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Abstract: 9 

 Low-cost sensors offer the possibility of gathering high temporal and spatial resolution 10 

crowd-sourced data-sets that have the potential to revolutionize the ways in which we 11 

understand individual and population exposure to air pollution. However, one of the challenges 12 

associated with crowd-sourced data (‘citizen science’), often from low-cost sensors, is that 13 

citizens may use sites strongly affected by local conditions, limiting the wider significance of 14 

the data. This paper examines results from a low-cost network measuring ground-level ozone 15 

to evaluate the impact of siting on data quality. Locations at both reference stations and at 16 

private homes or research centers were used, and thought of as a typical ‘crowd-sourced’ 17 

network. Two instruments were co-located at each site to determine intra-site variability and 18 

evaluated by standard performance statistics and local-scale activity logs. The wider 19 

application of the data for both regional Inter-site variability was evaluated to show-case the 20 

wider value and usefulness of crowd-sourced data. Analysis of intra-site variability showed 21 

little differences at most sites (< 5 ppb). Large differences in intra-site variability were detected 22 

when sensors were exposed to direct sunlight (causing thermal variations within the 23 

instrument) and proximity to large emission sources. Short-term local activities, such as lawn-24 

mowing, were identifiable in the data, but had minimal impact on standard reporting time-25 

scales, and so did not pose as being significant limitations or errors. Inter-site evaluation 26 

demonstrated that dense networks of low-cost sensors can add value to existing networks, with 27 

minimal impact on the overall data-set quality. Sensors located in crowd-sourced locations 28 

nearby to regulatory analyzers were able to capture similar trends and concentrations, 29 

supporting their ability to report on wider conditions. Thus crowd-sourced approaches to 30 

monitoring (with suitable calibration and data quality control checks) may be an appropriate 31 

method for increasing the temporal and spatial resolution of air quality networks. 32 
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 36 

1. Introduction: 37 

Recent air quality research has focused on different approaches in using data from low-38 

cost instruments to supplement data provided by official regulatory bodies (Snyder et al. 2013). 39 

Whilst low-cost instruments have the potential to make a significant contribution to our 40 

understanding of the temporal and spatial variation of air pollutant concentrations in urban 41 

areas, concerns over their accuracy and precision have limited their widespread use (Ottinger, 42 

2010; Snyder et al. 2013; Tregidgo et al. 2013). However, recent innovations in techniques to 43 

detect sensor error and improve accuracy (e.g. Alavi-Shoshtari et al. 2013) are proving 44 

increasingly successful, and attention is now moving away from assessing their reliability 45 

towards developing best-practice guidelines for the use of this new technology 46 

(Nieuwenhuijsen et al. 2015; Xiang et al. 2016). 47 

One area that has been given little attention so far is the impact of local siting on 48 

determining the spatial and temporal representativeness of the data. If low-cost, crowd-sourced 49 

data is to be adopted in air quality research, then the impact upon measured concentrations of 50 

siting instruments on private homes or education centers needs to be understood. Traditionally, 51 

strict regulations surround the siting of regulatory monitoring locations to ensure that datasets 52 

are representative of a given area or land-use type and local-scale effects are controlled for 53 

(Ministry for the Environment, 2009; U.S. Environmental Protection Agency, 2013). For 54 

example, recommendations typically include that the instrument is not adjacent to any walls, 55 

avoidance of large trees, certain facades (e.g. wood), and chemical interferences (e.g. vehicle 56 

emissions), and above the urban canopy layer (Ministry for the Environment, 2009; Moosavi 57 

et al. 2015).  58 

Citizen science approaches which may see instruments located on education centers or 59 

private homes or in gardens could provide complementary information to regulatory datasets 60 

about the effects of different land-use and settings in previously unmonitored locations 61 

(Brienza et al. 2015; Ho et al. 2014). However, they can be expected to violate a number of 62 

siting recommendations because of power requirements, aesthetics, and household 63 

surroundings (e.g. building material). Data from instruments at poorly selected locations 64 

(which may occur in crowd-sourced data due to the siting often being outside of the data users 65 

control) may not be representative of wider conditions due to dominant effects of extremely 66 

local conditions or events specific to that site. This has the potential to make data from these 67 
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sites unsuitable for reporting from a network perspective, and any temporal or spatial averaging 68 

of the data could be misleading from air quality management perspectives. There is therefore 69 

a need to assess the impact of different types of siting and to develop quality assurance 70 

techniques to allow the citizen scientist (and those using that data) to know how to interpret, 71 

and what value to place on, the data from their instrument (Bonney et al. 2016; Ho et al. 2014; 72 

Wolters et al. 2016).  73 

This paper examines the effect of local siting on data quality to address the overall 74 

enquiry on the usefulness of low-cost data. Data from a network of instruments (mounted on a 75 

variety of siting options, such as on regulatory stations or on walls of private houses) were 76 

analyzed for their intra- (within a site) and inter- (between sites) variability. Differences within 77 

a site were compared to their surroundings using regression and standard statistical diagnostics 78 

to ascertain whether certain factors were related to large intra-site differences. Factors with 79 

large differences could then be recommended to the citizen scientist to avoid when mounting 80 

an instrument, or to the data user in deciding whether to include the site within network 81 

analysis. Inter-site analysis examined how a crowd-sourced network can assist in developing 82 

and improving our understanding of the temporal and spatial variability of urban O3 by using 83 

standard statistical diagnostics. Finally, differences between crowd-sourced sites to nearby 84 

reference stations were analyzed for their ability to capture the wider pattern and to give support 85 

for providing data representative of an area.  86 

 87 

2. Materials and Methods: 88 

 89 

2.1 Data: 90 

The data used here were collected from a network of low-cost instruments measuring 91 

ground-level ozone (O3) around Auckland, New Zealand, over a twelve-month period 92 

(November 2014 – November 2015) with two instruments operating per site (< 2 m distance 93 

apart). The data were validated by using methods described previously, with good quality data 94 

capture for over 75% of all observations (Bart et al. 2014; Williams et al. 2013). Auckland has 95 

a subtropical oceanic climate, with humid summers and mild winters and prevailing wind 96 

direction from the Southwest (Adeeb and Shooter, 2004). O3 is a secondary pollutant formed 97 

from the photochemical reaction of NOX or VOCs with UV, which causes regular spatial 98 

profiles and so regional patterning can be expected from synoptic weather patterns up and 99 

downwind of urban centers or central business districts (CBD) where precursors are produced 100 

(often traffic-related) (Bart et al. 2014). O3 concentrations in Auckland are typically low 101 
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compared to other urban centers due to titration from nitrous gases along with the geographic 102 

setting (Jiang et al. 2013), with a peak of O3 in the winter to spring months (July – October), 103 

believed to be from greater stratospheric intrusion rather than local sources (Adeeb and 104 

Shooter, 2004). High O3 days occur at different times at different locations across Auckland, 105 

suggesting the significance of local-scale controls (Adeeb and Shooter, 2004). Auckland has 106 

three reference stations measuring O3 (Figure 1), with two (Musick Point, MP, and 107 

Whangaparaoa, WHA) operating only during the summer months. Therefore, our 108 

understanding of O3 throughout the year in Auckland is determined from one site (Patumahoe, 109 

PAT). 110 

 111 

 112 

Figure 1: locations of monitored sites around Auckland. The arrow denotes prevailing wind direction and CBD is the urban 113 

center. Sites a – n are the low-cost sites, PAT is Patumahoe, MP is Musick Point, and WHA is Whangaparaoa. 114 

 115 
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 The low-cost sensors used were Aeroqual gas-sensitive semiconducting oxide (GSS), 116 

which have been successfully used in a number of field studies (Deville Cavellin et al. 2016; 117 

Lin et al. 2015) and were found to have good performance when compared against other 118 

commercial low-cost instruments (SCAMD, 2015). Sensor specifications state a level of 119 

accuracy to 5 ppb, which has been used here as a benchmark threshold as a true, or real, 120 

difference between co-located measurements. Previous work (Bart et al. 2014) found a standard 121 

error of 6 ppb when devices were compared to co-located analyzer stations for over 6000 122 

measurements, giving support for this level of precision of the device. All low-cost instruments 123 

were field linearized and adjusted data reported, with detailed information on corrections 124 

presented in the Supporting Material. The methods described by Bart et al. 2014 were used to 125 

check instrument performance; the sensor assembly in the instrument was replaced when a 126 

signal or baseline drift was detected (typically every 2 - 5 months; median 3 months).  Overall, 127 

the response was good, with high linearity and no significant differences between co-located 128 

concentrations following calibration. Site locations are illustrated in Figure 1, and include both 129 

reference (n = 3) and low-cost (n = 14; labelled Sites a - n) sites. Four of the low-cost sites 130 

(Sites b, c, d, and i) were co-located with reference stations (Site i being the only one measuring 131 

O3), with the remainder affixed to walls or balconies in private homes or within university 132 

grounds. Periods of missing data were observed over time and were typically due to 133 

transmission or power issues, less than 75% daily capture, or the site not yet being established 134 

or was disestablished. Changes between co-located sensors’ patterns prompted a change and 135 

recalibration of the instruments, with average length of time around 90 days. Locations where 136 

sensors were changed at less than 30 days or at over 90 days did not seem to be related to their 137 

site type, and so may not be responsible for drift (drift being typical in most low-cost 138 

instruments over time).  139 

 140 

2.2 Intra-Site Analysis Methods 141 

2.2.1: Intra-site differences: In order to determine the effect of local conditions on the 142 

sensors, each site was classified according to a number of land-use parameters such as distance 143 

from emission sources and type of mounting (Table 1). These explanatory variables were 144 

determined based on both known O3 sources and quantifiable observations that could help in 145 

describing immediate site surroundings. The subset of instruments co-located with stations 146 

allowed comparison between two siting types, with the co-location sites previously selected by 147 

air quality managers as ideal locations for monitoring and the other sites as a pseudo crowd-148 

sourced network where locations would be outside of a managers’ control (here labelled as 149 
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station – controlled and crowd-sourced – uncontrolled). Co-located data were analyzed using 150 

commonly used statistics to assess performance on a number of indicators at both hourly and 151 

daily scales (mean absolute error – MAE and root mean square error – RMSE for accuracy, 152 

coefficient of determination – R2 and Spearman Rank correlation – 𝜌 for precision and relative 153 

ranking, and Cohen’s d scores (Cohen, 1988) for practical significance on the size of the effect). 154 

Grouping the concentration differences into low (< 5 ppb) and high bands (based on thresholds 155 

previously determined, Bart et al. 2014) further provided information on site surroundings and 156 

instrument functioning at real concentration levels, with variables associated with higher 157 

differences then recommended to avoid when mounting an instrument 158 
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Table 1: descriptors for each of the low-cost sites using set explanatory variables (Vx). 159 

Site #n (days) Siting Va Vb Vc Vd Ve Vf Vg Vh Vi Vj Vk Vl 

a 67 Wall 1.5 S SE Yes No No No Grass No Research Agricultural  Yes 

b 347 Reference 3.5 N SE No No Yes Yes Grass No School Residential No 

c 79 Reference 3.5 E/W SW No No Yes No Gravel No Park Residential No 

d 294 Reference 3.5 N/S NW No No Yes Yes Gravel No School Residential No 

e 345 Wall/Roof 2 N NE No No No No Deck Yes Research Coastal Yes 

f 329 Wall 1.5 N NW No Yes No No Gravel Yes House Residential Yes 

g 224 Balcony 4 E/W NW Yes Yes No No Deck Yes House Residential No 

h 231 Wall 2.5 W NW Yes Yes Yes No Grass Yes House Residential Yes 

i 287 Reference 3.5 W SE No No No No Grass No Research Agricultural No 

j 336 Balcony 3 N NW Yes Yes No No Grass Yes House Residential Yes 

k 324 Wall 1.5 E NE No Yes Yes No Grass Yes Research Agricultural Yes 

l 334 Wall 1.5 W SW No Yes Yes No Gravel No House Bush Yes 

m 122 Balcony 4 E SW No Yes Yes No Grass No House Bush Yes 

n 217 Balcony 2 E SE No Yes Yes No Gravel Yes House Coastal Yes 

a– height above ground (m); b– direction the instrument is facing; c– direction from the CBD; d– shelter over instrument; e– tree within 10 m; f– small emission source within 10 m; g– 160 

high emission source within 10 m; h– land coverage below the instrument; i– water-body within 1000 m; j– descriptor of location; k– land-use designation (‘Bush’ is North Island NZ native forest); 161 
l– proximity to wood surface. 162 
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2.2.2: Local-scale impacts: Analysis of data from local-scale activities that are known 163 

to impact short-term O3 concentration were examined to determine if they could be 164 

distinguished from regular periods of monitoring (and therefore assist in ensuring data quality 165 

when short-term activities do occur at uncontrolled sites). Two examples were used, where one 166 

considered the impact of a short-term activity over both a spatial and temporal scale, and the 167 

other considered the impact of a longer-term seasonal activity associated with a site over a 168 

temporal scale.  169 

The first example used co-located sensors that were placed above a grass area where 170 

lawn mowing was actively noted (two separate occasions noted at two different sites). Lawn 171 

mowing can often use diesel-powered devices, which produce NOX and therefore impacts the 172 

air at a site over a small time-scale (minutes). This type of activity, although accurate for the 173 

site at that brief moment in time, is often extremely localized and may affect averaged 174 

concentrations at which data is reported due to their ‘spike’ impacts. Diagnostics from the 175 

sensors were analyzed to also help with identification of spikes. In particular, we used the 176 

sensor resistance baseline to check for stability of the sensor’s zero over time as spikes were 177 

often associated with a type of chemical interference. In addition, we compared O3 178 

concentrations to the nearest site in a similar land-use setting over the same time-scale to 179 

understand the spatial impact of the activity. Impacts on the data at official reporting averages 180 

(here one-hour and rolling eight-hours) were completed by invalidating O3 at the peak impact 181 

of the activity and comparing this to where no data were removed. This allowed for the lawn-182 

mowing impact to be quantified to assess if such activities created significant effects at typical 183 

reporting scales.  184 

The second example examined effects of delivery and collection of children from 185 

school using motor vehicles (school runs), as one site was located within a primary school and 186 

had co-located wind data. This activity covers a longer period of time than lawn-mowing and 187 

often has no obvious spike, however, it may impact standard reporting times from the localized 188 

activity within the school grounds, and contain a seasonal component due to holidays. No 189 

comparable nearby site was available to analyze the spatial impact. Data was filtered to periods 190 

where wind direction was from the car park / pick-up area and during school hours (0700-1600 191 

Monday – Friday), which was then grouped into school term or school holiday periods in order 192 

to control for potential confounding effects due to time of day or day of week. Assessment 193 

between the two groups were compared on their one and eight hour averages to again check 194 

for differences at typical reporting scales. 195 

 196 
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2.3 Inter-Site Analysis Methods 197 

2.3.1: Inter-site differences: Inter-site variability was carried out in two ways. The first 198 

method was by comparing each low-cost site (using the average of the two instruments where 199 

both data had been validated) to the analyzer run year-round at Patumahoe using similar 200 

statistical tests to the intra-site analysis for network performance. Variation in correlation to 201 

the analyzer of the different sites was used to uncover new information about O3 patterns across 202 

the city. This analysis was supplemented by using hierarchical cluster analysis among all of 203 

the sites (both analyzer and low-cost) to see if any similarities or clusters were present. Sites 204 

were clustered by their similarities using hourly median O3 Spearman rank correlations against 205 

each of the other sites (with the ranked correlation used to minimize the impact of outliers). 206 

Clusters were formed using the complete linkage method, which is derived from selecting the 207 

smallest maximum distance, or dissimilarity, among groups, with convergence reached once 208 

all groups were within one cluster. Sites where larger dissimilarities were found (greater O3 209 

variability and poor correlation) illustrated how a denser network can add new information 210 

(along with potential redundancies where dissimilarity was low). This combination of methods 211 

was chosen to enrich understanding of any long-term spatial patterns across the city. 212 

 213 

2.3.2: Regional reporting: Evaluation of the usefulness of data from uncontrolled site 214 

types at representing regional concentrations was completed by comparison of a select number 215 

of sites in close proximity to a nearby reference analyzer (< 20 km). Two reference analyzers 216 

were compared (Musick Point and Whangaparaoa), as no low-cost sites were within close 217 

proximity to Patumahoe (Figure 1). Locations and installations are shown in Figure 2, with all 218 

breaching standard requirements for siting when using analyzer station specifications. Some 219 

differences in concentrations among sites can be expected due to local-scale effects and due to 220 

natural variation in the atmosphere, but should be relatively minor within the network objective 221 

and for such distances (e.g. indicative exposure impacts on the regularly patterned pollutant 222 

O3). Data were compared using similar performance statistics as the intra- and inter-analysis, 223 

along with correlation plots on the hourly and rolling eight-hourly data. The objective was to 224 

explore how useful uncontrolled sites can be for reporting on wider pollution patterns. 225 

 226 
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 227 

Figure 2: locations of the low-cost sites (green) in close proximity to a reference station (blue), and photographs of the 228 

installations. Figure (a) is for the Whangaparaoa analyzer and Sites f and j, and Figure (b) is for the Musick Point analyzer 229 

and Sites h and k. 230 

 231 

3. Results: 232 

3.1 Intra-site differences 233 

The variability of the intra-site mean absolute difference was less than 5 ppb for most 234 

locations (Figure 3) which showed good agreement between instruments on O3 concentration 235 

within a site. Length of time did not appear to determine instrument differences, and therefore 236 

the changes could not be attributed to sensor ageing or drift alone. This allowed one to make 237 

comparisons among instrument concentration differences without adjusting for length of time. 238 

Some of the smallest differences (MAE: less than 2 ppb) were found at Sites a, e, h and j, all 239 

uncontrolled sites (two in university grounds, two in private homes, Figure 3; Table 1). It 240 

appeared that the site type did not affect the magnitude of the difference between co-located 241 

sensors with a two-sample t-test finding the uncontrolled sites having smaller mean absolute 242 

differences (p-value ~ 0, controlled MAE = 4.03 ppb, uncontrolled MAE = 3.91 ppb). 243 
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 244 

Figure 3: 95% estimate on mean absolute difference for the 14 low-cost sites. Red bars denote where siting was controlled 245 
and blue where the siting was uncontrolled. Data were broken into bands based on measuring length of time, with low (0 – 30 246 
days), med (31 – 90 days), and high lengths (91+ days). The threshold of 5 ppb was used for determining practical differences 247 
(Bart et al. 2014). 248 

 249 

Absolute differences between co-located sensors were compared against explanatory 250 

variables using linear regression to see if failure could be associated with particular siting 251 

variables. Data required log-transformation due to normality assumptions when using 252 

regression. Ground cover (e.g. grass), awnings, land-use, and distance to a water body were 253 

not found to be associated with intra-site differences, neither was proximity to a small 254 

emissions source, such as a single lane driveway. Larger intra-site variability was noted where 255 

instruments were east-facing (and therefore often having longer direct sun exposure time) and 256 

where there were nearby large emission sources such as a car-park (Table 2). We suspect that 257 

high temperatures within the plastic instrument enclosures due to direct sun exposure would 258 

affect the accuracy of the measurement circuits in the instrument and may also result in the 259 

release of hydrocarbons from internal plastic components. These could then be drawn into the 260 

sensor housing where it would then react with ozone to create instrument-specific errors. Along 261 

with this, if inlet tubes or filters became hot then O3 may have decomposed before reaching 262 

the sensor. Intra-site variability also appeared sensitive to some types of sensor placement. 263 

Higher variability was noted when the sensors were on roofs due to higher exposure to the 264 

elements, especially direct sun (however this option may be appealing for aesthetic reasons as 265 
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out of view). Instruments that were back to back also recorded larger differences, possibly also 266 

due to uneven sun exposure. Types of instrument mounting or locations (either on walls, on 267 

reference stations, or on balconies) was not found to be significantly different (χ2 p-value = 268 

0.21), giving evidence that the different mounting options did not impact the size of 269 

concentration differences. Site a, located on a wooden shed wall at an agricultural site in 270 

proximity to a small airfield, had the best results for all summary statistics, with good precision 271 

and accuracy and low practical difference between sensors (Table 3). This was surprising due 272 

to the regular lawn-mowing and agricultural activities, the isolation of the site and so tendency 273 

of spiders to make webs that could cover the inlets, and building material type; however, the 274 

site had low sun exposure and the instruments were side-by-side. Results therefore suggest that 275 

the best strategy for capturing a site’s concentration effectively can be achieved by placing 276 

sensors side-by-side, away from large emission sources, and on surfaces which are not exposed 277 

to direct sunlight (e.g. roof surfaces) as instruments appeared to be sensitive to high 278 

temperatures. 279 
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280 

Table 2: intra-site regression results for the logged mean absolute difference in concentrations for each instrument/site combination and each descriptor variable from Table 1 (n=46). * p-281 
value < 0.05; ** p-value < 0.01 282 

 Siting Va Vb Vc Vd Ve Vf
 Vg

 Vh Vi Vj Vk
 Vl 

Intercept 1.4** 1** 1.4** 1.3** 1.3** 1.3** 1.2** 1.2** 1.3** 1.3** 1.2** 1.4** 1.4** 

Coef. A ^ Balcony: 

Base 

0.11 E: Base NE: Base No: Base No: Base No: Base No: Base Deck: 

Base 

No: Base Coast: 

Base 

Agricultur

al: Base 

No: Base 

Coef. B ^ Roof: 0.55 - N: -0.19 NW: -0.05 Yes: -0.15 Yes: -0.07 Yes: 0.12 Yes: 0.25 Grass: -

0.09 

Yes: -0.01 Park: 0.01 Bush: -

0.16 

Yes: -0.25 

Coef. C ^ Reference: 

0.1 

- S: -0.87* SE: -0.07 - - - - Gravel: -

0.08 

- Research: 

0.03 

Coast: -

0.02 

- 

Coef. D ^ Wall: -

0.18 

- W: -0.34 SW: -0.23 - - - - - - School: 

0.26 

Residentia

l: 0.05 

- 

P-value 0.08 0.08 0.05 0.69 0.39 0.54 0.3 0.07 0.86 0.98 0.34 0.67 0.03 

R2 0.15 0.07 0.23 0.03 0.02 0.01 0.02 0.08 0.01 0 0.08 0.04 0.1 

χ2 ^^ 0.21^^^ 0.76 0.33 0.43 1 0.66 0.87 0.24 0.81 1 0.4 0.51 0.46 

^ Coef. A-D represent the different variable factors within the regression, with each cell identifying the associated factor. Base is the factor that is used as the comparison (coef. = 0). 283 

^^ Chi-Square response was intra-site differences grouped into high (> 5 ppb) and low (≤ 5 ppb) bands, with the p-value (χ2) reported. 284 

^^^ Chi-Square test was run without the factor roof for siting due to only one example within this category. 285 

 286 

 287 

 288 

 289 
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Table 3: intra-site summary statistics for the low-cost sites. MAE – Mean Absolute Error; RMSE – Root Mean Square Error; R2 – correlation coefficient; ρX,Y – Spearman rank correlation 290 

Site MAE (ppb) RMSE (ppb) R2 (%) 𝝆𝑿,𝒀 (%) Cohen’s d 

1-hr 24-hr 1-hr 24-hr 1-hr 24-hr 1-hr 24-hr 1-hr 24-hr 

a 1.73 1.55 2.15 1.85 0.77 0.84 0.97 0.95 0.01 0.01 

b 4.1 3.89 5.02 4.74 0.42 0.21 0.65 0.46 0.07 0.03 

c 3.3 2.44 4.3 3.12 0.54 0.5 0.73 0.63 0.12 0.11 

d 4.65 4.12 5.92 5.17 0.45 0.39 0.69 0.63 0.04 0.04 

e 3.34 3.65 4.91 5.3 0.4 0.4 0.79 0.77 0.31 0.42 

f 4.2 4 5.44 5.09 0.43 0.3 0.66 0.51 0.32 0.41 

g 4.58 3.8 6.39 5.06 0.54 0.69 0.77 0.82 0.11 0.13 

h 2.97 2.64 3.99 3.48 0.43 0.42 0.74 0.66 0.1 0.14 

i 3.55 2.54 4.69 3.42 0.6 0.66 0.78 0.81 0.09 0.1 

j 3.69 3.59 4.24 4.04 0.73 0.73 0.89 0.9 0.15 0.1 

k 4.99 4.23 6.19 5.08 0.44 0.52 0.73 0.77 0.52 0.67 

l 3.12 2.87 3.9 3.56 0.54 0.57 0.81 0.77 0.13 0.15 

m 4.15 3.91 5.46 5.3 0.48 0.51 0.77 0.72 0.51 0.58 

n 4.39 4.36 5.25 5.13 0.5 0.39 0.7 0.63 0.32 0.38 

291 
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3.2: Local Scale Impacts 292 

Data for the two separate lawn-mowing periods are presented in Figure 4 at ten-minute 293 

averages for the two sites, along with their respective sensor baseline resistance and O3 294 

concentration at a site in close proximity (< 10 km).  295 

 296 

 297 

Figure 4: 10-minute ozone and sensor baseline resistance (SRB) data for two sites, h and m, during the day of mowing, with 298 

comparison to O3 at sites f and l in proximity. (a) is for the Site h lawn-mowing event and (b) is for Site m. The outlined 299 

period is where lawn-mowing was actively noted. The colored lines represent the two individual instrument data at each site. 300 

 301 

The data for Site h was on a Thursday where the lawn was mowed during 0830-0930 302 

and the data for Site m was on a Sunday during 1520-1420 (NZDT). Distinct local-scale 303 

patterns can be observed at each site, along with differences between the sites in proximity, 304 

which can be due to local-scale activities that have not been noted (e.g. Site h, in proximity to 305 

a drive-way serving a number of houses, often showed a dip in O3 concentration around 1500). 306 

The spike in O3 concentrations was observed in both instruments at both sites, and the 307 

instruments returned to similar concentrations following this event. This was also captured in 308 

the sensor resistance baseline for the four instruments with sudden negative spikes. These 309 

attributes were not observed in the nearest sites during the same time, and so results show that 310 
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extremely local-scale high-impact activities such as lawn-mowing can be picked up by 311 

instruments, and that the sensors can return to similar concentrations following such exposure. 312 

The impact on a site’s one-hour concentration (where sensors were averaged) were minor, with 313 

differences of less than 3.3 ppb for both sites compared to when the lawn-mowing impacts 314 

were removed and then averaged (and were less than 1 ppb difference on the eight-hour 315 

averages). The hourly differences between the site where lawn mowing occurred and the site 316 

in proximity were less than 2.5 ppb when lawn mowing period data were removed (and less 317 

than 1 ppb when lawn-mowing data were intact). Due to the distinct characteristic of such 318 

events, invalidation of data or alerts if one wanted to improve data quality further could be set 319 

up using baseline diagnostics specific to each sensor, such as (𝑠𝑟𝑏2 − 𝑠𝑟𝑏1) (𝑡2 − 𝑡1) > 𝛼⁄  320 

where α is some arbitrarily set threshold to note changes between times 1 and 2, could be 321 

instated so that active observation of activities are not required.  322 

The second example of local-scale impacts analyzed data from Site b, located on school 323 

grounds, to investigate the impact of the school runs. Results (in Supplementary Material) 324 

showed consistent differences in hourly averages when data were grouped into either school 325 

term or school holiday periods and filtered to school hour times and wind direction from the 326 

carpark area. Overall, concentrations were lower and less variable during the school term (n = 327 

178 hr), with median (inter-quartile range, IQR) of 15.4 (11.2, 17.8) ppb compared to 16.3 328 

(11.4, 22.7) ppb during the school holidays (n = 88 hr), with a statistically significant difference 329 

between the medians (p-value = 0.01). However, this difference would appear to have low 330 

practical significance due to the large overlap of the IQR. The start (0700) and finish (1600) of 331 

the monitored period returned to similar concentrations for each group (< 1 ppb), giving support 332 

that the presence of cars from the school-run was causing this difference, along with larger dips 333 

during the more common drop-off (0900) and pick-up (1500) times (4 ppb difference for both 334 

times). Differences in the eight-hour averages were negligible (1 ppb) due to the effect of 335 

rolling hours, although a slight dip during the day could be observed. This result showed the 336 

small, but significant, impact of school runs on the surrounding environment, providing useful 337 

information on siting from a network analysis perspective. 338 

 339 

3.3 Inter-site differences 340 

The comparison between the averaged low-cost sites and the Patumahoe analyzer 341 

concentrations showed reasonable O3 variability across Auckland (Table 4).  342 



17 
 

Table 4: inter-site summary statistics for the low-cost sites against the Patumahoe reference station. 343 

 

 

MAE (ppb) RMSE (ppb) R2 (%) 𝝆𝑿,𝒀 (%) Cohen’s d 

1-hr 8-hr 1-hr 8-hr 1-hr 8-hr 1-hr 8-hr 1-hr 8-hr 

a 5.07 4.45 6.7 5.76 0.45 0.55 0.72 0.78 0.52 0.58 

b 5.42 4.71 6.85 5.92 0.32 0.38 0.6 0.63 0.29 0.32 

c 6.57 4.7 6.1 5.33 0.52 0.61 0.75 0.79 1.12 1.21 

d 8.16 7.89 9.74 9.26 0.4 0.47 0.69 0.72 0.9 0.97 

e 5.38 4.56 6.98 5.9 0.16 0.25 0.49 0.56 0.1 0.11 

f 8.42 8.04 10.18 9.61 0.22 0.26 0.5 0.52 0.93 1.01 

g 7.04 6.41 8.96 8.03 0.23 0.33 0.57 0.63 0.46 0.49 

h 6.01 5.46 7.58 6.89 0.28 0.33 0.57 0.59 0.46 0.92 

i 3.69 3.07 4.83 4.05 0.57 0.65 0.77 0.81 0.12 0.15 

j 5.28 4.57 6.88 5.88 0.39 0.47 0.66 0.7 0.24 0.27 

k 4.63 3.85 5.63 4.67 0.37 0.49 0.68 0.74 0.17 0.19 

l 6.85 6.27 8.38 7.61 0.2 0.27 0.52 0.56 0.69 0.76 

m 6.57 5.8 7.96 7.04 0.02 0.02 0.16 0.16 0.89 0.97 

n 4.18 3.31 5.31 4.19 0.42 0.56 0.72 0.79 0.05 0.06 

344 
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 345 

Sites with low MAE and RMSE scores (similar concentrations) were Sites i, k and n, 346 

which were all located in semi-rural areas (similar to the analyzer setting). Eight and nine of 347 

the 14 sites had hourly and eight-hourly ranked correlations ≥ 60% to Patumahoe respectively, 348 

showing that overall, concentration rankings were similar between the analyzer and the sites 349 

(good agreement on high and low concentration periods). The correlation coefficient (R2) 350 

between the sites and the analyzer were typically poor however, which illustrates the degree of 351 

O3 variability across the city. R2 values are highly impacted by outliers, which here can 352 

represent local-scale events, and so the results supported the value in measuring at more sites. 353 

Sites with relatively high R2 (and so where the analyzer was able to explain a higher degree of 354 

the observed variability) were sites a, c, i, and n, which were not downwind of the city center 355 

(although in different directions to one another and up to 92 km away). The city center (an area 356 

creating large amounts of precursor emissions) and prevailing wind direction therefore seem 357 

important in explaining regional O3 variability, as distance alone was not found to be associated 358 

with site variability (Table 4). Hierarchical cluster analysis further supported this conclusion 359 

(Figure 5), where sites were grouped by their ranked correlation similarities among each of the 360 

sites (for both low-cost and analyzer). Those sites that were linked at a lower dissimilarity 361 

(which here is 1-ρ) were those that had small physical distances from one another (e.g. Sites c 362 

and d), similar direction toward the urban center (e.g. Sites a and b), and comparable land-use 363 

characteristics (e.g. Sites f and j) (Table 1; Figure 5). Three predominant clusters were found, 364 

the first being for Sites c, d, g, i (PAT), and l, which were towards the west of the city center, 365 

the second being for Sites e, k and n, which were towards the east, and the third being for Sites 366 

a, b, f, h, j, MP, and WHA, which were nearby and around the city center. Site m was found to 367 

be the most different to all the groups, although was more similar to the second, which was 368 

unusual based on the close physical proximity to the other cluster sites (Figure 1). The setting 369 

was at a high elevation (over 300 m), and so may be a reason for this discrepancy. This may 370 

show the influence of synoptic meteorological parameters and topography/height upon O3 371 

distribution and patterns, although not enough sites at high heights were available to test these 372 

parameters further. In relation to sensor mounting effects, no obvious cluster was observed 373 

among the different siting types. This helps to support the finding that specific instrument 374 

mounting had minimal impact on the resulting data. These results supported the use of crowd-375 

sourced networks as they helped to expose new information within the studied area. 376 

 377 
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 378 

Figure 5: dendrogram for the low-cost sites using the complete linkage method and Spearman correlation coefficient as the 379 
indicator. Three groups were identified (red = central; green = west; orange = east). 380 

 381 

3.4 Regional Reporting 382 

The data from a subset of instruments in crowd-sourced locations (Figure 2) were 383 

analyzed against analyzer data within close proximity to check for consistency in O3 reporting 384 

and their subsequent use in explaining concentrations for a wider area. The instruments were 385 

found to have similar time-series patterns and most had agreeable correlation plots to the 386 

analyzers, albeit with different magnitudes and variability (Figure 6). Both examined analyzers 387 

are located on the ends of peninsulas and have high elevation or inlets (83 m elevation and 12 388 

m inlet, Auckland Regional Council, 2005), which could explain the often suppressed diurnal 389 

cycle observed (Adeeb and Shooter, 2005). Site f, located in a residential setting, had the 390 

biggest difference to the compared analyzer (Table 5). This may be due to the limited O3 range 391 

measured at the low-cost site, which may be due to the presence of titration emissions (e.g. 392 

traffic-related NOX). Site k concentrations were similar to the analyzer, although high scatter 393 

was observed, causing low R2 results (potential local-scale short-term effects). Effect sizes, 394 

however, were considered to be acceptable for three of the sites; that is, the observed patterns 395 

had ‘medium’ or below (d < 0.8) practical differences when using the Cohen’s d statistic and 396 

widely-adopted thresholds (Cohen, 1988). This meant that three of the crowd-sourced sites 397 
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were providing practically similar concentrations to the analyzer in proximity (and therefore 398 

could be used as indicators of O3 for a wider area). 399 

 400 

Table 5: inter-site summary statistics for the four sites against the reference analyzer in proximity (< 20 km) at hourly, eight, 401 
and daily resolution. 402 

Site MAE (ppb) RMSE (ppb) R2 (%) 𝝆𝑿,𝒀 (%) Cohen’s d 

1-hr 8-hr 1-hr 8-hr 1-hr 8-hr 1-hr 8-hr 1-hr 8-hr 

f 9.2 9.25 10.57 10.41 0.23 0.24 0.48 0.49 1.32 1.38 

h 5.28 4.98 6.42 5.87 0.47 0.55 0.67 0.73 0.74 0.82 

j 5.29 5.12 6.86 6.27 0.57 0.62 0.74 0.76 0.71 0.78 

k 4.02 3.67 5.16 4.64 0.28 0.33 0.51 0.53 0.38 0.43 

 403 

 404 

Figure 6: daily time-series for the four low-cost sensors (red) in close proximity (< 20 km) to reference analyzers (black). 405 

Distance (km) and specific analyzer are identified in sub-plot titles. 406 

 407 

Comparisons between the analyzer and low-cost instruments were made by hex-plots, 408 

which showed the crowd-sourced sites to often record lower concentrations (Figure 7). This 409 

result appeared sensible for O3, as analyzers are often placed in locations where concentrations 410 

are assumed high and are free of any chemical interferences. Three of the sites here were on 411 

private homes, where concentrations can be assumed to be lower due to local-scale activities 412 
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that impact and reduce concentrations (e.g. traffic-related). The fourth site, Site k, was within 413 

a vineyard (arguably similar surroundings and controls to parklands) and downwind of the city 414 

center, and so it would be believable to have similar concentrations to the analyzer (in parklands 415 

and downwind).  416 

 417 

 418 

Figure 7: hex-bin plots for the subset of reference and low-cost sites in proximity at one-hour (left) and eight-hour (right) 419 
resolution. The red dashed line denotes the 1:1 fit and the blue solid line denotes the least-squares fit. 420 

 421 

4. Conclusion: 422 

Data from low-cost instruments can add interesting and valuable information for an 423 

area through improved spatial resolution and through highlighting relationships among sites. 424 

Different siting types and local-scale effects did not appear to have significant impacts on 425 

monitored O3, with no clear evidence that siting caused large differences between the two co-426 

located sensors, and that short-term activities did not impact longer term results at which 427 

reporting is made. Spatial variability was often low within and high between sites, which 428 

provided confidence that the observed differences were real and not a type of instrument 429 

functioning concern (other than keeping the instruments shaded). Crowd-sourced datasets 430 

appeared capable of capturing wider concentration trends, and therefore be representative for 431 
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regional concentrations. Land-use descriptions, direction toward the urban center, and distance 432 

among sites appeared to be more important in determining patterns than specific siting details, 433 

with clusters having similar characteristics (and no obvious cluster based on instrument 434 

mounting). The observations made here may help to alleviate concerns about instrument 435 

mounting effects for crowd-sourced monitoring networks. 436 

 437 
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