A Novel Role for Neuronal Hyaluronan Production in Early Neurite Development

TM Fowke, J Bai, SM Ranchhod, K Gunn, JM Dean

Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand

Background

In peripheral tissues, there is strong evidence for a role of the extracellular matrix molecule hyaluronan (HA) in cellular differentiation and process extension^{1,2,3}. In neurons, HA is expressed in a pericellular pattern, where it is thought to be involved in neuronal signalling. However, a specific role for HA in neuronal process development is unknown.

4-MU is assocated with a trend for decreased actin-stained area in neurons at DIV1 and DIV4

Hyaluronan and process growth

- High molecular weight glycosaminoglycan
- Produced by hyaluronan synthase enzymes (HAS1-3) that are expressed in cortical neurons
- In non-neuronal cells, HA signals through CD44 and RHAMM receptors to control process growth^{2,4}
- Further, blocking HA synthesis impairs process growth and lamellipodia/filopodia development¹

Aims

1) Determine whether neurons synthesize HA in their developing processes.

2) Determine whether inhibition of HA synthesis in neurons inhibits neurite development, including lamellipodia and filopodia.

Methods

- Primary cortical neuronal culture (E16 Sprague Dawley rats)
- HA synthesis inhibited with 0.1, 0.3, 0.6 and 1 mM 4-methylumbelliferone (4-MU) treatment at DIV0 (4h) and DIV1.
 Immunocytochemistry at DIV1 and DIV4 for HA expression (biotinylated hyaluronic acid binding protein (bHABP)) on neuronal processes (MAP2) and filopodia/lamellipodia (actin).

4-MU impairs neuronal process growth at DIV4

Control 4-MU

MAP2/Hoechst

- Imaging and neurite outgrowth analysis: ImageXpress/ MetaXpress system (Molecular Devices)
- Sampling: 16 sites per well, area per site: ~0.5mm²

Example of a result image for neurite outgrowth analysis produced by MetaXpress software.

Results

Control

4-MU treatment reduces neuronal HA expression

HABP/MAP2/Hoechst

HABP/Actin/Hoechst

outgi 3mm A.MU 0.6mmA.MU AMU 1mm A-MU 25 -DIV1 **Mean branches per cell** DIV1 DIV4 DIV4 20 15· 2-10-Mea MSO 6mMA-MU A.MU A.MU

Discussion

- 4-MU reduces neuronal HA production
- HAS inhibition reduces neuronal actin staining, suggestive of a decrease in lamellipodia and filopodia complexity
- HAS inhibition has no apparent effect on processes at DIV1, but

Left: Example of neuronal HA localisation. **Centre, right:** Reduction in HABP staining after 4-MU treatment (0.3 mM). Note also the diversity in HA expression patterns on cell bodies and processes. Arrows: filopodia; arrowheads: lamellipodia.

References

Twarock S, Markku I, et al. (2010) J Biol Chem 285(30):23276-23284.
 Oliferenko S, Kaverina I, et al. (2000) J Cell Biol 148(6):1159–1164.
 Hunt LC, Gorman C, et al. (2013) J Biol Chem 288(18):13006-21
 Nagy JI, Hacking J, et al. (1995) J Neurosci 15(I):41-252.

reduces multiple aspects of neuronal process development at DIV4 including:

- Total outgrowth
- Number of processes
- Process length
- Branching
- Further studies will examine the role of individual HAS enzymes in neurite development and specific receptor signaling pathways

Acknowledgements

This work was supported by grants from the Neurological Foundation of New Zealand (TMF), the Marsden Fund, Auckland Medical Research Foundation, Lottery Health Research, and the University of Auckland.

