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Abstract—Information diffusion has been a crucial issue in
social network research. The influence maximization problem
asks for ways to identify nodes that are able to maximally dif-
fuse information through a network. Recently, game-theoretical
methods emerged that partitions a network into coalitions, and
facilitate influence maximization. A notable example is a method
based on Shapley value [13]. A major disadvantage with this
approach is the lack of consideration of externality on coalition
formation. In this paper, we propose consensus value for influence
maximization (CVIM) to overcome this limitation. After forming
coalitions using consensus value, the method selects initial coali-
tions based on the gain of each coalition, and finally chooses seed
nodes in the selected coalitions. Empirical evidence over several
real-world networks demonstrates that CVIM produces better
results of influence maximization while significantly reducing the
running time as compared to existing approaches.

Index Terms—Consensus value; Coalitional game theory; In-
fluence maximization; Social network

I. INTRODUCTION

Online social networks such as Facebook, Twitter and Wei-
bo play a vital role in people’s daily lives. Rapid expansion has
made these social platforms important channels of information
and communication. Through “word of mouth” and “viral
marketing”, any individual has the potential to influence public
knowledge, opinion and taste. In the case of viral marketing, a
natural question arises as to how the marketer may effectively
capitalize influence through social networking. One strategy
involves picking a well-selected sets of individuals (i.e., the
seeds) to target on, in order to initiate a cascade of information
through the social network. The selection of a fixed number of
seeds which maximize the effect of the information cascade
is called the influence maximization problem [1].

Influence maximization has been extensively studied.
Richardson and Domingos first introduced the problem to
social network research [1]. The celebrated work of Kempe,
Kleinberg and Tardos formalized influence maximization prob-
lem as a discrete optimization problem. They show that the
problem is NP-hard, and proposed a greedy algorithm with
an approximation guarantee arbitrarily close to (1− 1/e) [2].
Chen et. al. followed suit to propose the MixGreedy algorithm
[3]: the algorithm has two rounds. The first round reduces
the graph size by removing edges that will not contribute to

propagation, the second round uses the CELF optimization
algorithm introduced in [4] to select seeds. The method
significantly improves the efficiency of the greedy algorithm.

Nevertheless, a greedy approach for influence maximization
still proves to be too inefficient in large scale networks. One
way to improve efficiency is through community structure:
real-world networks consists of dense subgraphs which are
sparsely connected externally; these subgraphs are called com-
munities [5], [6]. Methods emerged that incorporate coalition
detection with influence maximization [7], [8]. Based on
properties of the community structures, one can effectively
avoid overlapped information. Galstyan et al. proved that for
models with critical behavior, the structural properties of the
network, and specifically its coalition structure, have great
significance for the influence maximization problem. Wang et
al. proposed a community-based greedy algorithm for mining
the top-k influential nodes in mobile social networks. Many
researchers have proposed a variety of community detection
methods [9], [10]. But these algorithms need to set in advance
the size of the network and the number of coalitions, which
will be difficult to apply to the real networks.

More recently, an paradigm based on coalition formation
has been proposed to identify reasonable network partitions.
Here, each node in the network is treated as a player of a
coalitional game [11]. A fundamental assumption is that the
players carry out certain joint task. By forming into coalitions,
the players would complete the task more effectively. A
coalition will thus receive a collective gain which will then be
divided among its members. As the players are self-interested,
i.e., they prefer outcomes that give themselves higher gain, the
question is how the players may arrive at a reasonable coalition
division. In the context of networked coalitional games, each
coalition is a subgraph and the gain of the coalitions are
affected by the graph topology [12]. A solution concept of
the game corresponds to a stable division of the network
into coalitions, which can in turn be used to solve influence
maximization.

Shapley value is a classical normative solution concept of
coalitional games. Recently, Zhou and Cheng proposed an
algorithm for coalition detection that is based on the concept
of Shapley value on networked coalitional games [13]. This



approach has a major limitation: Suppose a player v moves
in or out of a coalition C. As the decision is made thanks
to Shapley value, no concern is paid to other players in the
coalition C. As a result, the method does not truthfully reflect
realistic coalitional structures.

Contribution: We posit that the preferences of other
members of the coalition C constitute important exogenous
variables and should be taken into account by the player
v. Thus the players should act as ‘externality-aware’ agents.
With this intuition in mind, we propose a new solution
concept, called consensus value, which not only considers
gains obtained by v, but gains by other players in the coalition.

We next emphasize on applying consensus value to influ-
ence maximization. We propose consensus value for influence
maximization (CVIM). The method first selects initial coali-
tions based on each coalition’s gain proportion; it then uses the
MaxDegree algorithm and propagation mechanisms to identify
seeds in the selected coalitions [2], [14]–[17]. An advantage
of CVIM is that it bridge a link between graph partition and
information diffusion where not only influential nodes, but also
influential coalitions are calculated.

Finally, we test our algorithm over several real world
datasets. Through the experimental and theoretical analysis,
we show that (i) CVIM can achieve comparable performance
as the greedy algorithm for influence maximization with linear
threshold model; (ii) CVIM significantly improves running
time comparing with the greedy algorithm.

Paper organization: Sec. II presents basic notions of
influence maximization and coalitional games. Sec. III in-
troduces consensus value as a novel solution concept for
coalitional games. Sec. IV presents the CVIM algorithm.
Sec. V discusses our experimental results. Sec. VI concludes
the work with future works.

II. PRELIMINARIES

A. Influence Maximization on LTM

A social network is a directed graph G = (V,E) where V
is a set of nodes and E ⊆ V 2 \ {(u, u) | u ∈ V } is a set of
directed edges on V . If (i, j) ∈ E then i and j are adjacent.
We define ai,j = 1 if {i, j} /∈ E and ai,j = 0 otherwise. The
in-neighborhood of i is N(i) = {j | aj,i = 1}. The in-degree
of a node i ∈ V is d(i) = |N(i)|.

An information diffusion model describes the way in which
a piece of information spreads in the network. In this paper we
focus on the linear threshold model (LTM) which is one of the
most well-studied information diffusion model [2]. This model
assigns a threshold θi ∈ [0, 1] for each node i ∈ V which is
normally uniformly randomly chosen. For any set S ⊆ V and
any node i ∈ V , set αS(i) = |N(i) ∩ S|/|N(i)|.

During information diffusion, a node can be either active
or inactive. The process starts with a set S0 ⊆ V of active
nodes, called seeds, while other nodes are initially inactive.
The process follows a sequence of discrete time steps. At any
step t, say St−1 is the set of active nodes after step t− 1, an
inactive node i /∈ St−1 may turn active if αSt−1

(i) ≥ θi. Thus

the process generates a sequence S0 ⊆ S1 ⊆ · · · such that
each St ⊆ V and for any t > 0, we have

St+1 = St ∪ {i ∈ V | αSt−1(i) ≥ θi}.

Note that once a node is activated, it stays active during all
subsequent time steps. Since G is finite, there is a (minimum)
time step t ≥ 0 where St = St′ for all t′ > t. We then call
St the activated set. The size of the activated set captures the
effectiveness of information diffusion and clearly depends on
the seeds S0 and thresholds θi for i ∈ V .

For A ⊆ V , we use σ(A) to denote the expected size of
activated set if the process starts with seeds S0 = A. The
influence maximization (IM) problem is stated as:

INPUT: A network G = (V,E), number K ∈ N.
OUTPUT: Subset S = arg maxA⊆V,|A|=K σ(A).

B. Coalitional Games

Coalition games are used to model the coalition formation
process among networked agents. Let N = {1, 2, . . . , n} be
a set of players. A coalition is simply a subset S ⊆ N .
A coalition structure is a partition of N into coalitions. A
characteristic function ν : 2N → R assigns a payoff value
ν(S) to every coalition S; we require ν(∅) = 0. A coalitional
game is a pair (N, ν). Now take a network G = (V,E), we
regard V as the set N of players. The following characteristic
function reflects the network topology:

ν(S) =

{
0 if |S| ≤ 1∑
i∈S,d(i)>0

∑
j∈S,j 6=i

ai,j
d(i) if |S| ≥ 2.

The Shapley value is a solution concept that provides a way
to distribute collective gains among players. For this, Shapley
value takes into account the relative importance (marginal
contribution) of each player in the game. More formally,
for any coalition S ⊆ N , Shapley value defines a vector
φ(S) = (φ1, . . . , φ|S|) ∈ R|S| where φi denotes the payoff
to player i if i in the coalition S [18].

Using Shapley value, one may partition the set of players N
into coalitions according to the social network’s structure by
following the procedure below [19]: The initial configuration
arranges every player in a distinct singleton “coalition”. Dur-
ing the coalition formation process, the players take actions
in turn. When it is a player i’s turn, i examines all other non-
empty coalitions in the current game. If the payoff received by
i by joining another coalition is higher than the payoff received
in the current coalition, i will have a tendency to withdraw
from the original coalition and join the other coalition. The
player i eventually will join the coalition that gives her the
highest increase in payoff. The process is repeated until no
more changes happens in the game, at which moment the game
forms a coalition structure.

III. CONSENSUS VALUE

While Shapley value is widely recognized for its ability
to generate fair utility for individuals within a coalition, it is
not entirely reasonable to use it in a mechanism for coalition
formation. This is because that using Shapley value, a player’s



decision for joining and leaving coalition is independent from
the effect on other players in the same coalition. To make up
for this limitation, we introduce the consensus value, a new
solution concept which calculates the gain of each player in
the new coalition. Consensus value is derived from 2-person
games: Imagine a player i is deciding between an original
coalition S and another S′; the gain formed by the two
coalitions are evenly distributed, and then weighted average
method is made among all possible permutations. Using a
similar mechanism for coalition formation described above for
Shapley values, the players reach consensus and form stable
coalitions. Such a method is called the standardized remainder
rule; see def. below [21].

More precisely, in the game (N, ν), let ν(S) denote the
marginal contribution value of coalition S where S ⊆ N .
Π(N) is the set of all permutation π : {1, 2, · · · , |N |} → N .
For a given permutation π(N) and k ∈ {1, 2, · · · |N |}, coali-
tion Sπk is the set of players {π(1), π(2), · · · , π(|k|)} ⊂ N
and Sπk = ∅ [21].

Definition 1: The value r(Sπk ) is the standardized remainder
for coalition Sπk : the value left for Sπk after allocating surpluses
to earlier leavers N Sπk : r(Sπk ) for a coalition Sπk (1 ≤ k ≤
|N |) is defined as in [21]:

r(Sπk ) =

{
ν(Sπk ) +

r(Sπk+1)−ν(Sπk )−ν{π(k+1)}
2 if k < |N |

ν(N) if k = |N |

Players enter into the coalition based on the sequence
π(1), π(2) · · · , π(|N |). Allocating gain for each player, in
addition to the personal gain, should be supplemented by half
of the standardized remainder r(Sπk ) in the coalition [21].
Thus, we then define the following:

Definition 2: In the game (N, ν), the individual standardized
remainder Sππ(k)(ν) is the gain of each player generated by the
coalition:

Sππ(k)(ν) =

{
r(Sπ1 ) if k = 1

ν({π(k)}) +
r(Sπk )−ν(Sπk−1)−ν{π(k)}

2 if k ≥ 2

Players join the coalition in different order, and the individual
standard remainder that the players eventually get is also dif-
ferent. The average value of the individual standard remainder
defines the gain of each player π(k), which is captured by the
consensus value.

Definition 3: The consensus value ϕ(ν) of the game (N, ν)
is the average of the individual standard remainder Sπ(v) ,
which is defined as [21]:

ϕ(ν) =
1

|N |!
∑

π∈Π(N)

Sπ(ν)

IV. CONSENSUS VALUE FOR INFLUENCE MAXIMIZATION

This section proposes our approach to solve IM which
we call consensus value for influence maximization (CVIM).
CVIM comprises three phases: (i) Apply consensus value to
identify coalitions; (ii) Initial coalitions are selected based on
the proportion of gain from each coalition; and (iii) Seed nodes
are finalized in those selected coalitions.

A. Coalition Formation

Similar to the Shapley value-based approach for coalition
formation described in Sec. II.B, we start with every player
in its own singleton coalition. The players then iteratively
decides to move from their coalition with others’. One can
easily generalize definition of ϕ(ν) to any subgame of the
form (S, ν � S) where S ⊆ N ; the gain of members of each
member of S is given by the consensus value.

At any step, a player i moves by deciding whether to join
any other coalitions. When facing a coalition T , i is essentially
in a 2-player game consisting of i and T as players (here, T
acts as a single player); Each player has two strategies, not
join and join. The respective payoffs to each player are: the
payoffs of i equal to ith gain before and after joining T ; the
payoffs of T equal to the original coalition gains and the gains
from the coalition {i} ∪ T . Player i has an intension to join
T only when join give higher payoff to both players. Player
i then chooses among the best among all coalitions whom it
has an intension to join.

In the same way as the coalition formation rule for Shapley
value, the players iteratively decides on optimal coalition to
join (or not join any). In this way, all nodes can choose the
coalition that makes these nodes get largest gain to cooperate
with. The concept not only maximizes its own gain, but also
will increase the entire coalition value, which can achieve
a win-win result through cooperation. In this way, we can
achieve a more reasonable coalition formation.

B. Select Initial coalitions

According to the consensus value, we can obtain the results
of coalition structure T . Assume the characteristic function
ν represents the marginal contribution value of the all nodes
in the coalition. The marginal contribution value of coalition
in each coalition is regarded as payoff of entire network.
The greater than marginal contribution value of a coalition,
the more closely players in the coalition are connected, thus
resulting in a higher influence if players in the coalition are
selected as seed nodes. Therefore, we can use ν as a guidance
to select initial coalitions.

Definition 4: Let T1, T2, . . . , Tm be the coalitions where
T = {T1, T2, . . . , Tm}, Ti

⋂
Ti+1 = ∅, m is the number of

coalition. Say ν(Ti) is the marginal contribution value of the
coalition Ti. The probability of assigning seed nodes PTi in
the coalition Ti is in the coalition Ti is:

PTi = ν(Ti)/

m∑
i=1

ν(Ti).

We arrange T1, T2, . . . such that the sequence of PTi is in
descending order. The K seed nodes are assigned to the K
coalitions with large marginal contribution value.

C. Finding Seed Nodes

In order to locate seed nodes in the social network, the K
seed nodes are assigned to the corresponding K coalitions
respectively. We apply MaxDegree algorithm to find a seed
node in each coalition.



Definition 5: Let M(Ti) be the seed node chosen in the
coalition Ti by MaxDegree. Define the seed sets A as:

A =

K⋃
i=1

M(Ti)

Then we apply function σ(A) to calculate the final influence
number of seed node set A.

D. Algorithm Pseudo-code

Based on the above description for each phase, we present
the CVIM algorithm below. We first describe the variables
used in CVIM:

- There is a boolean variable Flag[i] for each player i; the
default value is false.

- N = {1, 2, · · ·n} is the set of players.
- M(Ti) represents a seed node in the coalition Ti chosen

by one step of MaxDegree in coalition Ti.
- σ(A) represents the total numbers of active nodes gener-

ated by LTM starting from A.
- ϕ(ν) = ϕx(ν) ∪ ϕi(ν). ϕ′i(ν) is the consensus value of

the player i when i chooses to join a new coalition. ϕi(ν) is
the consensus value of the player i in the original coalition.

- ϕ′x(ν) is the consensus value of player x after the player
i chooses to join x’s coalition. ϕx(ν) is the consensus value
of other player x before i chooses to join the coalition.

Algorithm 1 CVIM Algorithm
Input: social network G and the number of initial nodesK.
Output: coalition partition results T , seed nodes set A and
σ(A)
Set T = {{1}, {2}, . . . , {n}}
Flag[1 · · ·n] = true;
for i = 1 to N do

while Flag[1] or Flag[2] or · · · or Flag[n] do
Flag[1 · · ·n]=false;
for i = 1 to N do

if Max(ϕ′i(ν) > ϕi(ν) and ϕ′x(ν) > ϕx(ν)
then

The player i chooses to withdraw from the original
alliance, and join the new coalition.
Flag[i]=true;

end if
end for

end while
end for
Let PTi array in descending order.
Select K initial coalitions based on PTivalue.
Combine with all M(Ti), and find seed nodes A
Calculate σ(A)
return T and A and σ(A).

V. EXPERIMENTS

In order to evaluate the efficiency and feasibility of the
algorithm CVIM, the random algorithm, the climbing greedy
algorithm, the MaxDegree algorithm and the Shapley Value
algorithm are implemented for comparison. All algorithms
are implemented in the C++ language and designed based on
the linear threshold model and independent cascade model.
The comprehensive performance study is conducted on several
classical real world datasets.

A. Experimental setup

Datasets: We perform some experiments on several real
world datasets: (1) Karate Club Network [22] (2) CollegeMsg
Network [23] (3) Gnutella Network [23] (4) Wikipedia Net-
work [23] (5) Hepth Network [23]. The parameters of several
networks are shown in Table 1.

TABLE I
PARAMETERS OF NETWORKS

Networks Nodes Edges
Karate Club 34 78
CollegeMsg 1899 20296

Gnutella 6301 20777
Wikipedia 7115 103689

Hepth 9877 25998

Algorithms and Parameters: we compare our algorithm
CVIM with several algorithms that appear in the paper. The
following is a list of algorithms we evaluate in our experi-
ments.

Random algorithm: As a baseline comparison, simply select
K random vertices in the graph [15].

Climbing Greedy algorithm: The original greedy algorithm
[2] with the lazy-forward optimization of Leskovec et al. [4].
For each candidate seed set A, 2000 simulations is run to
obtain an accurate estimate of σ(A).

Maxdegree algorithm: The algorithm chooses nodes u in
order of decreasing degrees [2].

In the linear threshold model, αS(i) for an edge (i, j) is
set as is the in-degree of node i. θ is random chosen and
θi ∈ [0, 1].

B. Experimental Results

In the experiment, we compare the seed nodes, influence
spread, running time of different algorithms. The results are
shown as follows:

The Feasibility of the Algorithm: In order to evaluate
the feasibility and reflect coalition structure, we compare seed
nodes of different algorithms in Karate Club data. The black
points represent the seed nodes. The results are shown in
Figures 1:



(a)Random Algorithm (b)MaxDegree Algorithm

(c)Climbing Greedy Algorithm (d)Shapley Value Algorithm

(e)Consensus Value Algorithm
Fig. 1. Seed nodes of different algorithms in Karate Club data

Fig. 1 shows the seed nodes of different algorithms in the
Karate Club data. In Fig. 1(c) the greedy algorithm has proven
to be the best for influence maximization. In Fig. 1(a) the
random algorithm demonstrates much variation, and thus has
limited applicability. In Fig. 1(b) the MaxDegree algorithm
will overlap information when we select seed nodes. Node 34
is selected as a seed first, before it activates node 33. The
second largest degree node is node 33, we will select node
33 as seed node, which naturally leads to redundant seed
selection. In Fig. 1(d) the Shapley value algorithm divides
the Karate Club network into seven different categories of
coalitions with the same color, and the seed set is {34, 1, 24}.
In Fig. 1(e) the consensus value algorithm divides the Karate
Club network into five different categories of coalitions, and
then selects the three coalitions with the largest proportionality
value from the marginal contribution ratio of each coalition.
Finally, seed node is selected in the selected each coalition,
and seed node set is {34, 1, 3}. The seed node set chosen
by consensus value algorithm is consistent with the greedy
algorithm, and we can see the obvious coalition structure.

Comparison of Influence Spread: We use four real
datasets to test efficiency of different algorithms. The number
of seed nodes is from 0 to 50, and the total number of active
nodes is found by an independent cascade model or a weight
linear threshold propagation model, and some parameters of

model are presented by section algorithms and parameters. The
results are shown by Figures .2:

(a)CollegeMsg Network (b)Gnutella Network

(C)Wikipedia Network (d)Hepth Network
Fig. 2. Influence spread with different algorithms

Figures .2(a) show influence spread in the CollegeMsg
Network. The x-axis represents the number of seed nodes, and
the y-axis represents influencing node number. The efficiency
of random algorithm is low. As the seed node increasing, the
MaxDegree algorithm chooses the largest degree as the seed
node, which may be mutual activation in the seed node. It will
repeat the overlay nodes. Shapley value algorithm only takes
into account the gain of new participants and does not take into
account the gains of other players, the results of the coalition
division are different from the consensus value algorithm.
Therefore, the seed node set is also different . The impact of
consensus value algorithm is close to the greedy algorithm. In
Fig. 2(b), when the number of seed nodes grows from 0 to 10,
the influence spread of Shapley value algorithm, the consensus
value algorithm, and the greedy algorithm are the nearly same.
The reason is that Shapley value algorithm and consensus
value algorithm are almost identical when the top10 nodes are
selected. Consensus value algorithm for coalition division can
get a good result. In Fig. 2(c) the seed nodes are from 0 to 10,
the number of activated nodes starts to grow rapidly, and the
latter tends to keep a steady state in MaxDegree algorithm. The
consensus value algorithm can achieve almost the efficiency
of the greedy algorithm. Figures .2.(d) show influence spread
in the Hepth Network. With the increasing of data, the effect
of our algorithm is obvious.



The Running time of Algorithms: In the four networks,
we use different algorithms to solve the influence maximiza-
tion. The running time is shown in Fig. 3.

Fig. 3. Running time on different networks

Fig. 3. shows the running time of different algorithms on
the Networks. The random algorithm only needs to use the
random function to select K seed nodes. The algorithm can
be completed in short time. We apply the adjacency matrix
to calculate the degree of each node, and then use the bubble
sort method to sort the degree of the node. Then we select
the top K nodes as seed nodes. The MaxDegree algorithm
runs for a short time. In greedy algorithm we need combine
the influence diffusion mechanism to calculate the influence
of each node, from which to select the most influential node
as a seed node. In the selection process, if there are the same
nodes of influence, we must traverse these nodes to choose
one of the nodes, so greedy algorithm needs to consume a lot
of time. consensus value algorithm based on coalitional game
theory divides the whole network into different coalitions, we
only need to select a seed node in top-K coalition with large
marginal contribution. Compared with the greedy algorithm,
consensus value algorithm can reduce running time.

VI. CONCLUSION

We present a new approach, CVIM, for coalition formation
and influence maximization. Consensus value algorithm takes
the externality of coalitional game into account to overcome
the limitations of Shapley value. An approach based on the
gain proportion of each coalition coalition is proposed to
select initial coalitions. According to each coalition marginal
contribution rate, the initial coalitions can be found. Compared
with the greedy algorithm, our approach is to select only one
node in a certain coalition, which reduces the consumption
of time. In the selected coalitions, we use the MaxDegree
algorithm and propagate mechanisms to find seed nodes
set. The experimental results on several classical real world
datasets show that our CVIM algorithm spends less running
time than greedy algorithm. Much work is needed to expand
understanding of consensus value as a solution concept of
coalitional games. In the future, we will apply the approach to
IM in dynamic social networks. This is a worthwhile study to
explore the dynamic coalition structure to address influence
maximization problem. Another interesting future work is
to investigate the possibility of applying consensus value to
community detections. This involves comparing the coalition

structure generated by consensus value with established no-
tions of communities in networks.

ACKNOWLEDGMENT

This work was supported by the Major Project of National
Social Science of China (14ZDB016).

REFERENCES

[1] Richardson, M., Domingos, P.: Mining knowledge sharing sites for viral
marketing.In: Proceedings of the eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp 61–70(2002)

[2] Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence
through a social network In: Proceedings of the ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD), pp 137–146 (2003)

[3] Chen, W.,Wang, Y., Yang, S.: Efficient influence maximization in social
net-works. In: Proceedings of the fifteenth ACM SIGKDD International
Conference on Knowl-edge Discovery and Data Mining. Association for
Computing Machinery, pp 199–208 (2009).

[4] Leskovec, J., Krause, A., Guestrin, C.: Cost-effective outbreak detection
in networks. In: Proceedings of the thirteenth ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining. pp 420–429
(2007).

[5] Fortunato, S.: Community detection in graphs. Physics reports 486(3), pp
75–174 (2010).

[6] Liu, J., Wei, Z.: Community Detection Based on Graph Dynamical
Systems with Asynchronous Runs. In: Proc. of CANDAR 2014: 463-469
(2014).

[7] Galstyan, A., Musoyan, V., Cohen, P.: Maximizing influence propagation
in networks with community structure. Physical Review E (2009)

[8] Wang, Y., Cong, G., Song, G.: Community-based greedy algorithm for
mining top-k influential nodes in mobile social networks. In: Proceedings
of the sixteenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Min-ing, pp 1039–1048 (2010)

[9] Girvan, M., Newman, M E J.: Community structure in social and
biological networks. In: Proceedings of the national academy of sciences,
pp 7821–7826 (2002)

[10] Chen, Y. C., Zhu, W. Y., Peng, W. C.: CIM: Community-based influ-
ence maximization in social networks. ACM Transactions on Intelligent
Systems and Technology (2014)

[11] Osborne, M., Rubinstein, A.: A Course in Game Theory. London: MIT
Press (2006)

[12] Liu, J., Wei, Z.: Network, Popularity and Social Cohesion: A Game-
Theoretic Approach. In: Proceedings of AAAI 2017: 600–606.

[13] Zhou, L., Cheng, C., L, K.: Using coalitional games to detect com-
munities in social networks. In: International Conference on Web-Age
Information Management.Springer Berlin Heidelberg, pp 326–331 (2013)

[14] Chen, W., Yuan, Y., Zhang, L.: Scalable influence maximization in social
networks under the linear threshold model. In: Data Mining (ICDM), 2010
IEEE tenth International Conference on, pp 2010: 88–97 (2010)

[15] Wang, C., Chen, W., Wang, Y.: Scalable influence maximization for
independent cascade model in large-scale social networks. Data Mining
and Knowledge Discovery (2012)

[16] Zhang, X., Zhu, J., Wan, Q: Identifying influential nodes in complex
networks with community structure. Knowledge-Based Systems, pp 74–
84 (2013)

[17] Moskvina, A., Liu, J.: How to Build Your Network? A Structural
Analysis. In: Proceedings of IJCAI 2016: 2597–2603.

[18] Narayanam R, Narahari Y. A shapley value-based approach to discover
influential nodes in social networks[J]. IEEE Transactions on Automation
Science and Engineering, 2011, 8(1): 130-147.

[19] Chen W, Liu Z, Sun X, et al. Community detection in social networks
through community formation games[C].IJCAI Proceedings-International
Joint Conference on Artificial Intelligence. 2011, 22(3): 2576.

[20] Szczepanski, P. L., Barcz, A., Michalak, T. P.: The game theoretic inter-
action index on social networks with applications to link prediction and
community detection. In: Proceedings of the twenty fourth International
Joint Conference on Artificial Intelligence, pp 638–644 (2015)

[21] Ju, Y., Borm, P., Ruys, P.: The consensus value : a new solution concept
for coalitional games. Social Choice and Welfare, pp 685–703 (2007)

[22] Network data:// http://www.datatang.com/data/770/
[23] Network data:// http://snap.stanford.edu/data


