Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
Shining New Light on Motoneurons
Characterization of Motoneuron Dendritic Spines
Using Light Microscopy and Novel Analytical Methods

Angus John Cathcart McMorland

Supervisors: Prof. Gregory Funk
Prof. Mark B. Cannell
Assoc. Prof. Christian Soeller

A THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF DOCTOR OF PHILOSOPHY IN PHYSIOLOGY,
UNIVERSITY OF AUCKLAND, 2009
Abstract

Dendritic spines are fundamental units of information processing within the nervous system, responsible for independent modulation of synaptic input to neurons. Filopodia, often morphologically indistinguishable from spines, are involved in formation of synapses during neuronal development. Despite the importance of these structures for neuronal function, no detailed study of their presence on motoneurons has yet been made. Here, the presence of spines on hypoglossal motoneurons (HMs) is described at three developmental stages: at P0–2 and P9–11, spines are present at an average density of ~ 0.1 spines/µm, but at P19 spine density becomes negligible. In P0–2 and P9–11, spines are non-uniformly distributed, occurring in clusters, and at lower density in the most proximal and distal regions to the soma than at intermediate regions. HM spines coincide with a decrease in cell input resistance, which reduces excitability during development. Thus one may speculate that these spines are involved in the formation of new synapses required to maintain adequate excitatory drive.

A major difficulty for the study of spines is their small size, which complicates measurement using optical methods. Here, I present a novel method for reconstructing spine morphology using geometric models based on a priori knowledge of spine structure. Tests of the technique using simulated data indicate that it has a resolving capability of up to 40 nm (limited by noise). The technique has been used to measure dendritic spines on HMs, showing that these structures have necks as small as 0.22 µm. For purely passive modulation of synaptic strength, spine necks need to be $< \sim 0.15$ µm. These data suggest that if modulation of synaptic input occurs, biochemical and/or active electrical processes are needed.

The methods developed in this Thesis, which have here been applied to HMs, are generally applicable to the study of spine morphology, and its effect on synaptic processing, in all classes of neurons.
Acknowledgements

For their assistance with this Thesis, I would like to thank in particular the following people:

Greg Funk, for his enduring enthusiasm, scientific rigour, and for passing on to me the excitement of neuroscience;

Christian Soeller, for his technical mastery, ever-open door, ready advice, and the encouragement to go that extra step;

Mark Cannell, for his mentorship, wide-ranging knowledge and eagerness to share it, and acceptance of nothing less than excellence;

Dean Robinson, for exploring with me in the early days;

Arthur Frankcom-Burgess, for putting up with my invasions of his workshop, and assistance with parts of the microscope construction;

Matthew Ireland, for the provision of many of the labelled neurons that made up the subject matter of this work;

Raj Selvaratnam, for his companionship as we travelled the road of Funk lab PhD-dom together;

To Liu Ju-Wei, for happy companionship, teaching me to take the most from every moment, and challenging me to be the best that I can be;

To Patricia Cooper, for amazing encouragement and support, both practical and emotional, during the finishing stages;

To my parents, Judith and Donald, whose unconditional love and support for my endeavours have provided the foundation on which this Thesis has been possible.
1 Introduction

1.1 Prologue — First Discoveries ... 1
1.2 Hypoglossal Motoneurons .. 3
 1.2.1 Morphology ... 3
 1.2.1.1 Dendrites ... 3
 1.2.1.1.1 Dendritic development 4
 1.2.1.2 Spines and Filopodia .. 5
 1.2.2 Electrophysiology .. 7
 1.2.2.1 Passive Properties .. 7
 1.2.2.1.1 Input resistance ... 7
 1.2.2.1.2 Membrane resistance 8
 1.2.2.1.3 Membrane capacitance & intracellular resistance 8
 1.2.2.1.4 Dendritic diameter parameter 9
 1.2.2.1.5 Electrotonic length ... 9
 1.2.2.1.6 Other properties ... 9
 1.2.2.2 Voltage-Sensitive Ionic Conductances 10
 1.2.2.2.1 K+ conductances ... 10
 1.2.2.2.2 Ca2+ and Na+ conductances 11
 1.2.2.3 Synaptic Conductances .. 11
 1.2.2.3.1 Glutamatergic ... 11
 1.2.2.3.2 GABAergic and glycinergic 12
 1.2.2.3.3 Noradrenergic ... 12
 1.2.2.3.4 Serotonergic ... 12
 1.2.2.3.5 Other neurotransmitters 13
 1.2.2.4 Dendritic Information Processing and Synaptic Integration 13
 1.2.2.4.1 Passive processing .. 13
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.2.4.2 Active processing by VSICs and synaptic interactions</td>
<td>14</td>
</tr>
<tr>
<td>1.2.3 HMs as a Model System</td>
<td>15</td>
</tr>
<tr>
<td>1.2.3.1 Contractile Consequences of HM Output</td>
<td>15</td>
</tr>
<tr>
<td>1.2.3.2 Behavioural Correlates of HM Output</td>
<td>17</td>
</tr>
<tr>
<td>1.2.3.3 Rhythmic Slice Preparation</td>
<td>18</td>
</tr>
<tr>
<td>1.2.3.3.1 Slice preparation and generation of rhythm</td>
<td>18</td>
</tr>
<tr>
<td>1.2.3.3.2 Complexity of endogenous synaptic inputs</td>
<td>18</td>
</tr>
<tr>
<td>1.2.4 Clinical Significance of HM Physiology</td>
<td>19</td>
</tr>
<tr>
<td>1.2.4.1 Sudden Infant Death Syndrome</td>
<td>19</td>
</tr>
<tr>
<td>1.2.4.2 Obstructive Sleep Apnoea</td>
<td>19</td>
</tr>
<tr>
<td>1.3 Dendritic Spines</td>
<td>20</td>
</tr>
<tr>
<td>1.3.1 Ultrastructural Morphology</td>
<td>20</td>
</tr>
<tr>
<td>1.3.1.1 Size and Shape</td>
<td>20</td>
</tr>
<tr>
<td>1.3.1.1.1 Morphological categories</td>
<td>21</td>
</tr>
<tr>
<td>1.3.1.1.2 Parsimonious descriptions of spine morphology</td>
<td>23</td>
</tr>
<tr>
<td>1.3.1.1.3 Relationships between dimensions</td>
<td>24</td>
</tr>
<tr>
<td>1.3.1.1.4 Atypical morphologies</td>
<td>24</td>
</tr>
<tr>
<td>1.3.1.2 Synapses</td>
<td>25</td>
</tr>
<tr>
<td>1.3.1.3 Smooth Endoplasmic Reticulum</td>
<td>27</td>
</tr>
<tr>
<td>1.3.1.4 Actin</td>
<td>30</td>
</tr>
<tr>
<td>1.3.2 Density and Distribution</td>
<td>30</td>
</tr>
<tr>
<td>1.3.3 Motility and Stability</td>
<td>31</td>
</tr>
<tr>
<td>1.3.4 External Influences on Structure and Density</td>
<td>32</td>
</tr>
<tr>
<td>1.3.4.1 Synaptic Activity and LTP</td>
<td>32</td>
</tr>
<tr>
<td>1.3.4.1.1 Synaptic activity</td>
<td>32</td>
</tr>
<tr>
<td>1.3.4.1.2 Long-term potentiation</td>
<td>32</td>
</tr>
<tr>
<td>1.3.4.1.3 The role of calcium</td>
<td>33</td>
</tr>
<tr>
<td>1.3.4.2 Pathology</td>
<td>33</td>
</tr>
<tr>
<td>1.3.5 The Function of Dendritic Spines</td>
<td>33</td>
</tr>
<tr>
<td>1.3.5.1 Geometrical Hypotheses</td>
<td>34</td>
</tr>
<tr>
<td>1.3.5.2 Electrical Hypotheses— Passive Spines</td>
<td>34</td>
</tr>
<tr>
<td>1.3.5.2.1 Amplification of PSPs</td>
<td>34</td>
</tr>
<tr>
<td>1.3.5.2.2 Attenuation of potentials across the spine neck</td>
<td>35</td>
</tr>
<tr>
<td>1.3.5.2.3 Attenuation of synaptic charge transfer and its dependence on synaptic conductance</td>
<td>35</td>
</tr>
<tr>
<td>1.3.5.3 Electrical Hypotheses— Active Spines</td>
<td>36</td>
</tr>
<tr>
<td>1.3.5.4 Electrical Hypotheses— Multi-spine Effects</td>
<td>36</td>
</tr>
<tr>
<td>1.3.5.5 Diffusional Hypotheses</td>
<td>37</td>
</tr>
<tr>
<td>1.3.5.5.1 Influx pathways</td>
<td>37</td>
</tr>
<tr>
<td>1.3.5.5.2 Intracellular stores</td>
<td>39</td>
</tr>
<tr>
<td>1.3.5.5.3 Intracellular Ca$^{2+}$ buffers</td>
<td>39</td>
</tr>
<tr>
<td>1.3.5.5.4 Diffusion through neck</td>
<td>40</td>
</tr>
<tr>
<td>1.3.5.5.5 Active extrusion</td>
<td>41</td>
</tr>
<tr>
<td>1.3.5.5.6 Functions of Ca$^{2+}$ handling in spines</td>
<td>41</td>
</tr>
<tr>
<td>1.3.5.5.7 Diffusion of other molecules</td>
<td>41</td>
</tr>
<tr>
<td>1.4 Filopodia and other Transient Dendritic Appendages</td>
<td>42</td>
</tr>
</tbody>
</table>
CONTENTS

1.4.1 Distinguishing Characteristics ... 42
1.4.2 Synaptogenesis and Spinogenesis ... 43
1.4.3 Regulation of Synaptogenesis and Filopodial Development 46

1.5 Imaging ... 47
1.5.1 Techniques for Imaging Neuronal Morphology 47
1.5.1.1 Early techniques .. 47
1.5.2 Electron Microscopy ... 48
1.5.3 Confocal and Two-Photon Laser Scanning Microscopy 48

1.6 Aims of this Study .. 50

2 Upright 2P Microscope Construction ... 53

2.1 Introduction .. 53

2.2 Fundamental Design Decisions ... 53
2.2.1 Imaging Modality ... 53
2.2.2 Opto-mechanical Considerations ... 54
2.2.3 Detector Location ... 54
2.2.4 Laser Scanning Mechanism ... 57

2.3 Hardware and Optics ... 57
2.3.1 Microscope Body ... 57
2.3.2 Stage ... 58
2.3.3 Scanning Optics ... 58
2.3.3.1 Scan and Tube Lenses .. 58
2.3.3.2 Chromatic Filters and Mirrors 60
2.3.4 Detection System ... 60
2.3.4.1 PMT Housing ... 60
2.3.4.2 PMT Selection ... 62
2.3.4.3 Signal Processing .. 62
2.3.4.4 Image Acquisition Board .. 62
2.3.5 Photolysis Beam Delivery ... 63

2.4 Scan Controller ... 64
2.4.1 Requirements ... 64
2.4.1.1 Scan Speed Considerations .. 64
2.4.1.2 Scan Profile and Zoom .. 66
2.4.1.3 Synchronization Signals ... 68
2.4.1.4 Line Blanking ... 68
2.4.2 Implementation .. 68
2.4.2.1 Circuitry .. 68
2.4.2.2 Microchip Program ... 68

2.5 Control Software ... 70
2.5.1 Requirements ... 70
2.5.2 Implementation ... 75

2.6 Calibration and System Performance ... 77
2.6.1 Calibration for Scan Isotropy .. 77
2.6.2 Laser Alignment .. 77
2.6.3 Stage Positional Reproducibility ... 78
2.6.4 Resolution .. 78
2.6.5 Summary of System Capabilities ... 80
2.7 Discussion .. 81
 2.7.1 Improvements ... 81
 2.7.2 PSF .. 82
2.8 Photoablation of Dendrites in Brain Slices 83
 2.8.1 Methods ... 83
 2.8.2 Results .. 83
 2.8.3 Discussion ... 84
2.9 Conclusion ... 84

3 Novel Image Analysis Techniques .. 87
 3.1 Introduction .. 87
 3.2 Dendritic Tree Reconstruction ... 88
 3.2.1 Introduction .. 88
 3.2.2 Method .. 88
 3.2.2.1 Stack Alignment .. 88
 3.2.2.2 Next Point Search ... 88
 3.2.2.3 3-D Least-Squares Fitting ... 92
 3.2.2.4 Traced Segment Ordering .. 92
 3.2.3 Results and Discussion .. 93
 3.2.3.1 Comparison to Alternative Software 93
 3.2.3.2 Comparison to Alternative Algorithms 94
 3.3 Deconvolution .. 95
 3.3.1 Theory ... 95
 3.3.2 Method .. 97
 3.3.2.1 Estimation of the PSF ... 97
 3.3.2.2 Estimation of Signal-to-Noise Ratio 98
 3.3.3 Results and Discussion .. 102
 3.3.3.1 Experimentally Derived PSFs 102
 3.3.3.2 Qualitative Improvement by Deconvolution 102
 3.3.3.3 Quantitative Improvement of Resolution By Deconvolution 103
 3.3.3.4 Quantitative Improvement of Signal-to-Noise Ratio by Deconvolution 104
 3.4 Reconstruction of Sub-optical Spine Dimensions 108
 3.4.1 Introduction .. 108
 3.4.2 Method .. 108
 3.4.2.1 Theory ... 108
 3.4.2.2 Model Fitting .. 110
 3.4.2.3 Initial Estimation of Super-Resolution Parameters 112
 3.4.3 Results .. 113
 3.4.3.1 Characterization of the Residual Function 113
 3.4.3.2 Effect of Noise on Measurement Accuracy 115
 3.4.3.3 Effect of Geometry on Measurement Accuracy 117
 3.4.3.4 Residual Value and the Reconstruction Accuracy 117
 3.4.3.5 Application of Reconstruction Method to Real Spine Data 117
 3.4.4 Discussion .. 118
 3.4.4.1 Limits to Resolution ... 118
Microscope Technical Specifications

- **B.1 Technical Drawings**
- **B.2 Circuit Board Production**
- **B.3 Scan Controller Interface**
- **B.4 Optical Principles**

Code Listings

- **C.1 Scan Signal Generator**
- **C.2 Acquisition Board Interface Software - MVControl**
 - C.2.1 mv.cpp
 - C.2.2 MVControlDlg.cpp
- **C.3 CAOScope Control Software**
 - C.3.1 function scanBoss.Calculate()
 - C.3.2 function scanBoss.CalcSpot()
 - C.3.3 module mdlRun
- **C.4 Image Alignment Calculation**
- **C.5 Neurite Tracing Algorithm**
 - C.5.1 Principal Routines
 - C.5.2 Example Co-ordinates File
 - C.5.3 Path Parsing Routines
- **C.6 Spine Reconstruction Algorithm**

Bibliography
List of Figures

1.1 Sketch by Cajal of spinal cord section from newborn dog 2
1.2 Golgi labelling of HM dendritic spines 6
1.3 HRP labelling of HM dendritic spines 7
1.4 Musculoskeletal structure of the tongue 16
1.5 Qualitative spine classification scheme 22
1.6 EM of synapse on spine ... 26
1.7 Schematic of spine SER arrangement 29
1.8 Neck resistance as a function of PSP amplitude in the dendrite 37
1.9 Spine Ca^{2+} handling mechanisms 38
1.10 Possible mechanisms of filopodial synaptogenesis 45
1.11 Excitation cones for CLSM and 2PM 50

2.1 Performance comparison of confocal and 2PM at depth 55
2.2 Effect of detection path for scattered light collection 56
2.3 Photograph of upright 2P microscope 59
2.4 Photograph of scanning system 60
2.5 Optic components .. 61
2.6 PMT housing ... 62
2.7 Laser power decrement along illumination light path 63
2.8 Scan controller outputs .. 66
2.9 Scan generator outputs and mirror position 67
 (a) Command and position signals, zoom 1 67
 (b) Command and position signals, zoom 3 67
 (c) H-sync and position signals, zoom 3 67
2.10 Circuit schematic for scan controller 69
2.11 Scan controller module .. 70
2.12 Microcontroller interrupt routine 71
2.13 Microcontroller program starting code 72
2.14 Microcontroller program input processing 73
2.15 Microcontroller scan-time code 74
2.16 CAOScope software architecture 76
2.17 Microscope control software (CAOScope) 76
2.18 Reflectance image of calibration graticule 77
2.19 Graticule grid point used to check positional reproducibility.
 (a) Pre-move .. 78
 (b) Post-move .. 78
(c) Comparison .. 78
2.20 Upright PSF .. 79
2.21 Ablation of dendrites in cultured neurons 83
2.22 Electrophysiological and morphological responses to Initial photolysis attempts 84

3.1 Stack alignment by cross-correlation 89
3.2 Tracing algorithm schematic 90
3.3 Comparison of traced points and volume data 93
3.4 Convolution .. 95
3.5 Variance–mean plots .. 100
3.6 Effect of sampling on estimation of S/N by neighbour comparison .. 101
3.7 Estimation of noise by comparison with artificially noisy images ... 102
3.8 Experimentally measured PSFs 103
3.9 Comparison of pre- and post-deconvolution images. 104
3.10 Deconvolution with different PSF 105
3.11 Effect of deconvolution on the PSF 106
3.12 Deconvolution and filtering affects S/N 107
3.13 Effect of spine orientation on emitted fluorescence .. 109
3.14 Effect of PSF sphericalization on intensity profile 110
3.15 Model schematic ... 112
3.16 Characterization of the merit function 114
3.17 Effect of S/N on reconstruction accuracy 116
3.18 Optimization examples ... 116
3.19 Effect of spine geometry on reconstruction accuracy . 117
3.20 Residual values and corresponding head and neck reconstruction accuracies 117
3.21 Real spine reconstruction examples 118
3.22 Effect of spine size and orientation on fluorescence intensity .. 121

4.1 Confirmation of HM identification by repetitive firing 125
4.2 Dendritic morphological descriptors 128
4.3 Neonatal HM .. 129
4.4 Spine prevalence vs distance from soma 130
4.5 Regional differences in spine density 131
4.6 Local density maps on reconstructed dendritic trees 132
4.7 Branch spine density profiles 133
4.8 Spine density distribution analysis 134
4.9 Spine morphology .. 135
4.10 Glutamate application .. 137
4.11 Z distribution of dendrites 137
4.12 Dendrograms .. 139

A.1 Membrane conduction circuit 154
B.1 Tube lens mount .. 160
B.2 Scan lens mount ... 161
B.3 Scan motor mount .. 162
B.4 Modular PMT housing design specifications 163
LIST OF FIGURES

B.5 Dichroic mirror mount unit of modular PMT housing 164
B.6 Scan control signal circuit board mask .. 165
B.7 Scanning ray diagram ... 167
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>EM measurements of spine dimensions</td>
<td>21</td>
</tr>
<tr>
<td>2.1</td>
<td>Microscope Specification Sheet</td>
<td>80</td>
</tr>
<tr>
<td>4.1</td>
<td>Spine distribution</td>
<td>130</td>
</tr>
<tr>
<td>4.2</td>
<td>Spine morphology</td>
<td>136</td>
</tr>
<tr>
<td>4.3</td>
<td>Dendritic tree reconstruction morphometrics</td>
<td>138</td>
</tr>
<tr>
<td>4.4</td>
<td>Reconstruction branch morphometrics</td>
<td>140</td>
</tr>
<tr>
<td>B.1</td>
<td>PIC®RS-232 command specification</td>
<td>166</td>
</tr>
</tbody>
</table>
List of Algorithms

<table>
<thead>
<tr>
<th>Algorithm Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurite tracing algorithm</td>
<td>91</td>
</tr>
<tr>
<td>Proof of 3-D linear least-squares fitting calculation</td>
<td>92</td>
</tr>
<tr>
<td>Constrained iterative deconvolution algorithm</td>
<td>96</td>
</tr>
<tr>
<td>Spine model generation schema</td>
<td>111</td>
</tr>
<tr>
<td>Spine model residual function</td>
<td>113</td>
</tr>
</tbody>
</table>
List of Symbols and Abbreviations

λ wavelength or electrotonic length

[] concentration

2-D two-dimensional

3-D three-dimensional

2P two-photon

2PM two-photon microscopy

5-HT 5-hydroxytryptamine

n-D n-dimensional

A2D analog-to-digital

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate

ATP adenosine triphosphate

B byte

BDNF brain derived neurotrophic factor

Ca$^{2+}$ calcium

C/A commissural/associational

CAD computer-aided design

CaMK Ca$^{2+}$/calmodulin-dependent protein kinase

CaMKII Ca$^{2+}$/calmodulin-dependent protein kinase II

CARS coherent anti-Stokes Raman scattering

cdf cumulative distribution function

CICR Ca$^{2+}$-induced Ca$^{2+}$-release

CLSM confocal laser scanning microscopy

CPA cyclopiazonic acid

CPU central processing unit

CR carriage-return
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CW</td>
<td>continuous wave</td>
<td></td>
</tr>
<tr>
<td>D2A</td>
<td>digital to analog</td>
<td></td>
</tr>
<tr>
<td>DAB</td>
<td>di-amino-benzidine</td>
<td></td>
</tr>
<tr>
<td>DAC</td>
<td>digital-to-analog converter</td>
<td></td>
</tr>
<tr>
<td>Dii</td>
<td>1,1'-dioctadecyl-3,3',3'-tetramethylindocarbocyanine perchlorate</td>
<td></td>
</tr>
<tr>
<td>DIV</td>
<td>days in vitro</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>embryonic days old</td>
<td></td>
</tr>
<tr>
<td>EGFP</td>
<td>enhanced green fluorescent protein</td>
<td></td>
</tr>
<tr>
<td>EGTA</td>
<td>ethylene glycol tetraacetic acid</td>
<td></td>
</tr>
<tr>
<td>EM</td>
<td>electron microscope</td>
<td></td>
</tr>
<tr>
<td>EPSC</td>
<td>excitatory post-synaptic current</td>
<td></td>
</tr>
<tr>
<td>EPSCaT</td>
<td>excitatory post-synaptic Ca(^{2+}) transient</td>
<td></td>
</tr>
<tr>
<td>EPSP</td>
<td>excitatory post-synaptic potential</td>
<td></td>
</tr>
<tr>
<td>fAHP</td>
<td>fast after hyperpolarisation</td>
<td></td>
</tr>
<tr>
<td>FD</td>
<td>fluorescein dextran</td>
<td></td>
</tr>
<tr>
<td>FRAP</td>
<td>fluorescence recovery after photobleaching</td>
<td></td>
</tr>
<tr>
<td>fs</td>
<td>femtoseconds</td>
<td></td>
</tr>
<tr>
<td>FWHM</td>
<td>full-width at half-maximum</td>
<td></td>
</tr>
<tr>
<td>GABA</td>
<td>(\gamma)-amino-butyric acid</td>
<td></td>
</tr>
<tr>
<td>GG</td>
<td>genioglossal</td>
<td></td>
</tr>
<tr>
<td>GluR</td>
<td>glutamate receptor</td>
<td></td>
</tr>
<tr>
<td>GUI</td>
<td>graphical user interface</td>
<td></td>
</tr>
<tr>
<td>HFO</td>
<td>high frequency oscillation</td>
<td></td>
</tr>
<tr>
<td>HM</td>
<td>hypoglossal motoneuron</td>
<td></td>
</tr>
<tr>
<td>Hn</td>
<td>hypoglossal nucleus</td>
<td></td>
</tr>
<tr>
<td>HRP</td>
<td>horse radish peroxidase</td>
<td></td>
</tr>
<tr>
<td>HVA</td>
<td>high voltage-activated</td>
<td></td>
</tr>
<tr>
<td>Hz</td>
<td>hertz (cycles per second)</td>
<td></td>
</tr>
<tr>
<td>IR</td>
<td>infra-red</td>
<td></td>
</tr>
<tr>
<td>IP(_3)R</td>
<td>inositol-1,4,5-trisphosphate receptor</td>
<td></td>
</tr>
</tbody>
</table>
IPSP inhibitory post-synaptic potential
IPSC inhibitory post-synaptic current
ISR interrupt service routine
K⁺ potassium
LSM laser scanning microscope or microscopy
LTD long-term depression
LTP long-term potentiation
LUT lookup table
LVA low voltage-activated
mAHP medium-duration after hyperpolarisation
MAPK mitogen-activated protein kinase
MB megabyte
mEPSP miniature excitatory post-synaptic potential
mGluR metabotropic glutamate receptor
MN motoneuron
mW milliwatts
Na⁺ sodium
NA numerical aperture
NA noradrenaline or noradrenergic
NCX Na⁺-Ca²⁺ exchanger
NK₁R neurokinin-1 receptor
nm nanometer
NMDA N-methyl-D-aspartate
op-amp operational amplifier
OSA obstructive sleep apnoea
P₂XR₅ purinergic-2 receptors
P post-natal days old
PAGFP photoactivatable green fluorescent protein
PBS phosphate-buffered saline
PC personal computer
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMCA</td>
<td>plasma membrane Ca(^{2+})-ATPase</td>
</tr>
<tr>
<td>PMT</td>
<td>photomultiplier tube</td>
</tr>
<tr>
<td>preMNs</td>
<td>pre-motoneurons</td>
</tr>
<tr>
<td>PSD</td>
<td>post-synaptic density</td>
</tr>
<tr>
<td>PSF</td>
<td>point-spread function</td>
</tr>
<tr>
<td>PSP</td>
<td>post-synaptic potential</td>
</tr>
<tr>
<td>(R_m)</td>
<td>specific membrane resistance (in k(\Omega) (\cdot) cm(^2))</td>
</tr>
<tr>
<td>(R_N)</td>
<td>input resistance (in (\Omega))</td>
</tr>
<tr>
<td>REM</td>
<td>rapid eye movement</td>
</tr>
<tr>
<td>RyR</td>
<td>ryanodine receptor</td>
</tr>
<tr>
<td>S</td>
<td>Siemen</td>
</tr>
<tr>
<td>SHG</td>
<td>second harmonic generation</td>
</tr>
<tr>
<td>SIDS</td>
<td>sudden infant death syndrome</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of the mean</td>
</tr>
<tr>
<td>SER</td>
<td>smooth endoplasmic reticulum</td>
</tr>
<tr>
<td>SERCA</td>
<td>sarco/endoplasmic reticulum Ca(^{2+}) ATPase</td>
</tr>
<tr>
<td>S/N</td>
<td>signal-to-noise ratio</td>
</tr>
<tr>
<td>SP</td>
<td>substance P</td>
</tr>
<tr>
<td>SP</td>
<td>short-pass</td>
</tr>
<tr>
<td>TEA</td>
<td>tetraethylammonium</td>
</tr>
<tr>
<td>TDA</td>
<td>transient dendritic appendage</td>
</tr>
<tr>
<td>TLM</td>
<td>transmitted light microscopy</td>
</tr>
<tr>
<td>TRH</td>
<td>thyrotropin-releasing hormone</td>
</tr>
<tr>
<td>TTX</td>
<td>tetrodotoxin</td>
</tr>
<tr>
<td>UV</td>
<td>ultra-violet</td>
</tr>
<tr>
<td>VSIC</td>
<td>voltage-sensitive ion channel</td>
</tr>
<tr>
<td>VSCC</td>
<td>voltage-sensitive calcium channel</td>
</tr>
<tr>
<td>VB6</td>
<td>Visual Basic 6</td>
</tr>
<tr>
<td>VSG</td>
<td>ventral swallowing group</td>
</tr>
<tr>
<td>WF</td>
<td>wide-field</td>
</tr>
<tr>
<td>XII</td>
<td>twelfth cranial (hypoglossal)</td>
</tr>
</tbody>
</table>
List of Suppliers and Manufacturers

MBF MBF Biosciences, Williston, VT, USA

Newport Newport Corporation, Irvine, CA, USA

GSI GSI Lumonics, Billerica, MA, USA

Probes Molecular Probes, Invitrogen, Eugene, OR, USA

Sigma Sigma-Aldrich, St Louis, MO, USA

Zeiss Carl Zeiss Ltd., Oberkochen, Germany