On order 5 symplectic explicit Runge-Kutta Nyström methods

LIN-YI CHOU †
linyi@scitec.auckland.ac.nz

P. W. SHARP
sharp@scitec.auckland.ac.nz

Department of Mathematics, University of Auckland, Private Bag 92019,
Auckland, NEW ZEALAND.

Abstract. Order five symplectic explicit Runge-Kutta Nyström methods of five stages are known to exist. However, these methods do not have free parameters with which to minimize the principal error coefficients. By adding one derivative evaluation per step, to give either a six-stage non-PSAL family or a seven-stage PSAL family of methods, two free parameters become available for the minimization. This raises the possibility of improving the efficiency of order five methods despite the extra cost of taking a step.

We perform a minimization of the two families to obtain an optimal method and then compare its numerical performance with published methods of orders four to seven. These comparisons along with those based on the principal error coefficients show the new method is significantly more efficient than the five-stage, order five methods. The numerical comparisons also suggest the new methods can be more efficient than published methods of other orders.

1. Introduction

Time-dependent processes such as those arising in mechanics and chemistry where dissipation is insignificant can often be modelled by a Hamiltonian system of ordinary differential equations of the form

\[p' = -\frac{\partial H(p,q)}{\partial q}, \quad q' = \frac{\partial H(p,q)}{\partial p}, \]

(1)

where \(\dot{} \equiv \frac{d}{dt} \) and \(H : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \) is sufficiently smooth.

A one step numerical method for (1) is called symplectic if it preserves the symplectic structure of the space of variables \((p,q) \), thus reproducing the main qualitative property of the solution. Numerical experiments have shown symplectic methods can be more efficient than non-symplectic methods for long intervals of integration. In order to preserve the symplectic structure, a constant stepsize is used.

Symplectic Runge-Kutta methods are necessarily implicit. However, for separable Hamiltonians (those of the form \(H(q,p) = T(p) + V(q) \)), explicit Runge-Kutta Nyström (ERKN) methods can be symplectic if the coefficients of the method satisfy certain conditions.

† The work was part of the requirements for the first author’s M.Sc. thesis. The first author would like to thank the Department of Mathematics, University of Auckland for its financial support.
Okunbor and Skeel [6] investigated families of symplectic ERKN methods that use one, two and three stages. Calvo and Sanz-Serna in [1], [2] and [3] presented and tested a five-stage, order four method with minimised principal error coefficients. The method re-uses the last stage as the first stage of the next step, a property known as FSAL. This means only four derivations evaluations are required on each step, except for the first step. In [4], Calvo and Sanz-Serna presented a 13-stage, order seven FSAL method with minimised principal error coefficients. Okunbor and Skeel [7] investigated the existence of order five and six methods. They performed an extensive numerical search and found four individual five-stage, order five methods. They conjectured there were no six-stage methods of order six and through a numerical search obtained 16 individual seven-stage, order six methods.

For five-stage, order five methods, there are ten order conditions to satisfy and ten coefficients to satisfy these conditions. Hence, no coefficients are available to minimise the principal error coefficients. If one stage is added, and the order is kept at five, two coefficients become available, but this is at the expense of increasing by one the number of derivative evaluations required to take a step.

This trade-off between decreasing the error and increasing the cost for each step raises the interesting question of whether the introduction of the sixth stage will lead to a gain or loss in efficiency, where efficiency is measured by the number of derivative evaluations required to achieve a prescribed global error.

2. The methods

2.1. Definitions

When a Hamiltonian is separable, (1) can be written as

\[y'' = f(y), \]

(2)

where \(f : \mathbb{R}^n \mapsto \mathbb{R}^n \).

The ERKN methods we consider use \(s \)-stages and generate order \(p \) approximations \(y_i \) and \(y'_i \) to \(y(x_i) \) and \(y'(x_i) \) respectively, \(i = 1, 2, \ldots \), according to

\[y_i = y_{i-1} + b y'_{i-1} + h^2 \sum_{j=1}^{s} b_j f_j, \]

(3)

\[y'_i = y'_{i-1} + b \sum_{j=1}^{s} b_j f_j, \]

(4)

where \(h = x_i - x_{i-1} \) is constant, and

\[f_j = f(x_i - 1 + c_j h, y_{i-1} + c_j h y'_{i-1} + h^2 \sum_{k=1}^{j-1} a_{jk} f_k), \quad j = 1, \ldots, s. \]

The prime in \(b'_j \) denotes the derivative formula and not the derivative of \(b_j \).
In all the methods we consider, the b_j are given by

$$b_j = (1 - c_j)b'_j, \quad j = 1, \ldots, s.$$ \hspace{1cm} (5)

For an ERKN method to be symplectic, the a_{jk} must satisfy

$$a_{jk} = (c_j - c_k)b'_k, \quad k = 1, \ldots, j - 1, \quad j = 2, \ldots, s.$$ \hspace{1cm} (6)

Hence, once $c_j, b_j, j = 1, \ldots, s$ are known, the remaining coefficients of a symplectic ERKN are known.

For a method to be FSAL, its coefficients must satisfy $c_1 = 0, c_s = 1$ and

$$a_{sj} = b_j, \quad j = 1, \ldots, s - 1.$$ \hspace{1cm} (7)

If $c_1 = 0$ and $c_s = 1$ and the method is symplectic, (7) is automatically satisfied.

We decided against using the simplifying assumptions

$$c_j^2 = \frac{1}{2} \sum_{k=1}^{j-1} a_{jk}, \quad j = 2, \ldots, s,$$

because these led to a net reduction in the number of free parameters available for minimising the principal error coefficients.

In the remainder of this paper the term ‘method’ will mean ‘symplectic method’.

2.2. Six-stage, order five non-FSAL methods

There are 13 order conditions up to and including order five. However, three of these order conditions are dependent on the remainder (see, for example [7]). This means, since six-stage non-FSAL ERKN methods have 12 coefficients $(c_j, b_j, j = 1, \ldots, 6)$, we can take two coefficients as free parameters and solve for the remaining coefficients. We found it convenient to take c_5 and c_6 as the free parameters.

Five of the 10 order conditions to satisfy are the quadrature conditions

$$\sum_{j=1}^{s} b_j c_j^k = (k + 1)^{-1}, \quad k = 0, \ldots, 4,$$ \hspace{1cm} (8)

where we take $\theta^0 = 1$ and $\theta^k = 0$, $k > 0$. Conditions (8) are easily solved for b'_1, \ldots, b'_6 in terms of the c and b_6.

The next condition we solve is

$$\sum_{j=2}^{6} b_j \sum_{k=1}^{j-1} a_{jk} = \frac{1}{6}.$$ \hspace{1cm} (9)

When the expressions for b'_1, \ldots, b'_6 found from solving (8) are substituted into (9), the equation becomes a quadratic in b'_6. This is solved to give b'_6 and hence the other b' in terms of the c.
This leaves the following equations to satisfy, where summations are performed over i and j

$$b_{ij} = \frac{1}{8}, \quad b_{ij}^2 = \frac{1}{10}, \quad b_{ij}^3 = \frac{1}{30}, \quad b_{ij}^4 = \frac{1}{20} \quad (10)$$

When the expressions for the c_j are substituted into the above equations, the equations become complicated functions of the c. Even with the help of MAPLE we were unable to solve these equations algebraically and resorted to a numerical approach.

We first attempted to use a non-interactive grid method consisting of an outer and inner grid. The outer grid was over c_5 and c_6 and was used to minimise the Euclidean norm of the order six principal error coefficients for the solution and derivative formulae. The inner grid was over c_1, c_2, c_3 and c_4 and was used to generate initial estimates of the solutions of (10). For each point on the inner grid, we used the package HYBRD (obtained from NETLIB) to solve (10). If a solution was found, we evaluated the norm of the principal error coefficients and updated our minimum and minimiser if required. As in [4], a solution was accepted only if $-1.5 \leq c_j \leq 1.5, \ j = 1, \ldots, 6$.

Although the above grid method produced tangible results after several days of CPU time, there was much duplication of effort because HYBRD would converge to the same solution from different points on the inner grid. In addition, the method had the air of brute force, something we found unappealing.

We then attempted an interactive grid search consisting of just the outer grid. By keeping a history stack of the previously converged solutions, we were able, after gaining some experience, to make rapid progress in the minimisation.

At intermediate points during the grid search, we tested the best ERKN method we had and compared its performance with published methods on a set of test problems. On a number of occasions we found the norm of the principal error coefficients significantly over-estimated the efficiency of the new method. On other occasions what we thought was a significant decrease in the norm led to little or no improvement in the efficiency.

We were unable to ascertain the reason for this sometimes poor correlation between the predicted and actual performance.

2.3. Seven-stage, order five FSAL methods

The derivation and minimisation of seven-stage, order five FSAL methods is similar to that for the six-stage non-FSAL methods, the main difference being l_i is now a free parameter in place of c_1. We used the interactive grid method and found through our testing at intermediate points of the search that methods from the FSAL family were more efficient than those from the non-FSAL family.
With a grid size of 0.01 for c_5 and c_6, the best method we found had $c_j, b_j, j = 1, 7$ as follows

\[
\begin{align*}
 c_1 &= 0.000000000000000E + 00 \\
 c_2 &= 0.2179621390175646E + 00 \\
 c_3 &= 0.4424703708255242E + 00 \\
 c_4 &= 0.1478460559438898E + 01 \\
 c_5 &= 0.340000000000000E + 00 \\
 c_6 &= 0.700000000000000E + 00 \\
 c_7 &= 0.100000000000000E + 01 \\
 b_1' &= 0.6281213570268329E - 01 \\
 b_2' &= 0.3788983131252575E + 00 \\
 b_3' &= 0.275452851261340E + 00 \\
 b_4' &= -0.1585299574786513E - 02 \\
 b_5' &= -0.1785704038527618E + 00 \\
 b_6' &= 0.3479995834198831E + 00 \\
 b_7' &= 0.1149928196535844E + 00
\end{align*}
\]

The remaining coefficients can be found using (5) and (6). The error in satisfying the order conditions is less than 3×10^{-16}.

The Euclidean norm of the order six principal error coefficients for the solution and derivative formula is 4.0×10^{-4} and 4.1×10^{-4} respectively. The corresponding norms for the four, five-stage order five methods given in [7] range from 1.7×10^{-2} to 2.4×10^{-2} for the solution formula and 3.3×10^{-2} to 4.3×10^{-2} for the derivative formula.

![Two-body problem: $e = 0.3$, [0,10000]](image)

Figure 1. Base 10 log-log graph of the number of derivative evaluations against the norm of the end-point global error for the two-body problem with $e = 0.3$ and an integration interval of [0, 10000].
An estimate of the relative efficiency of the new method and those in [7] can be obtained by assuming the global error varies as the fifth root of the Euclidean norms. The new method is predicted, after scaling by the number of derivative evaluations on each step, to be approximately twice as efficient as those in [7]. As stated at the end of the previous sub-section, decreasing the norm of the order six principal error coefficients does not always lead to a corresponding gain in efficiency. Hence, the statement that the new method is approximately twice as efficient as those in [7] should be taken as a general statement and not as one that holds for each and every problem.

\[\text{Two-body problem: } e = 0.5, [0,10000] \]

![Graph](image)

Figure 2. Base 10 log-log graph of the number of derivative evaluations against the norm of the end-point global error for the two-body problem with \(e = 0.5 \) and an integration interval of \([0, 10000]\).

3. **Numerical experiments**

We performed extensive numerical comparisons of the new method, the order four method of [3], the order seven method of [4], and the 20 order five and six methods in [7]. Each method was tested on the simple pendulum problem, the Henon Heiles problem [5], and the two-body problem. For each method and problem we used stepsizes of \(2^{-i}, i = 2, \ldots, 7 \) and several intervals of integration. For each integra-
tion we recorded the global error and the error in the Hamiltonian throughout the interval of integration. The testing was done in double precision Fortran 90.

Here we present a summary of the comparisons with an emphasis on the two-body problem because this problem is commonly used when comparing symplectic methods.

Figures 1, 2 and 3 give the log-log graphs of the number of derivative evaluations against the end-point error in the Hamiltonian for the two-body problem with eccentricities of 0.3, 0.5 and 0.7. The interval of integration is [0,10^4]. Each figure contains the graphs for the new method, the methods of order four and seven in [3] and [4], and an order five and order six method from [7] (we chose the last method in Tables 1 and 2 of [7], the other methods in the tables led to similar conclusions). The five methods are denoted by NEW5, CS4, CS7, OS5 and OS6 respectively, where the digit is the order of the method.

![Figure 3](image_url)

Figure 3. Base 10 log-log graph of the number of derivative evaluations against the norm of the end-point global error for the two-body problem with \(e = 0.7 \) and an integration interval of [0, 10000].

We consider Figures 1 and 2 first. The new method is more efficient than OS5 which suggests it was advantageous to use an extra stage. The gain in efficiency is approximately a factor of two which agrees well with the gain predicted using the norm of the principal error coefficients. We also observe the new method is
more efficient than CS4 and CS7, and slightly more efficient than 0S6. We verified
using quadruple precision that the vertical placement of data points for small global
errors was due to round-off errors in double precision.

The results in Figure 3 provide a caveat to the above conclusions. The new
method has retained much of its efficiency relative to 0S5 except at large global
errors, but CS4 is more efficient than the new method at large global errors.

When the five methods are compared on the simple pendulum and Henon Heiles
problem, the relative efficiency of the order five methods is similar to that on the
two-body problem but 0S6 is more efficient than the new method.

References

1. M.P. Calvo, J.M. Sanz-Serna, Variable steps for symplectic integrators, in Numerical Anal-
2. M.P. Calvo, J.M. Sanz-Serna, Reasons for a failure. The integration of the two-body prob-
lem with a symplectic Runge-Kutta-Nyström code with stepchanging facilities, in Applied
Mathematics and Computational Reports, Report 1991/7, Universidad de Valladolid, Spain,
With Application To The Two-Body Problem, SIAM J. Sci. Comput., 14, No.4 (1993), 936-
942.
4. M. P. Calvo, J. M. Sanz-Serna, High-Order Symplectic Runge-Kutta-Nyström Methods,
5. M. Hénon, C. Heiles, The applicability of the third integral of motion: some numerical
59 (1992), 439-455.
7. D. Okunbor, R.D. Skeel, Canonical Runge-Kutta-Nyström methods of order five and six,
Intermodal transport refers to the movement of goods in a single loading unit which uses successive various modes of transport (road, rail, water) without handling the goods during mode transfers. Intermodal transport has become an important policy issue, mainly because it is considered to be one of the means to lower the congestion caused by single-mode road transport and to be more environmentally friendly than the single-mode road transport. Both considerations have been followed by an increase in attention toward intermodal freight transportation research.

Various intermodal freight transport decision problems are in demand of mathematical models of supporting them. As the intermodal transport system is more complex than a single-mode system, this fact offers interesting and challenging opportunities to modelers in applied mathematics. This special issue aims to fill in some gaps in the research agenda of decision-making in intermodal transport.

The mathematical models may be of the optimization type or of the evaluation type to gain an insight in intermodal operations. The mathematical models aim to support decisions on the strategic, tactical, and operational levels. The decision-makers belong to the various players in the intermodal transport world, namely, drayage operators, terminal operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in time horizon as in terms of operators are:

- Intermodal terminal design
- Infrastructure network configuration
- Location of terminals
- Cooperation between drayage companies
- Allocation of shippers/receivers to a terminal
- Pricing strategies
- Capacity levels of equipment and labour
- Operational routines and lay-out structure
- Redistribution of load units, railcars, barges, and so forth
- Scheduling of trips or jobs
- Allocation of capacity to jobs
- Loading orders
- Selection of routing and service

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/jamds/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>June 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>September 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>December 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Gerrit K. Janssens, Transportation Research Institute (IMOB), Hasselt University, Agoralaan, Building D, 3590 Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor

Cathy Macharis, Department of Mathematics, Operational Research, Statistics and Information for Systems (MOSI), Transport and Logistics Research Group, Management School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; Cathy.Macharis@vub.ac.be
Special Issue on
Models, Methods, and Applications of Dynamics and Control in Engineering Sciences: State of the Art

Call for Papers

Since the current literature on dynamics and control is scattered over a range of journals, books, chapters of books, and a large number of conference proceedings, which are often difficult to obtain, the goal of this special issue of MPE is to present papers, containing complete reviews on dynamics models, available in the current literature, to classify them, and to discuss their applications and limitations. In this special issue, the authors could recommend appropriate models and control criteria for various applications on engineering and sciences and suggest directions for further works. It is also open for critical reviews, open problems, and future developments. Discussions on MEMS and NEMS are also encouraged.

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/mpe/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>August 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>November 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>February 1, 2010</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Jose Manoel Balthazar, Department of Statistics, Applied Mathematics and Computation, State University of São Paulo at Rio Claro, P.O. Box 178, Rio Claro 13500-230, SP, Brazil; jmbaltha@rc.unesp.br

Stefano Lenci, Istituto di Scienza e Tecnica delle Costruzioni, Università Politecnica delle Marche, via Brecce Bianche, Monte D’Ago, Ancona 60131, Italy; lenci@univpm.it

Yuri Vladimirovich Mikhlin, Department of Applied Mathematics, Kharkov Polytechnical Institute, National Technical University, Kharkov 61002, Ukraine; muv@kpi.kharkov.ua

Guest Editors

Paulo Batista Gonçalves, Civil Engineering Department, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), 22453-900 Rio de Janeiro, RJ, Brazil; paulo@puc-rio.br

Hindawi Publishing Corporation
http://www.hindawi.com
Special Issue on
Impact of Kirk’s Results in the Development of Fixed Point Theory

Call for Papers

Kirk’s fixed point theorem published in 1965 had a profound impact in the development of the fixed point theory over the last 40 years. Through the concept of generalized distance, Tarski’s classical fixed point theorem may be seen as a variant of Kirk’s fixed point theorem in discrete sets. This shows among other things the power of this theorem.

This special issue will focus on any type of applications of Kirk’s fixed point theorem. It includes:

- Nonexpansive mappings in Banach and metric spaces
- Multivalued mappings in Banach and metric spaces
- Monotone mappings in ordered sets
- Multivalued mappings in ordered sets
- Applications to nonmetric spaces like modular function spaces
- Applications to logic programming and directed graphs

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/fpta/guidelines.html. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>October 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>January 1, 2010</td>
</tr>
<tr>
<td>Publication Date</td>
<td>April 1, 2010</td>
</tr>
</tbody>
</table>

Guest Editor

Tomas Domínguez-Benavides, Departamento de Análisis Matemático, Universidad de Sevilla, 41080 Sevilla, Spain; tomasd@us.es

Lead Guest Editor

M. A. Khamsi, Department of Mathematical Science, University of Texas at El Paso, El Paso, TX 79968, USA; mohamed@utep.edu