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The burden of heart disease is rapidly worsening due to increasing prevalence of obesity and diabetes. Data sharing and open
database resources for heart health informatics are important for advancing our understanding of cardiovascular function, disease
progression and therapeutics. Data sharing enables valuable information, often obtained at considerable expense and effort, to
be re-used beyond the specific objectives of the original study. Many government funding agencies and journal publishers are
requiring data re-use, and are providing mechanisms for data curation and archival. Tools and infrastructure are available to
archive anonymous data from a wide range of studies, from descriptive epidemiological data to gigabytes of imaging data. Meta-
analyses can be performed to combine raw data from disparate studies to obtain unique comparisons or to enhance statistical power.
Open benchmark datasets are invaluable for validating data analysis algorithms and objectively comparing results. This review
provides a rationale for increased data sharing and surveys recent progress in the cardiovascular domain. We also highlight the
potential of recent large cardiovascular epidemiological studies enabling collaborative efforts to facilitate data sharing, algorithms
benchmarking, disease modeling and statistical atlases.

Index Terms—Cardiac MRI, cardiac atlas, anatomical models, data sharing.

I. INTRODUCTION

CCARDIOVASCULAR disease (CVD) is the world’s lead-
ing cause of morbidity and mortality. Healthcare costs

from CVD are rising due to the increasing prevalence of
obesity, diabetes and metabolic syndrome. The results of the
Global Burden of Disease Study show that ischemic heart
disease was the leading cause of disability-adjusted life years
in 2010 [1]. In many countries, obesity is likely to overtake
tobacco as the leading risk to health by 2016 [2].

The ability to integrate data from multiple sources and
across many variables has significant potential for the evalu-
ation and treatment of patients. These methods enable deeper
characterization of a particular patient, and more precise
mapping to similar patients in pertinent subpopulations [3].
Efficient characterization of subpopulations requires data har-
monization, new analytical algorithms and analysis of he-
terogeneous data. This approach relies on data sharing in-
frastructure and high-throughput database resources in large
epidemiological studies as well as in small experimental
studies, which would otherwise require a large cost or effort
to reproduce.

Data sharing for scientific advancement is well established
in many fields. In genomics, databases have existed for many
years for archiving and curating data [4]. In neuroscience, large
repositories are available for specific disease groups or general
atlases [5]. Efforts are now being made to facilitate data shar-
ing in the cardiovascular domain [6]. This review highlights
the rationale and the need for data sharing in the cardiovascular
research community, and outlines current efforts to provide
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infrastructure and tools for data sharing. Examples are given
by atlas-based analysis of cardiac remodeling and ongoing
community efforts to establish benchmarking platforms for
cardiac image analysis.

II. LARGE-SCALE CARDIOVASCULAR POPULATION
STUDIES

A large part of our current understanding of multivariable
risk factors in the etiology of CVD arose from the Framingham
Heart Study, which began in 1948 and is still continuing
with over 1,200 publications. The Framingham scores assess
cardiovascular risk factors of hypertension, smoking, lipid
profile, obesity, diabetes and inactivity; the pathophysiological
progression from hypertension to heart failure; the relation-
ship between atrial fibrillation and stroke; and the value of
population-based longitudinal studies [7]. With the advent of
large-scale databases and data mining methods, it has recently
become possible to identify relationships across many different
types of information [8].

A wealth of data is now available from non-invasive car-
diac imaging examinations. Prospective longitudinal studies
derived from large-scale imaging data have been established
to investigate the pathogenesis of cardiac diseases [11], [16].
Longitudinal studies, which follow patients over the years,
enable scientists to understand the evolution of cardiac disease
from sub-clinical manifestations to clinical symptoms. The
combination of imaging data with other diagnostic information
and biomarkers gives a new rich field of big heart data (defined
for the purposes of this review as imaging studies combined
with clinical assessments in large study cohorts on an unprece-
dented scale). These present significant opportunities for new
discoveries to reduce the burden of CVD.

Table I lists existing large-scale cardiovascular studies with
collection of gigabytes of imaging data. The Multi-Ethnic
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TABLE I
MAJOR CARDIOVASCULAR EPIDEMIOLOGICAL STUDIES WITH THE

INCLUSION OF IMAGING DATA.

Study Country Images Start Size Group Age
MESA [9] USA ECG,

CT,
MRI

2000 6,814 Hispanic,
Chinese,
White,
African-
American

45–84

JHS [10] USA ECG,
CT,
MRI

2000 5,302 African-
American

21–84

UK
Biobank
[11]

UK MRI,
ECG,
DEXA

2006 100,000 Multi 40–69

CPTP [12] Canada MRI 2009 10,000 Multi 35–69
Iceland MI
[13]

Iceland MRI 2004 936 European 67–93

Framingham
Offspring
[14]

USA MRI 2002 1,707 Multi NA

EuroCMR
[15]

Europe MRI 2012 27,781 Multi 47–70

Study of Atherosclerosis (MESA) study was initiated in 2000
to focus on the manifestation of subclinical to clinical CVD
before signs and symptoms develop in the heterogeneous
population of the US [9]. The study has sampled 6,814 men
and women aged 45–84 years old across six centers. The
analysis of the 10 year follow-up has recently been completed
for around 3,000 participants [17]. The MESA study was the
first major population-based study to use cardiac MRI [18].
Data sharing is provided by the MESA study through their
ancillary studies and publication protocols.

The UK Biobank [11] is an extensive collection of cardiac
data, including questionnaires, physical examinations and bio-
logical samples, from 500,000 men and women aged 40–69 in
22 centers across the UK. An imaging enhancement sub-study
began in April 2014 with the aim of imaging 6,000 participants
during the pilot phase. If successful, 100,000 participants will
be imaged with MRI over a 5–6 year period, which will be
the largest prospective cardiac imaging dataset worldwide.
Imaging modalities include cardiac MRI, abdominal MRI,
brain MRI, carotid ultrasound, and DEXA.

The Jackson Heart Study (JHS) was designed to determine
the root causes of CVD in 5,302 African-American individuals
aged 21–84 years living in the southeastern USA (Jackson,
Mississippi) [10], [19], [20]. This group experiences increased
mortality from CVD as well as higher incidence of hyperten-
sion, obesity and diabetes. A unique aspect of JHS was the
association of neighborhood disadvantages in terms of eco-
nomic, sociocultural, behavioral, dietary and physical activity
measures with cardiometabolic risk factors [21], [22]. The JHS
provides a rare insight into the interactions between genotype
and phenotype in a high-risk population. In terms of imaging
data, the JHS has collected 3,000 CT and MRI examinations
containing heart function and calcium scores [23].

Other studies such as the Canadian Partnership for To-
morrow Project (CPTP) with 10,000 participants, ICELAND
MI with 936 patients with myocardial infarction, and the

Framingham Offspring study with 1,707 follow-up cardiac
MRI scans added more imaging data for cardiac research.
While not a study per se, the EuroCMR registry has the main
goal to evaluate the prognostic potential of cardiac MRI as
well as its cost-effectiveness. More than 27,000 consecutive
patients have been enrolled from 57 centers in 15 countries.
Similarly, the Global CMR registry has been established to
collate MRI patient data from around the world with 44,000
cases contributed to date.

III. SHARING MEDICAL DATA

With the ability to mine multidimensional relationships in
diverse datasets, sharing patient medical records across clinical
providers and researchers becomes a key factor to improve
quality of care, to reduce healthcare costs and to minimize
human errors [24]. However, sharing medical data remains a
big challenge due to the extremely granular nature of health-
care data. Hospitals, imaging centers, healthcare institutions
and clinics must enforce strict guidelines to uphold patient
data privacy and security. Therefore, central to enable medical
data sharing is a secured protection of patient data, such as
mandated by the HIPAA (Health Insurance Portability and
Accountability Act) in the US or the Data Protection Act in the
UK. Ensuring patient data privacy is vital to sharing medical
records to a wider community.

In general, there are three entities in data sharing: data
contributors, organizers and users (see Fig. 1). The data
contributor is a provider who wants to release their data to a
wider research community without breaching agreements with
patients and other clinical interests. Data contributors must
ensure informed consent is obtained, which is compatible with
data sharing, in conjunction with local ethics committee or
institutional review board (IRB) approval. They can only con-
tribute anonymized or de-identified data. The de-identification
process removes any protected health information that can
be used to identify an individual, e.g. name, dates (except
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Fig. 1. Three components of medical data sharing: data contributor, organizer
and user. The data contributor controls the acceptance of user request, while
the organizer manages, stores and also enriches the original clinical data with
derived analyses. This figure was adapted from [6].
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TABLE II
EXISTING MEDICAL DATA SHARING INFRASTRUCTURES THAT INCLUDE CARDIAC DATA

Name Domain Accessibility Studies (size) Data type URL
CAP Cardiac Registration Asymptomatic (2,450) MRI www.cardiacatlas.org

Guest Myocardial infarction (465) Finite element
Normal human heart atlas (1) Contours
Mixed normal, hypertrophy, heart failure (45) Binary images

AMDB Cardiac Registration Unspecified Geometrical models amdb.isd.kcl.ac.uk
iDASH Breast Registration Breast MRI (153) R data idash.ucsd.edu

Sequencing data Guest Clinical logs (62) MRI
Cardiac Radiology reports (2,363) Text files
Colon CT colonography (103) CT
Lung Diabetes mellitus data (17) GPS data
Physical motion Laboratory test data (13,000) CSV files
Lab tests Lung CT (398+) JPEG images
General medicine Coronary artery disease data (20,000)

ICU record (53)
Motion sensor data (16)

CVRG Cardiac Open Normal canine heart (7) MRI cvrgrid.org
Failing canine heart (5) CT
Normal human (1)
Canine heart atlas (1)
Ischemic human CT (13)
Non-ischemic human CT (12)

PhysioNet Cardiac Open European ST-T database (79) ECG www.physionet.org
Brain Long-term ST database (43)
Biomedical signals Arrhythmia database (23)

Noise stress test (14)
Heart rate database (10)
Congestive heart failure (15)
Partial epilepsy (7)
QT database (100)

VIP Various organs Registration Unspecified Simulated data www.creatis.insa-lyon.fr/vip

for year), social security, location or other unique identifiers.
These can be stored in the metadata, concealed as filename, or
even hidden in clinical narratives [25]. Several automated de-
identification algorithms are available (see a survey in [26]).

To ensure that IRB and study requirements are met, data
contributors are usually involved in a user review process
to decide whether to grant or to deny a request for data
access. Alternatively, data contributors can determine specific
types of research activities. For example, the left ventricular
consensus segmentation project [27] uses a subset from the
DETERMINE cohort [28], where the data contributor has
given approval to use 200 MRI cases of patients with my-
ocardial infarction specifically for the development of auto-
matic segmentation algorithms. In another framework called
PCARE [29], patients also act as data contributor, who control
how their data are being shared to unaffiliated healthcare
organizations.

For the organizer who wants to set up data sharing infras-
tructure, the main challenges are to ensure the integrity of the
data and to establish seamless integration, storage and manage-
ment of a massive amount of heterogeneous data, which may
include images, laboratory tests, diagnostic records, biological
and physiological models. The information technology to share
multi-dimensional data over the internet has matured in the last
decade. Several data sharing infrastructure alternatives have
been proposed in various domains, such as [6], [29]–[31].

The organizer may also be involved in a process to enrich
the original patient data to make the data more useful for
broader research activities. Such data enrichment activities

include ontological annotations, manual labeling, model fitting
and population analysis (see Fig. 1).

User responsibility can be defined by a data distribution
agreement, which dictates the specific type of research, com-
mitment to secure the data within their host computer, and
a potential intellectual property agreement. All conditions
or restrictions on data use should be specified in the data
distribution agreement.

IV. EXISTING CARDIAC DATA SHARING

In the cardiac domain, several efforts have been initiated
to establish infrastructures for data sharing by providing
anonymized baseline examinations, imaging data and other
derived computations, such as anatomical models and statisti-
cal shape analysis. Table II summarizes existing medical data
sharing infrastructures, which also include cardiovascular data.

Established in 2010, the Cardiac Atlas Project (CAP) is a
worldwide consortium to host large cardiac image data with
derived finite element models of the heart and associated
diagnostic information [6]. Over 3,000 cardiac MRI cases
have been contributed to the database, which are being used
by more than 20 research groups worldwide for various
research activities. CAP is a registered ancillary study of
MESA and has developed methods to translate results between
MESA and other studies using atlas-based bias correction
methods [32]. Patient-specific models of the heart provide a
standard coordinate system, which map the heart according
to anatomical location. CAP has developed methods to pool
data from different sources in a standardized manner, and
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to correct bias arising from imaging or analysis protocol.
CAP is endorsed by the Society of Cardiovascular Magnetic
Resonance, which maintains an upload site where cases can
be contributed to the atlas project [33].

The Anatomical Models Database (AMDB) is a web acces-
sible framework to share and reuse cardiovascular models [30],
[31]. AMDB stores various cardiac geometry models, acces-
sible for any researchers to perform a simulation or a bench-
marking study in cardiac electrophysiology and mechanics.
The aim of AMDB (formerly known as euHeart) is to allow
multi-scale computational modeling of the heart [34]. AMDB
employs a web service tool that personalizes a geometric
heart model given binary images of the heart and cardiac
parameters [35].

The iDASH (integrated data analysis, anonymization and
sharing) is a general framework to provide a scalable tool to
share and access medical data, including cardiac diseases [36].
The iDASH stores and shares heterogeneous data from mul-
tiple domains (see Table II). A specific infrastructure that
shares only ECG signals is provided by PhysioNet. Currently,
PhysioNet stores and freely shares large scale de-identified
recorded physiologic signals, time series and other related
biomedical data [37]. These are healthy subjects and patients
with various diseases, including sudden cardiac death, con-
gestive heart failures, sleep apnea, aging, epilepsy and gait
disorder. The CardioVascular Research Grid (CVRG) provides
an infrastructure to securely and seamlessly access complex
data of cardiovascular studies, including an automated on-
tological labeling of anatomical differences [38]. CVRG is
currently establishing an easy access platform with cloud-
based and browser-based tools without the need to install
complex software. The Virtual Imaging Platform (VIP) is
another openly accessible online data sharing platform, which
focuses more on computationally extensive biomedical simu-
lation processes [39].

V. APPLICATION: POPULATION-BASED CARDIAC
REMODELING

The human heart is continuously remodeling (changing
shape) in response to pathology, aging, environmental and
genetic factors. Cardiac remodeling can be maladaptive when
linked to heart failure progression [40], [41], but remodeling
can be adaptive during normal growth or intensive physical
exercises. Even in the early stages of heart failure, adaptive
remodeling can be observed because the heart maintains its
function in spite of pressure or volume overloading in the
acute phase of cardiac injury [42]. There is a transition from
adaptive to maladaptive remodeling in the progression of
heart disease, but when and how this transition occurs still
remains unknown [43]. As illustrated in Fig. 2, population-
based studies that combine cardiac shape, function and other
clinical data can characterize these remodeling processes.

As the heart remodels, its geometry, mass, composition and
volume changes. The shape of the heart can become less
elliptical and more spherical [44]. Ventricular sphericity (width
to height ratio) has been observed in symptomatic patients and
associated with decreased survival [45] and adverse remodel-
ing [46]. Increased LV chamber dimension [47], lower systolic

dimension change [48] and hypertrophy [49] have also been
observed in asymptomatic individuals. Fig. 3 shows how LV
size and sphericity were increased from normal volunteers to
patients with heart failure in a subset of cases from CAP.

The understanding of cardiac remodeling processes is par-
ticularly important in quantifying effects of treatment and
reverse remodeling [50]. Several studies have been actively
investigating how remodeling occurs in the population by
using statistical shape and function tools [51]–[56]. For in-
stance, principal component analysis (PCA) on the cardiac
shapes of 102 adults born preterm (30 weeks) and 102
age matched healthy volunteers have shown different shape
indices in adults who were born preterm, compared with
normal term controls [53]. A statistical cardiac atlas built
from 1991 asymptomatic individuals has shown a relationship
between traditional risk factors (hypertension, smoking, sex
and diabetes) with LV remodeling [56]. These studies have
demonstrated the power of geometrical heart shape models to
identify cardiac remodeling in certain sub-populations or in
later life.

VI. APPLICATION: BENCHMARKING

A major advantage of data sharing is the availability of
standardized datasets that can be used to develop, validate
and compare (benchmark) new automated algorithms. Bench-
marking is important to evaluate the relative efficacy of the
growing number of proposed automated methods. Objective
comparisons are more difficult to perform if each published
method presents results using private data and incompatible
platforms.

Community efforts have been made to provide platforms for
benchmarking on existing and emerging algorithms through
a series of “challenges”. A left ventricular segmentation
challenge was held in 2009 using 45 cases from a mixed
patient dataset (normal, heart failure, myocardial infarction
and hypertrophy) [57]. These data are in the public domain
and can be accessed directly via the Cardiac Atlas Project
website. A similar challenge was run in 2011 with more
cases (200 patients with myocardial infarction) [58], which
subsequently established a platform for collaboration between
research groups to define a common consensus ground truth
for the myocardial segmentation [27]. Other benchmarking
frameworks utilizing cardiac data sharing include cardiac
motion [59], segmentation of scar tissue in the left atrium [60],
and automated extraction of centerlines in coronary arter-
ies [61]. Future challenges and benchmarking studies are
planned, including cardiac mechanics, electrophysiology and
correcting breathing motion artifacts in perfusion MR images.

VII. CHALLENGES

The main challenge in big heart data studies lies primarily
on the willingness of providers to release data anonymously
to a wider community. Fortunately, there is an ongoing
progression towards open access data required by national
funding agencies for new research projects, such as the Na-
tional Institutes of Health in the US and the National Health
Services in the UK. Reproducibility of research outcomes is
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Fig. 2. Cardiac remodeling process over time (green = adaptive remodeling
due to growth, red = maladaptive remodeling). Individual dots illustrate
image acquisition. The availability of big heart data may enable prediction of
remodeling and risk stratification of individuals at risk.

the main driving force of this research direction. The onus
is now on organizers to provide robust and user-friendly data
sharing platforms. They must guarantee to both providers and
the general public that patient data have been de-identified
properly, data integrity are maintained, and data dissemination
occurs in the most secure way.

Standardization is a key technical challenge in data sharing.
The DICOM standard for storing pixel and non-pixel data
(patient information, 3D image geometry, examination records,
acquisition parameters, etc.) can change from vendor to vendor
or even software version. Picture Archiving and Communica-
tion System (PACS) allows radiographic images being stored
and transferred electronically within and between hospitals.
Open source PACS architectures, such as dcm4chee [62],
enable quick deployment of a web-accessible imaging data
server for public use. Data standardization is even more
difficult for non-radiographic image data. Initial efforts have
been proposed, including the standardization of a modeling
language (FieldML) to link different organs and tissues [63],
an open electrocardiogram (ECG) format [64] and cardiac
electrophysiology (EP) key data elements [65].

VIII. FUTURE PERSPECTIVES

A. Novel geometry-based cardiovascular risk predictors

Of all various pathways to end-stage CVD, the primary
preventive measure is to reduce risk factors and to prevent
early disease progression. Improving major risk factors has
led to considerable reduction in morbidity and mortality due
to CVD, but yet CVD remains the leading cause of death and
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Fig. 3. Multivariate map constructed from the first two principal components
of left-ventricular shape at end-systole (ES). Heart failure (HF) cases with and
without infarct show elevated size and sphericity with these measures. How-
ever, hypertrophic cases are similar in these measures to normal volunteers.
Data were taken from public domain Sunnybrook Cardiac Dataset available
from the Cardiac Atlas Project.

disability in developed countries. Traditional CVD risk assess-
ment currently disregards the geometrical shape of the heart,
which leads to incomplete information about how the heart
remodels over time in a matched sub-clinical group, global
and regional functional parameters and other biomechanical
properties. Early diagnosis and risk stratification of individuals
at risk can be improved by augmenting current risk factors
predictors [66], a process which can be accelerated by sharing
cardiac data.

B. Disease modeling

The availability of cardiac models enables development
of computer-aided diagnosis applications for cardiac dis-
eases [32], [67]. Subtle differences in cardiac motion, which
are inherently difficult to assess, can be objectively quantified
by a statistical model of cardiac motion in the population.
Such applications will allow better tracking and monitoring of
the progression of a cardiac disease over time. This becomes
essential in a rapidly progressive disease such as pulmonary
arterial hypertension, where regular assessment is needed
before tailoring the treatment in each patient [68].

C. Personalization

Collecting individual data gains statistical knowledge about
the population; a valuable resource to be brought back to
individuals [69] by means of a personalized treatment [34],
[70], [71]. Preliminary studies in this frontier include the
prediction of fiber orientation in the left ventricle [72], heart
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geometry personalization [73], [74], predicting cardiac resyn-
chronization response [75] and generating an artificial patient-
specific model for pre-surgical planning [76]. Personalized
medicine will gain more attention in the future and will be
more tightly connected with the availability of big heart data.

IX. CONCLUSION

Data sharing is becoming essential to the further develop-
ment of the field of cardiovascular research. Large databases
are now being developed which bring together disparate types
of data and enable multi-variate greater-depth analysis of infor-
mation on each patient. In particular, population-based tools
have proven useful for comparing one individual’s anatomy
to a population or between sub-populations, and in the de-
tection, quantification and monitoring the disease progression.
Data-sharing initiatives will aid in the validation and further
automation of data analysis methods.

REFERENCES

[1] C. J. L. Murray, T. Vos, R. Lozano et al., “Disability-adjusted life
years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010:
a systematic analysis for the Global Burden of Disease Study 2010,”
Lancet, vol. 380, no. 9859, pp. 2197–223, Dec 2012.

[2] “Health Loss in New Zealand: A report from the New Zealand Burden
of Diseases, Injuries and Risk Factors Study, 2006–2016,” Ministry of
Health, Wellington, 2013.

[3] I. S. Kohane, “The twin questions of personalized medicine: who are
you and whom do you most resemble?” Genome Med, vol. 1, no. 1,
p. 4, 2009.

[4] T. P. Sneddon, P. Li, and S. C. Edmunds, “GigaDB: announcing the
GigaScience database,” Gigascience, vol. 1, no. 1, p. 11, 2012.

[5] S. Mori, K. Oishi, A. V. Faria, and M. I. Miller, “Atlas-based neuroin-
formatics via MRI: harnessing information from past clinical cases and
quantitative image analysis for patient care,” Annu Rev Biomed Eng,
vol. 15, pp. 71–92, 2013.

[6] C. G. Fonseca, M. Backhaus, D. A. Bluemke et al., “The Cardiac Atlas
Project–an imaging database for computational modeling and statistical
atlases of the heart,” Bioinformatics, vol. 27, no. 16, pp. 2288–95, Aug
2011.

[7] W. B. Kannel, T. R. Dawber, A. Kagan, N. Revotskie, and J. Stokes III,
“Factors of risk in the development of coronary heart disease–six year
follow-up experience. The Framingham Study,” Ann Intern Med, vol. 55,
pp. 33–50, Jul 1961.

[8] T. B. Murdoch and A. S. Detsky, “The inevitable application of big data
to health care,” JAMA, vol. 309, no. 13, pp. 1351–2, Apr 2013.

[9] D. E. Bild, D. A. Bluemke, G. L. Burke et al., “Multi-ethnic study of
atherosclerosis: objectives and design,” Am J Epidemiol, vol. 156, no. 9,
pp. 871–81, Nov 2002.

[10] H. A. Taylor, Jr, J. G. Wilson, D. W. Jones et al., “Toward resolution
of cardiovascular health disparities in African Americans: design and
methods of the Jackson Heart Study,” Ethn Dis, vol. 15, no. 4 Suppl 6,
pp. S6–4–17, 2005.

[11] S. E. Petersen, P. M. Matthews, F. Bamberg et al., “Imaging in popula-
tion science: cardiovascular magnetic resonance in 100,000 participants
of UK Biobank - rationale, challenges and approaches,” J Cardiovasc
Magn Reson, vol. 15, p. 46, 2013.

[12] M. J. Borugian, P. Robson, I. Fortier et al., “The Canadian Partnership
for Tomorrow Project: building a pan-Canadian research platform for
disease prevention,” CMAJ, vol. 182, no. 11, pp. 1197–201, Aug 2010.

[13] E. B. Schelbert, J. J. Cao, S. Sigurdsson et al., “Prevalence and prognosis
of unrecognized myocardial infarction determined by cardiac magnetic
resonance in older adults,” JAMA, vol. 308, no. 9, pp. 890–6, Sep 2012.

[14] M. L. Chuang, P. Gona, G. L. T. F. Hautvast et al., “CMR reference
values for left ventricular volumes, mass, and ejection fraction using
computer-aided analysis: the Framingham Heart Study,” J Magn Reson
Imaging, vol. 39, no. 4, pp. 895–900, Apr 2014.

[15] O. Bruder, A. Wagner, M. Lombardi et al., “European Cardiovascular
Magnetic Resonance (EuroCMR) registry–multi national results from 57
centers in 15 countries,” J Cardiovasc Magn Reson, vol. 15, p. 9, 2013.

[16] N. D. Wong, “Epidemiological studies of CHD and the evolution of
preventive cardiology,” Nat Rev Cardiol, vol. 11, no. 5, pp. 276–89,
May 2014.

[17] D. E. Bild, R. McClelland, J. D. Kaufman et al., “Ten-year trends
in coronary calcification in individuals without clinical cardiovascular
disease in the multi-ethnic study of atherosclerosis,” PLoS One, vol. 9,
no. 4, p. e94916, 2014.

[18] D. A. Bluemke, R. A. Kronmal, J. A. C. Lima et al., “The relationship
of left ventricular mass and geometry to incident cardiovascular events:
the MESA (Multi-Ethnic Study of Atherosclerosis) study,” J Am Coll
Cardiol, vol. 52, no. 25, pp. 2148–55, Dec 2008.

[19] J. Harman, E. R. Walker, V. Charbonneau et al., “Treatment of hyper-
tension among African Americans: the Jackson Heart Study,” J Clin
Hypertens (Greenwich), vol. 15, no. 6, pp. 367–74, Jun 2013.

[20] H. A. Taylor, Jr, “The Jackson Heart Study: an overview,” Ethn Dis,
vol. 15, no. 4 Suppl 6, pp. S6–1–3, 2005.

[21] T. J. Payne, S. B. Wyatt, T. H. Mosley et al., “Sociocultural methods
in the Jackson Heart Study: conceptual and descriptive overview,” Ethn
Dis, vol. 15, no. 4 Suppl 6, pp. S6–38–48, 2005.

[22] C. R. Clark, M. J. Ommerborn, D. A. Hickson et al., “Neighborhood
disadvantage, neighborhood safety and cardiometabolic risk factors in
African Americans: biosocial associations in the Jackson Heart study,”
PLoS One, vol. 8, no. 5, p. e63254, 2013.

[23] J. J. Carr, “The revolution in risk assessment and disease detection
made possible with non-invasive imaging: implications for population
science,” Ethn Dis, vol. 22, no. 3 Suppl 1, pp. S1–24–7, 2012.

[24] A. E. Flanders, “Medical image and data sharing: are we there yet?”
Radiographics, vol. 29, no. 5, pp. 1247–51, 2009.

[25] M. Li, D. Carrell, J. Aberdeen, L. Hirschman, and B. A. Malin, “De-
identification of clinical narratives through writing complexity mea-
sures,” Int J Med Inform, vol. 83, no. 10, pp. 750–67, Oct 2014.

[26] A. Gkoulalas-Divanis, G. Loukides, and J. Sun, “Publishing data from
electronic health records while preserving privacy: a survey of algo-
rithms,” J Biomed Inform, vol. 50, pp. 4–19, Aug 2014.

[27] A. Suinesiaputra, B. R. Cowan, A. O. Al-Agamy et al., “A collaborative
resource to build consensus for automated left ventricular segmentation
of cardiac MR images,” Med Image Anal, vol. 18, no. 1, pp. 50–62, Jan
2014.

[28] A. H. Kadish, D. Bello, J. P. Finn et al., “Rationale and design for
the Defibrillators to Reduce Risk by Magnetic Resonance Imaging
Evaluation (DETERMINE) trial,” J Cardiovasc Electrophysiol, vol. 20,
no. 9, pp. 982–7, Sep 2009.

[29] Y. Ge, D. K. Ahn, B. Unde, H. D. Gage, and J. J. Carr, “Patient-
controlled sharing of medical imaging data across unaffiliated healthcare
organizations,” J Am Med Inform Assoc, vol. 20, no. 1, pp. 157–63, Jan
2013.

[30] D. Gianni, S. McKeever, T. Yu et al., “Sharing and reusing cardiovascu-
lar anatomical models over the Web: a step towards the implementation
of the virtual physiological human project,” Philos Trans A Math Phys
Eng Sci, vol. 368, no. 1921, pp. 3039–56, Jun 2010.

[31] E. Kerfoot, P. Lamata, S. Niederer, R. Hose, J. Spaan, and N. Smith,
“Share and enjoy: anatomical models database–generating and sharing
cardiovascular model data using web services,” Med Biol Eng Comput,
vol. 51, no. 11, pp. 1181–90, Nov 2013.

[32] P. Medrano-Gracia, B. R. Cowan, D. A. Bluemke et al., “Atlas-based
analysis of cardiac shape and function: correction of regional shape bias
due to imaging protocol for population studies,” J Cardiovasc Magn
Reson, vol. 15, p. 80, 2013.

[33] Society of Cardiovascular Magnetic Resonance, “CAP Website.” [On-
line]. Available: http://www.scmr.org/Research/cap-dicom-transfer.html

[34] N. Smith, A. de Vecchi, M. McCormick et al., “euHeart: personalized
and integrated cardiac care using patient-specific cardiovascular mod-
elling,” Interface Focus, vol. 1, no. 3, pp. 349–64, Jun 2011.

[35] P. Lamata, S. Niederer, D. Nordsletten et al., “An accurate, fast and
robust method to generate patient-specific cubic Hermite meshes,” Med
Image Anal, vol. 15, no. 6, pp. 801–13, Dec 2011.

[36] L. Ohno-Machado, V. Bafna, A. A. Boxwala et al., “iDASH: integrating
data for analysis, anonymization, and sharing,” J Am Med Inform Assoc,
vol. 19, no. 2, pp. 196–201, 2012.

[37] A. L. Goldberger, L. A. Amaral, L. Glass et al., “PhysioBank, Phys-
ioToolkit, and PhysioNet: components of a new research resource for
complex physiologic signals,” Circulation, vol. 101, no. 23, pp. E215–
20, Jun 2000.

[38] S. Steinert-Threlkeld, S. Ardekani, J. L. V. Mejino et al., “Ontological
labels for automated location of anatomical shape differences,” J Biomed
Inform, vol. 45, no. 3, pp. 522–7, Jun 2012.



2168-2194 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JBHI.2014.2370952, IEEE Journal of Biomedical and Health Informatics

JBHI-00437-2014 7

[39] T. Glatard, C. Lartizien, B. Gibaud et al., “A virtual imaging platform for
multi-modality medical image simulation,” IEEE Trans Med Imaging,
vol. 32, no. 1, pp. 110–8, Jan 2013.

[40] M. A. Konstam, D. G. Kramer, A. R. Patel, M. S. Maron, and J. E.
Udelson, “Left ventricular remodeling in heart failure: current concepts
in clinical significance and assessment,” JACC Cardiovasc Imaging,
vol. 4, no. 1, pp. 98–108, Jan 2011.

[41] M. G. Sutton and N. Sharpe, “Left ventricular remodeling after my-
ocardial infarction: pathophysiology and therapy,” Circulation, vol. 101,
no. 25, pp. 2981–8, Jun 2000.

[42] J. N. Cohn, R. Ferrari, and N. Sharpe, “Cardiac remodeling–concepts
and clinical implications: a consensus paper from an international forum
on cardiac remodeling. Behalf of an International Forum on Cardiac
Remodeling,” J Am Coll Cardiol, vol. 35, no. 3, pp. 569–82, Mar 2000.

[43] J. S. Burchfield, M. Xie, and J. A. Hill, “Pathological ventricular
remodeling: mechanisms: part 1 of 2,” Circulation, vol. 128, no. 4, pp.
388–400, Jul 2013.

[44] G. F. Mitchell, G. A. Lamas, D. E. Vaughan, and M. A. Pfeffer,
“Left ventricular remodeling in the year after first anterior myocardial
infarction: a quantitative analysis of contractile segment lengths and
ventricular shape,” J Am Coll Cardiol, vol. 19, no. 6, pp. 1136–44,
May 1992.

[45] S. P. Wong, J. K. French, A.-M. Lydon, S. O. M. Manda, W. Gao, N. G.
Ashton, and H. D. White, “Relation of left ventricular sphericity to 10-
year survival after acute myocardial infarction,” Am J Cardiol, vol. 94,
no. 10, pp. 1270–5, Nov 2004.

[46] H. F. J. Mannaerts, J. A. van der Heide, O. Kamp, M. G. Stoel,
J. Twisk, and C. A. Visser, “Early identification of left ventricular
remodelling after myocardial infarction, assessed by transthoracic 3D
echocardiography,” Eur Heart J, vol. 25, no. 8, pp. 680–7, Apr 2004.

[47] R. S. Vasan, M. G. Larson, E. J. Benjamin, J. C. Evans, and D. Levy,
“Left ventricular dilatation and the risk of congestive heart failure in
people without myocardial infarction,” N Engl J Med, vol. 336, no. 19,
pp. 1350–5, May 1997.

[48] M. S. Lauer, J. C. Evans, and D. Levy, “Prognostic implications of
subclinical left ventricular dilatation and systolic dysfunction in men
free of overt cardiovascular disease (the Framingham Heart Study),”
Am J Cardiol, vol. 70, no. 13, pp. 1180–4, Nov 1992.

[49] W. B. Kannel, D. Levy, and L. A. Cupples, “Left ventricular hypertrophy
and risk of cardiac failure: insights from the Framingham Study,” J
Cardiovasc Pharmacol, vol. 10 Suppl 6, pp. S135–40, 1987.

[50] M. A. Konstam, J. E. Udelson, and N. Sharpe, “Prevention and reversal
of left ventricular remodeling: summation,” J Card Fail, vol. 8, no. 6
Suppl, pp. S506–11, Dec 2002.

[51] N. Duchateau, M. De Craene, G. Piella et al., “A spatiotemporal
statistical atlas of motion for the quantification of abnormal myocardial
tissue velocities,” Med Image Anal, vol. 15, no. 3, pp. 316–28, Jun 2011.

[52] C. Hoogendoorn, N. Duchateau, D. Sánchez-Quintana et al., “A high-
resolution atlas and statistical model of the human heart from multislice
CT,” IEEE Trans Med Imaging, vol. 32, no. 1, pp. 28–44, Jan 2013.

[53] A. J. Lewandowski, D. Augustine, P. Lamata et al., “Preterm heart in
adult life: cardiovascular magnetic resonance reveals distinct differences
in left ventricular mass, geometry, and function,” Circulation, vol. 127,
no. 2, pp. 197–206, Jan 2013.

[54] H. Lombaert, J.-M. Peyrat, P. Croisille et al., “Human atlas of the
cardiac fiber architecture: study on a healthy population,” IEEE Trans
Med Imaging, vol. 31, no. 7, pp. 1436–47, Jul 2012.

[55] K. McLeod, C. Seiler, M. Sermnesant, and X. Pennec, “Spatio-temporal
dimension reduction of cardiac motion for group-wise analysis and
statistical testing,” Med Image Comput Comput Assist Interv, vol. 16,
no. Pt 2, pp. 501–8, 2013.

[56] P. Medrano-Gracia, B. R. Cowan, B. Ambale-Venkatesh et al., “Left
ventricular shape variation in asymptomatic populations: the multi-ethnic
study of atherosclerosis,” J Cardiovasc Magn Reson, vol. 16, no. 1, p. 56,
Jul 2014.

[57] Sunnybrook Health Sciences Centre, “Cardiac MR Left
Ventricle Segmentation Challenge.” [Online]. Available:
http://smial.sri.utoronto.ca/LV Challenge/Home.html

[58] A. Suinesiaputra, B. R. Cowan, J. P. Finn et al., “Left Ventricular
Segmentation Challenge from Cardiac MRI: A Collation Study,” in
Statistical Atlases and Computational Models of the Heart. Imaging
and Modelling Challenges, ser. LNCS, vol. 7085. Springer, 2012, pp.
88–97.

[59] C. Tobon-Gomez, M. De Craene, K. McLeod et al., “Benchmarking
framework for myocardial tracking and deformation algorithms: an open
access database,” Med Image Anal, vol. 17, no. 6, pp. 632–48, Aug 2013.

[60] R. Karim, R. J. Housden, M. Balasubramaniam et al., “Evaluation of
current algorithms for segmentation of scar tissue from late gadolinium
enhancement cardiovascular magnetic resonance of the left atrium: an
open-access grand challenge,” J Cardiovasc Magn Reson, vol. 15, p.
105, 2013.

[61] M. Schaap, C. T. Metz, T. van Walsum et al., “Standardized evaluation
methodology and reference database for evaluating coronary artery
centerline extraction algorithms,” Med Image Anal, vol. 13, no. 5, pp.
701–14, Oct 2009.

[62] P. Welter, C. Hocken, T. M. Deserno, C. Grouls, and R. W. Günther,
“Workflow management of content-based image retrieval for CAD
support in PACS environments based on IHE,” Int J Comput Assist
Radiol Surg, vol. 5, no. 4, pp. 393–400, Jul 2010.

[63] R. D. Britten, G. R. Christie, C. Little et al., “FieldML, a proposed
open standard for the Physiome project for mathematical model repre-
sentation,” Med Biol Eng Comput, vol. 51, no. 11, pp. 1191–207, Nov
2013.

[64] R. R. Bond, D. D. Finlay, C. D. Nugent, and G. Moore, “A review of
ECG storage formats,” Int J Med Inform, vol. 80, no. 10, pp. 681–97,
Oct 2011.

[65] American College of Cardiology/American Heart Association Task
Force on Clinical Data Standards (ACC/AHA/HRS Writing Commit-
tee to Develop Data Standards on Electrophysiology), A. E. Buxton,
H. Calkins et al., “ACC/AHA/HRS 2006 key data elements and def-
initions for electrophysiological studies and procedures: a report of
the American College of Cardiology/American Heart Association Task
Force on Clinical Data Standards (ACC/AHA/HRS Writing Committee
to Develop Data Standards on Electrophysiology),” Circulation, vol. 114,
no. 23, pp. 2534–70, Dec 2006.

[66] R. Hinojar, R. Botnar, J. C. Kaski et al., “Individualized cardiovascular
risk assessment by cardiovascular magnetic resonance,” Future Cardiol,
vol. 10, no. 2, pp. 273–89, Mar 2014.

[67] A. Suinesiaputra, A. F. Frangi, T. A. M. Kaandorp et al., “Automated
detection of regional wall motion abnormalities based on a statistical
model applied to multislice short-axis cardiac MR images,” IEEE Trans
Med Imaging, vol. 28, no. 4, pp. 595–607, Apr 2009.
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