2 Contributions	
10.3 Recommendations	
10.4 References	
Appendix A: Parameters of PPRC	
Appendix B: Fence Parameter Used in Simulations	
Appendix C: Fence Parameters of Karaka Farm	

List of Figures

 Fig. 1.2 A typical electric fence layout Fig. 1.3 Pulsed output energizers implemented with mechanical devices Fig. 1.4 A schematic of a mechanical switch based energizer Fig. 1.5 A schematic of an energizer design based on a vacuum tube Fig. 1.6 A modern electric fence energizers Fig. 1.7 Commercial energizer products Fig. 2.1 A standard pulsed output type energizer Fig. 2.2 High voltage pulsed power generation schemes Fig. 2.3 A conceptual circuit diagram of a direct discharge type converter Fig. 2.4 Typical characteristics of an HVPPS Fig. 2.5 Direct discharge type HVPPS technique Fig. 2.7 Pulse transformer type HVPPS 	5 7 8 8
 Fig. 1.3 Pulsed output energizers implemented with mechanical devices Fig. 1.4 A schematic of a mechanical switch based energizer Fig. 1.5 A schematic of an energizer design based on a vacuum tube Fig. 1.6 A modern electric fence energizers Fig. 1.7 Commercial energizer products Fig. 2.1 A standard pulsed output type energizer Fig. 2.2 High voltage pulsed power generation schemes Fig. 2.3 A conceptual circuit diagram of a direct discharge type converter Fig. 2.4 Typical characteristics of an HVPPS Fig. 2.5 Direct discharge type HVPPS technique Fig. 2.6 An implementation of an HV switch with IGBTs 	7 8 8
 Fig. 1.4 A schematic of a mechanical switch based energizer Fig. 1.5 A schematic of an energizer design based on a vacuum tube Fig. 1.6 A modern electric fence energizers Fig. 1.7 Commercial energizer products Fig. 2.1 A standard pulsed output type energizer Fig. 2.2 High voltage pulsed power generation schemes Fig. 2.3 A conceptual circuit diagram of a direct discharge type converter Fig. 2.4 Typical characteristics of an HVPPS Fig. 2.5 Direct discharge type HVPPS technique Fig. 2.6 An implementation of an HV switch with IGBTs 	8 8
 Fig. 1.5 A schematic of an energizer design based on a vacuum tube Fig. 1.6 A modern electric fence energizers Fig. 1.7 Commercial energizer products Fig. 2.1 A standard pulsed output type energizer Fig. 2.2 High voltage pulsed power generation schemes Fig. 2.3 A conceptual circuit diagram of a direct discharge type converter Fig. 2.4 Typical characteristics of an HVPPS Fig. 2.5 Direct discharge type HVPPS technique Fig. 2.6 An implementation of an HV switch with IGBTs 	8
 Fig. 1.6 A modern electric fence energizers Fig. 1.7 Commercial energizer products Fig. 2.1 A standard pulsed output type energizer Fig. 2.2 High voltage pulsed power generation schemes Fig. 2.3 A conceptual circuit diagram of a direct discharge type converter Fig. 2.4 Typical characteristics of an HVPPS Fig. 2.5 Direct discharge type HVPPS technique Fig. 2.6 An implementation of an HV switch with IGBTs 	
 Fig. 1.7 Commercial energizer products Fig. 2.1 A standard pulsed output type energizer Fig. 2.2 High voltage pulsed power generation schemes Fig. 2.3 A conceptual circuit diagram of a direct discharge type converter Fig. 2.4 Typical characteristics of an HVPPS Fig. 2.5 Direct discharge type HVPPS technique Fig. 2.6 An implementation of an HV switch with IGBTs Fig. 2.7 Pulse transformer type HVPPS 	9
 Fig. 2.1 A standard pulsed output type energizer Fig. 2.2 High voltage pulsed power generation schemes Fig. 2.3 A conceptual circuit diagram of a direct discharge type converter Fig. 2.4 Typical characteristics of an HVPPS Fig. 2.5 Direct discharge type HVPPS technique Fig. 2.6 An implementation of an HV switch with IGBTs Fig. 2.7 Pulse transformer type HVPPS 	10
 Fig. 2.2 High voltage pulsed power generation schemes Fig. 2.3 A conceptual circuit diagram of a direct discharge type converter Fig. 2.4 Typical characteristics of an HVPPS Fig. 2.5 Direct discharge type HVPPS technique Fig. 2.6 An implementation of an HV switch with IGBTs Fig. 2.7 Pulse transformer type HVPPS 	19
 Fig. 2.3 A conceptual circuit diagram of a direct discharge type converter Fig. 2.4 Typical characteristics of an HVPPS Fig. 2.5 Direct discharge type HVPPS technique Fig. 2.6 An implementation of an HV switch with IGBTs Fig. 2.7 Pulse transformer type HVPPS 	22
 Fig. 2.4 Typical characteristics of an HVPPS Fig. 2.5 Direct discharge type HVPPS technique Fig. 2.6 An implementation of an HV switch with IGBTs Fig. 2.7 Pulse transformer type HVPPS 	23
Fig. 2.5 Direct discharge type HVPPS techniqueFig. 2.6 An implementation of an HV switch with IGBTsFig. 2.7 Pulse transformer type HVPPS	24
Fig. 2.6 An implementation of an HV switch with IGBTs	26
Fig. 2.7 Dulse transformer type HVPPS	27
rig. 2.7 Tuise transformer type fivil 5	28
Fig. 2.8 Pulse generation stage of a traditional fence energizer	28
Fig. 2.9 A simplified circuit of the output stage	29
Fig. 2.10 Frequency response of the RFI filter	30
Fig. 2.11 A conceptual circuit diagram of Marx type HVPPS	32
Fig. 2.12 An implementation of a 9-stage Marx type fence energizer	33
Fig. 2.13 A vector inversion type HVPPS	34
Fig. 3.1 A vector inversion generator	41
Fig. 3.2 A vector inversion generator with transformer	
leakage inductance indicated externally	43
Fig. 3.3 A partially simplified equivalent circuit for a vector inversion generator	45
Fig. 3.4 A simplified equivalent circuit for a vector inversion generator	46
Fig. 3.5 A 4-stage vector inversion generator	47
Fig. 3.6 A simplified equivalent circuit	47
Fig. 3.7 Voltages across the output and capacitors	51
Fig. 3.8 Current through the inversion switch	52
Fig. 3.9 Modified equivalent circuit	

Fig.	3.10	An equivalent circuit for C1 voltage variations	54
Fig.	3.11	A 2-stage vector inversion generator	55
Fig.	3.12	Equivalent circuit in s-domain illustrating V_{c1}	56
Fig.	3.13	Equivalent circuit in s-domain illustrating V_{c2}	57
Fig.	3.14	Capacitor voltages for a 2-stage converter	58
Fig.	3.15	Load voltage for a 2-stage converter	58
Fig.	3.16	Capacitor voltages for a 6-stage converter	59
Fig.	3.17	Load voltage for a 6-stage converter	59
Fig.	4.1	Functional block-diagram of the prototype	65
Fig.	4.2	A schematic of the pulse generation stage	67
Fig.	4.3	An output pulse shape that can be generated by the proposed topology	68
Fig.	4.4	The prototype electric fence energizer	69
Fig.	4.5	Output pulses generated by the prototype energizer	70
Fig.	5.1	A multi-level type HVPPS	76
Fig.	5.2	An output pulse generated by a 3-stage multi-level converter	78
Fig.	5.3	A 3-stage multi-level pulse generator	84
Fig.	5.4	Load voltage and current for a heavy load	85
Fig.	5.5	Load voltage and current for a light load	85
Fig.	5.6	Switch voltage stress	87
Fig.	5.7	Diode voltage stresses	87
Fig.	5.8	Switch current stress	88
Fig.	6.1	A typical fly-back converter	94
Fig.	6.2	An equivalent model for a fly-back converter	94
Fig.	6.3	Switch voltage of a fly-back converter in discontinuous mode	95
Fig.	6.4	Switch current waveform of a fly-back converter	96
Fig.	6.5	A fly-back converter with an active clamping	97
Fig.	6.6	A fly-back converter with a lossless snubber	98
Fig.	6.7	A conventional current-fed PPRC	100
Fig.	6.8	Typical waveforms of Normal mode operation	102
Fig.	6.9	The proposed PPRC topology	102
Fig.	6.10	A model for the proposed split-capacitor PPRC	104
Fig.	6.11	Boost mode switch voltages of the proposed PPRC converter	105
Fig.	6.12	Comparison of waveforms in the Boost mode of operation	113

Fig. 6.13	Damped resonant frequency vs load resistance	114
Fig. 6.14	Peak load voltage vs load resistance	115
Fig. 6.15	Efficiency of the converter 1	116
Fig. 6.16	Peak inductor current	116
Fig. 6.17	Percentage change in peak load voltage with switching frequency	117
Fig. 6.18	Effect of coupling on damped resonant frequency	118
Fig. 6.19	Effect of parasitic capacitance on damped resonant frequency	119
Fig. 6.20	The combined effect of the parasitic elements	120
Fig. 6.21	Comparison of waveforms in the Normal mode of operation	125
Fig. 6.22	Peak load voltage vs load resistance	126
Fig. 7.1	The proposed SC-PPRC topology	133
Fig. 7.2	A model for the proposed split-capacitor PPRC	134
Fig. 7.3	Switch voltages of the proposed PPRC converter in the Buck Mode	134
Fig. 7.4	Waveforms for 5 k Ω at 94 kHz with 1.4 μ s phase-shift	144
Fig. 7.5	Waveforms for 1.7 k Ω at 94kHz with 1.6 μ s phase-shift	145
Fig. 7.6	Behaviour of the converter during Buck operation	146
Fig. 7.7	Boost, Buck and Normal modes of operation	147
Fig. 7.8	Efficiency of the converter in Buck mode	148
Fig. 8.1	Different electric fence structures	156
Fig. 8.2	A layout of a typical electric fence	157
Fig. 8.3	Measured voltage across the energizer output	
	terminals on a typical electric fence structure	157
Fig. 8.4	A multi wire fence	160
Fig. 8.5	A multi-wire fence with discontinuities	167
Fig. 8.6	Travelling waves within a section	168
Fig. 8.7	The numerical algorithm to obtain time-domain solutions	172
Fig. 8.8	Voltage and current at the midpoint of an 8 km long low leakage fence	175
Fig. 8.9	Voltage and current at the midpoint of an 8 km long high leakage fence	176
Fig. 8.10	Voltage and current at the midpoint of an 8 km long fence with a fault	177
Fig. 8.11	Construction of the test fence	179
Fig. 8.12	A GPS map of the test fence	179
Fig. 8.13	The test fence in Karaka	180
Fig. 8.14	Faults on the fence	181

Fig.	8.15	Variation of fence voltage with source impedance
Fig.	8.16	Fence voltage with a 300 Ω load at TL1
Fig.	8.17	Fence voltage when a return conductor is connected
Fig.	8.18	The effect on fence voltage due to a load
		connected to the return conductor
Fig.	8.19	Structure of the new fence
Fig.	8.20	Line voltages for the longer fence
Fig.	8.21	Line voltage after introducing a short at TL1
Fig.	8.22	Effect of earth properties on the solution
Fig.	9.1	A multi-wire fence with a single energized conductor
Fig.	9.2	Fence voltage for a multi-wire fence with a single energized conductor197
Fig.	9.4	Modelling discontinuities by dividing the fence
		into sections with uniform properties
Fig.	9.5	MATLAB algorithm that calculates time-domain
		fence voltage and current
Fig.	9.6	Voltage and current at the midpoint of an 8 km long low leakage fence
Fig.	9.7	Voltage and current at the midpoint of an 8 km long high leakage fence209
Fig.	9.8	Voltage and current at the midpoint of an 8 km long fence with a fault209
Fig.	9.9	Variation of characteristic impedance
Fig.	9.10	Variation of peak shock voltage

List of Tables

Table 1.1	Typical output parameters of a modern electric fence energizer	11
Table 2.1	Typical output parameters of HVPPS	22
Table 2.2	A comparison between HVPPS technologies	35
Table 3.1	A 4-stage vector inversion generator	46
Table 4.1	Specifications for the prototype energizer	65
Table 5.1	Design parameters for a 3-stage multi-level HVPPS	83

Nomenclature

Acronyms

- AC Alternating Current
- ADT Active Denial Technology
- DC Direct Current
- EMI Electro-Magnetic Interference
- GPS Global Positioning System
- GTO Gate Turn-Off Thyristor
- HV High Voltage
- HVPPS High Voltage Pulsed Power Generator
- IEC International Electrotechnical Commission
- IGBT Insulated Gate Bipolar Transistor
- LCD Inductor, Capacitor and Diode
- LCI Inductor, Capacitor and Current Source
- LHS Left Hand Side
- MOSFET Metal-Oxide Semiconductor Field Effect Transistor
- PPRC Push-Pull Parallel-Resonant Converter
- PSCAD Power Systems Computer Aided Design
- PWM Pulse Width Modulation
- RCD Resistor, Capacitor and Diode
- RF Radio Frequency
- RFI Radio Frequency Interference
- RHS Right Hand Side
- RMS Root Mean Square
- SC-PPRC Split-Capacitor Push-Pull Parallel-Resonant Converter
- SCR Silicon Controlled Rectifier
- TEM Transverse Electro-Magnetic
- VCO Voltage Controlled Oscillator
- ZCS Zero Current Switching
- ZVS Zero Voltage Switching

Symbols

A, B	(n x 1) vector for forward and backward travelling waves
ber, bei	Kelvin's functions
С	Capacitance (F)
C_l, C_m	Line, mutual capacitance (F/m)
D	Duty cycle
Е	Energy (J)
\mathbf{f}_{pr}	Pulse repetition rate (Hz)
$\mathbf{f}_{\mathbf{s}}$	Switching frequency (Hz)
$\mathbf{f}_{\mathbf{z}}$	Zero voltage switching frequency (Hz)
G _l	Shunt Conductance (S/m)
I, i	Current (A)
I_0	Modified Bessel functions of 1 st kind of order 0
I _{rr}	Reverse recovery current (A)
k	Coupling coefficient
L	Inductance (H)
L _{lk}	Leakage inductance (H)
L _m	Magnetizing inductance (H)
Ν	Number of stages
р	Complex depth
Р	Power (W)
R	Resistance (Ω)
r	Wire radius (m)
R _{dc}	Wire DC resistance (Ω)
R _r	Return path resistance (Ω/m)
S	Laplace transformation
T, t	Time (s)
Ton	Switch on-time (s)
T _p	Pulse duration (s)
T _s	Switching time period (s)
T_V, T_I	(n x n) similarity transformation matrices
Tz	Zero voltage switching time period (s)

U _(t)	Unit step function
V, I	(n x 1) vector for line voltage, current
V, v	Voltage (V)
V^m, I^m	Decoupled (n x 1) vector for line voltage, current
Ζ, Υ	(n x n) matrix for line impedance, admittance
Z_0	(n x n) matrix for characteristic impedance
Z_i, Z_e, Z_m	Internal, external, mutual impedance (Ω/m)
Z_T, Z_G	Terminal, generator external impedance (Ω)
Z_T, Z_G	Terminal, generator external impedances
$\Gamma_{\rm T}, \Gamma_{\rm G}$	Terminal, generator reflection coefficient
$\Gamma_{\mathrm{T}}, \Gamma_{\mathrm{G}}$	Terminal, generator reflection coefficients
μ_0	Free space permeability (H/m)
ϵ_0	Free space permittivity (F/m)
$ ho_e$	Earth resistivity (Ωm)
μ_r	relative permeability
α	Attenuation
γ	(n x 1) vector for propagation constants
η	Efficiency
σ	Wire conductance (S)
ω	Angular frequency (rad/s)
ω _r	Tank angular resonant frequency (rad/s)
ω _z	Damped angular resonant frequency (rad/s)

Subscript

max	Maximum
min	Minimum
out	Output
in	Input
eq	Equivalent
pk	Peak