Bridging Theory and Practice in Programming
Lectures with Active Classroom Programmer

Nasser Giacaman and Giuseppe De Ruvo
Department of Electrical and Computer Engineering, The University of Auckland, New Zealand

Abstract—Contribution: Active Classroom Programmer (ACP)
is a software tool that places places minimal pressure on
resources, and is shown to help improve student learning while
also encouraging a high degree of engagement both during and
outside of programming lectures.

Background: Programming is difficult for students, largely
due to the myriad of ever-advancing concepts. As students
gradually become stronger programmers, both within a course
and within their degree, they are constantly presented with
new and challenging programming concepts regardless of their
expertise. While lab sessions provide an excellent opportunity for
students to independently practice, this does not help them in the
programming process where expert scaffolding is desired.

Intended outcomes: ACP is intended to engage students with
active programming exercises and develop an inductive approach
to learning, focusing on developing problem-solving skills.

Application design: Students need guidance in the program-
ming strategy rather than the syntax and peculiarities of the
particular programming language. ACP allows students to pro-
gram alongside instructors as new concepts are introduced.

Findings: Experience from two concept-rich programming
courses at different levels is presented, demonstrating students
engaged with ACP both inside and outside lectures to deepen
their understanding of the programming concepts.

Index Terms—Active learning, educational software, computer
engineering, computer science, classroom, programming, engage-
ment.

I. INTRODUCTION

Software is becoming increasingly integrated into daily
life. As the industry demand for quality software developers
continues to grow, students are increasingly turning to this field
in hope of securing a promising career. While programming
is at the heart of software development, it is not limited
to computer science [1] and software [2] degrees; it is also
integrated in the wider disciplines of computer engineering
[3]. Historically a skill relevant to the computer scientist, it is
now required for a growing number of careers. Whether it be
data analysis, network design or even hardware engineering,
programming is a fundamental skill that inherently includes a
conceptual model for problem solving [4].

Programming is a notoriously difficult subject as it involves
many abstract concepts at different levels, and students typi-
cally receive insufficient amounts of personal instruction [5].
Further disadvantaging students is that STEM disciplines still
tend to follow traditional lecturing styles without incorporating
active learning strategies [6]. In regards to programming, the
role of the instructor should not be that of teaching the
elements of programming, but rather to motivate students to

be engaged [7]. This engagement is composed of two vital
elements [8]:

e Active learning: students learn by applying older knowl-
edge as they encounter new knowledge [9]. This is vital
for long-term retention, where students make meaning of
new information by relating it to existing knowledge [10].

e Motivation: collaboration, both with fellow students and
instructors, also helps students learn [8]. Pair program-
ming has long been employed in the software industry
[11], as well as motivating students [12], [13].

More important than programming knowledge is the strategy
of programming, and it has therefore been suggested that
programming strategies receive more explicit attention in
programming courses [14]. A common approach to target this
is by exposing students to programming examples developed
“live” in lectures, helping students observe the instructor’s pro-
gramming approach to a given problem [14]. It also nurtures
an inductive rather than deductive approach to learning, by
showing students that it is acceptable to make errors, and
thereby better illustrating the problem-solving approach [15].

Live coding demonstrations still only focus on what the
teacher does. Active Classroom Programmer (ACP) is (an
Eclipse IDE plugin or web-based IDE) that allows allows the
instructor to switch between “teaching to” and “programming
with” students, helping students focus on the programming
strategy. This process of accomplishing sub-goals (that lead to
larger goals) helps promote student self-motivation, ultimately
nurturing self-efficacy [16], [17]. Programming collaboratively
with the instructor, a form of active learning via targeted
practical exercises, helps reinforce learning outcomes. The re-
lationship between the learning outcomes and course activities
is more explicit, helping to ensure constructive alignment [18].
The contributions presented in this paper include:

« A non-intrusive approach that introduces the benefits of
lab sessions in standard lectures, by bridging the gap
between independent lab sessions and theoretical lectures
[19].

e The ACP tool that allows the instructor full control of
the lesson, minimizing student distraction and providing
meaningful engagement for programming students.

o An evaluation of ACP, with valuable lessons for program-
ming instructors looking to incorporate similar active
learning exercises.

o An approach that encourages an inductive approach to
learning rather than deductive, focusing on developing
problem-solving skills.

II. ACTIVE CLASSROOM PROGRAMMER

Motivation for ACP! grew out of an observation in pro-
gramming courses, in which the instructor typically demon-
strated live programming to students. Evaluations from stu-
dents were largely positive, frequently commending the live
coding demonstrated during lessons. It was then noticed that
some students were attempting to replicate the live demon-
strations on their own laptops during the lesson. While it
was encouraging to see some students fully engaging in this
manner, the concern was that students might be distracted
replicating non-essential boilerplate code rather than tuning
in to the instructor’s demonstration.

As the name suggests, Active Classroom Programmer fo-
cuses on engaging programming students within the classroom
environment in order to promote active learning. For it to
be meaningful learning, the focus needs to be on engaging
students in the same manner that would be expected from
them in their own study time. In the context of programming,
this essentially entails students using an Integrated Develop-
ment Environment (IDE). Eclipse supports many programming
languages and is actively used in industry, and it also boasts
a plethora of additional plug-ins to meet endless programmer
requirements. ACP has been developed as an Eclipse plug-
in, but students also have the option of using the web-based
ACP interface called WebIDE. This option is popular for cases
where the bothers of installing development environments may
be daunting for novice programmers.

A. Context of Usage

The idea behind ACP is that the instructor delivers the
lesson in much the same way as usual (for example, using
slides). The instructor then spontaneously releases either an
unpremeditated or a pre-prepared exercise, and students are
given time to complete it. The instructor then resumes the
lesson in the usual manner, which may either be theoretical
(“the next slide”) or with more programming demonstrations.
The important point is that the lesson always remains within
the instructor’s control. While students are from time to
time allocated “thinking time” to work on code snippets, the
instructor judges when it is time to continue the lesson. In
this regards, the lesson has some elements of Peer Instruction
[20]. Lectures have not suddenly turned into completely prac-
tical labs (which typically involve larger preplanned exercises
spanning at least an hour, and with more teaching assistants
required to help students). Here, the idea is to support a non-
intrusive tool that does not require any dramatic shift in the
instructor’s preferred teaching approach.

In-Lecture Learning: The nature of the code snippets of-
fered for students to complete is at the instructor’s discretion.
Maybe the exercise includes incomplete or incorrect program-
ming statements. Rather than merely asking students “what’s
wrong with this?” and waiting for (often the same) students
to answer, the instructor instead right-clicks on the project
and gives it a short descriptive tag (for example, “fix the
compilation error”). Students then “sync” to the same tag on

'ACP is available for those interested to install and use at the link https:
/lacp.foe.auckland.ac.nz

their corresponding project. Within seconds of the instructor
uploading the latest project snapshot, students immediately
have the exact content as the instructor. There is no need
to navigate outside of the IDE, and students update to the
latest sync when they wish. The instructor immediately asks
students to complete the small piece of code, which typically
only lasts up to a couple of minutes. During this time, the
instructor should not continue presenting to the class, to ensure
students can focus on the task at hand. After the specified
time has passed, the instructor resumes the lesson in the usual
manner by regaining attention from students. Later in the
lesson, another snapshot is tagged and the process repeated.
The advantage of short and quick exercises is threefold:

o Students without a laptop should not feel disadvantaged
or left out, still feeling that lectures are worthwhile at-
tending. The atmosphere remains as a “standard lecture”;
students are not “in the lab” and are not expected to have
a computer in front of them.

o Focus is on the instructor guiding students through the
programming strategy. Since students are in a lecture,
not studying independently, the aim is to capitalize on
the instructor’s presence and expert knowledge.

o Short and digestible exercises provide a form of sub-goals
that aim to develop self-efficacy. It is important to main-
tain the confidence of weaker students [21], especially as
the exercises generally involve freshly-presented material.

This is not to say that ACP must only be used in this manner.
It is possible to use ACP with all students being in front of
a computer (like a lab), and having larger exercises with less
scaffolding from the instructor. The larger the exercises get,
and the longer the “thinking time”, the closer the atmosphere
approaches that of an independent lab exercise. It depends on
what the instructor feels is appropriate.

Limitations of Laptops in the Classroom: Instructors should
be aware that encouraging students to bring laptops into the
classroom might have undesirable consequences. Heightened
distractions are possible as students multitask (or are in view of
another student multitasking) on a laptop [22]. As laptops are
contextually relevant in learning programming, misuse may
be reduced by discussing technology etiquette with students
and incorporating constructive uses of the laptops [22]. The
instructor should keep in mind that not all students bring a
laptop to class; the exercise should therefore remain visible
on the projector during self-coding time, encouraging these
students to use pen-and-paper or pair-program with a peer.

Alternatives to In-Lecture Live Coding: It should be ac-
knowledged that not all teachers feel comfortable live coding
in lectures and being put “on the spot” in front of students;
they may want to engage their students in coding exercises, but
not necessarily to develop the code spontaneously. ACP allows
for an instructor to prepare code snippets in advance. When
ready, the code can be released to students and merely stepped
through by the instructor in class time. This not only caters
for less confident instructors, but also saves time if needed.

Post-Lecture Learning: Following the completion of the
lecture, all the tags and snapshots made (either during the
lesson or prepared by the instructor outside of lessons) are still
available for the students. This immediately provides students

with a rich collection of practical exercises for them to review
during their own time. This also has the added advantage that
the instructor can reuse the same exercises for future offerings
of the course, or share them with other instructors (using
ACP’s export and import feature). The tagged snapshots also
provide a reminder of the “points of interest” in progressing
the live coding demonstrations.

B. Recommended Implementation

Should an instructor be interested in implementing ACP
within their courses, it is recommended that they start with
a basic approach. First, the instructor should consider using
ACP as a platform of ready-to-run exercises that have been
prepared before the lesson. During lessons, in between slides,
the instructor can switch over to ACP and reveal the code
snippets to students. They can either continue to progress
through the code versions and explain the code, or alternate
between slides and the ACP code snippets. The next degree
of incorporation would be to include code versions that are
slightly incomplete. For example, this could be a program
with one or two empty or buggy method stubs. There would be
sufficient scaffolding in place that the instructor knows exactly
what needs completing. Finally, the “extreme” degree of using
ACP, is to commence exercises from empty projects. However,
having a set of instructions for guidance is extremely valuable.
Students should also be provided with a brief handout that
explains the end goal. This works well for tutorial-style lessons
in particular.

C. Limitations

Although ACP has been used in a range of programming
courses, no formal evaluation has been made for its best
practices. Despite this, ACP is flexible enough to be used in
any manner the instructor feels most comfortable. Importantly,
an instructor does not need to be confident at live coding and
develop exercises from scratch in front of students. ACP can
also be used as a platform to create exercises beforehand,
or even import ones created by others, with the instructor
merely providing students time to work on them. Future long-
term studies will focus on ACP best practices, by undertaking
surveys and interviews from a wider set of instructors at
multiple institutions to formalize a set of evidence-based
guidelines.

This future work will include not only identifying all the
elements that potentially contribute to effective ACP usage,
but also measuring their impact. Of particular interest is under-
standing how active usage in-class impacts learning compared
to active usage in the student’s own time. Nonetheless, student
perspectives (Section III-D) suggest that students who do not
use ACP in class still see its benefits for self-study. The
high out-of-class usages also imply that students feel it has
a positive impact, otherwise they would not use it (especially
as they were not given credit for using it). Finally, although
the effort required to deliver lectures using ACP has not been
formally studied, it should be noted that instructors can use
it in a similar manner to Peer Instruction. The minimal effort
demanded is to develop ACP activities before a lesson, that

they can then simply present to their students at the appropriate
points in that lesson. Instructors and students both appreciate
the value of runnable code examples.

III. EVALUATION

ACP was used in two different types of engineering pro-
gramming courses: a graduate-level compiler course with
strong programming students, and a CS2 course with less
experienced programmers. The evaluations include a self-
report study (using anonymous questionnaires) to understand
the student experience, server logs to understand engagement
throughout the courses, and collective learning comparisons
to understand its impact. It is difficult to summarize some of
the logistical details, such as (i) how many students brought
laptops to classes and participated, (ii) the length of time
taken for exercises, (iii) how an instructor incorporated the
exercises within the lecture, and (iv) how students participated
in the post-lecture learning. While it is acknowledged that all
these elements would likely contribute to the level of learning
gained, these are elements that cannot easily be measured.
They are also largely dependent on the instructors’ preferred
teaching style, and a combination of the topic being taught
and how students respond to the topic. With all that said, these
are all valuable elements that instructors should keep in mind
when developing active learning activities in general.

A. The CS2 and Graduate-Compiler Courses

ACP has been used in a number of programming courses,
but this paper details experience from the following two:

e CS2 is an object-oriented programming and data struc-
tures course (using C++) taken by computer systems
engineering, electrical and electronic engineering, mecha-
tronics and engineering science undergraduate students in
their second year of study. The course is compulsory for
all these cohorts (except engineering science), and usually
has over 250 students in each offering. Rather than being
a programming course for majors like computer science
or software engineering disciplines, this is a classical ex-
ample of a programming course for non-major engineers.
As such, many of the students in this course are not
necessarily motivated to “be a programmer"; being less
familiar with development environments, most of them
preferred the ACP WebIDE interface. This also meant
students could use a tablet rather than a laptop if they
preferred.

o Graduate-Compiler is a software engineering graduate
course with a mixture of fourth year undergraduate stu-
dents (in their final year) and Master’s-level graduate
students. The course is an elective for both cohorts and
does not include any formally-scheduled lab sessions. The
course is programming intensive, with the expectation
that students code a substantial amount to complete
assignments and understand course material. Unlike the
CS2 course, the students already possess a solid program-
ming foundation and are passionate about programming.
ACP was used for half the course, to teach a compiler
design module using Java. Students were encouraged to

Table I
DISTRIBUTION OF MARKS FOR GRADUATE-COMPILER COURSE.
Year 1 Year 2 Year 3
(without ACP) (with ACP) (with ACP)
Students enrolled 27 43 95
Dropouts/failures 5 (19%) 2 (5%) 5 (5%)
Low 20% 72% 66%
LQ 61% 89% 83%
Al Med 81% 95% 90%
UQ 95% 98% 94%
High 98% 100% 100%
Low 21% 58% 29%
LQ 54% 76% 56%
Test Med 61% 88% 69%
UQ 71% 93% 84%
High 86% 100% 95%
Low 10% T% (5%)* 8% (6%)*
LQ 2% 55% (44%)* 54% (44%)*
A2 Med 70% 8% (65%)* TT% (69%)*
UuQ 91% 99% (84%)* 91% (80%)*
High 100% 100% (100%)* | 100% (100%)*

bring their laptops to lectures with ACP installed, using
Eclipse. It is worthwhile noting that ACP was specifically
designed for this compiler course, as it is an inherently
difficult subject to learn that requires large amounts of
guided practice.

The degree to which ACP was used in the two courses differed.
As the nature of the content covered in the graduate-compiler
course was difficult and abstract, the lectures relied heavily on
live programming and giving students plenty of opportunity
to practice the concepts in almost every lesson; about 25-
50% of a lesson was spent using ACP. The interaction in
the CS2 course differed in that the ACP interactions were in
smaller fragments to cover various fundamental programming
topics. Rather than being ACP-heavy every lesson (unlike the
graduate-compiler course), only a select few lessons in the
CS2 course were ACP-heavy depending on the content.

B. Improved Learning

Learning Over Three Years (Graduate-Compiler Course):
The first study looks over three offerings of the graduate-
compiler course. While this inevitably means three different
cohorts were involved, there is no statistically significant
differences in their incoming GPA. This is especially the case
since software engineering in particular is a highly competitive
program at the university, and the cutoff for entry into the
program is 6.5 from 9. Over the three years, Year 1 was
taught without ACP while Year 2 and Year 3 were both
taught with ACP. To help isolate the effects of using ACP,
the following measures were taken in Year 2 and Year 3: i)
the same module content was taught by the same instructor as
in Year 1; ii) the same lecture slides were used, with minimal
modifications made to content and format; iii) assessments
were largely isomorphic, tested the same learning outcomes,
with the same weightings and format and with comparable
difficulty (with the exception of the final assignment, explained
in this section); iv) assessments were all marked by the same
assistant in each year, using a similar marking rubric.

The assessments were composed of two assignments and
one test. Assignment 1 and the Test were highly isomorphic

Table II
STATISTICAL SIGNIFICANCE OF THE COURSE ASSESSMENT DIFFERENCES
OF ACP YEARS (YEAR 2 AND YEAR 3) VERSUS NON-ACP (YEAR 1),
WITH THE NULL HYPOTHESIS THAT Zy1 = Ty2 (OR Ty1 = Ty3).

Al Test A2
Ty1 73.1 59.0 64.0
Year 1 (without ACP) | s41 24.904 17.745 28.400
Ny1 26 26 23
Ty2 92.1 84.4 72.8
Year 2 (with ACP) Sy2 7.345 9.529 27.619
Ny2 42 43 39
Ty3 87.6 68.3 71.0
Year 3 (with ACP) 5y3 8.436 17.215 24784
Ny3 92 94 85
ANOVA F =19.79 F =24.73 F =0.88
p < 0.0001 | p<0.0001 | p=0.416
One-tailed P(Zy1 < Ty2) 0.0001 0.0001 0.1170
One-tailed P(Zy1 < Zy3) 0.0001 0.0084 0.1227

across the three years, with near-identical difficulty. However,
following the grading of these two assessments in Year 2, it
was decided to increase the difficulty of the final assessment
(Assignment 2) to counterbalance the high marks from Assign-
ment 1 and the Test. This final assessment expected students to
perform similar tasks as in Year 1, but with extra tasks added.
In this regards, Assignment 2 was less isomorphic in Years 2
and 3 compared to Year 1. Since the incoming GPAs of the
cohorts over the years were not statistically significant, the
decision to increase Assignment 2’s difficulty was attributed
to the students (in Year 2 and Year 3 with ACP) grasping the
concepts better than the cohort from Year 1 (without ACP).

Table I displays the distribution of the achieved marks with-
out and with ACP over the three years. The marks only include
non-zero results (i.e. students not submitting are excluded).
To ensure a clearer comparison, the Year 2 and Year 3 results
of Assignment 2 compare marks including only components
that largely overlap with the Year 1 equivalent. However, for
completeness, the marks with the added tasks are also included
in italicized parenthesis with an asterisk: (parenthesis)*. While
effort was made to ensure consistency for comparison over the
years, for pedagogical reasons this could not be fully achieved.
As a result of this increased difficulty, Assignment 2 was no
longer strongly isomorphic in Year 2 and Year 3 compared to
Year 1.

By incorporating ACP during lessons in Year 2 and Year
3, this provided students an opportunity to engage practically
in an otherwise abstract and difficult programming subject
area. To determine the statistical significance of the results in
Table I, ANOVA was first applied across the three years. The
results in Table II show that the differences were statistically
significant for Assignment 1 and the Test. For Assignment 2,
there was no statistical significance and this is attributed to
the non-isomorphic changes made to Assignment 2 in order
to increase its difficulty. An unpaired two sample t-test was
also performed on each of the assessment components, of
Year 2 (or Year 3) versus Year 1 (with ACP versus without
ACP). Again, the differences are only statistically significant
for Assignment 1 and the Test. Overall, the dropout/failure rate
was noticeably smaller for the years with ACP (5%) compared
to the year without ACP (19%).

w
@

n=67 =89

Days used
ey - N N w
o [3,] o wn o
T T T T

3
T

C-range and D-range B-range
Range of final grade

A-range

Figure 1. Range CS2-level course usage. Higher-achieving students tended
to use ACP less, presumably because course content was simple enough.

Table III
LACK OF STATISTICAL SIGNIFICANCE OF ACP USAGE BETWEEN
A-RANGE, B-RANGE AND C/D-RANGE STUDENTS WITHIN THE COURSES.
THE TWO-TAILED P VALUES ARE UNPAIRED TWO SAMPLE T-TESTS FOR
THE RESPECTIVE GROUPS.

CS2 Graduate-Compiler
ANOVA F =1.985 F =0.699
p = 0.1395 p = 0.499
Two-tailed P(Z4 # ZR) 0.0954 0.4667
Two-tailed P(Z 4 # Zcp) 0.0715 0.3143
Two-tailed P(Zp # Zcp) 0.8396 0.4720

ACP Engagement: Who Uses it More?: While the previous
study looked at how ACP supported teaching an increasing
depth of difficult programming concepts to students, more
interesting is if ACP engagement during the semester is
correlated with eventual course achievement. Fig. 1 implies
that students receiving a higher grade in the CS2 course tended
to use ACP less than those that received a lower grade. An
ANOVA calculation on the three groups of final-grade ranges
concludes that these differences are not statistically significant
(F = 1.985, p = 0.1395). This is somewhat expected, as the
usage of the C/D-range and B-range students in Fig. 1 are
visually similar. However, when separate unpaired two sample
t-tests are performed against the A-range students, a weak (yet
noticeable) statistical significance is observed.

Table III summarizes the statistical significance of the
usage difference between students; from this, it can only
be concluded that within the CS2 course was there a hint
of difference, in that stronger students tended to use ACP
less. This is possibly attributable to weaker students valu-
ing additional learning resources (which is a good thing, in
that weaker students tended to opt in more for ACP). For
completeness, the usage differences in the graduate-compiler
course are not statistically significant. This may be due to
compiler semantics being an inherently difficult topic that
challenges even the academically strongest students [23]. As
such, genuine immersion is vital in securing success, despite
the student’s academic ability.

CS2 Achievement Based on Engagement: As noted above,
there was a weak statistical significance suggesting that
stronger students tended to use ACP less in the CS2 course.
To answer the question of whether those who used ACP
performed better than those that did not, the class is divided

n=38 n=33 n=54 n=59

Final CS2 grade
M o N W A 01O N © O

C-range C-range B-range B-range A-range A-range
L-ACP H-ACP L-ACP H-ACP L-ACP H-ACP

Range of prerequisite course grade and ACP usage

Figure 2. Within each range of incoming grades from the prerequisite course,
students with higher ACP usage (H-ACP) generally performed better than
peers within the same incoming ability range that used less of ACP (L-ACP).

Table IV
STATISTICAL SIGNIFICANCE OF FINAL PERFORMANCE IN CS2 COURSE.

Incoming strength
(grade for prerequisite course)
C-range | B-range | A-range
Low ACP usage in CS2 Zp, 1.923 5.763 6.630
SL 1.719 1.684 1.629
nr, 26 38 54
High ACP usage in CS2 Zpg 3.065 6.606 7.322
SH 1.632 1.676 1.166
nH 31 33 59
One-tailed P(Zy, < Tp) 0.0065 0.0193 0.0051

into six groups. This was based on their incoming ability
(according to their performance in the prerequisite course: A-
range, B-range or C-range), and whether they were low or
high users of ACP (Low-ACP if used 0-11 days, High-ACP
if used 12-33 days). Fig. 2 shows the final grades attained by
the six groups, revealing why the usage differences of Fig. 1
(and Table IIT) were not statistically significant. Fig. 2 shows
incoming strong/weak students (determined by the prerequisite
course grade) do not always correlate to outgoing strong/weak
students (as determined by the final CS2 course grade).

There are likely to be many factors contributing to success
in the CS2 course, with a student’s incoming ability not being
the sole determinant. With that said, within each incoming
ability range, those more highly engaged with ACP performed
better in the course and received a higher final grade®. These
differences are presented in Table IV, showing statistical
significance in these differences. It is not possible to conclude
whether this is a cause and effect observation, and ACP cannot
be fully credited, as the students who were highly engaged
with ACP may possibly be proactive and engaged in general
with other learning material.

C. Access Patterns

Rather than looking at who is using ACP, this section now
looks at when ACP is used. Namely, have students “bought”
into the idea of coding during lessons alongside the instructor,
or would they rather sit back and revise the programming
exercises in their own time? Despite both courses being taught

29 corresponds to A+, 8 to A, ... 2to C, 1 to C- and 0 to D (fail).

X Test A2
due due

H ® ACP accessed during lesson

ACP accessed during studgnt's own tim
0
Week 2

N
a
T

[N)
=]
T

Number of students
= &

Week 4 Week 5
Teaching week in semester

(a) Graduate-compiler course, Year 2 (43 students enrolled)

o

Week 3 Week 6 Study

break

©
=]

Al Test: A2
due

~
o
T

@ ACP accessed during lesson
ACP accessed during student's own tifne

o
=)
T
L

o
=]
T
L

Number of students
w B
o o

N
o
T
L

o
T
L

0
Week 1 Week 2 Week 3 Week 4 Week 5 Study break Week 6
Teaching week in semester

(b) Graduate-compiler course, Year 3 (95 students enrolled)

Figure 3. Daily number of unique students accessing ACP during the two offerings when ACP was incorporated in the graduate-compiler course. Overall,
35% of the accesses in Year 3 were outside of lecture times (54% if excluding the non-teaching weeks). This suggests that students strongly valued the
utilization of ACP during lessons, although there was also still plenty of self-study usage.

160

Test 1 Al

140 - due

Number of students,
sy [e)) o] o N
o o o o o

N
o
T

@ ACP accessed during lesson
ACP accessed during student's own time

A2 iTest2iA3 |
due H due

0
Week 1 Week2 Week3 Week4 Week5 Week6

Study break

Week 7 Week 8 Week9 Week 10 Week 11 Week 12

Teaching week in semester

Figure 4. Daily number of unique students accessing ACP during the CS2 course (266 students enrolled). Overall, only 24% of the accesses were during
class times (27% if excluding the non-teaching weeks). Considering that over 70% of ACP interaction was outside of class time, this seems to suggest that
students felt there were benefits in using ACP during self-study. The notable decrease in usage during lessons is attributed to students opting to use ACP at
their own pace, and preferred concentrating on the instructor creating the ACP exercises. The high usage prior to assessments is also another indicator that
students value ACP for revision purposes. The notable low usage in weeks 9 and 10 were due to no new material being delivered through ACP.

by the same instructor, ACP seems to have been embraced
differently in each course. Fig. 3(a) and Fig. 3(b) illustrate
the daily access patterns throughout the graduate-compiler
course in Year 2 and Year 3 respectively. During the teaching
weeks, over half the accesses were during the lessons. This is
attributed to a number of factors, including (i) high lecture
attendance rates®, (ii) a strong cohort highly engaged in
general, and (iii) students having accepted that absorbing the
difficult content requires active participation during lessons.

In the case of the CS2 course, Fig. 4 illustrates how students
generally felt less inspired to engage actively during lessons;
over the teaching weeks, barely a quarter of the accesses were
during lessons. Despite a solid participation during earlier
lessons (e.g., weeks 2 and 3), the eventual attitude in this
course was that students were more content observing the
instructor progress through the ACP activities. This was espe-
cially noticed in weeks 7 and 8, where students opted for using
ACP in self-study time. Compared to the graduate-compiler

3For the graduate-compiler course, an attendance rate of 70% to 80% is
typical, and considered good with respect to university averages.

course, the CS2 typically sees lower lecture attendance rates*
and students tend to feel less inspired towards programming.

Fig. 5(a) breaks down the in-lecture engagement based on
the incoming grades of the prerequisite course for CS2, while
Fig. 5(b) shows the equivalent breakdown for the self-study
engagement. The in-class difference between the students is
not considered to be statistically significant, with an unpaired
two sample t-test revealing a one-tailed P(T¢c < Ta) =
0.1803 that the A-range students are more engaged than the C-
range students during lessons. Although this is not statistically
significant, some weaker students have noted that coding
exercises were too challenging to keep up with during the
lectures, and it is possible weaker students attended lectures
less often than stronger students [24], [25]. What is slightly
more certain, is that the weaker students were noticeably more
active with ACP as a self-study tool outside lecture times; an
unpaired two sample t-test reveals a one-tailed P(T4 < Z¢)
= 0.04835. This may be because they prefer progressing the
exercises at their own pace [26], or simply because stronger

4For the CS2 course, an attendance rate of 40% to 50% is unfortunately
typical, and considered standard with respect to university averages.

-
o © o
T T T

Number of lectures ACP used
N

C-range B-range A-range
Range of prerequisite course grade

(a) In-lecture usage

Figure 5.

students felt content with the material and did not feel the
necessity to (further) practice in their own time [27].

D. Student Perspectives

1) Self-Reporting from Graduate-Compiler Students: At the
conclusion of the graduate-compiler course, students were
invited to complete an anonymous in-depth survey dedicated
to their experience using ACP. Of the 95 students enrolled
(during Year 3), 91 students completed this anonymous ques-
tionnaire. Table V categorizes the responses of the multi-
choice questions, to help understand how students felt a prac-
tical lecture structure best supported their learning. Students
overwhelmingly felt that using ACP contributed to better
understanding of the course content, especially improving
their confidence (QI to Q3). The high level of engagement
students experienced (Q4, Q5, Q17) was genuine willingness
(Q6, Q7). Students generally did not feel using ACP in the
classroom was a distraction (QS8), and some even felt it
improved concentration (Q9).

Another important aspect was understanding how the ACP
workflow should be created. Students were strongly appre-
ciative of having “quiet time”, which means the instructor
needs to stop talking to allow students to concentrate on
the exercises (Q10). Ensuring smooth integration, without
requiring separate external tools, was also important (QI11).
This would be even more important for programming courses
where students would not be familiar with code versioning
systems. Only 20% of the students felt that the amount of time
dedicated to practical ACP coding should be one-fifth or less
of the lecture time (Q19). About 45% of the students wanted
half the lecture time dedicated to practical coding exercises,
while a further 35% of students felt that only one third of the
lecture would be sufficient.

The importance of instructor guidance is raised in Q21, as
students generally prefer medium-sized problems that allow
scaffolding to the programming strategy; in this regards, a
large lab-style exercise is not an appropriate substitute for
lectures. The potential of ACP to help students during their
own study time, as suggested in the previous usage patterns,
is also confirmed (Q12, Q13). The fundamental feature of
ACP, to retain the various snapshots of a project as it is

w
o

=57 n=71

CP used in own time
= N N
(4] o o

' :

‘3
n
>
w

o
T

Number of days A
(4]

o

C-range B-range A-range
Range of prerequisite course grade

(b) Own time usage

Based on incoming grades from the prerequisite course, (a) in-lecture engagement versus (b) own-time engagement for the CS2 course.

developed, was highly rated (Q15). Also encouraging, is that
most students did not feel inconvenienced bringing their laptop
to lessons (Q16). Some open-ended questions were also asked:

o “What was the best part of using the ACP tool?” Most
students referred to ACP’s versioning system, and also
valued the opportunity to practice with relevant exercises
that are ready-to-run. Other selected comments:

“Better engagement in learning, less prone to get
distracted and zone out.”

— “Instantly getting the code from the screen to my
PC. Saved me from typing EVERYTHING. I could
pay attention, not having to worry about how my
code differs from the instructor for the next activity.”

— “Understanding the difficult concepts of the course
was much easier when using ACP.”

o “In what way, if any, do you feel that the tool assisted
your learning?” Most responses for this question com-
mented how ACP assisted preparation for assessments,
and having practical examples available for an abstract
subject was also helpful. Other comments include:

— “I always learn so much more by being practical
and doing it myself, so ACP was great for that.”
“Best way to learn software is by practice. Lecture
time is optimal.”

— “I didn’t have to study much for the test due to full
participation in class. I grasped onto concepts fast
due to practical exercises.”

The following comment illustrates that, even though some
students opted not to use ACP during lectures, they still
valued it for their own study time:
“Seeing the program in lecture does not help to
understand it clearly, hence, I always use ACP after
class to try and understand the class better.”

2) Self-Reporting from CS2 Students: A formative evalua-
tion was released to the CS2 students mid-semester, delivered
as an anonymous online survey. Only 71 of the students
responded (roughly 30% response rate), but it still provided
insight confirming some of the observations from the logs.
Overall, 51% and 34% of the students strongly agreed and
agreed respectively that “The ACP activities help to develop
my understanding of the subject”. When asked the open

Table V
MULTI-CHOICE RESPONSES FROM 91 STUDENTS IN THE ANONYMOUS ACP QUESTIONNAIRE (COMPILER GRADUATE COURSE).

[SAT AT N D JSD
Developing self-efficacy of subject matter
QI. Using the ACP tool helped deepen my understanding of the subject 57% 39% 3% 1% 0%
Q2. Using the ACP tool, I was able to grasp the course material presented in class a lot faster 44% 39% 15% 2% 0%
Q3. T was more confident about the course material after using ACP 47% 42% 9% 2% 0%
Engagement and concentration during programming lectures
Q4. ACP improved my engagement in the classroom 40% 39% 16% 5% 0
Q5. Assuming I had a laptop with ACP on it, I would try to use it for every opportunity that was presented by the instructor 47% 49% 3% 1% 0%
Q6. Although encouraged to use ACP, I did not feel forced to use it. I used it because I wanted to and because it helped me 47% 40% 12% 0% 1%
Q7. I wish this tool would be used in other programming courses 56% 33% 9% 1% 1%
Q8. I found using the tool was a distraction in the classroom environment, please stop using it 1% 2% 8% 37% 52%
Q9. ACP helped me maintain my concentration, by anticipating the next exercise 20% 34% 35% 9% 2%
Workflow
Q10. Having “quiet time” for an exercise is important (i.e. the instructor should not attempt to continue explaining during this time) 34% 38% 16% 11% 1%
Q11. Using something like SVN/Git would make more sense instead of an Eclipse plugin 6% 11% 39% 29% 15%
Scaffolding for self study
Q12. The tool helped me prepare for assessments 55% 35% 4% 6% 0%
Q13. I find it helpful to use ACP outside of the classroom in my own time 44% 35% 13% 6% 2%
Usability
Q14. The tool was simple, easy to use and non-intrusive 44% 52% 3% 1% 0%
Q15. I found the versioning system a useful feature of the ACP tool 64% 22% 12% 2% 0%
Q16. I found it rather a nuisance and inconvenience to bring my laptop to university just to use ACP 2% 18% 25% 30% 25%

[® [@ [a [v [®
Q17. For this course, during the lectures you used the ACP tool:
(i) Every lecture and exercise (ii) Every lecture, but not every exercise (iii) Most lectures (iv) Very rarely (v) Never [33% [26% [37% [4% [0
Q18. Whenever you decided NOT to use ACP in lessons, this was because:
(i) No laptop (ii) Laptop technical difficulties (iii) Exercises too difficult to attempt (iv) Exercises too easy (v) Not applicable [6% [16% [13% [5% [60%
Q19. In a typical lesson, how much of it would you like to see dedicated for practical ACP coding?
(i) None, all theory (ii) About 10% of class time (iii) About 20% (iv) About 30% (v) About 50% [0%] 2% [18% [35% | 45%
Q20. Assuming a fixed total amount of time dedicated to coding in class, how should exercises to be spread throughout the lesson?
(i) x20 small, quick and easy (ii) x10 medium (iii) x5 medium to large (iv) x2 large (v) Mixture of differing difficulties [6% [19% [28% [18% [29%
Q21. How big should each of the in-class practical exercises be?
(i) 10-30 seconds (ii) 30-60 seconds (iii) 1-2 minutes (iv) 2-3 minutes (v) 3-5 minutes 6% [8% [28% [24% [34%
Q22. Regarding the balance in the classroom between the theoretical (i.e. just using powerpoint slides) and practical (using ACP for in-class coding

exercises), how should the delivery of the course material be modified?

(i) Significantly less theory, more practical (ii) Slightly less theory (iii) Just right (iv) Slightly less practical (v) Significantly less practical [2% [11% [67% [18% [2%

question “What aspects of the course are most helpful for
your learning?”, over 70% of the comments credited ACP.
When asked “What changes to the course would you most
like to see?”, some commented that the ACP activities could
be slowed down. This strengthens the assumption that weaker
students may struggle to keep up with the coding in-class, and
hence why they opt to practice at their own pace afterward.
This is further evidenced in the open-ended question section,
with many comments confirming that it is helpful watching the
lecturer during lessons, but students prefer to code in their own
time as keeping up during lessons was sometimes difficult:

“I am sometimes unable to complete the tasks fast
enough in lectures. They are very useful to go
through in my own time for concept consolidation.”

In addition to the above mid-semester formative evaluation,
a summative course evaluation was also released to the CS2
students at the semester conclusion. Being the official course
evaluation, 165 of the 266 enrolled students responded. As
a course evaluation, the focus was a holistic evaluation of
the course itself rather specifically about ACP. Despite this,
students were overwhelmingly in support of ACP, despite
not being prompted about it. Of the optional open-ended
comments for “What was most helpful for your learning?”, 58
of the 110 comments explicitly credited ACP. Of the optional

open-ended comments for “What improvement(s) would you
like to see?”, eight of the 103 comments explicitly stated they
wanted more ACP exercises in lectures. Only seven of the 103
improvement suggestions were (mildly) negative about ACP,
in that they requested that the ACP exercises be simpler in
nature or that the in-class coding pace be slowed down.

I'V. RELATED WORK

ACP can be placed in the broader literature of active
learning [28]. Many researchers have explored different ways
of delivering lectures in order to improve student engagement
and comprehension of difficult concepts. In such efforts, some
form of active learning is promoted over passive learning.
However, despite the notable increased student satisfaction of
active learning over passive learning, it is difficult to quantify
improved cognitive outcomes [29]. Regardless of this chal-
lenge, active learning is an inherent part of computer science
education, with a wide range of activities that engage students.
Cooperative learning is a subset of active learning, where
students work in groups, with particular emphasis being placed
on the importance of cooperation among the small groups [30].
There are many factors that influence how computer science
courses are taught, and how instructors decide to achieve the
desired learning outcomes [1]. It is generally the responsibility

of the instructor to present the material at an appropriate pace
for most students, and it is inevitably a challenge catering for
a wide range of student abilities [31].

Apart from just adding labs to standard lectures [32],
computer science education considers another two ways to
incorporate labs: lab-based teaching [33] and hybrid labs
[34]. Walker [35] uses a lab-based approach combining and
integrating classroom and lab activities. With this format,
lectures are rare and students work together most of the
time. Similar to lab-based teaching is flipped learning, where
typical “homework tasks” are undertaken during classes with
the instructor’s guidance while students watch video lectures
outside of class time [36]. One of the challenges of flipping
classes, or lab-based teaching, is the non-trivial changes to
teaching style. The instructor must alter their way of teaching,
carefully preparing new material for each of the sessions in
order to reach the same goals of a standard lecture [37]. This
is a rather big shift from the traditional teaching format, much
like studio-based learning [38], [39], where lectures are turned
into labs and students expected to use their own laptops (or
one is provided).

An evolution of added labs is the one proposed by Urness
[34] where students are provided with a lab exercise a few days
before the lesson and can submit their solutions beforehand
(similar to an open lab [40]), or they can attend the lesson
where an instructor is available to help (similar to a closed
lab [41]). Since students can submit solutions without attend-
ing, hybrid labs do not require many instructors or teaching
assistants during lab sessions. If hybrid labs can be seen as a
diverse teaching style technique, ACP is a framework to create
a bridge between theoretical lectures and full independent
lab sessions. It allows for finer intertwining of "theory" and
"practice" during lectures, where the instructor-led approach
allows changing the pace or style of the lecture "on the fly"
and as appropriate for the student cohort.

Working examples are a big help for students to understand
difficult concepts [42]. Not only does ACP provide a platform
for (optional) in-class engagement, but the instructor can
directly align exercises with the course objectives. Students
end up with editable and highly relevant examples to practice
and execute again. If the lesson requires focusing more on
theory or practice, the instructor is able to alternate during the
lesson rather than committing beforehand. In traditional lab
sessions, students are always "the driver", never playing “the
observer” role which is equally a valuable pair-programming
role. In such cases, this independent practice has limited
opportunity for students to be in-sync with the instructor and
be guided by a strategic programming approach [14].

Process oriented guided inquiry learning (POGIL) is another
student-centered teaching approach and may be supported by
ACP when using programming exercises. The overarching
idea of POGIL is to support students in working in groups
on inquiry-based activities and guide them to discover con-
cepts [43]. These activities, aligned with the learning cycle,
may add additional skills such as teamwork and written/oral
production. Similar to ACP is the Integrated Student-Lecturer
Engagement Design Framework [44], which includes various
teaching techniques. InClass Assistant is a tool that supports

class participation by increasing the in-class communication
between students and instructor, by providing feedback on
class activities [45]. Parson’s Programming Puzzles are also
known to be effective in helping first-year students develop
fundamental code writing skills [46], but may be difficult to
extend to more advanced programming courses.

The aspiration behind ACP is very similar to that of
Peer Instruction [20] (PI), moving away from the traditional
model where class time is used for information transfer and
encouraging students to make sense of concepts during class
time [47]. PI has been successfully used in computer science
courses [48], encouraging students to understand how to apply
concepts rather than merely replicate the instructor’s examples.
While ACP varies in that it does not focus on peer discussions,
it promotes core aspects of PI such as incorporating mini-
lectures, posing exercises to students, providing think time,
and discussing the final solution aided by the instructor.

Some online platforms allow students to code exercises
in the convenience of a web browser, such as Python Tutor
[49] and CodingBat [50]. A web browser may not be ideal
(or even feasible) for non-trivial projects that demand non-
standard libraries, a GUI interface or custom IDE plugins;
ACP handles this, as it also offers an Eclipse IDE plug-in.
ACP is unique in that it allows students to sync rapidly with
the instructor as the exercises are developed. Finally, integrated
versioning systems may provide students with a useful tool to
follow the instructor’s steps during the demonstration. While
using an actual version control tool like Git [51] may be
considered, it must be remembered that the exercises are to
be undertaken in the context of a time-limited lesson, where
downtime should be minimized. Especially in the situation
of teaching novice programmers [52], the added step to sync
versions is unnecessarily complicated and a distraction from
the main learning objective of the exercise.

V. CONCLUSIONS

With the increased ubiquity of software applications, pro-
gramming is becoming an ever more relevant subject area.
As programming involves a wide range of abstract concepts,
students become disengaged in the course due to the difficulty.
Programming is one of those skills that is best learnt by prac-
tice, typically performed in the lab; but in order to practice,
students need to learn the fundamentals, typically taught in lec-
tures. This separation of lectures and labs is large and weakens
the constructive alignment between the learning outcomes and
the associated activities. ACP bridges this gap, by allowing
instructors to introduce the benefits of practical labs while
also maintaining the benefit of lectures. Evaluations show
strong support for using ACP to help students, with minimal
changes to an instructor’s preferred lecturing approach. This
study sheds light on experiences teaching CS2 programming
for engineering non-majors, as well as a complex graduate-
level compiler course for software engineering students.

REFERENCES

[1] ACM and IEEE, Computer Science Curricula 2013: Curriculum Guide-
lines for Undergraduate Degree Programs in Computer Science, 2013.

[6]

[7

—

[8]
[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

ACM and IEEE, Software Engineering Curricula 2014: Curriculum
Guidelines for Undergraduate Degree Programs in Software Engineer-
ing, 2014.

ACM and IEEE, Computer Engineering Curricula 2016: Curriculum
Guidelines for Undergraduate Degree Programs in Computer Engineer-
ing, 2016.

J. M. Wing, “Computational thinking,” Commun. ACM, vol. 49, pp. 33—
35, Mar. 2006.

E. Lahtinen, K. Ala-Mutka, and H.-M. Jérvinen, “A study of the
difficulties of novice programmers,” SIGCSE Bull., vol. 37, pp. 14-18,
June 2005.

S. Freeman, S. L. Eddy, M. McDonough, M. K. Smith, N. Okoroafor,
H. Jordt, and M. P. Wenderoth, “Active learning increases student
performance in science, engineering, and mathematics,” Proceedings of
the National Academy of Sciences, vol. 111, no. 23, 2014.

T. Jenkins, “Teaching programming — a journey from teacher to motiva-
tor,” in The 2nd Annual Conference of the LSTN Center for Information
and Computer Science, 2001.

J. Biggs and C. Tang, Teaching for quality learning at university. Open
university press, 3rd ed., 2007.

R. E. Mayer, “The psychology of how novices learn computer program-
ming,” ACM Comput. Surv., vol. 13, pp. 121-141, Mar. 1981.

E. F. Barkley, Student Engagement Techniques: A Handbook for College
Faculty [Paperback. Jossey-Bass, 2009.

L. Williams, R. Jeffries, R. R. Kessler, and W. Cunningham, “Strength-
ening the case for pair programming,” IEEE software, vol. 17, no. 4,
pp. 19-25, 2000.

N. Nagappan, L. Williams, M. Ferzli, E. Wiebe, K. Yang, C. Miller,
and S. Balik, “Improving the CS1 experience with pair programming,”
SIGCSE Bull., vol. 35, pp. 359-362, Jan. 2003.

L. Williams, E. Wiebe, K. Yang, M. Ferzli, and C. Miller, “In support
of pair programming in the introductory computer science course,”
Computer Science Education, vol. 12, no. 3, pp. 197-212, 2002.

A. Robins, J. Rountree, and N. Rountree, “Learning and teaching
programming: A review and discussion,” Computer Science Education,
vol. 13, no. 2, pp. 137-172, 2003.

R. Felder and L. Silverman, “Learning and teaching styles in engineering
education,” Engineering education, vol. 78, no. 7, pp. 674-681, 1988.
A. Bandura and D. H. Schunk, “Cultivating competence, self-efficacy,
and intrinsic interest through proximal self-motivation,” Journal of
personality and social psychology, vol. 41, no. 3, pp. 586-598, 1981.
B. J. Zimmerman, “Self-efficacy: An essential motive to learn,” Con-
temporary educational psychology, vol. 25, no. 1, pp. 82-91, 2000.

J. Biggs, “Enhancing teaching through constructive alignment,” Higher
Education, vol. 32, no. 3, pp. 347-364, 1996.

M. A. Brito and F. de S4-Soares, “Assessment frequency in introductory
computer programming disciplines,” Computers in Human Behavior,
vol. 30, pp. 623-628, 2014.

E. Mazur, “Peer instruction: getting students to think in class,” in AIP
Conference Proceedings, vol. 399, pp. 981-988, 1997.

A. K. Lui, R. Kwan, M. Poon, and Y. H. Cheung, “Saving weak
programming students: applying constructivism in a first programming
course,” ACM SIGCSE Bulletin, vol. 36, no. 2, pp. 72-76, 2004.

F. Sana, T. Weston, and N. J. Cepeda, “Laptop multitasking hinders
classroom learning for both users and nearby peers,” Computers &
Education, vol. 62, pp. 24-31, 2013.

S. R. Vegdahl, “Using visualization tools to teach compiler design,”
vol. 16, no. 2, pp. 72-83, 2000.

C. Walbeek, “Does lecture attendance matter? some observations from
a first-year economics course at the university of cape town,” South
African Journal of Economics, vol. 72, no. 4, pp. 861-883, 2004.

S. R. Tiwari and L. Nafees, Innovative Management Education Pedago-
gies for Preparing NextGeneration Leaders. 1GI Global, 2015.

S. Ritter, M. Yudelson, S. E. Fancsali, and S. R. Berman, “How mastery
learning works at scale,” in Proceedings of the Third (2016) ACM
Conference on Learning@ Scale, pp. 71-79, ACM, 2016.

A. Cook-Sather, B. Clarke, D. Condon, K. Cushman, H. Demetriou,
and L. Easton, Learning from the student’s perspective: A sourcebook
for effective teaching. Routledge, 2015.

J. J. McConnell, “Active and cooperative learning: tips and tricks (part
i),” ACM SIGCSE Bulletin, vol. 37, no. 2, pp. 27-30, 2005.

N. Michel, J. J. Cater, and O. Varela, “Active versus passive teaching
styles: An empirical study of student learning outcomes,” Human
Resource Development Quarterly, vol. 20, no. 4, pp. 397-418, 2009.
J. J. McConnell, “Active and cooperative learning: further tips and tricks
(part 3),” SIGCSE Bulletin, vol. 38, no. 2, pp. 24-28, 2006.

(31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]
[50]
[51]

[52]

M. I. Reid, L. R. Clunies-Ross, B. Goacher, and C. Vile, “Mixed ability
teaching: Problems and possibilities,” Educational Research, vol. 24,
no. 1, pp. 3-10, 1981.

D. Cowden, A. O’Neill, E. Opavsky, D. Ustek, and H. M. Walker, “A
c-based introductory course using robots,” in Proceedings of the 43rd
ACM Technical Symposium on Computer Science Education, SIGCSE
12, (New York, NY, USA), pp. 27-32, ACM, 2012.

V. Dolgopolovas, L. Savulioniené, and V. Dagien¢, “Enhancing students’
motivation in the inverted CS2 course: A case study,” in Proceedings of
the International Conference on e-Learning, pp. 137-141, 2014.

T. Urness, “A hybrid open/closed lab for cs 1,” in Proceedings of the
2017 ACM Conference on Innovation and Technology in Computer
Science Education, pp. 46-51, ACM, 2017.

H. M. Walker, “Lab-based courses with the 3 C’s: content, collaboration,
and communication,” Inroads, vol. 8, no. 4, pp. 26-29, 2017.

C. Herreid and N. Schiller, “Case studies and the flipped classroom,”
Journal of College Science Teaching, vol. 42, no. 5, pp. 62-66, 2013.
H. M. Walker, “A lab-based approach for introductory computing that
emphasizes collaboration,” in Computer Science Education Research
Conference, pp. 21-31, Open Universiteit, Heerlen, 2011.

M. Barak, J. Harward, and S. Lerman, “Studio-based learning via
wireless notebooks: a case of a Java programming course,” International
Journal of Mobile Learning and Organisation, vol. 1, no. 1, 2007.

D. Hendrix, L. Myneni, H. Narayanan, and M. Ross, “Implementing
studio-based learning in CS2,” in Proceedings of the 41st ACM Technical
Symposium on Computer Science Education, pp. 505-509, 2010.

M. Thweatt, “Csi closed lab vs. open lab experiment,” ACM SIGCSE
Bulletin, vol. 26, no. 1, pp. 80-82, 1994.

R. P. Mihail and K. Roy, “Closed labs in programming courses: A
review,” in Proceedings of the International Conference on Frontiers
in Education: Computer Science and Computer Engineering, 2016.

M. Guzdial, “How we teach introductory computer science is wrong,”
Blog at Communications of the ACM. Trusted insights for Computing’s
Leading Professionals, 2009.

H. Hu and T. Shepherd, “Using POGIL to help students learn to
program,” Transactions on Computing Education, vol. 13, no. 3, 2013.
Y. C. Huei, “Student engagement and learning using an integrated
student-lecturer engagement design framework,” in International Con-
ference on Teaching, Assessment and Learning, pp. 79-85, 2014.

Y. Martinez-Trevifo, “InClass assistant, enhancing student class partic-
ipation,” in Frontiers in Education Conference, 2016.

D. Parsons and P. Haden, “Parson’s Programming Puzzles: a fun and
effective learning tool for first programming courses,” in Proceedings of
the Sth Australasian Conference on Computing Education, 2006.

C. H. Crouch and E. Mazur, “Peer instruction: Ten years of experience
and results,” American Journal of Physics, vol. 69, no. 9, 2001.

L. Porter, C. Lee, and B. Simon, “Halving fail rates using peer
instruction: a study of four computer science courses,” in Proceeding
of the technical symposium on computer science education, 2013.

P. Guo, “Python Tutor.” http://pythontutor.com, 2018.

N. Parlante, “CodingBat.” http://codingbat.com, 2018.

J. Feliciano, M.-A. Storey, and A. Zagalsky, “Student experiences
using GitHub in software engineering courses,” in Proceedings of the
International Conference on Software Engineering Companion, 2016.
D. Cubrani¢ and M. A. D. Storey, “Collaboration support for novice
team programming,” in Proceedings of the 2005 international ACM
SIGGROUP conference on supporting group work, pp. 136—139, 2005.

Nasser Giacaman is a Senior Lecturer in the Department of
Electrical and Computer Engineering at the University of Auckland,
New Zealand. His disciplinary research interest includes parallel
programming, particularly focusing on high-level languages in the
context of desktop and mobile applications running on multi-core
systems. He also researches software engineering education by driv-
ing the development of tools and apps to help students learn difficult
programming concepts.

Giuseppe ‘“Pino” De Ruvo is a postdoctoral Research Fellow
in the Department of Electrical and Computer Engineering at the
University of Auckland, New Zealand. Giuseppe has a mixture of
research and industry experience, while his Ph.D. interdisciplinary
research applied model checking to various contexts. His research
interests are in computer science/software engineering education,
FLOSS, wikis, model checking, and empirical software engineering.

