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1. INTRODUCTION

The IEC 61499 standard provides an architectural model for
distributed process measuring and control systems, primar-
ily, in factory automation. The IEC 61499 model is based on
the concept of function block (FB), that is, a capsule of in-
tellectual property (IP) captured by means of state machines
and algorithms. Activated by an input event, the encapsu-
lated process evolves through several states and emits events,
then passed to other blocks according to the event connec-
tions. An application is defined in IEC 61499 as a network
of function blocks connected via event and data connection
arcs.

The model of IEC 61499 better suits the needs of dis-
tributed automation systems than other more universal
models, for example, unified modelling language (UML). In
particular, it combines the dataflow model, the component
model, and the deployment model. However, unlike UML,
the IEC 61499 was meant to provide a complete and unam-
biguous semantics for any distributed application.

In reality, however, many semantic loopholes of IEC
61499 have been revealed and reported, for example, in
[1–3]. Due to these loopholes, the actual semantics of a func-
tion block application is not obvious and requires investiga-
tion through its representation in terms of more traditional
semantic description mechanisms. The semantics will unam-

biguously define the sequence of function block activation
for any input from the environment.

So far, there have been different semantic ideas tried
in research implementations. The NPMTR model (non-
preemptive multithreaded resource) is implemented in
FBDK/FBRT [4]. Sequential semantics was discussed in [1, 5,
6], and implemented in run-time platforms μCrons and FU-
BER, respectively. The model used in the Archimedes run-
time environment [6] is different from NPTMR in several
features, for example, allowing independent event queues for
each function block. Semantics based on PLC-like scan of in-
puts followed by subsequent re-evaluation of an FB network
was developed in [7, 8]. The essential difference of these ap-
proaches is in the way how blocks in the network are acti-
vated, which depends on the way of passing event signals be-
tween functional blocks.

The execution models mentioned above were never de-
scribed in any formal way. On the other hand, formal mod-
els proposed in [9–12] largely aimed at formal verification of
function block-based applications rather than at the function
block execution. All those works were using some existing
formalisms for defining the function block semantics. How-
ever, referring to other formalisms brings all sorts of over-
heads, from implementation to understanding issues.

A common and comprehensive execution model is cru-
cial for industrial adoption of IEC 61499. The issue, however
is quite complex. In 2006, O3neida (www.oooneida.org) has
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started the development activity [13] aiming at a compliance
profile, a document extending the standard by defining such
a model. The process is ongoing, and there are already a few
papers published, providing “bits and pieces” of the future
model, for example, see [6].

The goal of this paper is to propose a “stand-alone” way
of describing syntax of such a model using the standard no-
tation of the set theory, and its semantics using the state-
transition approach. The paper assembles together elements
of such a model, partially presented in [14], and fills some
gaps between them. The main application area of the intro-
duced syntactic and semantic models is the development of
efficient execution platforms for function blocks. The model,
proposed in this paper, does not comprehensively cover all
the issues of IEC 61499 execution semantics. However, it is
rather intended to be used as a description means of such
a comprehensive model. Indeed, one cannot define formal
rules of function block execution unless all the artifacts of
the architecture are defined using mathematical notation.

The paper also illustrates one possible way of using the
proposed description language for defining basic function
block semantics. Particular issues considered in this paper are
(i) implementation of event-data associations in composite
function blocks, and (ii) transition from hierarchical FB net-
works to a flat FB network.

The paper is structured in the following way. In Section 2,
we briefly discuss the main features of the IEC 61499 archi-
tecture providing simple examples, and in Section 3, some
challenges for the execution semantics of IEC 61499 are
listed for basic and composite function blocks, respectively.
In Section 4, we introduce a basic notation for the types used
in definition of function blocks-based applications. Section 5
presents formal model notation for function block networks.
In Section 6, the problem of generating a system of FB in-
stances is addressed. Section 7 presents general remarks on
the function block model, and Section 8 provides a seman-
tic model of function block interfaces. Application of this
model to flattening of hierarchical FB networks is presented
in Section 9. Section 10 presents a more detailed semantic
model of basic function block functioning. The paper is con-
cluded with an outlook of problems and future work plans.

2. FUNCTION BLOCKS

The IEC 61499 architecture is based on several pillars, the
most important of which is the concept of a function block.
The concept is analogous to the ideas of component, such as
software component from software engineering and IP cap-
sule used in hardware design and embedded systems. IEC
61499 is a high-level architecture not relying on a particu-
lar programming language, operating systems, and so forth.
At the same time, it is precise enough to capture the desired
function unambiguously. The architecture provides the fol-
lowing main features.

2.1. Component with event and data interfaces

The original desire of the IEC 61499 developers was to en-
capsulate the behavior inside a function block with clear in-

terfaces between the block and its environment. The idea is
illustrated in Figure 1 (left side) on example of a function
block type X2Y2 ST computing on request OUT = X2−Y 2.
Interface of the block consists of event input REQ, data in-
puts X and Y , event output CNF, and data output OUT.

Note the vertical lines, one is connecting REQ withX and
Y , and the other is connecting CNF and OUT. These lines
represent association of events and data. The meaning of the
association is the following: only those data associated with a
certain event will be updated when the event arrives.

2.2. A state machine to define the component’s logic

State machine is a simple visual, yet mathematically rigorous,
way of capturing behavior. In basic function blocks of IEC
61499, a state machine (called execution control chart, ECC
for short) defines the reaction of the block on input events in
a given state. The reaction can consist in execution of algo-
rithms computing some values as functions of input and in-
ternal variables, followed by emitting of one or several output
events. In Figure 1, the ECC and the algorithm are shown in
the right side. State REQ has one associated action that con-
sists of an algorithm REQ and emitting of output event CNF
afterwards. The algorithm computes OUT := X2 − Y 2.

2.3. Model of a distributed system

Networks of function blocks are used in IEC 61499 for mod-
elling of distributed systems.

An example is given in Figure 2. Here, the same X2 − Y 2

function is implemented as a network of three function
blocks, doing addition, subtraction, and multiplication. This
network can be encapsulated in a composite function block
with the same interface as X2Y2 ST from Figure 1.

The network could also be executed in a distributed way.
The IEC 61499 architecture implies a two-stage design pro-
cess supported by the corresponding artifacts of the architec-
ture, applications and system configurations. An application
is a network of function block instances interconnected by
event and data links. It completely captures the desired func-
tionality but does not include any knowledge of the devices
and their interconnections. Potentially, it can be mapped to
many possible configurations of devices. A system configu-
ration adds these fine details, representing the full picture of
devices, connected by networks and with function blocks al-
located to them.

3. CHALLENGES OF FUNCTION BLOCKS EXECUTION

3.1. Basic function blocks

The Standard [15, Section 4.5.3] defines the execution of a
basic function block as a sequence of eight (internal) events
t1–t8 as follows.

(t1) Relevant input variable values (i.e., those associated
with the event input by the WITH qualifier defined in
5.2.12) are made available.

(t2) The event at the event input occurs.
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Figure 1: A basic function block type description, interface, ECC, and algorithm REQ.
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Figure 2: Implementing X2 − Y 2 as a network of function blocks.
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Figure 3: “Cross” connection of event and data.

(t3) The execution control function notifies the resource
scheduling function to schedule an algorithm for ex-
ecution.

(t4) Algorithm execution begins.
(t5) The algorithm completes the establishment of values

for the output variables associated with the event out-
put by the WITH qualifier defined in 5.2.1.2.

(t6) The resource scheduling function is notified that algo-
rithm execution has ended.

(t7) The scheduling function invokes the execution control
function.

(t8) The execution control function signals an event at the
event output.

As pointed out in several publications, for example, in [2, 6],
the semantic definitions of the IEC 61499 standard are not
sufficient for creating an execution model of function block.
Thus, for basic function blocks, the following issues (among
many others) are defined quite ambiguously.

(i) How long does an input event live and how many tran-
sitions may trigger with a single input event? Options
are the following: it can be used in a single transition
and, if unused, it clears, it can be stored until used at
least once, and so forth.

(ii) When are the output events issued? Options are the
following: after each action is completed, after all ac-
tions in the state are completed, or after the function
block run is completed.

The latter issue is connected to the scheduling problem
within a network of function blocks. Indeed, the ECC of one
block can continue its evaluation, while another block will be
activated by an event issued in one of previous states. Some
problems related to networks of function blocks are listed in
the next section and addressed further in the paper.

3.2. Composite function blocks

As it was mentioned in Section 2, data inputs and outputs
of function blocks must be associated with their event in-
puts and outputs. However, interconnection between blocks
may not follow these associations. An example is shown in
Figure 3. The event, dispatching mechanism, has to take into
account this case.
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procedure expand(f)
if KindOf(f) ∈ {cfb,subappl,appl}then

do forall fbi ∈ FBIA (FBITypeA (f))
newF = InstanceOf(FBITypeA (f))
Substitute fbi by newF
F = F ∪ {newF}
Aggr = Aggr ∪ {(f, newF)}
FBITypeA = FBITypeA ∪ {(newF, FBIType(fbi)}
FBIdA = FBIdA ∪ {(newF, NewId())}
expand(newF)

end forall
end if

end procedure

Algorithm 1: Recursive algorithm expand( f ).
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Figure 4: (a) Semantic model of a function block interface and a composite function block, and (b) buffers on the data connections.

Composite function blocks can be nested one to another,
thus forming hierarchical structures. To define a consistent
execution model of function block networks, the hierarchi-
cal structures can be reduced to the “flat” ones consisting of
only basic function blocks. This issue will be addressed in
Section 9.

4. BASIC FUNCTION BLOCK-TYPE DEFINITION

In this section, we present the mathematical notation of
function blocks. It is not intended to be known by function
block users, but without such a notation, it would be im-
possible to define rigorously execution models of function
blocks. We start with some definitions describing basic func-
tion blocks and networks of function blocks.

A basic function block type is determined by a tuple (In-
terface, ECC, Alg, V), where Interface and ECC Execution
Control Chart are self explanatory.

Interface is defined by tuple (EI0, EO0, VI0, VO0, IW,
OW), where

EI0 = {ei1
0, ei2

0, . . . , eik0
0} is a set of event inputs;

EO0 = {eo1
0, eoi2

0, . . . , eo10
0} is a set of event outputs;

VI0 = {vi1
0, vi2

0, . . . , vim0
0} is a set of data inputs;

VO0 ={vo1
0, vo2

0, . . . , von0
0} is a set of data outputs;

IW ⊆ EI0 × VI0 is a set of WITH-(event data) asso-
ciations for inputs; OW ⊆ EO0 × VO0 is a set of WITH-
associations for outputs.

For correctness of an interface, the following conditions
have to be fulfilled: VI0 \ Pr2 IW = ∅ and VO0 \ Pr2 OW = ∅

(where Pr2C ⊆ A × B is a second projection, that is, subset
of B containing all y such that the pair (x, y) ∈ C), meaning
that each data input and output has to be associated with at
least one event.

Alg = {alg1, alg2, . . . , alg f }, a set of algorithm identifiers,
can be Alg =∅; V = {v1, v2, . . . , vp}, a set of internal variables,
can be V = ∅.

For each algorithm identifier algi there exists a function
f algi, determining the algorithm’s behaviour;

f algi :
∏

vi∈VI0

Dom(vi)×
∏

vo∈VO0

Dom(vo)×
∏

v∈V
Dom(v)

−→
∏

vo∈VO0

Dom(vo)×
∏

v∈V
Dom(v).

(1)
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Figure 5: Nested composite blocks cannot be “flattened” without taking into account inputs and outputs associations.
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Figure 6: Interconnection between composite function blocks FB6
and FB7 with event-data associations is shown.

As one sees from the definition, algorithms can change
only internal and output variables of the function block.

For ECC definition, we will use the following notation.
The set of all functions mapping set A to set B will be de-
noted as [A→B]. In unambiguous cases, some indices of set
element can be omitted. Dom (x) denotes the set of values of
a variable x.

The ECC diagram is determined as a tuple; ECC = (EC-
State, ECTran, ECTCond, ECAction, PriorT, s0), where EC-
State = {s0, s1, s2, . . . , sr} is a set of EC states; ECTran ⊆
ECState × ECState is a set of EC transitions;

ECTCond : ECTran

−→
[
∏

ei∈EI0

Dom(ei)×
∏

vi∈VI0

Dom(vi)

×
∏

vo∈VO0

Dom(vo)×
∏

v∈V
Dom(v) −→ {true, false}

]

(2)

is a function, assigning the EC transitions conditions in the
form of Boolean formulas defined over a domain of input,
output, and internal variables, and input event variables. Ac-
cording to the standard, the EC condition can contain no
more than one EI variable;

Values of event inputs (EI) are represented by Boolean
variables, that is, for all ei ∈ EI0[Dom(ei) = {true, false}], all
EI variables are Boolean variables, ECAction: ECState\{s0}→

ECA∗ is a function, assigning EC actions to EC states, where
ECA = Alg× EO0∪ Alg∪ EO0 is a set of syntactically correct
EC actions. The symbol ∗ is here used to denote a set of all
possible chains built using a base set. Each EC state can have
zero or more EC actions. Each action may include an algo-
rithm and one output event reference, or just either of them.
According to the standard, the order of actions execution is
determined by the location of actions in the chain defined
by function ECAction; PriorT: ECTran→{1, 2, . . . } is an enu-
merating function assigning priorities to EC transitions. Ac-
cording to the IEC 61499 standard the transition priority is
defined by the location of the ECC transition in FB type def-
inition. The nearer an ECC transition to the top of the list of
ECC transitions in FB definition, the larger its priority; s0 ∈
State is the initial state, which is not assigned any actions.

It is said that an ECC is in the canonical form if each state
has no more than one associated action. An arbitrary ECC
can be easily transformed to the canonical form substituting
states with several associated actions by chains of states with
“always TRUE” transitions between them.

5. FUNCTION BLOCK NETWORKS

Types of a composite function block and subapplication are
defined as tuple (Interface, FBI, FBIType, EventConn, Dat-
aConn), where Interface is an interface as defined above.
The specific part of subapplication interface is the absence
of WITH-associations, that is, IW = OW = ∅;

FBI = {fbi1, fbi2, . . . , fbin} is a set of reference instances
of other function block types. Each instance fbi j ∈ FBI is
determined by a tuple of the following four sets:

EI j = {ei1
j , ei2

j , . . . , eik j
j} is a set of event inputs;

EO j = {eo1
j , eoi2

j , . . . , eol j j} is a set of event outputs;
VI j = {vi1

j , vi2
j , . . . , vimj

j} is a set of data inputs;
VO j = {vo1

j , vo2
j , . . . , vonj j} is a set of data outputs.

FBIType: FBI → FBType is a function assigning type to
reference instance. The interface of a function block instance
is identical to the interface of its respective function block
type. It should be noted that, sometimes in the process of
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Figure 7: (a) Input copied to the output of the valve when the event input arrives, and (b) compact notation of data valves.
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Figure 8: The function block obtained as a result of one step of “flattening” with data valves.

top-down design, a function block instance can be assigned
to a nonexisting function block type. More specifically, the
value domain of FBIType for a composite function block type
is the set BFBType ∪ CFBType ∪ SIFBType. For a subappli-
cation type, this set is appended by the set SubApplType, as a
subapplication can be mapped onto several resources while a
composite function block resides in one;

EventConn ⊆
(
⋃

j∈1,n

EO j ∪ EI0

)
×
(
⋃

j∈1,n

EI j ∪ EO0

)
(3)

is a set of event connections;

DataConn ⊆
(

VI0 ×
⋃

j∈1,n

VI j
)

∪
(
⋃

j∈1,n

VO j ×
(
⋃

j∈1,n

VI j ∪VO0

)) (4)

is a set of data connections.
For the data connections, the following condition must

hold: for all(p, t), (q,u) ∈ DataConn[(t = u)→(p = q)],
which says that no more than one connection can be attached
to one data input. There is no such constraint for event con-
nections as an implicit use of E SPLIT and E MERGE func-
tion blocks is presumed.

6. TRANSITION FROM A SYSTEM OF TYPES TO
A SYSTEM OF INSTANCES

Networks of function blocks consist of instances referring to
predefined function block types. To define the execution se-
mantic of a network, we need to get rid of the types and deal
only with instances. Transition from a system of types to the
system of instances is done by substitution of the correspond-
ing reference instances by the corresponding real-object in-
stances. Real instances are obtained by cloning of the type
description corresponding to the reference object.

Syntactically, an instance is a copy of its corresponding
type. Hence, we will use the notation introduced for the cor-
responding types. The hierarchy of instances can be deter-
mined by the corresponding hierarchy tree denoted by the
following tuple: (F, Aggr, FBITypeA, FBIdA), where:

F is a set of (real) instances of FBs and subapplications;
Agg r ⊆ F × F is a relation of aggregation;
FBITypeA: F → FBType is afunction associating real in-

stances with FB types;
FBIdA: F → Id is a function marking the tree nodes by

unique identifiers from the Id domain.
The recursive algorithm expand( f ) instantiates all refer-

ence instances included in a real instance f and builds, in this
way, a subsystem of instances and the corresponding hierar-
chy subtree.
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The algorithm is using the following auxiliary functions:
InstanceOf forms an instance of a given type. The function
KindOf determines the kind of the type for the given instance
(bfb, basic FB, cfb, composite FB, subappl, subapplication,
appl, application), the function FBIA determines the set of
reference instances for a given type. The function NewId cre-
ates a new unique identifier for a created real instance.

Substitution of a reference instance by the real instance is
performed in three steps:

(i) add the real instance;
(ii) embed the real instance;

(iii) remove the reference instance.

The embedding of the real instance is done be rewiring
of all connections from the reference instance to the real in-
stance. Certainly, the interfaces of the reference instance and
of the real instance have to be identical.

Construction of the tree of instances starts from some
initial type fbt0:

f0 = InstanceOf (fbt0); F = f0; Aggr = ∅;
FBITypeA = {(f0, fbt0)}; FBId = {( f0, NewId())};
expand(f0).

7. SOME ASSUMPTIONS ON THE FUNCTION
BLOCK SEMANTICS

In the following, we present elements of a function block
semantic model. The formal model belongs to the state-
transition class models. This class of models includes finite
automata, formal grammars, Petri nets, and so forth.

The model is rich enough to represent the behavior of a
real function block system. However, we use some abstrac-
tions simplifying the model analysis, in particular, reducing
the model state space. Main model features are as follows.

(i) The model operates with FB instances, rather than
with FB types.

(ii) The model is flat, and the ECCs of basic function
blocks are in the canonical form. Thus main elements
of the model are basic FBs and data valves (the latter
mechanism will be introduced in Section 9).

(iii) The model is purely discrete state, without timing.
(iv) There is an ECC interpreter (called “ECC operation

state machine” in the standard, see [15, Section 5.2.2])
that can be in either an idle or a busy state.

(v) Evens and data are reliably delivered from a block to
the other without losses.

(vi) Model transitions are implemented as transactions. A
transaction is an indivisible action. All operations in
a single transaction are performed simultaneously ac-
cording to predefined priorities.

The model uses several implementation artifacts not di-
rectly mentioned in the standard, for example, data buffers
and data valves.

8. SEMANTIC MODEL OF INTERFACES

We are using the following semantic interpretation of inter-
face elements:

(i) for each event input of a basic function block, there is
a corresponding event variable;

(ii) for each data input of basic or composite FB, there is a
variable of the corresponding type;

(iii) for each data output of a basic function block, there is
an output variable and associated data buffer;

(iv) for each data output of a composite block, there is a
data buffer;

(v) no variables are introduced for data inputs and out-
puts of subapplications;

(vi) each constant at an input of an FB is implemented by
a data buffer.

In our interpretation, data buffers (of unit capacity) serve
for storing the data emitted by function blocks.

For a representation of semantic models of interfaces, we
suggest the following graphical notation (Figure 4(a)). The
data buffers of size 1 are represented by circles standing next
to the corresponding outputs and inputs. A black dot shown
inside the circle related to event input variables indicates the
incoming signal. The circles corresponding to input and out-
put variables contain values of the variables.

One can note that the values of buffered data are included
in the state of their respective function blocks or data valves
instead of being directly included to the global network state.
This is justified by the fact that a data buffer is associated with
an output variable of function blocks.

Figure 4(b) shows the solution of the problem from
Figure 3. The solution uses “buffer” variables for each data
connection. The working is as follows. At the event output
EO of FB1, the output variable DO of FB1 is copied to the
buffer B1. At the event output EO of FB2, buffer B1 is copied
to DI of FB3, and FB3 starts.

9. FLATTENING OF HIERARCHICAL FUNCTION
BLOCK APPLICATIONS

The considered networks are assumed to be “flat,” that is not
to include hierarchically other composite function blocks.
Hierarchical structures of function blocks have to be trans-
formed to the “flat” ones. For that, the composite blocks have
to be substituted by their content appended by data valves
implementing data transfer through their interfaces.

The idea of data valves is explained as follows. Compos-
ite function blocks consist of a network of function blocks.
However, its inputs and outputs are not directly passed to
the members of the network. They are subject to the “data-
sampling-on-event” rule. When translation of hierarchical
composite blocks to a flat network is done, the data cannot
just flow between the blocks of different hierarchical levels
without taking into account the buffers. Illustration is pro-
vided in Figure 5.

One may think that the nested network of blocks in the
upper part of Figure 5 is equivalent to the network obtained
by “dissolving” boundaries of the blocks FB6 and FB7. This is
not true, and the reason is explained as follows. As illustrated
in Figure 6, the composite function blocks FB6 and FB7 have
event-data associations that determine the sampling of data
while they are passed from a block to another.
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Table 1: Conditions enabling the model transitions.

Type of transition ECC interpreter state Other conditions Priority

tran1 Idle
1) The source state of the EC transition
is the current state of the (parent) func-
tion block.

3

tran2 Busy 2) The EC transition condition evalu-
ates to TRUE.

tran3 Idle There is a signal at the event input
(having WITH association (−s)).

4

tran4 busy There are no enabled EC transitions. 2

tran5 n/a
This transition is enabled if there is a
signal at the event input of the data
valve.

1 (highest)

The event-data associations, that can be arbitrary and not
following the associations within the composite block, need
special treatment when borders of the composite block are
dissolved in the process of flattening.

For dealing with this problem, we use the concept of data
valves with buffers, illustrated in Figures 7(a) and 7(b), re-
spectively.

A data valve is a functional element having one input and
one output events and more than zero data inputs and out-
puts. The number of data inputs has to be equal to that of
data outputs. The syntactic model of subapplication inter-
face can be taken to represent the data valves.

Each outgoing and incoming event input (with their re-
spective data associations) of a composite function block
is resulted in a data valve. For the example presented in
Figure 5, the result of one step of “flattening” with data valves
implementing the “border issues” is presented in Figure 8.
We do not represent the valves in the function block notation
as we regard them to be a step towards a lower-level imple-
mentation of function blocks.

10. SEMANTIC FUNCTION BLOCK MODEL

10.1. Common information

A state of a flat function block network is determined by a
tuple S = (S1, S2, . . . , Sn), where Si is the state of ith (ba-
sic) FB or data valve. As can be derived from Section 5, the
state of the ith FB is determined as Si = (csi, osmi, ZEIi, ZVIi,
ZVOi, ZVVi, ZBUFi), where csi is a current state of ECC di-
agram, osmi a current state of ECC operation state machine
(ECC interpreter), ZEIi a function indicating values of event
inputs, ZVIi, ZVOi, and ZVVi functions of values of input,
output, and internal variables correspondingly, and ZBUFi a
function of data buffers values (of unit capacity). The state of
the jth data valve is determined only by the function ZBUF j .

One can note that the values of buffered data are included
in the state of their respective function blocks or data valves
instead of being directly included to the global network state.
This is justified by the fact that a data buffer is associated with
an output variable of function blocks.

In the following part of this section, we make some as-
sumptions about the execution semantic of function blocks.
We are not specifically considering distributed configura-
tions. Thus modelling of resources and devices is beyond the
scope of this paper.

For the time being, we limit our consideration to “closed”
networks of function blocks that do not receive events
from the environment through the service-interface function
blocks (SIFB). Later on, we show how the proposed model
can be extended to cover the case of execution initiation from
the environment.

This interpretation of the function block semantic is
quite consistent and relies on the assumptions that (a) func-
tion block is activated by an external event, and (b) execution
of every algorithm is “short.”

Although, real interpreters of function blocks may have
a slightly different behaviour, the assumptions made above
considerably reduce the number of intermediate states and
determine the details of a legitimate implementation. Execu-
tion of a network of function blocks is activated by the start
eventthat is issued only once. The start event leads to the ac-
tion op6 as described below.

So we can assume that an FB network transits from a state
to another as a result of model transitions;

S0 tp
−→
S1 tq
−→
· · · tm

−→
Sn. (5)

Note that the proposed FB model can be further specified by
other state transition models such as Petri nets, NCES [1],
and so on.

10.2. Types of model transitions

In the context of this paper, an ECC transition is said to be
primary if its condition includes an event input (EI) variable.
Otherwise, if it includes only a guard condition, it is said to
be secondary.

The proposed model is a state-transition model. The
model has five types of its state transitions (of the model, not
of a function block ECC):

(i) tran1, firing of a primary EC transition;
(ii) tran2, firing of a secondary EC transition;
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(iii) tran3, special processing of an input event in an unre-
ceptive state of FB;

(iv) tran4, transition of the ECC interpreter to the initial
(idle) state;

(v) tran5, working of a data valve.

The basic transitions determining the functioning of func-
tion block systems are the transitions of types 1 and 2. Tran-
sitions of the first type correspond to the almost complete
cycle of ECC interpreter (except the interpreter transition to
the initial state s0), namely, the chain s0 → t1 → s1 → t3 →
s2 → t4 → s1 (in terms of the ECC operation state machine
in [15, Section 5.2.2]). Transitions of the second type repre-
sent the cycle s1 →t3 →s2 →t4 →s1. Transitions of the third
type correspond to the reaction on an incoming event and
the corresponding sampling of the associated data variable in
case when the ECC interpreter is idle, but the arrived event
won’t force any ECC transition. This type of transitions cor-
responds to the chain s0 → t1 → s1 → t2 → s0. Transition
of the fourth type models transition of the ECC interpreter
from state s1 to the initial state s0. Transition of the type
tran5 models data sampling in a composite function block.

The transitions enabling rules are summarized in Table 1.

10.3. Compatibility and mutual exclusion of
model transitions

Within the model of one function block some transitions are
compatible (can be enabled simultaneously) and some are
mutually exclusive. Based on the introduced above transition
enabling rules, we can build the relation of their compatibil-
ity/exclusion, presented in Table 2.

In Table 2, the “+” symbol designates that the transitions
are compatible, while “−” shows that they are mutually ex-
clusive. Thus transitions of the tran2 type are incompati-
ble with tran1and tran3 as they occur in mutually exclud-
ing states of the ECC interpreter. The tran4 excludes any
other transition by definition, and hence, data sampling in
the “busy” interpreter state is impossible.

10.4. Firing transition-selection rules

Firing transition-selection rules define the order of enabled
transition firing. Varying the firing transition-selection rules,
it is possible to obtain different execute semantics of FBs. In
our trial implementation, a static priority discipline of active
objects selection from the set of enabled ones was used. The
hierarchy of priority levels is as follows. On the highest level
is “the data valve” execution that has a higher priority (1)
than “the function block” since it is assumed that data valve
execution is, by far, shorter than a function block execution.

At the function-block level, we introduce the following
sublevels (in the priority descending order): (2) tran4, (3)
tran1 and tran2, and (4) tran3.

A function block is said to be “enabled” if it has at least
one enabled transition. The selection of a next transition to
fire will be done according to a particular semantic model.
For example, the sequential semantic [6] implies that next
current function block, or data valve will be selected from the

Table 2: Table of model transitions compatibility.

tran1 tran2 tran3 tran4

tran1 + − + −
tran2 − + −
tran3 + − + −
tran4 − − − −

Table 3: The model-transition operation sequences.

op1 op2 op3 op4 op5 op6 op7 op8
tran1
tran2
tran3
tran4
tran5

corresponding “waiting list.” Within the current FB, a transi-
tion is selected with the highest-type priority and the highest
priority within the type.

It should be noted that the priority of the third type tran-
sitions is determined by the priority of the corresponding EI
variable that, in turn, is determined by the location in the FB
textual representation (the earlier to appear, the higher pri-
ority).

For implementation of complex scheduling strategies, we
propose to use dynamically modified multilevel priorities. In
this case, the model transition priority is a tuple (A, B, C),
where A is the transition type priority, B an FB priority, and
C an EC transition priority inside the FB. For each model
transition type, a priority recalculation rule must be defined.

10.5. Transition-firing rules

The transition-firing rules define the operations executed
at the transitions. We define the following operations per-
formed at the execution of function block systems.

(i) op1. Input data sampling resulting in a transfer of the
data values to the corresponding input variables asso-
ciated with the current event input by WITH declara-
tions. In case of data valves, the data is assigned to the
external data buffer associated with the data valve.

(ii) op2. Reset of all EI variables of the current FB or data
valve. This operation can be called “clearing the event
channel” that eliminates the “event latching.”

(iii) op3. ECC interpreter jumps to the “busy” state.
(iv) op4. Change of the current ECC state.
(v) op5. Algorithms execution resulting in the modifica-

tion of output and internal variables.
(vi) op6. Transfer of signal(s) from event outputs of the

current FB resulting in setting of EI variables of the
FBs and data valves connected to those event outputs
by event connections; prior to that, event channels of
those FBs are getting cleared to avoid “event latching.”

(vii) op7. Transfer of output variable values (associated with
currently issued output events) to the external data
buffers.
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(viii) op8. Transition of the ECC interpreter to the “idle”
state.

In Table 3, all model transitions are represented as se-
quences of some of the above-defined operations (if the op-
eration op j , is a possible part of trani then the corresponding
table cell (i, j) is shaded).

Each action associated with a model transition is per-
formed as a transaction, that is, as an atomic noninterrupted
action consisting in a sequence of operations executed in the
predefined order.

In addition, to reduce the number of nonessential inter-
mediate states, it can be accepted that

(i) transition of type 4 can be executed in a chain with
transitions of types 1 or 2 as a single transaction;

(ii) operation “op6” can be extended by including in it a
transmission of an output signal from the FB source
to all FB receivers through a network of data valves (if
any), including all data-sampling operations in all in-
volved data valves.

11. CONCLUSIONS

The model described in this paper, including the flattening
mechanism, has been implemented in Prolog as described
in [14]. The paper contributes to the formalization of IEC
61499 performed by the workgroup [13] by providing

(i) formal description mechanism of IEC 61499 artifacts;
(ii) semantic model of function block interfaces;

(iii) solution of the flattening problem that leads to a sim-
ple model of function block networks, yet completely
complying with the semantic of function block inter-
faces;

(iv) a sample model of a formal semantic for basic function
block.

These contributions are intended to be taken into account for
the development of the corresponding compliance profile,
specifying execution models of IEC 61499 function blocks.
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