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Quantum annealing has shown significant potential as an approach to near-term quantum computing.
Despite promising progress towards obtaining a quantum speedup, quantum annealers are limited by
the need to embed problem instances within the (often highly restricted) connectivity graph of the
annealer. This embedding can be costly to perform and may destroy any computational speedup.
Here we present a hybrid quantum-classical paradigm to help mitigate this limitation, and show
how a raw speedup that is negated by the embedding time can nonetheless be exploited in certain
circumstances. We illustrate this approach with initial results on a proof-of-concept implementation
of an algorithm for the dynamically weighted maximum independent set problem.

1 Introduction

Quantum computation has the potential to revolutionise computer science, and as a consequence has
received a great deal of attention from theorists and experimentalists alike. Although much progress has
been made through the concerted efforts of the community, we are still some distance from being able to
build sufficiently large-scale universal quantum computers to realise this potential [21].

More recently, however, significant progress has been made in the development of special-purpose quan-
tum computers. This has been driven by the realisation that, by dropping the requirement of being able
to efficiently simulate arbitrary computations and relaxing some of the constraints that make large-scale
universal quantum computing difficult, such devices can be more easily engineered and scaled. With this
approach it may be possible to exploit some of the capabilities of quantum computation to obtain lesser,
but nevertheless practical, advantages in real-world applications. Quantum annealers, which solve par-
ticular optimisation problems, exemplify this approach, and significant progress has been made in recent
years towards engineering moderately large-scale such devices [17]. This approach has been pursued par-
ticularly zealously by D-Wave, who have developed quantum annealers with upwards of 2000 qubits [11]
and are thus of sufficient size to tackle problems for which their performance can meaningfully be com-
pared to classical computational approaches.

In this paradigm, however, it is a subtle problem to compare the performance of quantum solutions to
classical ones, since the focus is on obtaining real-world gains in domains where heuristics tend to be at
the core of the best classical approaches. Indeed, this issue is at the heart of recent debate surrounding
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the performance of D-Wave machines [6, 27]. In particular, instead of focusing on asymptotic analyses,
one must compare the performance of classical and quantum devices empirically. But performing bench-
marking fairly is difficult, especially when there is often debate as to which classical algorithm should
be taken for comparison [18, 20, 26].

In this paper, motivated by the need to take into account the cost of classical processing in benchmarking
quantum annealers, we propose a hybrid quantum-classical approach for developing algorithms that mit-
igates the cost of this processing. We focus on D-Wave’s quantum annealers where the process involves
a costly classical “embedding” stage which maps an arbitrary problem instance into one compatible with
D-Wave’s limited connectivity constraints. We then formulate a generic hybrid approach that mitigates
this cost allowing any advantage present to be accessed more directly [4]. The embedding problem is
time-consuming, and experimental studies indicate that its quality can have strong effects on perfor-
mance [30, 32].

To illustrate this generic framework for hybrid computing we propose, we present a hybrid algorithm
based around a D-Wave solution to the maximum-weight independent set (MWIS) problem. We present
an overview of the results of an initial proof-of-principle implementation of this algorithm, showing a
large improvement of the hybrid algorithm over a more standard quantum annealing approach, as well
as comparing it to a classical algorithm.

2 D-Wave’s quantum annealing framework

2.1 Quantum annealing and quadratic unconstrained Boolean optimisation

Quantum annealing is a finite temperature implementation of adiabatic quantum computing [13], in
which the optimisation problem to be solved is encoded into a Hamiltonian Hp (the quantum operator
corresponding to the system’s energy) such that the ground state of Hp corresponds precisely to the
solution to the problem (or one of them, if many exist). The computer is initially prepared in the ground
state of a Hamiltonian Hi, which is then slowly evolved into the target Hamiltonian Hp. This computation
can be described by the time-dependent Hamiltonian H(t) = A(t)Hi + B(t)Hp for 0 ≤ t ≤ T , where
A(0) = B(T ) = 1 and A(T ) = B(0) = 0. T is called the annealing time and, for D-Wave machines, the
functions A and B give a close to a linear transition from Hi to Hp [17]. If the computation is performed
sufficiently slowly, the Adiabatic Theorem guarantees that the system will remain in a ground state of Hp

throughout the computation and the final state will thus correspond to an optimal solution to the problem
at hand [13].

Quantum annealers implement specific, simple classes of Hamiltonians, such as the two-dimensional
Ising spin Hamiltonians realised by D-Wave devices. This restriction means that D-Wave annealers are
capable of solving natively the Quadratic Unconstrained Boolean Optimisation (QUBO) problem [7].
The QUBO problem is the task of finding the input x∗ that minimises a quadratic objective function of
the form f (x)= xT Qx, where x=(x1, . . . ,xn) is a vector of n binary variables and Q is an upper-triangular
n×n matrix of real numbers:

x∗ = argmin
x

xT Qx = argmin
x

∑
i≤ j

xiQ(i, j)x j, where xi ∈ {0,1}.



A. A. Abbott, C. S. Calude, M. J. Dinneen & R. Hua 3

In the quantum annealing model of the QUBO problem, each xi corresponds to a qubit while Q defines
the problem Hamiltonian Hp. Crucially, the nonzero terms Q(i, j) (for i 6= j) correspond to couplings be-
tween qubits and induce a graph GL = (VL,EL) called the logical graph representing interactions between
qubits; the qubits VL in which the QUBO problem is represented over are called the logical qubits.

2.2 Hardware constraints and embeddings

The comparative ease in engineering devices which naturally solve the QUBO problem has been crucial
for the recent experimental success of quantum annealing. Still, it remains exceedingly difficult to control
interactions between qubits that are not physically near to one another, and as a result it is not possible
to implement directly any instance of the QUBO problem. Instead, the couplings possible on a quantum
annealer are specified by a physical graph GP = (VP,EP), where VP is the set of physical qubits on the
device, and an edge {i, j} ∈ EP signifies that qubits i and j can be physically coupled [7].

The physical graphs implemented on D-Wave’s devices are Chimera graphs χk, which are k× k grids
of K4,4 graphs [5]. Specifically, each qubit is coupled with four other qubits in the same K4,4 block and
two qubits in adjacent blocks (except for qubits in blocks on the edge of the grid, which are coupled to
a single other block). The Chimera graph is crucially relatively sparse and near-to-planar, with qubits
separated by paths of length up to 2k. Since the logical graph GL for a QUBO problem instance Q
will not, in general, be a subgraph of the physical graph GP = χk, the problem instance on GL must be
mapped to an equivalent one on GP. This process involves two steps: first, GL must be embedded in GP,
and secondly the weights of the QUBO problem (i.e., the non-zero entries in Q) must be adjusted so that
valid solutions on GP are mapped to valid solutions on GL.

The embedding stage amounts to finding a (minor) embedding of GL into GP [7], i.e., an embedding
function f : VL→ 2VP such that i) the sets of vertices { f (v) | v ∈VL} are disjoint, ii) for all v ∈VL, there
is a subset of edges E ′ ⊆ EP such that G′ = ( f (v),E ′) is connected and iii) if {u,v} ∈ EL, then there
exist u′,v′ ∈ VP such that u′ ∈ f (u), v′ ∈ f (v) and {u′,v′} is an edge in EP. The problem of finding a
minor embedding is itself computationally difficult [7]. The embedding process may thus, in light of
its computational difficulty, contribute significantly to the time required to solve a problem in practice.
Currently, the standard approach to finding such an embedding is to use heuristic algorithms.

2.3 Benchmarking quantum annealers

It is not generally believed that an exponential speedup is possible for NP-hard problems such as the
QUBO problem [1], and there has been much debate over whether or not quantum annealing provides
any such speedup in practice [4, 26]. Indeed, there is disagreement over what exactly constitutes a
quantum “speedup” and how to determine if there is one. In this paper we will focus primarily on the
empirical run-time performance in investigating whether a quantum speedup is present, rather than the
(empirically estimated) scaling performance of quantum algorithms.

Good benchmarking needs to make use of fair and comprehensive metrics to determine the running time
of both classical and quantum algorithms for a problem. In particular these need to properly take into
account not only the “wall-time” of different stages of the quantum algorithm, but also its probabilistic
nature. To understand how this can be done, we first need to outline the different stages of the quantum
annealing process [19]: 1) Programming: The problem instance is loaded onto the annealing chip (QPU),



4 A Hybrid Quantum-Classical Paradigm to Mitigate Embedding Costs in Quantum Annealing

which takes time tprog; 2) Annealing: The quantum annealing process is performed and then the physical
qubits are measured to obtain a solution; this takes time ta; 3) Repetition: Step 2 is performed k times
to obtain k potential solutions. The quantum processing time (QPT) is thus tproc = tprog + kta. With
these considerations on hand, a relatively fair and robust way to measure the quantum processing time
is the “time to solution” (TTS) metric [3, 26], which is based on the expected number of repetitions
needed to obtain a valid solution with probability p (one typically takes p = 0.99). If the probability per
annealing sample of obtaining a solution is s (which can be estimated empirically), then this is calculated
as k99 =

log(1−p)
log(1−s)

, and the quantum processing time is thus calculated with this k as tproc = tprog + k99 ta.
Existing investigations have primarily focused on comparing directly the QPT with the processing time
of a classical algorithm in order to look for what we call a “raw quantum speedup”. However, it is
essential to realise that the time used by the QPU and measured by the QPT refers only to a subset of the
processing required to solve a given problem instance using a quantum annealer. Specifically, a complete
quantum algorithm for a problem instance P involves, as a minimum requirement, the following steps:

1. Conversion: The problem instance P must be converted into a QUBO instance Q(P), typically via
a polynomial-time reduction taking time tconv.

2. Embedding: The QUBO problem Q(P) must be embedded into the Chimera hardware graph taking
time tembed.

3. Pre-processing: The embedded problem is pre-processed, which involves calculating (appropri-
ately scaled) weights for the embedded QUBO problem, taking time tpre.

4. Quantum processing: The annealing process is performed on the QPU, taking time tproc.

5. Post-processing: The samples are post-processed to choose the best candidate solution, check its
validity, and perform any other post-processing methods to improve the solution quality [19, 25]
taking time tpost. The QUBO solution must finally be converted back to a solution for the original
problem P.

The total processing time is thus

TQ = tconv + tembed + tpre + tproc + tpost. (1)

The realisation that these other steps must be included in the analysis is emphasised by the fact that in
practical problems the embedding time often dominates the time used by the annealer itself. Previous
investigations have largely avoided this by focusing on artificial problems “planted” in the Chimera graph
so that no embedding is necessary [3, 12, 16, 26, 27]. Although finding a raw speedup in such situations
is clearly a necessary condition for a quantum speedup, it is not sufficient for it to be present in practical
problems.

To properly benchmark quantum annealing it is necessary to also compare fairly the quantum annealer
to a suitable classical algorithm. Indeed, much of the controversy regarding potential speedups with
quantum annealing has been due to the fact that quantum annealers have been compared against simu-
lated annealing or simulated quantum annealing. Although such studies certainly have merit and such a
speedup is certainly a necessary condition for a real quantum speedup, it has repeatedly been pointed out
that classical annealing techniques are generally far from optimal and any observed speedups have disap-
peared when better classical algorithms were used [12]. In [26], this type of quantum speedup has been
termed a “limited speedup”. Ideally, one should instead compare annealing against the best available
classical algorithm for the problem to find a “potential quantum speedup”.
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3 Hybrid quantum-classical computing

Much of the previous effort towards determining whether or not quantum annealing can, in practice,
provide a computational speedup has focused on determining the existence of a raw quantum speedup,
which does not take into account the associated classical processing that is inseparable from a quantum
annealer. Such a raw speedup is certainly a necessary condition for practical quantum computational
gains, and its study is therefore well justified. However, even if there is a raw speedup there are many
reasons why this might not translate into a practical quantum speedup.

A practical speedup is possible for a problem if we are able to give a quantum algorithm such that
TQ < TC, where TC is the classical processing time for the best available classical algorithm for the
problem. From the definition of TQ in (1), it is clear than, even if tproc < TC, the conversion, embedding
and pre/post-processing may provide obstructions to obtaining a practical speedup. In practical terms,
the pre- and post-processing tend to add relatively minor (or controllable) overheads, but the conversion
and embedding costs pose more fundamental problems.

These difficulties in turning a raw quantum speedup into a practical advantage for practical problems have
led to significant interest in “hybrid classical-quantum” approaches (also called “quassical” computations
by Allen [4]). Hopefully, combining quantum annealing with classical algorithms may allow otherwise
inaccessible speedups to be exploited. Several such hybrid approaches have aimed to overcome the
resource limitation arising from the fact that practical problems typically require more qubits than are
available on existing devices (as a result of the expansion in number of variables during the conversion
stage discussed above) [24, 29].

3.1 Hybrid computing to negate embedding costs

Although hybrid approaches have also looked at improving the robustness and quality of embeddings [31],
to the best of our knowledge such approaches have not been used to try and mitigate the cost of perform-
ing the embedding itself, which, we recall, is often prohibitive to any speedup. In this paper we propose a
general hybrid approach to tackle precisely this problem. In particular we aim to show how a raw speedup
that is negated by the embedding time (i.e., in particular when tproc < TC but TQ > TC) can nonetheless be
exploited to give a practical speedup to certain computational problems.

Our approach is motivated by another hybrid quantum-classical algorithmic proposal which predates the
rise of quantum annealing and was introduced with the aim of exploiting Grover’s algorithm—the well-
known black-box algorithm for quantum unordered database search [15]—in practical applications [22].
The crucial condition for such a problem to be amenable to this hybrid approach is that the repeated
calls to the quantum annealer should be made with the same logical graph embedding, or at least permit
an efficient method to construct the embedding for one call from the previous ones. If this condition is
satisfied, the cost of the embedding, tembed, can thus be spread out over the several calls, allowing a raw
quantum speedup to be exploited.

In order to see how this hybrid approach can help exploit a quantum speedup, we will consider the
following general description of a quantum annealing algorithm based on the hybrid approach described
above (a more precise analysis would necessarily depend in part on the algorithm in question): some
initial classical processing is performed, the embedding of a logical graph into the physical graph is
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computed, m instances of a QUBO problem are solved on a quantum annealer, with some classical
pre- and post-processing occurring between instances, and some final classical computation is optionally
performed. More formally, let us call the overall problem the hybrid algorithm solves R, and the m
problem instances that must be solved to do so, P1, . . . ,Pm. Recall that the time to solve a single instance
Pi on an annealer is TQ(Pi). As we noted earlier this is, in practical situations, generally dominated by
the cost of the embedding and the quantum processing, so TQ(Pi) can be approximated, for simplicity, as

TQ(Pi) = tconv(Pi)+ tembed(Pi)+ tpre(Pi)+ tproc(Pi)+ tpost(Pi)≈ tembed(Pi)+ tproc(Pi), (2)

where we have explicitly included the dependence on the problem instance. The hybrid algorithm will
thus take time

TH(R)≈ t1(R)+ tembed(P1)+∑
i

(
tproc(Pi)+ t2(Pi)

)
≈ t1(R)+ tembed(P1)+∑

i
tproc(Pi),

where t1(R) encapsulates any initial and final classical processing associated with combining the so-
lutions Pi, and t2(Pi) is the time of the classical calculation associated with each iteration, which we
have assumed to be small compared to tproc(Pi) since this should simply encompass minor pre- and
post-processing between annealing runs, and thus be negligible if the problem is amenable to the hybrid
approach. Note that we have made use of the assumption that tembed(P1)≈ tembed(Pi) for i > 1, which is
a criterion in the suitability of a problem for this hybrid approach.

We note immediately that a standard approach with a quantum annealer, performing the embedding for
each instance Pi, would take time Tstd(R) = t1(R) +∑i

(
tembed(Pi) + tproc(Pi)

)
. Thus, since in practice

tembed is comparable, if not larger, than tproc, we already have TH(R)� Tstd(R). Although this conclusion
may seem somewhat trivial, it is important in that it shows already how annealing can provide much
larger practical gains for such complex algorithmic problems. More importantly, it may allow a raw
quantum speedup to be exploited practically.

It is, of course, possible that for certain problems a much more efficient classical algorithm exists for
solving R when m is large enough (e.g., there might be an efficient way to map solutions of Pi to Pj).
Such problems are thus not suitable for such a hybrid approach, and so are not of particular interest to us.
Nonetheless, generally a classical algorithm for R may be more intelligent than the standard approach
as certain, presumably minor, parts of the computation are likely to be common to solving several Pi.
Specifically, we can thus rewrite TC(Pi) = t3(Pi) + t4(Pi), where t3 is small compared to t4. The best
classical algorithm can then, rather generally, be considered to take time

T best
C (R) = t5(R)+ t3(P1)+∑

i
t4(Pi) = t6(R)+∑

i
t4(Pi),

where t6(R) = t5(R)+ t3(P1). Crucially, unless the raw quantum speedup is small, we will also have
tproc(Pi)< t4(Pi). It is thus easy to see that, for large enough m (i.e., number of Pi to be solved), we will
have TH(R)< T best

C (R), and thus the raw quantum speedup will translate into an absolute speedup for the
hybrid algorithm.

4 Case study: Dynamically weighted maximum-weight independent set

To illustrate the proposed hybrid approach, we discuss in detail a concrete example both from a theoret-
ical and experimental viewpoint.
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4.1 (Dynamically weighted) Maximum-weight independent set

The core of the problem is the maximum-weighted independent (MWIS) set problem. Recall that an
independent set V ′ of vertices of a graph G = (V,E) is a set V ′ ⊆V such that for all {u,v} ∈ E we have
{u,v} 6⊆V ′.

Maximum-Weight Independent Set (MWIS) Problem:

Input: A graph G = (V,E) with positive vertex weights w : V → R+.
Task: Find an independent set V ′ ⊆V such that maximises ∑v∈V ′ w(v)

over all independent sets of G.

The general MWIS problem is NP-hard since it encompasses, by restriction, the well-studied non-
weighted version [14]. One should note, however, that for graphs of bounded tree-width, the MWIS
problem is polynomial-time solvable using standard dynamic programming techniques (see [23]).

Although the MWIS can be readily transformed into a QUBO problem (as we show below), by itself it is
not directly suitable for the hybrid approach we proposed. However, a simple variation that we propose
here is indeed suitable.

Dynamically Weighted Maximum-Weight Independent Set (DWMWIS) Problem:

Input: A graph G = (V,E) with a set of weight functions W = {w1,w2, . . . ,wm}
where wi : V → R+ for 1≤ i≤ m.

Task: Find independent sets Vi ⊆V that maximise ∑v∈Vi wi(v) for each 1≤ i≤ m.

This problem is to solve the MWIS problem on G for each of the m weight assignments wi ∈W . For
m = 1 we obtain again the MWIS problem, but for larger m the problem is suitable for our hybrid
approach.

4.2 Quantum solution

We now provide a QUBO formulation for the MWIS Problem. Fix an input graph G = (V,E) with
positive vertex weights w : V → R+. Let W = max{w(v) | v ∈V} and let S >W be a “penalty weight”.
We build a QUBO matrix of dimension n = |V | such that:

Q(i, j) =


0, if i > j or {i, j} 6∈ E,

−w(vi), if i = j,
S, if i < j and {i, j} ∈ E.

(3)

Theorem 1 ([2]). The QUBO formulation given in (3) solves the MWIS Problem.

In order to adapt the MWIS solution above to the DWMWIS problem, note that the non-zero entries of
the QUBO formulation (3) depend only on the structure of the graph and not on the weight function w.
Thus, in order to solve the DWMWIS problem, for each weight assignment wi the same embedding of
the graph into the D-Wave physical graph can be used, meaning that a hybrid algorithm based around
the MWIS solution above can readily be implemented. More specifically, following the hybrid algorithm
described in Section 3.1 for instances P1, . . . ,Pm (where each Pi uses weight function wi), we perform
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the embedding once (entailing a time tembed(P1)) and then solve the MWIS problem for each weight
assignment wi (taking times tproc(Pi)) using the QUBO solution outlined above.

4.3 Classical baseline

The main objective of studying the DWMWIS example in detail is to exhibit experimentally the advan-
tage that the hybrid approach can provide over a standard annealing-based approach. Nonetheless, it is
helpful to further compare this to the performance of a classical baseline algorithm for comparison and
to help highlight this advantage, even if we do not necessarily expect to see an absolute quantum speedup
from the hybrid algorithm.

To this end, for a given input graph G = (V,E) with positive vertex weights w : V → R+, we construct
a Binary Integer Programming (BIP) instance with n = |V | binary variables as follows. To each vertex
vi in G we associate the binary variable xi, and for notational simplicity we will denote the collection of
variables xi by a binary vector x = (x0,x1, · · · ,xn−1). We thus have the BIP problem instance:

maximise ∑
vi∈V

w(vi)xi

subject to xi + x j ≤ 1 for all {vi,v j} ∈ E.
(4)

Each constraint in (4) enforces the property that no adjacent vertices are chosen in the independent
set while the objective function ensures an independent set with maximum sum value is chosen. As-
suming we have the binary vector x which yields the optimal value of objective function (4), we take
D(x) = {vi | xi = 1} to be the set of vertices selected as the maximum weighted independent set.

Theorem 2 ([2]). The BIP formulation given in (4) solves the MWIS problem.

The classical baseline used in the analysis is based on an implementation of the BIP formulation in Sage
Math [28], which has a well developed and optimised Mixed Integer Programming library. To ensure
that a fair comparison with the hybrid algorithm is possible, we formulate the classical algorithm for the
overall DWMWIS problem such that the set of constraints in the BIP formulation is only computed once.

4.4 Experimental definition and procedure

To study the performance of the hybrid DWMIWS algorithm in a practical setting, we made use of a
D-Wave 2X quantum annealer with 1098 active physical qubits [8] to compare the performance of three
algorithms on a selection DWMWIS problem instances: the “standard” quantum algorithm, in which
the embedding is re-performed for each weight assignment; the hybrid DWMWIS algorithm; and the
classical BIP-based solution described above. We present here a summary of the experimental procedure
and results; a more detailed presentation and analysis is available in an extended version of the paper [2].

To this end we analyse the algorithms on a range of different graphs, in particular choosing 155 graphs
from a variety of common graph families with between 2 and 126 vertices. Each graph was used to gen-
erate a single DWMWIS problem instance with m = 100 weight assignments, each randomly generated
as floating point numbers rounded to 2 decimal places within the range [0.0,1.0). The problem instances
were generated as standard adjacency list representations using SageMath [28] with random weights.
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The same procedure is used for the “standard” quantum algorithm, except the cost of the embedding is
incurred for each weight assignment.

Since we are primarily interested in negating the impact of the embedding process in general applications,
we made use of D-Wave’s heuristic embedding algorithm [10] to embed each logical graph in the physical
graph. Each graph was embedded 10 times to estimate tembed for each problem instance. Finally, our
tests were run with D-Wave’s post-processing optimisation enabled. While this adds a small overhead in
time, this is well within the spirit of hybrid quantum-classical computing, and allowed us to solve more
problems. This post-processing method processes small batches of samples while the next batch is being
processed [9]. This ensures that it only contributes a constant overhead in time for each MWIS problem
instance independent of the number of samples (and thus k99).

4.5 Results and analysis

For each DWMWIS problem instance (i.e., for each graph G) the times TH and Tstd were calculated,
following the approach described in Section 3.1, as

TH = tembed +∑
i

(
tprog(Pi)+ k99(Pi)tanneal + tpost(Pi)

)
,

Tstd = ∑
i

(
tembed + tprog(Pi)+ k99(Pi)tanneal + tpost(Pi)

)
,

where k99(Pi) is the k99 value for weight assignment wi and tanneal = 309µs. Both tprog(Pi) and tpost(Pi)
are of the order of 20ms. Note that the processing time tproc defined earlier is, for this approach to the
DWMWIS problem, given by tproc = tprog(Pi)+ k99(Pi)tanneal + tpost(Pi). The classical time TC was taken
as the processor time for the classical algorithm described above. The results are summarised in Figures
1(a) and 1(b), which show how the hybrid times TH compare to both Tstd and TC. Error bars are calculated
from the observed variation in tembed, the number of optimal solutions found Nopt, and the post-processing
time tpost. Of these, the error in tpost is the dominant factor, and largely arises from the uncontrollability of
the post-processing environment, which is performed remotely within the D-Wave processing pipeline.
However, this variation did not result in any significant variation in success probability of the annealing,
so it seems the amount of post-processing performed was constant.

First and foremost, from the results shown in Figure 1(a) the extent of the advantage of the hybrid
approach is evident. Indeed, this is to be expected given that, for a given DWMWIS problem, they differ
(by definition) by 99×tembed. Although this might seem a trivial confirmation of this fact, the results help
illustrate the extent of the advantage that the hybrid approach can have for such problems, a consequence
of the absolute cost of the embedding. This is visible in Figure 2, showing tembed as a function of the
number of vertices in a graph.

From Figure 1(b) it is also evident that no absolute quantum speedup was observed using the hybrid
algorithm, and indeed there is a vast difference in scale between TC and TH : the “hardest” problem was
solved classically in less than 200ms, whereas the hybrid algorithm required almost 60 times as much
time to solve it correctly. The inability to observe any raw speedup is hardly surprising when one notes
that, even if k99 = 1 and tembed = tpost = 0, the fact that tprog ≈ 20ms means that that one would have
TH > 2000ms. This programming time thus adds an essentially constant overhead, which would have
less of an impact as larger problems (for which k99 is much larger) become solvable.
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(a) (b)

Figure 1: Plots of (a) an upper bound for Tstd against TH ; and (b) TC against TH for each DWMWIS
problem instance. All times are in ms.

Despite the absence of no overall speedup, it is interesting to examine the scaling behaviour of the hybrid
approach, for which it will be useful to consider the “classical speedup ratio” RC = TH/TC. In Figure 3
we show the scaling behaviour of RC against two reasonable proxies of problem difficulty: the graph
order |V |, which is proportional to the problem size, and the classical time TC. While there is much
uncertainty in the exact nature of the scaling, this results indicate that the Hybrid algorithm has a better
scaling behaviour than the classical algorithm. This is more evident in Figure 4, where RC is plotted
for specific graph families. Thus, although no quantum speedup was found, the results leave open the
possibility that such a speedup will be attainable in the future on larger devices with better control of the
qubits, although many unknowns may plausibly alter the scaling behaviour in the future.

Nevertheless, the experiment was a successful proof-of-concept for the hybrid paradigm we have pre-
sented. In particular, the hybrid algorithm we implemented provided large absolute gains over the stan-
dard quantum approach and showed good scaling behaviour. As larger and more efficient devices become
available and more problems of practical interest are studied, it will become clearer if/when a quantum
speedup might be obtainable in practise.

5 Conclusion

In this paper we presented a hybrid quantum-classical paradigm for quantum annealing algorithms aimed
at countering the significant cost of the embedding process. This approach is not only a hybrid paradigm
but serves equally as a guide to identifying problems that may be amenable to quantum annealing. In
particular, we identify those problems that require solving a large number of related subproblems, each
of which can be directed solved via annealing, may permit a hybrid approach. This is obtained by reusing
and modifying embeddings for the related subproblems.
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Figure 2: Plot of graph order |V | against the embedding time tembed. Note the logarithmic scale in time.

(a) (b)

Figure 3: Logarithmic plots of the scaling behaviour of the classical speedup ratio RC for the DWMWIS
problem instances: (a) graph order |V | against RC; and (b) classical time TC against RC.

(a) (b) (c)

Figure 4: Plots of the classical speedup ratio RC against n for three families of graphs parameterised by
n: (a) the Cn graphs; (b) the Sn graphs; (c) the Kn graphs.



12 A Hybrid Quantum-Classical Paradigm to Mitigate Embedding Costs in Quantum Annealing

Our hybrid approach, along with its successful proof-of-principle implementation, sets the groundwork
for addressing more complex problems of practical interest. Choosing correctly suitable problems is a
major step in finding practical uses for quantum computers in the near term future, and with deft choices,
quantum speedups from hybrid approaches might soon be realisable.
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