
NEW ZEALAND JOURNAL OF MATHEMATICS
Volume 44 (2014), 61–74

FORMULÆ FOR THE EXTENDED LAPLACE INTEGRAL AND

THEIR STATISTICAL APPLICATIONS

Thanh T. Tran, Thomas W. Yee, and Garry J. Tee

(Received 8 October, 2013)

Abstract. We propose an extension of the Laplace integral and derive for-
mulæ to evaluate it over finite intervals. This integral is a generalization of

the gamma function and modified Bessel function of the third kind. Conse-

quently, our results provide not only formulæ in terms of the complementary
error function to evaluate the incomplete gamma functions, but also those for

the lower and upper incomplete Bessel functions. Statistically, our formulæ
allow for the derivation of the distribution functions of the generalized inverse

Gaussian (GIG) and gamma distributions in terms of the complementary error

function, which have not been documented in the literature.

1. Introduction

In a classical paper Whittaker [13] expressed several functions: the parabolic
cylinder, error, incomplete gamma, logarithmic integral, cosine integral and the
modified Bessel function of the third kind (which will be called the Bessel function
hereafter), in terms of the Whittaker function. Since then, it appears that the
only documented functional relations between the error and the incomplete gamma
functions are entries 8.4.1,6 in [9], which give explicit formulæ to calculate special
cases of the latter in terms of the former. Moreover, although the evaluation of the
incomplete Bessel function has attracted a significant research effort, the concepts
of lower and upper incomplete Bessel functions and formulæ to evaluate them have
not been documented in the literature. The purpose of our paper is to derive
formulæ in terms of the complementary error function to evaluate an extension of
an integral due to Laplace over finite intervals. This extended Laplace integral is
a generalization of those which appear in the gamma and Bessel functions. Our
formulæ establish previously–unknown relations between the complementary error
function and incomplete Bessel functions, and they extend known relations between
the complementary error function and incomplete gamma functions. Consequently,
they allow for the derivation of explicit formulæ for the lower and upper incomplete
forms of these functions, which have important applications in many fields of applied
sciences and engineering. For instance, we show their applications in statistical
science by deriving explicit formulæ for the cumulative distribution function (c.d.f.)
and its complementary function (c.c.d.f.) of the family of the generalized inverse
Gaussian distributions, which include the gamma distributions.
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In this paper, Section 2 and 3 derive formulæ to evaluate the extended incom-
plete Laplace integrals, and Section 4 discusses their statistical applications. The
final section describes the implementation of these formulæ in the R language. The
symbols Erf() and Erfc() denote the error and complementary error functions re-
spectively.

1.1. Generalized incomplete gamma functions. The incomplete gamma func-
tion was studied by Legendre and Prym. Chaudhry and Zubair proposed the class
of incomplete generalized gamma function [2], defined as

γν(x, b) =

∫ x

0

e−t−b/t tν−1 dt = 2

∫ √x
0

e−(ξ2+b/ξ2) ξ2ν−1 dξ , where t = ξ2 (1)

Γν(x, b) =

∫ ∞
x

e−t−b/t tν−1 dt = 2

∫ ∞
√
x

e−(ξ2+b/ξ2) ξ2ν−1 d ξ . (2)

For ν = j + 1
2 with j = 0, 1, 2, 3, . . .

• if b = 0 then the generalized incomplete gamma functions (1) and (2) reduce
to the well–known lower and upper incomplete gamma functions respectively.
Expressions for γ1/2(x, 0) and Γ1/2(x, 0) are given by 8.4.1,6 in [9];

• if b > 0 then Chaudhry and Zubair’s approaches result in expressions for
Γν(x, b) in terms of the Horn hypergeometric series of two variables, See [2,
p.57] and references therein.

To evaluate the generalized incomplete gamma function, instead of evaluating (1)
and (2) as was attempted in [2], we derive formulæ for (1) and (2). Consequently, we
are able to provide explicit formulæ in terms of the complementary error function
for γν(x, b) and Γν(x, b) when ν > 0 and b ≥ 0. Moreover, if ν < 0 then we also
obtain expressions for γν(x, b) and Γν(x, b) in cases where b > 0, and those for
Γν(x, b) when b = 0. Note that γν(x, b) is not defined when ν < 0 and b = 0.

1.2. Incomplete Bessel functions. One of the integral representations of the
modified Bessel function of the third kind with argument z and order λ is given by

Kλ(z) =
1

(2z)
λ

∫ ∞
0

e−{z
2 ξ2 + 1/(4 ξ2)} ξ−2λ−1 dξ , z > 0 . (3)

See [6, p.50] for the derivation of other common integral representations of Kλ(z)
from (3). The task of evaluating the incomplete Bessel function has been considered
by many authors. However, effort has been focussed on the numerical approach.

In this paper, we deal with the challenge of evaluating the incomplete Bessel
function from the analytical approach, to obtain expressions in terms of the comple-
mentary error function for the lower and upper incomplete Bessel functions defined
as

K̂λ(z, x) =
1

(2z)
λ

∫ x

0

e−{z
2 ξ2 + 1/(4 ξ2)} ξ−2λ−1 dξ , (4)

K̃λ(z, x) =
1

(2z)
λ

∫ ∞
x

e−{z
2 ξ2 + 1/(4 ξ2)} ξ−2λ−1 dξ . (5)

Currently, well–known commercial software such as Maple 15 is not able to evaluate
symbolically these integrals, even in the simplest cases where λ = −1/2.
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1.3. Evaluation of the extended incomplete Laplace integrals. The key to
our approach is to evaluate an integral proposed by Laplace and its extension over
finite intervals. The former is the integral to which the Schlömilch transformation
was applied to evaluate∫ ∞

0

e−(aξ2 + b/ξ2) dξ =

√
π

2
√
a
e−2
√
ab, a > 0, b > 0 , (6)

which is entry 3.325 in [5]. Here, we propose an extension of (6) denoted as

Lλ(a, b) =

∫ ∞
0

e−(aξ2+b/ξ2)ξ−2λ−1 dξ, λ ∈ R ,

and derive formulæ to evaluate lower and upper extended incomplete Laplace in-
tegrals:

L̂λ(x, a, b) =

∫ x

0

e−(aξ2+b/ξ2)ξ−2λ−1 dξ , (7)

and

L̃λ(x, a, b) =

∫ ∞
x

e−(aξ2+b/ξ2)ξ−2λ−1 dξ , x ∈ R+ (8)

for λ = ±
(
j + 1

2

)
, j = 0, 1, 2, . . .. These formulæ can be used to evaluate (1) and

(2), as they are special cases of (7) and (8) when a = 1 and ν = −λ. Similarly, (4)
and (5) are special cases for a = z2 and b = 1

4 .

2. Analytical Evaluation of the Incomplete Laplace Integral

This section evaluates the integrals L̂λ(x, a, b) and L̃λ(x, a, b) when λ = ± 1
2 (i.e.,

j = 0) using the
Schlömilch transformation, see [11]. The results are then used to derive formulæ
for the extended incomplete Laplace integrals (i.e. j = 1, 2, . . .) in the next section.

Theorem 2.1. Let a > 0, b > 0. Then∫ x

0

e−(aξ2 + b/ξ2) dξ =
1

4

√
π

a

[
e−2
√
ab Erfc

(√
b/x− x

√
a
)
− e2

√
ab Erfc

(√
b/x+ x

√
a
)]

(9)

Proof. In order to evaluate ∫ x

0

e−(aξ2 + b/ξ2) dξ,

firstly apply a change of variable ζ =
√
a ξ to obtain∫ x

0

e−(aξ2 + b/ξ2) dξ =
1√
a

∫ x
√
a

0

e−(ζ2 + ab/ζ2) dζ =
1√
a

∫ x
√
a

0

e−(ψ2 + ab/ψ2) dψ.

(10)
Let c = ab and then another change of variable ψ =

√
c/ζ in (10), so it can be

rewritten as ∫ x

0

e−(aξ2 + b/ξ2) dξ =
1√
a

∫ ∞
√
b/x

e−(ζ2 + c/ζ2)
√
c

ζ2
dζ. (11)
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From (10)–(11), it follows that∫ x

0

e−(aξ2 + b/ξ2) dξ =
1

2
√
a

[∫ x
√
a

0

e−(ζ2 + c/ζ2) dζ +

∫ ∞
√
b/x

e−(ψ2 + c/ψ2)
√
c

ψ2
dψ

]
.

(12)
The following relation holds∫ ∞
√
b/x

e−(ψ2 + c/ψ2) dψ =

∫ x
√
a

0

e−(ζ2 + c/ζ2)
√
c

ζ2
dζ, where ψ =

√
c/ζ. (13)

Plugging both sides of (13) into the RHS of (12) yields

1

2
√
a

[∫ x
√
a

0

e−(ζ2 + c/ζ2)
(

1 +

√
c

ζ2

)
dζ −

∫ ∞
√
b/x

e−(ψ2 + c/ψ2)
(

1−
√
c

ψ2

)
dψ

]
.

(14)
To evaluate

I1 = e−2
√
c

∫ x
√
a

0

e−(ζ−
√
c/ζ)

2
(

1 +

√
c

ζ2

)
dζ

let ρ = ζ −
√
c/ζ, and then

I1 = e−2
√
c

∫ ∞
√
b/x−x

√
a

e−ρ
2

dρ =

√
π e−2

√
c

2
Erfc

(√
b

x
− x
√
a

)
. (15)

To evaluate

I2 = e2
√
c

∫ ∞
√
b/x

e−(ψ+
√
c/ψ)

2
(

1−
√
c

ψ2

)
dψ

let ρ = ψ +
√
c/ψ, and then

I2 = e2
√
c

∫ ∞
√
b/x+x

√
a

e−ρ
2

dρ =

√
π e2

√
c

2
Erfc

(√
b

x
+ x
√
a

)
. (16)

From (15) and (16), the evaluation result is given by∫ x

0

e−(aξ2 + b/ξ2) dξ =
1

4

√
π

a

[
e−2
√
ab Erfc

(√
b/x− x

√
a
)
− e2

√
ab Erfc

(√
b/x+ x

√
a
)]

(17)
as required. �

Corollary 1.∫ ∞
x

e−(aξ2 + b/ξ2) dξ =

=
1

4

√
π

a
e−2
√
ab
[
2− Erfc

(√
b/x− x

√
a
)

+ e4
√
ab Erfc

(√
b/x+ x

√
a
)]

(18)

=
1

4

√
π

a

[
e−2
√
ab Erfc

(
x
√
a−
√
b/x
)

+ e2
√
ab Erfc

(√
b/x+ x

√
a
)]

.

(19)
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Proof. The sum of the RHSs of (18) and (9) equals the RHS of (6), as required by
the sum of the corresponding LHS of these expressions. Use Erfc(−z) = 2− Erfc(z)
to obtain (19) from (18). �

Corollary 2.∫ ∞
0

e−(aξ2 + b/ξ2) ξ−2 dξ =

∫ ∞
0

e−(bφ2 + aφ2) dφ =

√
π

2
√
b
e−2
√
ab . (20)

Proof. The integral with respect to φ is obtained by change of variable φ = ξ−1.
It is then evaluated using (6). �

Corollary 3.∫ x

0

e−(aξ2 + b/ξ2) ξ−2 dξ =
1

4

√
π

b

[
e−2
√
ab Erfc

(√
b/x− x

√
a
)

+ e2
√
abErfc

(√
b/x+ x

√
a
)]

.

(21)

Proof. The following relation holds∫ x

0

e−(aξ2 + b/ξ2) ξ−2 dξ =

∫ ∞
1/x

e−(bφ2 + a/φ2) dφ where φ = ξ−1. (22)

Apply (17) and let x = y−1, and then the RHS of (22) can be calculated using∫ ∞
y

e−(bφ2 + a/φ2) dφ =

∫ ∞
0

e−(bφ2 + a/φ2) dφ−
∫ y

0

e−(bφ2 + a/φ2) dφ

=
e−2
√
ab

2

√
π

b
− 1

4

√
π

b

[
e−2
√
ab Erfc

(√
a/y − y

√
b
)
− e2

√
ab Erfc

(√
a/y + y

√
b
)]
,

which is rearranged to give

=
1

4

√
π

b

{
e−2
√
ab
[
1 + 1− Erfc

(√
a/y − y

√
b
)]

+ e2
√
ab Erfc

(√
a/y + y

√
b
)}

.

Now, 1−Erfc
(√

a/y − y
√
b
)

= Erf
(√

a/y − y
√
b
)

= −Erf
(
y
√
b−
√
a/y
)

, and so∫ ∞
y

e−(bφ2 + a/φ2) dφ =

=
1

4

√
π

b

{
e−2
√
ab
[
1− Erf

(
y
√
b−
√
a/y
)]

+ e2
√
ab Erfc

(√
a/y + y

√
b
)}

.

Since 1−Erf
(
y
√
b−
√
a/y
)

= Erfc
(
y
√
b−
√
a/y
)

, y = x−1 and using (22) we get∫ x

0

e−(aξ2 + b/ξ2) ξ−2 dξ =

=
1

4

√
π

b

[
e−2
√
abErfc

(√
b/x− x

√
a
)

+ e2
√
ab Erfc

(√
b/x+ x

√
a
)]

(23)

as required. �
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Corollary 4.∫ ∞
x

e−(aξ2 + b/ξ2) ξ−2 dξ = (24)

=
1

4

√
π

b

{
e−2
√
ab
[
2− Erfc

(√
b/x− x

√
a
)]
− e2

√
ab Erfc

(√
b/x+ x

√
a
)}
(25)

=
1

4

√
π

b

[
e−2
√
ab Erfc

(
x
√
a−
√
b/x
)
− e2

√
ab Erfc

(√
b/x+ x

√
a
)]

.

Proof. The sum of the RHSs of (21) and (25) equals the RHS of (20), as required
by the sum of the corresponding LHS of these expressions. �

3. Evaluation of the Extended Incomplete Laplace Integral

This section details the steps required to derive formulæ for (7) when λ = −j− 1
2 ,

by using the results in Section 2 and the calculation of high–order derivatives of a
composite function applying Bell coefficients in [4]. The evaluation of (7) and (8)
for λ = j + 1

2 is shown as a corollary.

Theorem 3.1. Let a, b, x be positive real and j be a non–negative integer, then
the lower incomplete Bessel function when λ = −j − 1

2 is given by:

L̂−1/2(x, a, b) =
1

4

√
π

a

[
e−2
√
ab Erfc

(√
b/x− x

√
a
)
− e2

√
ab Erfc

(√
b/x+ x

√
a
)]

,

where j = 0 . (26)

If j ≥ 1, denote

η = j − k, κ = k − s, u =

√
b

x
− x
√
a, and p =

√
b

x
+ x
√
a , (27)

then we have

L̂λ(x, a, b) = (−1)j
√
π

4

j∑
k=0

(
j

k

)[
∂ηErfc(u)

∂aη
∂k

∂ak

(
e−2
√
ab

√
a

)
− ∂ηErfc(p)

∂aη
∂k

∂ak

(
e2
√
ab

√
a

)]
.

(28)
With

∂ηErfc(u)

∂aη
=
−2 e−u

2

√
π

[
∆η,1[ĝ(a)] +

η∑
β=2

(
β−1∑
n=1

(−1)nΛβ−1,n[g(a)]

)
∆η,β [ĝ(a)]

]
,

(29)

∂k

∂ak

(
e−2
√
ab

√
a

)
= e−2

√
ab

[
k−1∑
s=0

(
k

s

)
n̂s(a)

κ∑
i=1

(−1)iΛ̂κ,i
[
ğ(a)

]
+ n̂k(a)

]
, (30)

∂ηErfc(p)

∂aη
=
−2 e−p

2

√
π

[
∆η,1[p̂(a)] +

η∑
β=2

(
β−1∑
n=1

(−1)nΛβ−1,n[p(a)]

)
∆η,β [p̂(a)]

]
,

(31)

∂k

∂ak

(
e2
√
ab

√
a

)
= e2

√
ab

[
k−1∑
s=0

(
k

s

)
n̂s(a)

κ∑
i=1

Λ̂κ,i
[
ğ(a)

]
+ n̂k(a)

]
, (32)
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where

Λβ−1,n[g(a)] = Bβ−1,n

(
g1(a), g2(a), . . . , gβ−n(a)

)
, (33)

Λβ−1,n[p(a)] = Bβ−1,n

(
p1(a), p2(a), . . . , pβ−n(a)

)
, (34)

∆η,β [ĝ(a)] = Bη,β
(
ĝ1(a), ĝ2(a), . . . , ĝη−β+1(a)

)
, (35)

∆η,β [p̂(a)] = Bη,β
(
p̂1(a), p̂2(a), . . . , p̂η−β+1(a)

)
, (36)

Λ̂κ,i[ğ(a)] = Bκ,i
(
ğ1(a), ğ2(a), . . . , ğκ−i+1(a)

)
. (37)

For integer γ, the following relations hold

gγ(a) =
dγ (u2)

duγ
=


2u, for γ = 1,

2, for γ = 2,

0, for γ > 2,

pγ(a) =
dγ (p2)

dpγ
, (38)

ĝγ(a) =
dγ(−x

√
a)

dγa
=

(−1)γ+1 x

aγ−1/2

γ∏
m=1

(
m− 3

2

)
, p̂γ(a) =

dγ(x
√
a)

dγa
= −ĝγ(a) ,

(39)

ğγ(a) =
dγ(2

√
ab)

dγa
=

(−1)γ 2 bγ

(ab)γ−1/2

γ∏
m=1

(
m− 3

2

)
,

n̂γ(a) =
dγ

daγ

(
1√
a

)
=

(−1)γ

aγ+1/2

γ∏
m=1

(
m− 1

2

)
. (40)

Proof. If j = 0 then (7) is (9), and thus

L̂−1/2(x, a, b) =
1

4

√
π

a

[
e−2
√
ab Erfc

(√
b/x− x

√
a
)
− e2

√
ab Erfc

(√
b/x+ x

√
a
)]
(41)

as required. If j = 1, 2, 3, . . . then substituting λ = −j− 1
2 into (7) and a change of

variable θ = ξ2, say, yields

L̂−j−1/2(x, a, b) =
1

2

∫ x2

0

e−(aξ+b/ξ)ξ j−1/2 dξ .

When parametric differentiation wrt a is applied to the integral

Mj(a) =

∫ x2

0

e−(aξ+b/ξ)ξ j−1/2 dξ ,

the relation
∂jMj(a)

∂aj
= −Mj+1(a) (42)

holds. Thus, we use (41), (42) and induction to obtain

L̂−j−1/2(x, a, b) =

(−1)j
√
π

4

∂j

∂aj

{
1√
a

[
e−2
√
ab Erfc

(√
b/x− x

√
a
)
− e2

√
ab Erfc

(√
b/x+ x

√
a
)]}

.

(43)
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This can be rewritten as

L̂−j−1/2(x, a, b) = (−1)j
√
π

4
[N(a)−M(a)] , j = 1, 2, . . . , where

N(a) =
∂j

∂aj

[
Erfc

(√
b

x
− x
√
a

)
e−2
√
ab

√
a

]
=

j∑
k=0

(
j

k

)[
∂ηErfc (u)

∂aη
∂k

∂ak

(
e−2
√
ab

√
a

)]
,

(44)

M(a) =
∂j

∂aj

[
Erfc

(√
b

x
+ x
√
a

)
e 2
√
ab

√
a

]
=

j∑
k=0

(
j

k

)[
∂ηErfc (p)

∂aη
∂k

∂ak

(
e2
√
ab

√
a

)]
.

(45)

�

Note that (44) and (45) are obtainable by applying the Leibniz rule for the jth

derivative of a product of two factors. The objective now becomes to calculate N(a)
and M(a) by evaluating their components one by one.

3.1. Higher derivatives of Erfc (u) wrt a. This task amounts to calculating
higher derivatives of composite functions. Applying the Faà di Bruno theorem,
see [4, p.139], we have

∂ηErfc(u)

∂aη
=

η∑
β=1

dβErfc(u)

duβ
∆η,β [ĝ(a)], η = 1, 2, . . . , (46)

where the quantity ∆η,β [ĝ(a)] is evaluated using (35) and (39). Applying the
Faà di Bruno theorem again and using Appendix B, we get

dβErfc(u)

duβ
=
−2 e−u

2

√
π

(
1 +

β−1∑
n=1

(−1)n Λβ−1,n[g(a)]

)
, β = 1, 2, 3, . . . , (47)

where Λβ−1,n[g(a)] is calculated using (33) and (38). Plugging (47) into (46) yields

∂ηErfc(u)

∂aη
=
−2 e−u

2

√
π

[
∆η,1[ĝ(a)]+

η∑
β=2

(
β−1∑
n=1

(−1)nΛβ−1,n[g(a)]

)
∆η,β [ĝ(a)]

]
(48)

as given in (29).

3.2. Higher derivatives of Erfc (p) wrt a. Following the above steps we get (31)

∂ηErfc(p)

∂aη
=
−2 e−p

2

√
π

[
∆η,1[p̂(a)] +

η∑
β=2

(
β−1∑
n=1

(−1)nΛβ−1,n[p(a)]

)
∆η,β [p̂(a)]

]
.

where Λβ−1,n[p(a)] is evaluated using (34) and (38), while ∆η,β [p̂(a)] is calculated
using (36) and (39).
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3.3. Higher derivatives of e−2
√
aba−1/2 and e2

√
aba−1/2 wrt a. Applying the

Leibniz rule for the kth derivative of a product of two factors e−2
√
ab and a−1/2 and

using the value of κ given by (27, we get

∂k

∂ak

(
e−2
√
ab

√
a

)
=

k∑
s=0

(
k

s

)
∂κ

∂aκ
e−2
√
ab ds

das
1√
a
, (49)

∂k

∂ak

(
e2
√
ab

√
a

)
=

k∑
s=0

(
k

s

)
∂κ

∂aκ
e2
√
ab ds

das
1√
a
. (50)

The expression n̂s(a) to evaluate the higher derivatives of a−1/2 is given in (40).
However, those of the composite functions are obtained by applying the Faà di Bruno
formula

∂κ

∂aκ
e−2
√
ab = e−2

√
ab

κ∑
i=1

(−1)iBκ,i (ğ1(a), ğ2(a), . . . , ğκ−i+1(a)) ,

∂κ

∂aκ
e2
√
ab = e2

√
ab

κ∑
i=1

Bκ,i (ğ1(a), ğ2(a), . . . , ğκ−i+1(a)) ,

which are then substituted back into (49) and (50) to give

∂k

∂ak

(
e−2
√
ab

√
a

)
= e−2

√
ab

[
k−1∑
s=0

(
k

s

)
n̂s(a)

κ∑
i=1

(−1)iΛ̂κ,i
[
ğ(a)

]
+ n̂k(a)

]
,

∂k

∂ak

(
e2
√
ab

√
a

)
= e2

√
ab

[
k−1∑
s=0

(
k

s

)
n̂s(a)

κ∑
i=1

Λ̂κ,i
[
ğ(a)

]
+ n̂k(a)

]
,

which are (30) and (32) respectively. The evaluation of Λ̂κ,i[ğ(a)] is given by (37).

Corollary 5. If λ = −j − 1
2 then the upper incomplete Laplace integral (8) is

given by

L̃−j−1/2(x, a, b) =

= (−1)j
√
π

4

∂j

∂aj

{
1√
a

[
e−2
√
ab Erfc

(
x
√
a−
√
b/x
)

+ e2
√
ab Erfc

(√
b/x+ x

√
a
)]}

.

Proof. To evaluate (8) when λ = −j − 1
2 , from Corollary 1 we have

L̃−j−1/2(x, a, b) =
1

4

√
π

a

[
e−2
√
ab Erfc

(
x
√
a−
√
b/x
)

+ e2
√
ab Erfc

(√
b/x+ x

√
a
)]
,

for j = 0.

If j ≥ 1 and let v = x
√
a−

√
b
x then

L̃−j−1/2(x, a, b) =

= (−1)j
√
π

4

j∑
k=0

(
j

k

)[
∂ηErfc(v)

∂aη
∂k

∂ak

(
e−2
√
ab

√
a

)
+
∂ηErfc(p)

∂aη
∂k

∂ak

(
e2
√
ab

√
a

)]
,



70 THANH T. TRAN, THOMAS W. YEE, and GARRY J. TEE

which can be evaluated straightforwardly by applying the results in Theorem 3.1.
Here

∂ηErfc(v)

∂aη
=
−2 e−v

2

√
π

[
∆η,1[p̂(a)] +

η∑
β=2

(
β−1∑
n=1

(−1)nΛβ−1,n[v(a)]

)
∆η,β [p̂(a)]

]
,

and

vγ(a) =
dγ (v2)

dpγ
.

�

Corollary 6. Let a, b, x be positive real, j be a non–negative integer and λ = j+ 1
2 .

Then the lower incomplete Bessel function is given by∫ x

0

e−(aξ2+b/ξ2)ξ−2λ−1 dξ =
1

2

∫ x2

0

e−(aξ+b/ξ)ξ−j−3/2 = dξ (51)

= (−1)j
√
π

4

∂j

∂bj

{
1√
b

[
e−2
√
ab Erfc

(√
b/x− x

√
a
)

+ e2
√
ab Erfc

(√
b/x+ x

√
a
)]}

(52)

Proof. Equation (51) is formed by substituting λ = j + 1
2 into the LHS and a

change of variable κ = ξ2. It is shown that (52) holds by letting

Mj(b) =

∫ m̂

0

e−(aξ+b/ξ)ξ−j−3/2 dξ ∀ m̂ > 0,

which satisfies
∂Mj(b)

∂b
= −Mj+1(b). (53)

If j = 0 then the LHS of (51) is the integral in (21), and

L̂1/2(x, a, b) =
1

4

√
π

b

[
e−2
√
ab Erfc

(√
b/x− x

√
a
)

+ e2
√
ab Erfc

(√
b/x+ x

√
a
)]

.

(54)
For j = 1, 2, . . . , Equation (52) is established by using (53) and (54) and induction.
Higher-order derivatives wrt b are calculated by the steps in Theorem 3.1. �

Corollary 7. If a > 0, b > 0 and λ = j + 1
2 , then the evaluation of the upper

extended incomplete Laplace function (8) is given by∫ ∞
x

e−(aξ2+b/ξ2)ξ−2λ−1 dξ =

= (−1)j
√
π

4

∂j

∂bj

{
1√
b

[
e−2
√
ab Erfc

(
x
√
a−
√
b/x
)
− e2

√
ab Erfc

(√
b/x+ x

√
a
)]}

.

(55)

Proof. If j = 0 then L̃j+1/2(x, a, b) reduces to the integral in (25). Thus, we have

L̃1/2(x, a, b) =
1

4

√
π

b

[
e−2
√
abErfc

(
x
√
a−
√
b/x
)
− e2

√
abErfc

(√
b/x+ x

√
a
)]

.

(56)
If j = 1, 2, 3, . . . then using (53) and (56) we obtain (55). A higher derivative of
order j wrt b is evaluated using the steps in Theorem 3.1. �
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3.4. Evaluation of the incomplete Laplace integral in cases where λ =
−j− 1

2 and b = 0. The evaluation of the incomplete Laplace integral in these cases
is required to evaluate the standard lower and upper incomplete γ(ν, b = 0) and
Γ(ν, b = 0), respectively. In these cases, the lower and upper extended incomplete
Laplace integral can be straightforwardly obtained by substituting b = 0 into the
formulæ in Theorem 3.1 and Corollary 5 respectively.

4. Statistical Applications

Statistically, the formulæ in Section 3 have important applications, because they
allow for the derivation of explicit analytical formulæ for the distribution functions
of the gamma and generalized inverse Gaussian distributions. Firstly, we establish
the relationship between the incomplete gamma and incomplete Bessel functions
with the obtained formulæ. From (1)–(2) and (7)–(8), we have

γν(x, b) = 2 L̂−λ(
√
x, 1, b) , (57)

Γν(x, b) = 2 L̃−λ(
√
x, 1, b) , (58)

which allow for the derivation of explicit formulæ for the lower and upper gener-
alized incomplete gamma functions γν(x, b) and Γν(x, b), when λ equals half of an
odd integer. Hence, those for the standard lower and upper incomplete gamma
functions γν(x) and Γν(x) (i.e., a = 1, b = 0) are also obtainable as special cases.
Currently, only the formulæ for ν = 1

2 are available in the literature. Note that (1)
is not defined when ν < 0 and b = 0.

Similarly, expressions for the lower and upper incomplete Bessel functions are

K̂λ(z, x) =
L̂λ(x, z2, 1/4)

(2z)
λ

, (59)

K̃λ(z, x) =
L̃λ(x, z2, 1/4)

(2z)
λ

, (60)

respectively for λ = ±(j + 1
2 ).

Since (57)–(58) and (59)–(60) appear in the distribution functions of the gamma
and GIG distributions, they allow for the derivation of explicit formulæ for the
cumulative and complementary cumulative distribution functions of these distribu-
tions. Here we show the derivation of the c.d.f. and c.c.d.f. of the GIG which has
probability density distribution

GIG(w|λ, χ, ψ) =
(ψ/χ)λ/2

2Kλ(
√
χψ)

e−(χw−1 +ψw)/2 wλ−1, w > 0 (61)

where χ > 0, ψ > 0, λ ∈ R. This gives c.c.d.f. as

F (w > r|λ, χ, ψ) =
(ψ/χ)

λ/2

2Kλ(
√
χψ)

∫ ∞
r

e−(χw−1 +ψw)/2 wλ−1 dw , (62)

where r is a quantile. Although a family of the GIG distributions are obtainable by
varying the value of λ, currently only the c.d.f. of the special case with λ = −1/2
is available. That was obtained in [3], [10] and [14] by applying different methods.
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None of these approaches, however, involves analytical evaluation of the incomplete
Bessel function. Here, for λ = ±(j + 1

2 ), from Appendix A we obtain the c.c.d.f.

F (w > r|λ, χ, ψ) =
L̂λ(x, z2, 1/4)

(2z)
λ
Kλ(z)

(63)

where x = 1/
√

2ψr. Similarly, the c.d.f. is given by

F (w ≤ r|λ, χ, ψ) =
L̃λ(x, z2, 1/4)

(2z)
λ
Kλ(z)

. (64)

5. Numerical Computation in the R Language

We implemented (57), (58) as the routine gamma inc err; (59), (60) as the routine
besselK inc err and (61) as the routine pgig in the first Author’s R package frmqa,
see [12] and [11]. There are two important computational issues which are worth
highlighting. The first issue concerns computational speed of our algorithm. We
used the package partitions, see [7], to calculate the Bell coefficients, which are ob-
tainable by calculating the number of unrestricted partitions of integer j by solving
the relation λ = ±

(
j + 1

2

)
. Because the computation intensifies significantly as λ

increases, it has significant effect on the computational speed. In our experience,
it may take up to 3 minutes to complete a computation if |λ| > 15

2 .
Secondly, because our formulæ involve addition and subtraction operations, if

we use floating–point numbers which are the default accuracy setting in R, then
loss of accuracy occurs when these algebraic calculations involve a number less
than the smallest positive floating–point number ε (i.e. number such that 1 +
ε 6= 1, normally ε = 2.220446 × 10−16). To address this accuracy issue, we use
the arbitrarily precise numbers instead of R double precision numbers. This is
achieved by calling functions in the R package Rmpfr, see [8], which converts and
performs all calculation using the Multiple Precision Floating–Point Reliably, where
all arithmetic and mathematical functions work via the (GNU) C library MPFR.
Consequently, our computation becomes much more accurate, even when involving
numbers that are much smaller than ε.

Appendix A. Relations Between the Incomplete Bessel and Extended
Incomplete Laplace Integrals

K̂λ(z, x) =
1

(2z)
λ

∫ x

0

e−{z
2 ξ2 + 1/(4 ξ2)} ξ−2λ−1 dξ

=
1

2

∫ ∞
û

e− z/2 (ξ+ 1/ξ) ξλ−1 dξ (65)

=
1

2

(
ψ

χ

)λ/2 ∫ ∞
r

e−1/2 (χ/w+ψw)wλ−1 dw . (66)

To obtain (65), replace ξ2 by (2zξ)−1 with û = (2zx2)−1. By substituting z =
(χψ)1/2 into (65) and letting ξ = w(ψ/χ)1/2, (66) was obtained with r = (2ψx2)−1.
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Appendix B. Derivative of the Complementary Error Function

Entry 7.1.19 in [1] gives

dk+1

dtk+1
Erf(t) = (−1)k

2√
π
Hk(t) e−t

2

,

for k = 0, 1, 2, 3, . . .. The Hermite polynomial is defined as

Hk(t) = (−1)k et
2 dk

dtk
e−t

2

,

and so we get

dk

dtk
Erfc(t) = (−1)2k−1 2√

π

dk−1

dtk−1
e−t

2

= − 2√
π

dk−1

dtk−1
e−t

2

,

for k = 1, 2, 3, . . .
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