DR JOSÉ G B DERRAIK (Orcid ID : 0000-0003-1226-1956)

Article type : 7 Unsolicited Commentary

Antibiotics, gut microbiome, and obesity

Karen S. W. Leong¹; José G. B. Derraik¹,²,³, Paul L. Hofman¹,
Wayne S. Cutfield¹,²,*

¹ Liggins Institute, University of Auckland, Auckland, New Zealand.
² A Better Start – National Science Challenge, University of Auckland, Auckland, New Zealand
³ Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.

* Author for correspondence: Professor Wayne Cutfield, Liggins Institute, University of Auckland,
Private Bag 92019, Auckland, New Zealand; Fax: +64.9.373.8763; Email: w.cutfield@auckland.ac.nz

ORCID:
Karen SW Leong: 0000-0002-5733-8665
José G B Derraik: 0000-0003-1226-1956
Paul L Hofman: 0000-0002-8995-8711
Wayne S Cutfield: 0000-0001-6107-3682

Running head: Antibiotics, gut microbiome & obesity

Keywords: antibiotics, obesity, gut microbiome, childhood, bacteria, animal models

Author contributions: KSWL, WSC, JGBD, and PLH conceived the study. KSWL wrote the
manuscript with critical input from WSC, JGBD, and PLH.

Funding: The authors have no funding to declare.

This article has been accepted for publication and undergone full peer review but has not
been through the copyediting, typesetting, pagination and proofreading process, which may
lead to differences between this version and the Version of Record. Please cite this article as
doi: 10.1111/cen.13495
This article is protected by copyright. All rights reserved.
Disclosure statement: The authors have no financial or non-financial conflicts of interest to declare.

Abstract
Antibiotics have been hailed by many as ‘miracle drugs’ that have been effectively treating infectious diseases for over a century, leading to a marked reduction in morbidity and mortality. However, with the increasing use of antibiotics, we are now faced not only with the increasing threat of antibiotic resistance, but also with a rising concern about potential long-term effects of antibiotics on human health, including the development of obesity. The obesity pandemic continues to increase, a problem that affects both adults and children alike. Disruptions to the gut microbiome have been linked to a multitude of adverse conditions, including obesity, type 2 diabetes, inflammatory bowel diseases, anxiety, autism, allergies, and autoimmune diseases. This review focuses on the association between antibiotics and obesity, and the role of the gut microbiome. There is strong evidence supporting the role of antibiotics in the development of obesity in well-controlled animal models. However, evidence for this link in humans is still inconclusive, and we need further well-designed clinical trials to clarify this association.

Introduction
Antibiotics have been hailed by many as the ‘miracle drugs’ that have revolutionised the medical field since their introduction over a century ago\(^1\). By effectively treating infectious bacterial diseases, they have led to a marked reduction in morbidity and mortality\(^1\). However, with the increase use of antibiotics, we are now not only faced with the increasing threat of antibiotic resistance, but with a rising concern that there are other potential long-term effects of antibiotics on human health, including the development of obesity\(^2\). This review will focus on the association between antibiotics and obesity, and the role of the gut microbiome. The gut microbiome has been recognised to be linked to a multitude of diseases, including obesity, type 2 diabetes, inflammatory bowel diseases, anxiety, autism, allergies and autoimmune diseases\(^3-7\).

How big is the obesity problem?
According to the World Health Organization, 1.9 billion adults were overweight and 600 million were obese in 2014\(^8\). Children have not been spared, whereby a staggering 41 million children aged <5 years were estimated to be overweight or obese in 2014\(^8\). A comprehensive global study by the NCD Risk Factor Collaboration showed that the incidence of obesity in men increased 3.4-fold between 1975 and 2014 (from 3.2% to 10.8%), with a 2.3-fold increase among women (6.4% to 14.9%)\(^9\). Similar trends were noted in children, whereby the worldwide prevalence of childhood overweight and obesity increased 1.6 fold between 1990 and 2010 (4.2% to 6.7%). This trend is expected to increase more than two fold to 9.1% or 60 million children by 2020\(^10\).
Is the gut microbiome associated with obesity?

The human gut is colonised by a vast array of microorganisms, including bacteria, viruses, archaea, and protozoans11,12, which are collectively known as the gut microbiome13. The number of bacteria in particular is so vast that it approximates the number of human cells12. Colonization of the gut begins before birth and is influenced by a variety of dietary and environmental factors4,14,15. There is increasing evidence that the gut microbiome has a range of effects on the host's physiological processes and behaviour16-19.

Dysbiosis (imbalance in gut microbiota) has been linked to the development of obesity by multiple mechanisms, via either direct effects on the gut or indirect regulation of distal organs17,20 (Figure 1). These bacteria are able to break down indigestible polysaccharides (fibre) to short-chain fatty acids (SCFAs), which provide 80-200 kcal/day of energy to normal adults16. Dysbiosis (for example a 20% increase in Firmicutes and a corresponding 20% decrease in Bacteroidetes) can result in an additional 150 kcal of energy harvested per day11,19. SCFAs also modulate the secretion of gut hormones (glucagon-like peptide (GLP-1) and peptide YY), both of which directly influence satiety18 (Figure 1).

In addition, the gut bacteria have an effect on bile acid metabolism, leading to a reduction in the number of bacteria considered to be protective against obesity21 (Figure 1). Bile acids acting as ligands of the nuclear farnesoid X receptor (FXR) and G-protein coupled bile acid receptor 1 (TGR5) are postulated to be involved in the regulation of gut hormone secretion, as well as in glucose and lipid metabolism22-25 (Figure 1).

The gut microbiome also has the ability to disrupt the gut mucosal barrier leading to increased exposure of the host’s immune system to bacterial products16,18 (Figure 1). Increases in certain bacteria, and consequently on the concentration of their membrane lipopolysaccharides (LPS), have been proposed to lead to a condition known as metabolic endotoxaemia18,26. Endotoxaemia along with increased gut permeability is associated with greater inflammation, which in turn leads to weight gain, fasting hyperglycaemia and hyperinsulinaemia16,18,26 (Figure 1). Dysbiosis also reduces the production of angiopoietin-like protein 4 (ANGPTL4) that inhibits lipoprotein lipase, leading to excess deposition of triglycerides in the adipose tissue, liver, pancreas, and heart27 (Figure 1). Other metabolic effects of the gut bacteria are caused by changes in behaviour, including appetite modulation, food intake18, and energy expenditure11 (Figure 1).

The published evidence linking gut microbiome to obesity is summarized in Table 1. Most of what is known about this relationship comes from intervention studies in mice28-31. One study by Backhed et al. in 2004 noted that conventionally raised mice had significantly more body fat compared with mice raised under germ-free conditions28. Introduction of bacteria from the caecum of conventionally raised
mice to the germ-free ones produced a 60% increase in body fat within 2 weeks despite reduced food intake\(^{28}\) (Table 1). They also demonstrated that upon colonisation of germ-free mice with the gut bacteria from conventionally raised mice, fasting leptin, glucose, and insulin levels were increased leading to increasing body fat content. Further, the ANGPTL4 levels were suppressed in the gut epithelium leading to elevated lipoprotein lipase activity, resulting in increasing triglyceride storage in adipocytes\(^{28}\) (Table 1). In 2006, Turnbaugh et al. showed that transferring gut bacteria from obese mice to germ-free ones led to increased fat mass in the recipients\(^{31}\) (Table 1). Turnbaugh et al. further demonstrated that transplanting obesogenic gut microbiome to germ-free mice resulted in nearly a 3-fold increase in fat mass compared to mice who received gut microbiome from lean donors\(^{32}\) (Table 1). More recently, Ridaura et al. evaluated the effects of an obesogenic gut microbiome transfer from human donors to mouse recipients\(^{33}\) (Table 1). In contrast to earlier studies in mouse donors and recipients, they demonstrated that introduction of faecal microbiota from an overweight adult twin to normal-weight germ-free mice resulted in a rapid weight gain in the mice. However, mice treated with faecal microbiota from the lean twin maintained their normal weight\(^{33}\) (Table 1). Further, compelling evidence of the effect of the gut microbiome on obesity comes from a study on gut microbiome transfer from human donors post-bariatric surgery to mouse recipients, which promoted a reduction in fat deposition in recipient mice\(^{34}\) (Table 1). Very recently, Liu et al. showed that obese humans have fewer \textit{Bacteroides thetaiotaomicron} (glutamate-fermenting bacteria) in their gut, with an associated increase in serum glutamate concentrations\(^{35}\) (Table 1). Transfer of \textit{B. thetaiotaomicron} led to a reduction in serum glutamate levels, significantly reducing total fat mass and increasing lean body mass in mice on normal diet, and preventing further weight gain and adiposity in mice on a high-fat diet\(^{35}\) (Table 1). Bariatric surgery was also reported to alter the gut microbiome by increasing \textit{B. thetaiotaomicron} numbers\(^{35}\). As a result, there was an associated reduction in serum glutamate levels and improvement in metabolic parameters including insulin resistance\(^{35}\) (Table 1).

Studies on the composition of the gut microbiome have shown that there is a difference between the bacterial taxa in lean and obese individuals\(^{36-40}\). There is however, a paucity of human intervention studies to determine whether the gut microbiome does in fact influence body weight or whether previous observations were merely associations without a causal link. Dietary-intervention studies reveal that restrictive diets seem to result in a reduction of gut microbiota diversity and butyrate producers (Firmicutes, \textit{Lactobacillus} spp., and \textit{Bifidobacterium} spp.), which is associated with macronutrient deficiency rather than weight loss\(^{41,42}\). Data from bariatric surgery indicate that a similar reduction in butyrate producers was also observed, depending on the surgical technique used\(^{43}\). This may result in reduction of energy harvested from food and SCFAs leading to reduction in gluconeogenesis and lipogenesis\(^{43}\). Studies on the use of probiotics as gut microbiota interventions

This article is protected by copyright. All rights reserved.
have yielded conflicting results, but generally showed a reduction in body fat44-48 (Table 1). Further, studies on prebiotics indicate that these compounds are able to promote changes in both composition and function of the gut microbiota49-51. They increase the number of \textit{Bifidobacterium} spp. and other butyrate producers, leading to improvements in metabolic outcomes and the gut barrier against pathogens52. However, prebiotic intervention is affected by the individual's gut microbiota composition and fibre intake53. Nicolucci et al. recently demonstrated in a randomised placebo-controlled trial that the prebiotic oligofructose-enriched inulin altered the gut microbiota in children (mainly increasing \textit{Bifidobacterium} spp. and decreasing \textit{Bacteroides vulgatus} numbers), leading to a reduction in weight and adiposity, as well as improving systemic inflammation and lipid metabolism54 (Table 1).

Gut microbiome transfer is an effective treatment for \textit{Clostridium difficile} infection55,56. However, Alang et al. reports an interesting case where a female patient with recurrent \textit{C. difficile} infection developed obesity following gut microbiome transfer57 (Table 1). Of note, it was reported that she had not lost any weight as a result of the infection, but developed new-onset obesity after receiving gut microbiome from a healthy but similarly overweight donor. This weight gain was likely due to both resolution of her infection and alteration of the gut microbiome with transfer of obesogenic bacteria. Further, Van Nood et al. showed an increase in bacterial diversity in patients with \textit{C. difficile} infection treated with gut microbiome transfer that was similar to that of healthy donors after donor-faeces infusion58. The restoration of normal gut microbiome with transfer from a healthy donor may be further developed into targeted therapy for treating other conditions including obesity.

Do antibiotics lead to long-term alterations in the gut microbiome?

Recent studies in adults (using 16S rRNA gene sequencing) have shown that antibiotics are able to alter the intestinal microbiome in the short term by reducing the diversity of bacterial taxa59-64. The long-term effects of antibiotics on gut microbial composition have been more variable, with studies reporting differences in both inter- and intra-individual responses to the same antibiotic62,65.

Although there is a high prevalence of antibiotic use in children, there are very few studies looking into their effect on the developing gut microbiome. A recent longitudinal study of the gut microbiome in 39 children showed fairly similar findings as in adults66. This study analysed stool samples of children that had been exposed or unexposed to multiple courses of antibiotics within the first 3 years of life. Using both 16S rRNA gene and metagenomics sequencing, it was reported that there was less microbial diversity in terms of bacterial species and strains at 3 years of age in the children exposed to antibiotics66.

This article is protected by copyright. All rights reserved.
However, there were apparent flaws in the studies published so far, as the number of subjects were small and had significant demographic heterogeneity53,67. The type of antibiotic used, its route of administration, and the subject’s age at the time of administration seem to influence the effects on the gut microbiome64,68,69. In addition, diet, lifestyle, other medications, and products such as probiotics further complicate this conundrum53,70,71.

Do antibiotics cause obesity?

Antibiotics have been linked to a dysbiotic gut microbiome, which in turn have been proposed to lead to obesity. The mechanisms by which antibiotics modulate weight gain are unclear, but several hypotheses have been proposed4,72, which include: (i) increased ability from gut bacteria to extract energy from indigestible polysaccharides; (ii) reduction in the number of bacteria that are metabolically protective against obesity; (iii) altered hepatic lipogenesis; (iv) altered metabolic signalling; and (v) reduction in intestinal defence and immunity.

Since the 1950s, antibiotics have been added to food and water in pigs, cows, and chickens as an effective method to enhance growth, especially weight gain73. This practice has been widely adopted by farmers, and a number of different antibiotics have been used for this purpose74-76. Notably, early life exposure to antibiotics in these animals has far greater effects on weight gain and feed efficiency than if exposure occurred in later life74.

Not surprisingly, evidence from animal models have shown a direct link between treatment with low doses of antibiotics and changes in body composition15,77. In 2012, Cho et al. demonstrated that administration of sub-therapeutic doses of antibiotics increased adiposity in young mice and also altered the intestinal microbiome77 (Table 2). Two years later, Cox et al. observed that there was a critical period around the time of birth when mice were particularly vulnerable to low-dose antibiotic exposure15 (Table 2). Male mice whose mother were treated with penicillin before birth and throughout weaning exhibited markedly increased total mass and fat mass15. In contrast, both male mice receiving antibiotics after weaning and female mice receiving antibiotics before birth and after weaning had similar body composition when compared with controls15 (Table 2). The authors also reported that low doses of antibiotics enhanced the effects of a high-fat diet on the development of obesity in these mice15. Additionally, the study examined possible obesogenic effects of antibiotic-induced alterations in the gut microbiome. Caecal microbiota was transferred from 18-week-old control and penicillin-treated mice to 3-week-old germ-free mice, and those that received the penicillin-altered microbiota were heavier and had greater fat mass compared with controls15 (Table 2).
There have been a number of studies that aimed to assess whether the use of antibiotics may lead to obesity in humans, which are summarized in Table 2. In adults, small observational studies reported that subjects treated with either broad- or narrow-spectrum antibiotics were more likely to gain weight compared with those who were not treated78-80. However, among the limitations of these studies were heterogeneous populations (e.g. different baseline body mass index [BMI]) and small number of subjects. Nonetheless, an interventional study by Mikkelsen et al. demonstrated that treating 12 lean and healthy male subjects for 4 days with a combination of vancomycin, gentamicin, and meropenem reduced the gut bacterial population but was not associated with changes in postprandial glucose tolerance, insulin secretion, or plasma lipid concentrations81 (Table 2). There was also a slight increase in body weight of 1.3 kg and an acute but reversible increase in peptide YY secretion81 (Table 2). These effects might not be as pronounced compared with those of a longer antibiotic therapy, but a limitation of this study was the lack of a control (placebo) group.

In children, the evidence linking antibiotics usage to development of obesity has been inconsistent (Table 2). Prophylactic antibiotic treatment in children with cystic fibrosis was shown to result in weight gain82 (Table 2). Data from 10 randomised controlled trials indicated that antibiotic use in prepubertal children from low and middle-income countries leads to increased growth, particularly weight gain83 (Table 2). However, these studies have only examined children with ongoing infections, whose resolution with antibiotic therapy might have been the underlying cause of weight gain, rather than the possible alterations in the gut microbiota.

Seven recent epidemiological studies in healthy children have provided evidence that the use of antibiotics is associated with obesity84-90 (Table 2). These studies reported that antibiotic exposure in early life was linked to increased BMI and a greater prevalence of obesity among healthy children84-90. This effect was more marked in children who were: i) treated within the first 6 months of life; ii) exposed to three or more courses of antibiotics; iii) treated with broad-spectrum antibiotics; and iv) males84-88,90 (Table 2). Notably, the available evidence indicates that the associations of both gut microbiome and antibiotic usage with childhood obesity are often sexually dimorphic. These studies have shown that the adverse effects seen in males are not often mirrored in females. This is not particularly surprising as sexual dimorphism in association with environmental stressors early in life have been well described in the literature91, even though the underlying mechanisms remain poorly defined. It is possible for example, that such dimorphism may result from differential adaptive responses to diet, physical activity, and physiological stress91,92. Clearly, the evidence shows that observations made on one sex cannot be readily extrapolated to the other.
A very recent meta-analysis of 15 studies by Shao et al. did find that early life antibiotics exposure significantly increases risk of childhood obesity93 (Table 2). Unfortunately, as all these studies were observational in design, it is difficult to pinpoint antibiotic usage as the primary cause of obesity without considering other confounding factors, such as host genetics, dietary changes, maternal BMI, breastfeeding, maternal smoking, and the infection itself84,85,88,89,94. Some of the data in these studies were also potentially unreliable as they were based on recall of antibiotics usage, and compliance with the prescribed antibiotic therapy was never reported84,87,89,95.

In contrast, two studies in 2016 suggest that there was no evidence that antibiotics had an effect on weight gain or on the development of obesity in children95,96. The first study showed no effects of prolonged antibiotic prophylaxis (trimethoprim-sulfamethoxazole) for 2 years on weight gain in children with recurrent urinary tract infection96 (Table 2). However, this study used a single class of antibiotics as prophylaxis, so that the results might have been affected by the type and dose of antibiotics used. Gerber et al. reported on a large retrospective longitudinal study of nearly 39,000 children, finding that antibiotic exposure within the first six months of life did not affect weight gain between 2 and 5 years of age95 (Table 2). Nonetheless, as with other previous studies, there was inadequate information regarding antibiotic exposure and compliance with the prescribed therapy.

Does infection cause obesity?

Alternatively, infection rather than antibiotics could be the contributing factor to the development of obesity. A large study on over 260,000 individuals reported an association between infection and increased odds of obesity in childhood and adolescence, which was independent of antibiotic treatment94 (Table 2). Further, the odds of obesity were also higher in the group with untreated infections than among those who were both uninfected and untreated (Table 2). A limitation in that study was that the assessment of obesity was made by comparing BMI among children across a wide age range (from 2 to 18 years), and comparisons between children of similar age might have yielded different results.

If infection is said to cause obesity, should we also consider viruses and other pathogenic organisms apart from bacteria as causative agents for obesity? This concept ‘infectobesity’ is not new and has been studied in animal models for the past two decades97. At least ten different viruses have been reported to cause obesity in animals, including canine distemper virus, SMAM-1 avian adenovirus, and human adenoviruses Ad36 and Ad3798. Further, SMAM-1 and Ad36 in particular, have been found to be associated with obesity in humans97,98. However, beyond associations, the role of these viruses in the development of obesity in humans remains unclear.
Conclusion

There are strong data supporting the role of antibiotics in the development of obesity in well-controlled animal models, but evidence in humans remains inconclusive. Association studies suggest young children may be particularly vulnerable to the weight-promoting effects of recurrent courses of antibiotics through alterations in the gut microbiome. Randomised controlled trials could clarify the effects of long-term antibiotic treatment on weight gain. However, it would be unethical to conduct such studies, and we will need to rely on trials of antibiotic exposure in children where weight gain is a secondary outcome. These studies would help us better understand the role of antibiotics in the ongoing obesity epidemic.

References

Table 1. Published evidence on a link between gut microbiome and obesity.

AAA, aromatic amino acid; AMPK, phosphorylated AMP-activated protein kinase; ANGPTL4, angiopoietin-like protein 4; BCAA branched chain amino acid; BMI, body mass index; CI, confidence interval; hsCRP, highly-sensitive C-reactive protein; HOMA-IR, homeostasis model assessment of insulin resistance; RYGB, Roux-en-Y surgery; SG, sleeve gastrectomy; WHR, waist to hip ratio.

<table>
<thead>
<tr>
<th>STUDY</th>
<th>POPULATION</th>
<th>EXPOSURE AND DURATION</th>
<th>FINDINGS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backhed et al. 2004</td>
<td>C57BL/6J mice</td>
<td>Transplantation of germ-free mice with microbiota from caecum of conventionally-</td>
<td>↑ 60% body fat ↑ leptin, glucose, insulin ↓ insulin resistance ↓ ANGPTL4 in gut epithelium</td>
<td>There was increased body fat and insulin resistance within 14 days, despite reduction in food intake.</td>
</tr>
<tr>
<td></td>
<td>Donors: conventionally-raised mice</td>
<td>raised mice</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recipients: germ-free mice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backhed et al. 2007</td>
<td>C57BL/6J germ-free mice</td>
<td>Exposure to a Western-style (high-fat and high-sugar diet)</td>
<td>Maintains lean body phenotype due to: (i) ↑ levels of phosphorylated AMP-activated protein kinase (AMPK) and its downstream targets in skeletal muscle and liver (ii) ↑ ANGPTL4</td>
<td>This was due to increased fatty acid metabolism.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osto et al., 2013</td>
<td>Wistar rats</td>
<td>Roux-en-Y surgery (RYGB) or sham surgery</td>
<td>Compared to sham rats, RYGB rats had: ↓ weight ↑ total bacterial content in alimentary limb and common channel ↑ Bifidobacterium spp., Bacteroides spp., and Prevotella spp. in common channel, alimentary limb, and colon</td>
<td>Bariatric surgery induced changes in the gut microbiome of rats to resemble those seen after prebiotics treatment or by dieting.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turnbaugh et al. 2006</td>
<td>C57BL/6J mice</td>
<td>Transplantation of caecal microbiota from obese or lean mice to germ-free mice</td>
<td>↑ percentage body fat in mice colonised with obese microbiota compared with lean microbiota</td>
<td>The gut microbiome of obese mice has an increased capacity for energy harvest and is transmissible.</td>
</tr>
<tr>
<td></td>
<td>Donors: obese (ob/ob) or lean (+/+)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>recipients: germ-free mice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turnbaugh et al. 2008</td>
<td>C57BL/6J mice</td>
<td>Transplanting caecal microbiota from obese or lean mice fed a CHO diet.</td>
<td>↑ % body fat in mice colonised with microbiota from obese (43% vs 25%), despite no difference in initial weight or food consumption of recipients.</td>
<td>Gut microbiome transfer from obese mice to germ-free mice resulted in a significant increase in adiposity compared with transfer from lean mice. Other experiments in the study showed that dietary modifications may also have an effect on the gut microbiome, and in turn on weight gain and adiposity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alang & Kelly 2015</td>
<td>Donor: one overweight healthy woman</td>
<td>Gut microbiome transfer from daughter to mother to treat C. difficile infection</td>
<td>After 16 months: ↑ BMI +7.0 kg/m² ↑ weight +34 pounds (15.4 kg)</td>
<td>Treated recipient’s BMI increased from 26 to 33 kg/m² after 16 months, despite attempts to halt weight gain including dieting and engagement in physical activity. Gut microbiome transplant may result in the development of obesity.</td>
</tr>
<tr>
<td></td>
<td>(daughter)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recipient: one overweight woman with</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clostridium difficile infection (mother)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(USA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liu et al. 2017</td>
<td>Exp 1: Adults (China)</td>
<td>Exp 1: Metagenomic sequencing and metabolomics profiling on obese and lean (controls)</td>
<td>Exp 1: In obese individuals: ↓ gene counts and ↓ bacterial diversity</td>
<td>Alterations in obesity-associated gut microbiome were linked to metabolic changes which are associated with weight loss, reduction in adiposity and possibly improvement in obesity-related metabolic parameters.</td>
</tr>
<tr>
<td></td>
<td>n=151</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This article is protected by copyright. All rights reserved.
<table>
<thead>
<tr>
<th>STUDY</th>
<th>POPULATION</th>
<th>EXPOSURE AND DURATION</th>
<th>FINDINGS</th>
<th>COMMENTS</th>
</tr>
</thead>
</table>
| Nicolucci et al. 2017 | Children who were overweight or obese (Canada) n=42 Ages 7 to 12 years | Treatment with oligofructose-enriched inulin (OI) for 16 weeks Control: maltodextrin | OI-treated group had:
↓ body weight z-score (-3.1%)
↓ percentage body fat (-2.4%)
↓ percentage trunk fat (-3.8%)
↓ interleukin-6 (-15%)
↓ serum triglycerides (-19%) | Randomized controlled, double-blind, placebo-controlled trial
Authors showed that the positive effects of prebiotic supplementation were associated with alteration in the gut microbiome (mainly ↓ Bacteroides vulgatus and ↑ Bifidobacterium spp.), which in turn resulted in reductions in weight, adiposity, systemic inflammation, and an improvement in lipid profile. |
| Ridaura et al. 2013 | Donors: human twin pairs discordant for weight (USA) Recipients: C57BL/6J germ-free mice | Experiment 1: Oral transplantation of gut microbiota from obese or lean human twins to germ-free mice
Experiment 2: Co-housing the above mice 5 days after transplantation | 1: ↑ weight gain in mice transplanted with gut microbiota from obese twin
2: Co-housing mice harbouring the obese twin’s microbiota with mice containing the lean twin’s microbiota soon after gavage prevented the development of obesity | Mice are coprophagous, allowing for cross-transfer of microbiome between co-housed individuals. Gut microbiome transfer might have an effect on body composition and obesity. |
<table>
<thead>
<tr>
<th>STUDY</th>
<th>POPULATION</th>
<th>EXPOSURE AND DURATION</th>
<th>FINDINGS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanchez et al. 2014</td>
<td>Adults who were overweight or obese (Canada)</td>
<td>Supplementation with Lactobacillus rhamnosus CGMCC1.3724 (LPR) for 24 weeks</td>
<td>Phase 1: ↓ weight (-1.8 kg) and ↓ fat mass (-1.2 kg) in LPR-treated women</td>
<td>Randomised double-blind, placebo-controlled trial. Probiotic supplementation led to a greater reduction in weight and fat mass in women, but not in men.</td>
</tr>
<tr>
<td></td>
<td>n=125 Ages 18 to 55 years</td>
<td>Controls: placebo</td>
<td>no differences among men</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Each group was submitted to moderate energy restriction for first 12 weeks (phase 1)</td>
<td>Phase 2: ↓ weight (-2.6 kg) and ↓ fat mass (-2.5 kg) in the LPR-treated women</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>followed by weight maintenance for subsequent 12 weeks (phase 2).</td>
<td>no differences among men</td>
<td></td>
</tr>
<tr>
<td>Sharafedtinov et al. 2013</td>
<td>Adults with metabolic syndrome (Russia)</td>
<td>Normal diet supplemented with probiotic cheese or standard cheese (controls) for 3 weeks</td>
<td>↓ body mass index (BMI) in the probiotic cheese group</td>
<td>Randomized, double-blind, placebo-controlled, parallel pilot study. Probiotics may influence weight reduction.</td>
</tr>
<tr>
<td></td>
<td>n=40 Ages 30 to 69 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Takahashi et al. 2016</td>
<td>Adults who were overweight or obese (Japan)</td>
<td>Milk supplemented with Bifidobacterium animals ssp. lactis GCL2505 for 12 weeks</td>
<td>↓ visceral fat area (VFA) in B. lactis group at 8 weeks (~6.8 cm²; 95% CI ~10.6, -2.9) and 12 weeks (~5.1 cm²; 95% CI -8.6, -1.5).</td>
<td>Randomised double-blind, placebo-controlled trial. B. lactis led to a reduction in visceral fat, which is associated with metabolic disorders.</td>
</tr>
<tr>
<td></td>
<td>n=160 Ages 20 to 65 years</td>
<td>Control: unsupplemented milk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tremaroli et al. 2015</td>
<td>Donors: obese women who had RYGB, vertical banded gastroplasty, or no surgery (Sweden)</td>
<td>Transplantation of gut microbiota from women 9.4 years post-bariatric surgery or women who did not have any surgery to germ-free mice</td>
<td>↓ fat deposition by 43% in mice transplanted with microbiota post-RYGB and by 26% post-VBG compared with mice colonized with microbiota from women with no surgery</td>
<td>Bariatric surgery seems to alter gut microbiome that are involved in metabolism and regulation of adiposity.</td>
</tr>
<tr>
<td></td>
<td>Recipients: germ-free Swiss Webster female mice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhang et al. 2016</td>
<td>Adults</td>
<td>Probiotics consumption</td>
<td>↓ weight by 0.59 kg (95% CI 0.30, 0.87)</td>
<td>Meta-analysis of 20 studies. Probiotics consumption may have an effect on weight reduction and adiposity.</td>
</tr>
<tr>
<td></td>
<td>n=1934 Ages ≥ 18 years</td>
<td></td>
<td>↓ BMI by 0.49 kg/m² (95% CI 0.24, 0.74)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Greater BMI reduction:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• with multiple species of probiotics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• with ≥8 weeks treatment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• in overweight/obese individuals</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Existing evidence for a link between antibiotic use and obesity.

aOR, adjusted odds ratio; BMI, body mass index; BMI SDS, body mass index standard deviation score; CI, confidence interval; Exp, experiment; LDP, low-dose penicillin, OR, odds ratio; RR, relative risk.

<table>
<thead>
<tr>
<th>STUDY</th>
<th>POPULATION</th>
<th>EXPOSURE</th>
<th>FOLLOW-UP</th>
<th>FINDINGS</th>
<th>OBESITY ASSOCIATION?</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cho et al. 2012</td>
<td>C57BL/6J mice</td>
<td>Sub-therapeutic antibiotic treatment at weaning (age 3 weeks) through life</td>
<td>Life-long</td>
<td>Compared to controls, the antibiotic group had:</td>
<td>Yes</td>
<td>Administration of sub-therapeutic antibiotic therapy altered the gut microbiome and increased adiposity in mice.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Controls: no antibiotics</td>
<td></td>
<td>↑ total fat mass</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↑ 3% body fat</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↑ glucose-dependent insulinotropic polypeptide (GIP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↑ relative concentrations of Firmicutes bacteria compared to Bacteroidetes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↑ short-chain fatty acids</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↑ lipogenesis and triglyceride synthesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cox et al. 2014</td>
<td>Exp.1,2,3: C57BL/6J mice</td>
<td>Antibiotic treatment [low-dose penicillin (LDP)] at birth or at age 4 weeks and lasting throughout life [controls had no antibiotics]</td>
<td>Life-long</td>
<td>Exp.1:</td>
<td>Yes</td>
<td>LDP exposure from birth and in early life can alter metabolism in mice and lead to increased adiposity.</td>
</tr>
<tr>
<td></td>
<td>Exp.4: germ-free Swiss Webster mice</td>
<td>Exp.2: LDP lifelong with a high-fat diet at 17 weeks [4 groups – all combinations with and without LDP and/or high-fat diet]</td>
<td></td>
<td>↑ weight if LDP administered at birth rather than at age 4 weeks, with greater effect in male mice</td>
<td></td>
<td>LDP enhances the effect of high-fat diet on the development of obesity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exp.3: LDP during first 4 weeks, first 8 weeks, or lifelong with a high-fat diet at 6 weeks [controls had no antibiotics]</td>
<td></td>
<td>↑ fat mass in both male and female mice</td>
<td></td>
<td>The obese phenotype due to LDP-induced microbiome alterations is transferrable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exp.4: Transferring antibiotic-treated gut microbiota to germ-free mice</td>
<td></td>
<td>↑ fasting insulin levels in male mice</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exp.3:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↑ total, lean and fat mass in all groups, with greater effect in female mice</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exp.4:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↑ total and fat mass in recipients of gut microbiome from penicillin-treated mice</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Ajslev et al. 2011 | Children from the Danish National Birth Cohort
| n=28,354 | Antibiotic treatment up to 6 months of age
<p>| Controls: no antibiotics | 7 years | ↑ risk of overweight among children of normal weight mothers (OR 1.54; 95% CI 1.09, 2.17) | Yes / No | Prospective longitudinal study: Antibiotics introduced early in life may have a differential effect on childhood obesity risk, which may vary according to maternal BMI. |
| | Age 7 years | | | ↓ risk of overweight among children of overweight mothers (OR 0.54; 95% CI 0.30, 0.98) | | |
| | | | | ↓ risk of overweight among children of obese mothers (OR 0.85; 95% CI 0.41, 1.76) | | |</p>
<table>
<thead>
<tr>
<th>STUDY</th>
<th>POPULATION</th>
<th>EXPOSURE</th>
<th>FOLLOW-UP</th>
<th>FINDINGS</th>
<th>OBESITY ASSOCIATION?</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angelakis et al. 2014*</td>
<td>Adults with Q fever endocarditis (France) n=82 Ages 40 to 70 years</td>
<td>Long-term treatment (at least 18 months) with doxycycline and hydroxychloroquine Controls: no antibiotics</td>
<td>1 year after completion of treatment</td>
<td>† weight in 23% of antibiotics-treated patients (+2 lb +13 kg) ↓ weight in 6% of antibiotics-treated patients</td>
<td>Yes / No</td>
<td>Case control study. Treatment with doxycycline and hydroxychloroquine combined was associated with both weight gain and weight loss.</td>
</tr>
<tr>
<td>Azad et al. 2014**</td>
<td>Children from the Canadian Birth Cohort n=723 Assessments at 9 and 12 years of age</td>
<td>Antibiotic treatment during the first year of life Controls: no antibiotics</td>
<td>9 and 12 years</td>
<td>† risk of overweight if they received antibiotics in the first year of life (32.4% versus 18.2% at age 12) † risk of overweight more marked in boys (aOR 5.35; 95% CI 1.94,14.72).</td>
<td>Yes</td>
<td>Case control study. At age 12 years, children (but particularly boys) who received antibiotics in the first year of life were more likely to be overweight compared with those who were unexposed**</td>
</tr>
<tr>
<td>Bailey et al. 2014**</td>
<td>Children (USA) n= 65,480 Age 24-59 months</td>
<td>Antibiotics prescribed in infancy (ages 0-23 months) Controls: no antibiotics</td>
<td>Up to 5 years</td>
<td>† risk of obesity with cumulative exposure to antibiotics (≥4 courses) (RR 1.11; 95% CI 1.02, 1.21) † risk of obesity with exposure to broad-spectrum antibiotics (RR 1.16; 95% CI 1.06, 1.29) † risk of obesity with early exposure (0-5 months of age) to broad-spectrum antibiotics (RR 1.11; 95% CI 1.03, 1.19), but lesser with exposure at 6-11 months of age (RR 1.09; 95% CI 1.04, 1.14)</td>
<td>Yes</td>
<td>Retrospective cohort study. This large study has provided evidence that antibiotic treatment in the first 2 years of life was associated with obesity in early childhood.</td>
</tr>
<tr>
<td>Edmonson & Eickhoff 2016**</td>
<td>Children enrolled in the Randomized Intervention for Children With Vescicoureteral Reflux Study (USA) n=607 Median age of 12 months (range from 2 months to 5.9 years of age)</td>
<td>Treatment with trimethoprim-sulfamethoxazole for 2 years Controls: placebo</td>
<td>2 years</td>
<td>No difference in weight gain (weight-for-age Z-scores) between groups at 6, 12, 18, or 24 months after treatment initiation No effect on the prevalence of overweight/obesity at 24 months (Antibiotic 24.8% vs Placebo 25.7%)</td>
<td>No</td>
<td>Secondary analysis of data from a randomized clinical trial. Prolonged (2-year) prophylactic treatment with trimethoprim-sulfamethoxazole had no effect on weight gain or overweight/obesity risk in young children with recurrent urinary tract infection.</td>
</tr>
<tr>
<td>Francois et al. 2011**</td>
<td>Adults referred for routine upper endoscopy (USA) n=69 Ages 50 to 78 years</td>
<td>Patients positive for Helicobacter pylori infection were treated with a 14-day regimen of amoxycillin, clarithromycin, and a proton pump inhibitor Controls: no antibiotics</td>
<td>18 months after completion of treatment</td>
<td>† BMI (+5%) in patients treated for H. pylori Compared to pre-treatment levels: † post-prandial ghrelin levels (near 6-fold increase) † leptin levels (+20%)</td>
<td>Yes</td>
<td>Prospective cohort study. H. pylori eradication was associated with increased ghrelin and leptin levels (both are involved in appetite and energy regulation) as well as an increase in BMI.</td>
</tr>
<tr>
<td>STUDY</td>
<td>POPULATION</td>
<td>EXPOSURE</td>
<td>FOLLOW-UP</td>
<td>FINDINGS</td>
<td>OBESITY ASSOCIATION?</td>
<td>COMMENTS</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>--</td>
<td>-----------</td>
<td>--</td>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Gerber et al. 2016 96</td>
<td>Children from 30 paediatric primary care practices (USA)</td>
<td>Antibiotic use in the first 6 months of life</td>
<td>7 years</td>
<td>• No significant difference in weight gain between 2 and 5 years of age</td>
<td>No</td>
<td>Retrospective, longitudinal study of singleton births and matched longitudinal study of twin pairs. There was no association between antibiotics use in early life and changes in weight in early childhood. The analysis on twin pairs reduces the potential environmental and genetic factors that may modify weight gain, but statistical power was reduced due to a small sample size.</td>
</tr>
<tr>
<td>Gough et al. 2014 94</td>
<td>Children from 7 low or middle-income countries</td>
<td>Oral antibiotic treatment</td>
<td>Mean of 268 days</td>
<td>↑ weight by 23.8 g/month (95% CI 4.3, 43.3)</td>
<td>Yes</td>
<td>Meta-analysis of 10 randomised controlled trials. Antibiotic treatment of prepubertal children from low and middle-income countries leads to increased growth, particularly weight gain.</td>
</tr>
<tr>
<td>Li et al. 2016 94</td>
<td>Children from the Kaiser Permanente Northern California population (USA)</td>
<td>Antibiotic treatment or infection within the first year of life</td>
<td>Up to 18 years</td>
<td>No association between antibiotic use during infancy with risk of childhood obesity (OR 1.01; 95% CI 0.98, 1.04) ↑ odds of childhood obesity in children with infection compared with controls (OR 1.20; 95% CI 1.20, 1.29)</td>
<td>No</td>
<td>Longitudinal birth cohort study. Infection rather than treatment with antibiotics during infancy was associated with increased odds of childhood obesity.</td>
</tr>
<tr>
<td>Mikkelsen et al. 2015 81</td>
<td>Healthy adult men (Denmark)</td>
<td>4-day treatment with combination of oral vancomycin, gentamicin, and meropenem</td>
<td>6 months</td>
<td>↑ body weight (+1.3 kg) ↑ peptide YY secretion ↓ gut bacterial population No changes in postprandial glucose tolerance, insulin secretion, or plasma lipid concentrations</td>
<td>Yes</td>
<td>Interventional study. A short course of antibiotics had an effect on gut microbiome population and was associated with some weight reduction, but had no effect on glucose or lipid metabolism.</td>
</tr>
<tr>
<td>Murphy et al. 2014 87</td>
<td>Children from 18 different countries involved in the International Study of Asthma and Allergies in Childhood Phase Three</td>
<td>Antibiotic treatment in the first 12 months of life</td>
<td>Not mentioned</td>
<td>↑ BMI in boys with antibiotics treatment (+0.11 kg/m²)</td>
<td>Yes</td>
<td>Population-based cross-sectional study (secondary analysis from a multi-centre, multi-country, cross-sectional study). Treatment with antibiotics during the first year of life is associated with a small increase in BMI in boys but not in girls in mid-childhood.</td>
</tr>
</tbody>
</table>

This article is protected by copyright. All rights reserved.
<table>
<thead>
<tr>
<th>STUDY</th>
<th>POPULATION</th>
<th>EXPOSURE</th>
<th>FOLLOW-UP</th>
<th>FINDINGS</th>
<th>OBESITY ASSOCIATION?</th>
<th>COMMENTS</th>
</tr>
</thead>
</table>
| Saari et al. 2015 a | Children from a Finnish birth cohort | Antibiotic treatment before the age of 24 months Controls: no antibiotics | Not mentioned | ▶ BMI SDS with antibiotic treatment (boys +0.13 SDS; girls +0.07 SDS) compared to controls
More pronounced effect with:
• exposure to macrolides before 6 months of age (boys +0.28 SDS; girls +0.23 SDS)
• ≥1 exposure (boys +0.20 SDS; girls +0.13 SDS). | Yes | Population-based study.
Antibiotic treatment in the first 2 years of life was associated with increased BMI SDS in healthy children. However, the apparent effect was exacerbated according to type, timing, and frequency of treatment. |
| Saalm et al. 2010 b | Children with cystic fibrosis (USA and Canada) | Treatment with azithromycin for 3 days per week over 24 weeks Controls: placebo | 24 weeks | ▶ weight (+0.58 kg; 95% CI 0.14, 1.02) in antibiotic-treated group
More pronounced effect with:
• treatment with azithromycin before 6 months of age (boys +0.28 SDS; girls +0.23 SDS)
• >1 exposure (boys +0.20 SDS; girls +0.13 SDS). | Yes | Multi-centre, randomized, double-blind placebo-controlled trial.
Antibiotic treatment was associated with a slight weight gain in children with cystic fibrosis. |
| Scott et al. 2016 c | Children in The Health Improvement Network (UK) | Antibiotic treatment before 2 years of age Controls: no antibiotics | 4 years | ▶ odds of obesity at 4 years (OR 1.21; 95% CI 1.07, 1.38)
▶ odds of obesity with repeated exposures:
• 3–5 prescriptions (OR 1.41; 95% CI 1.20, 1.65)
• ≥6 prescriptions (OR 1.47; 95% CI 1.19, 1.82)
For every additional course of antibiotic exposure:
▶ 7% risk of overweight (RR 1.23; 95% CI 1.13, 1.35)
▶ 6% risk of obesity (RR 1.21; 95% CI 1.13, 1.30)
▶ BMI z-score (mean difference 0.07 95% CI 0.05, 0.09) | Yes | Retrospective cohort study.
Antibiotic treatment in the first 2 years of life was associated with increased odds of obesity at age 4 years, which were higher with increased exposure. |
| Shao et al. 2017 d | Children from developed countries | Early life antibiotics exposure (prenatal to 23 months) Controls: no antibiotics | 2 to 20 years | ▶ risk of childhood overweight (RR 1.23; 95% CI 1.13, 1.35)
▶ risk of childhood obesity (RR 1.21; 95% CI 1.13, 1.30)
▶ BMI z-score (mean difference 0.07 95% CI 0.05, 0.09)
For every additional course of antibiotic exposure:
▶ 7% risk of overweight (RR 1.07; 95% CI 1.01, 1.15)
▶ 6% risk of obesity (RR 1.06; 95% CI 1.02, 1.09) | Yes | Systematic review and meta-analysis of 15 studies
Early life antibiotics exposure significantly increases risk of childhood obesity. |
| Thuny et al. 2010 e | Adults with suspicion of infective endocarditis (France) | 4 treatment groups: 1) gentamicin + vancomycin, 2) gentamicin + amoxicillin, 3) other antibiotics, and 4) controls [no antibiotics] | 6 weeks | ▶ BMI in patients treated with any antibiotics (+1.1 kg/m²) compared to controls
▶ BMI in patients treated with gentamicin + vancomycin (+2.3 kg/m²) | Yes | Case-control study.
Antibiotic treatment may have an effect on weight gain. |
| Trasande et al. 2013 f | Children from the Avon Longitudinal Study of Parents and Children Cohort (ALSPAC; UK) | Antibiotic treatment in the first 2 years of life Controls: no antibiotics | Up to 7 years | ▶ weight-for-length Z-scores at 10 and 20 months (+0.11 and +0.08, respectively)
▶ BMI Z-score at 38 months (+0.07)
▶ odds of overweight at 38 months (OR 1.22) | Yes | Prospective longitudinal study.
Antibiotic treatment in the first 6 months of life was associated with increased odds of overweight throughout early childhood. |
Figure 1: Proposed roles of the gut microbiome on obesity.

ANGPTL4, angiopoietin-like protein 4; FXR, nuclear farnesoid receptor X receptor; GLP-1, glucagon-like peptide; LPS, lipopolysaccharide; SCFA, short-chain fatty acids; and TGR5, G-protein coupled bile acid receptor 1.