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Abstract

Let X be a finite vertex-transitive graph of valency d, and let A be the full automor-
phism group of X . Then the arc-type of X is defined in terms of the sizes of the orbits
of the stabiliser Av of a given vertex v on the set of arcs incident with v. Such an orbit is
said to be self-paired if it is contained in an orbit ∆ of A on the set of all arcs of X such
that ∆ is closed under arc-reversal. The arc-type of X is then the partition of d as the sum
n1 + n2 + · · ·+ nt + (m1 +m1) + (m2 +m2) + · · ·+ (ms +ms), where n1, n2, . . . , nt
are the sizes of the self-paired orbits, and m1,m1,m2,m2, . . . ,ms,ms are the sizes of the
non-self-paired orbits, in descending order. In this paper, we find the arc-types of several
families of graphs. Also we show that the arc-type of a Cartesian product of two ‘relatively
prime’ graphs is the natural sum of their arc-types. Then using these observations, we show
that with the exception of 1 + 1 and (1 + 1), every partition as defined above is realisable,
in the sense that there exists at least one vertex-transitive graph with the given partition as
its arc-type.
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1 Introduction
Vertex-transitive graphs hold a significant place in mathematics, dating back to the time
of first recognition of the Platonic solids, and also now in other disciplines where symme-
try (and even other properties such as rigidity) play an important role, such as fullerene
chemistry, and interconnection networks.

A major class of vertex-transitive graphs is formed by Cayley graphs, which represent
groups in a very natural way. (For example, the skeleton of the C60 molecule is a Cayley
graph for the alternating group A5.) It is relatively easy to test whether a given vertex-
transitive graph is a Cayley graph for some group: by a theorem attributed to Sabidussi [23],
this happens if and only if the automorphism group of the graph contains a subgroup that
acts regularly on vertices. Vertex-transitive graphs that fail this test are relatively rare, the
Petersen graph being a famous example. A recent study of small vertex-transitive graphs
of valency 3 in [18] shows that among 111360 such graphs of order up to 1280, only 1434
of them are not Cayley graphs.

For almost every Cayley graph, the automorphism group itself acts regularly on vertices
(see [1]). Any such graph is called a graphical regular representation of the group G, or
briefly, a GRR. In a book by Coxeter, Frucht and Powers [8] devoted to the study of 3-
valent GRRs, vertex-transitive 3-valent graphs were classified into four types, according
to the action of the automorphism group on the arcs (ordered pairs of adjacent vertices)
of the graph. One class consists of those graphs which are arc-transitive, another of those
for which there are two orbits on arcs, and the other two are two classes of GRRs. Arc-
transitive graphs are also called symmetric.

Symmetric graphs have been studied quite intensively, especially in the 3-valent case,
by considering the action of the automorphism group on non-reversing walks of given
length s, known as s-arcs. For example, it was shown by Tutte [26, 27] that every finite
symmetric 3-valent graph is s-arc-regular for some s ≤ 5, and hence that the order of the
stabiliser of a vertex in the automorphism group of every such graph is bounded above by
48. Tutte’s theorem and related work have been used to determine all symmetric 3-valent
graphs on up to 10, 000 vertices; see [9, 6, 5]. Also Tutte’s seminal theorem was generalised
much later by Weiss, who used the classification of doubly-transitive permutation groups
to prove that every finite symmetric graph of valency greater than 2 is s-arc-transitive but
not (s+1)-arc-transitive for some s ≤ 7, and in particular, that there are no 8-arc-transitive
finite graphs; see [29].

Another important class of vertex-transitive graphs was investigated by Tutte [28] and
Bouwer [3], namely the graphs that are vertex- and edge-transitive but not arc-transitive.
These are now called half-arc-transitive graphs. Every such graph has even valency, and
its automorphism group has two orbits on arcs, with every arc (v, w) and its reverse (w, v)
lying in different orbits; see [28, p. 59]. Bouwer [3] constructed a family of examples con-
taining one half-arc-transitive graph of each even valency greater than 2, and the first and
third authors of this paper have recently proved that other examples of the type considered
by Bouwer produce infinitely many of every such valency; see [7].

According to Coxeter, Frucht and Powers [8], the idea of classifying cubic vertex-
transitive graphs with respect to the arc-orbits of the automorphism group originated in
some work by Ronald Foster over half a century ago, which was presented to his friends in
the form of unpublished notes. The classification is carried out rigorously in their book [8].
Although Foster’s original idea of ‘zero-symmetric’ graphs was later expanded to other
valencies under the term GRR, the classification by arc-orbits itself was never extended
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in a systematic way to graphs of other valencies. This paper provides a remedy for that
omission. By introducing the concept of ‘arc-type’, we provide a language that can be used
to unify the notions of arc-transitivity and half-arc-transitivity and the above-mentioned
classification of symmetric 3-valent graphs, and also to extend this classification to vertex-
transitive graphs of higher valency.

We can now define the notion of arc-type for a vertex-transitive graph. Let X be a
d-valent vertex-transitive graph, with automorphism group A. We first make a critical
observation about the pairing of arc-orbits. The orbit of an arc (v, w) under the action of A
can be paired with the orbit ofA containing the reverse arc (w, v), and if these orbits are the
same, then the given orbit is said to be self-paired. This is similar to the definition of paired
orbitals for transitive permutation groups. But here we will abuse notation and extend the
definition to the orbits of the stabiliser Av in A of a vertex v on the arcs emanating from
v, and say that the orbit of Av containing the arc (v, w) is self-paired if (v, w) lies in the
same orbit of A as its reverse (w, v).

We define the arc-type of X as the partition Π of d as the sum

Π = n1 + n2 + · · ·+ nt + (m1 +m1) + (m2 +m2) + · · ·+ (ms +ms) (†)

where n1, n2, . . . , nt are the sizes of the self-paired arc-orbits of Av on the arcs emanating
from v, and m1,m1,m2,m2, . . . ,ms,ms are the sizes of the non-self-paired arc-orbits, in
descending order.

Similarly, the edge-type of X is the partition of d as the sum of the sizes of the orbits
of Av on edges incident with v, and can be found by simply replacing each bracketed term
(mj +mj) by 2mj (for 1 ≤ j ≤ s).

The number of possibilities for the arc-type Π depends on the valency d. For d = 1
there is just one possibility, namely with n1 = 1, and this occurs for the complete graph
K2. For d = 2, in principle there could be three possibilities, namely 2, 1 + 1 and (1 + 1),
but every 2-valent connected graph is a cycle, and is therefore arc-transitive, with arc-type
2. In particular, 1 + 1 and (1 + 1) cannot occur as arc-types. For d = 3 there are four
possibilities (namely 3, 2 + 1, 1 + 1 + 1 and 1 + (1 + 1)), and they all occur, as shown in
[8]. A natural question arises as to what arc-types occur for higher valencies.

In this paper, we provide some basic theory for arc-types, which helps us to answer that
question. In particular, we give for each positive integer d the number of different partitions
of the above form (†) for d, by means of a generating function. This gives a closed form
solution for the number of different possibilities in the case of a GRR of given valency d.
(As a curiosity, we mention that there is also a connection with the different root types of
polynomials with real coefficients.)

Then our main theorem states that with the exception of 1+1 and (1+1), every partition
Π as defined in (†) is realisable, in the sense that there exists at least one vertex-transitive
graph with Π as its arc-type. To prove this, we consider how to combine ‘small’ vertex-
transitive graphs into a larger vertex-transitive graph, preserving (but increasing the number
of) the summands in the arc-type. The key step is to show that the arc-type of a Cartesian
product of such graphs is just the sum of their arc-types, when the graphs are ‘relatively
prime’ with respect to the Cartesian product.

Our proof of the theorem then reduces to finding suitable ‘building blocks’, to use
as base cases for the resulting construction. Several interesting families and examples of
graphs are found to be helpful. In particular, we introduce the concept of a special kind
of thickened cover of a graph, obtained by replacing some edges of the given graph by
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complete bipartite graphs, and other edges by ladder graphs (with ‘parallel’ edges). Under
some special conditions, the thickened cover is vertex-transitive, and it is easy to compute
its arc-type from the arc-type of the given base graph. Note that this does not work in
general. It can happen that a group G acts transitively on the vertices of the graph, with
given arc-type, but the full automorphism group is larger thanG. The challenge is to ensure
that no further automorphisms are admitted.

Finally, as a corollary of our main theorem, we show that every standard partition of
a positive integer d is realisable as the edge-type of a vertex-transitive graph of valency d,
except for 1 + 1 (when d = 2).

Vertex-transitive graphs are key players in algebraic graph theory, but also (as intimated
earlier) they have important applications in other branches of mathematics. In group theory
they play a crucial role as Cayley graphs. In geometry they are encountered in convex
and abstract polytopes, incidence geometries, and configurations, and in manifold topology
they feature in the study of regular and chiral maps and hypermaps, and Riemann and Klein
surfaces with large automorphism groups.

Classification of vertex-transitive graphs by their edge- or arc-type gives a new view-
point, and helps provide a better understanding of their structure. This approach can also be
fruitful in terms of determining all small examples of various kinds of graphs, akin to the
census of 3-valent symmetric graphs on up to 10000 vertices [9, 6, 5], the census of vertex-
transitive graphs up to 31 vertices [22], or the census of small 4-valent half-arc-transitive
graphs and arc-transitive digraphs of valency 2 [20]. For example, the construction used by
Potočnik, Spiga and Verret to obtain their census of vertex-transitive 3-valent graphs on up
to 1280 vertices in [18] depends on the edge-type, and their census of all connected quartic
arc-transitive graphs of order up to 640 (also in [18]) was obtained by associating some of
them with vertex-transitive 3-valent graphs of edge-type 2+1 (and using cycle decomposi-
tions); see also [19, 21]. In these cases it was a stratified approach that enabled the limits of
the census to be pushed so high, and it is likely that for graphs of higher valency or larger
order, this kind of approach will be invaluable.

2 Preliminaries

All the graphs we consider in this paper are finite, simple, undirected and non-trivial. Given
a graph X , we denote by V (X) and E(X) the set of vertices and the set of edges of X ,
respectively. We denote an edge of X with vertices u and v by {u, v}, or sometimes more
briefly by uv. We will occasionally use triangle (respectively quadrangle) to denote an
unoriented 3-cycle (resp. 4-cycle) in a graph, and will say that two triangles are disjoint if
they have no vertex in common. For any vertex v of X , we denote by E(v) the set of edges
of X incident with v. An arc is an ordered pair of adjacent vertices, and we denote by
A(X) the set of all arcs of X . Associated with each edge {u, v} there are two arcs, which
we denote by (u, v) and its reverse (v, u). Also we define A(v) as the set of all arcs (v, w)
of X emanating from a given vertex v.

The automorphism group of X is denoted by Aut(X). Note that the action of Aut(X)
on the vertex-set V (X) also induces an action of Aut(X) on the edge-setE(X) and one on
the arc-set A(X). If the action of Aut(X) is transitive on the vertex-set, edge-set, or arc-
set, then we say that X is vertex-transitive, edge-transitive or arc-transitive, respectively.
An arc-transitive graph is often also called symmetric. The graph X is half-arc-transitive
if it is vertex-transitive and edge-transitive, but not arc-transitive. Note that the valency of
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a half-arc-transitive graph is necessarily even; see [28, p. 59].
In this paper we only consider vertex-transitive graphs. Obviously, vertex-transitive

graphs are always regular. Moreover, because a disconnected vertex-transitive graph con-
sists of pairwise isomorphic connected components, we may restrict our attention here
to connected graphs. Also we will sometimes use ‘VT’ as an abbreviation for vertex-
transitive.

Next, let G be a group, and let S be a subset of G that is inverse-closed and does not
contain the identity element. Then the Cayley graph Cay(G,S) is the graph with vertex-
set G, and with vertices u and v being adjacent if and only if vu−1 ∈ S (or equivalently,
v = xu for some x ∈ S). Since we require S to be inverse-closed, this Cayley graph
is undirected, and since S does not contain the identity, the graph has no loops. Also
Cay(G,S) is regular, with valency |S|, and is connected if and only if S generates G.
Furthermore, it is easy to see thatG acts as a group of automorphisms of Cay(G,S) by right
multiplication, and this action is transitive on vertices, with trivial stabiliser, and so this
action ofG on Cay(G,S) is sharply-transitive (or regular). Hence in particular, Cay(G,S)
is vertex-transitive.

Indeed the following (which is attributed to Sabidussi [23]) shows how to recognise
Cayley graphs:

Lemma 2.1. A graph X is a Cayley graph for the group G if and only if G acts regularly
on V (X) as a group of automorphisms. More generally, a graph X is a Cayley graph if
and only if some subgroup of Aut(X) acts regularly on V (X).

Observe that for a fixed x ∈ S, all the edges of form {u, xu} and {u, x−1u} for u ∈ G
lie in the same edge-orbit (as each other) under the automorphism group of Cay(G,S), and
similarly, that all the arcs of the form (u, xu) lie in the same arc-orbit. If all such arc-orbits
are distinct, then G is the full automorphism group of Cay(G,S), and Cay(G,S) is called
a graphical regular representation of the group G, or briefly a GRR for G. Another term
for such a graph is zero-symmetric. Note that if X is a connected zero-symmetric graph
(or GRR) with valency d, then X has d arc-orbits, and all the arcs emanating from a given
vertex v lie in different arc-orbits. Moreover, if G = Aut(X), then the stabiliser Gv of
any vertex v must fix each neighbour of v, and then by connectedness, it follows that Gv
is trivial. Thus G acts regularly on V (X), and so by Lemma 2.1, the graph X is a Cayley
graph for G.

Next, we describe another group-theoretic construction, for a special class of vertex-
transitive graphs. Let G be a group, let H be a subgroup of G, and let a be an element of
G such that a2 ∈ H . Now define a graph Γ = Γ(G,H, a) by setting

V (Γ) = {Hg : g ∈ G} and E(Γ) = {{Hx,Hy} : x, y ∈ G | xy−1 ∈ HaH}.

This graph Γ is called a (Sabidussi) double coset graph. As with Cayley graphs, the given
group G induces a group of automorphisms of Γ(G,H, a) by right multiplication, since
(xg)(yg)−1 = xgg−1y−1 = xy−1 ∈ HaH whenever {Hx,Hy} ∈ E(Γ). Again this
action is vertex-transitive, since (Hx)x−1y = Hy. Moreover, the stabiliser of the vertex
H is GH = {g ∈ G|Hg = H}, which is H itself, and this acts transitively on the neigh-
bourhood {Hah : h ∈ H} of H , so in fact Γ(G,H, a) is arc-transitive. Conversely, every
non-trivial arc-transitive graph X can be constructed in this way, by taking G = Aut(X),
and H = Gv for some v ∈ V (X), and a as any automorphism in G that interchanges v
with one of its neighbours.
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Finally, we mention a convenient way to describe cubic Hamiltonian graphs, that will
be helpful later. Let X be a cubic Hamiltonian graph on n vertices. Label the vertices of
X with numbers 0, . . . , n − 1, such that vertices i and i + 1 are consecutive in a given
Hamilton cycle for 0 ≤ i < n (treated modulo n). Each vertex i is adjacent to i − 1 and
i + 1 (mod n), and to one other vertex, which has label vi, say. Now define di = vi − i
for 0 ≤ i < n. Then the LCF-code of X is given by the sequence [d0, . . . , dn−1]. Clearly
the LCF-code defines the graph X , since the edges are {i, i + 1} for all i (mod n) and
{i, i + di} for all i (mod n). On the other hand, the LCF is not necessarily unique for X ,
since it depends on the choice of Hamilton cycle. Note also that if the code sequence is
periodic, then it is sufficient to list a sub-sequence and indicate how many times it repeats,
using a superscript. For example, [3,−3]4 is the LCF-code of a 3-dimensional cube.

3 Edge-types and integer partitions
Let X be a vertex-transitive graph of valency d, and let {∆1, . . . ,∆k} be the set of orbits
of G = Aut(X) on E(X). This partition of E(X) into orbits also induces a partition of
the set E(v) of all edges incident with a given vertex v, namely into the sets E(v)∩∆i for
1 ≤ i ≤ k. These are simply the restrictions of the edge-orbits ∆i to the set E(v).

If we let `i = |E(v) ∩∆i| for each i, then we may define the edge-type of X to be the
partition of the valency d as the sum

`1 + `2 + · · ·+ `k,

where we assume the numbers `i are in descending order. Note that by vertex-transitivity,
the numbers `i do not depend on the choice of v. (Indeed when X is finite, counting
incident vertex-edge pairs (v, e) with e ∈ ∆i gives 2|∆i| = |V (X)|`i and therefore `i =
2|∆i|/|V (X)| for each i.) Hence in particular, the edge-type does not depend on the choice
of v. We denote the edge-type of X by et(X).

It is not at all obvious as to which partitions can occur as the edge-type of a vertex-
transitive graph. The edge-type of a vertex-transitive cubic graph can be 3, or 2 + 1, or
1 + 1 + 1, while that of a vertex-transitive quartic graph can be 4, or 3 + 1, or 2 + 2, or
2 + 1 + 1, or 1 + 1 + 1 + 1. We will see instances of all of these in Section 5. Then later,
in Section 9, we will show that with the exception of 1 + 1 (for d = 2), every standard
partition of a given positive integer d can be realised as an edge-type.

To enumerate the possibilities for a given valency d, we may use generating functions
for integer partitions. Let p(d, k) denote the number of partitions of d with k parts, and let
p(d) denote the number of partitions of an integer d. Obviously, p(d) =

∑
k p(d, k).

The generating functions for integer partitions are very well-known, and can be found
in [30, p. 100] for example. In fact, the generating function P (x, y) for p(d, k) is given by

P (x, y) =
∑
d

∑
k≥ 0

p(d, k)ykxd =
∏
n≥ 1

1

1− yxn
,

and then by taking y = 1, we get

P (x) =
∏
n≥ 1

1

1− xn
=
∑
d≥ 0

p(d)xd

as the generating function for p(d) itself.
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4 Arc-types and marked partitions
In this section we refine the notion of edge-type of a vertex-transitive graph X , by consid-
ering the action of Aut(X) on the arcs of X .

Let ∆ be an orbit of Aut(X) on A(X), and let ∆∗ = {(v, u) : (u, v) ∈ ∆} be its
paired orbit, in the same way that a permutation group on a set Ω has paired orbitals on the
Cartesian product Ω × Ω. Note that ∆∗ is also an orbit of Aut(X) on A(X), and that the
union ∆ ∪∆∗ consists of all the arcs obtainable from an orbit of Aut(X) on edges of X .
We say that ∆ is self-paired if ∆ = ∆∗ and non-self-paired if ∆ 6= ∆∗.

We can now write the orbits of Aut(X) on A(X) as

∆1, . . . ,∆t, ∆t+1,∆
∗
t+1, . . . ,∆t+s,∆

∗
t+s,

where ∆1, . . . ,∆t are self-paired, while ∆t+1, . . . ,∆t+s are non-self-paired.
This partition of A(X) into the orbits of Aut(X) also induces a partition of the set of

arcs emanating from a given vertex. For any vertex v of X , define ni = |A(v) ∩ ∆i| for
1 ≤ i ≤ t, andmj = |A(v)∩∆j | for t+1 ≤ j ≤ t+s. Again sinceX is vertex-transitive,
these numbers do not depend on the choice of v, and then furthermore, arc-reversal gives
|A(v) ∩∆∗j | = |A(v) ∩∆j | = mj for t+ 1 ≤ j ≤ t+ s.

Hence the ni are the sizes of the self-paired arc-orbits restricted to A(v), while the mj

are the sizes of the non-self-paired arc-orbits restricted to A(v), and thus we obtain

d = |A(v)| = n1 + · · ·+ nt + (m1 +m1) + · · ·+ (ms +ms),

just as in (†) in the Introduction. This is the arc-type of X , and we denote it by at(X).
We may call the expression on the right-hand-side of the above a marked partition of

the integer d. By this, we mean simply a partition in which some pairs of equal-valued
summands are placed in parentheses. Note that the parentheses in a marked partition Π
are important, because when Π represents the arc-type of a VT graph, they indicate that
the two numbers summed between the parentheses are the sizes of two paired arc-orbits
corresponding to the same edge-orbit.

Since the order of the arc-orbits of each of the two kinds (self-paired and non-self-
paired) can be chosen arbitrarily, we may consider two marked partitions to be equal if
they have the same summands, possibly in a different order. Usually we will assume that
the summands of each kind (unbracketed and bracketed) are in descending order, so that
n1 ≥ · · · ≥ nt and m1 ≥ · · · ≥ ms.

In a sense, the three most important classes of vertex-transitive graphs are the arc-
transitive, half-arc-transitive and zero-symmetric graphs, and their arc-types are as follows:

• Arc-transitive graphs of valency d have arc-type d;

• Half-arc-transitive graphs of even valency d have arc-type (d/2 + d/2);

• Zero-symmetric graphs have arc-type 1 + . . .+ 1 + (1 + 1) + . . .+ (1 + 1).

In particular, it follows that there are bd/2c + 1 possibilities for the arc-type of a d-valent
zero-symmetric graph (or GRR).

At this point, we recall that the arc-type of a VT graph X depends on the action of the
G = Aut(X) on the arcs of X , and in particular, the action of the vertex-stabiliser Gv on
the neighbourhood X(v) of a given vertex v. The summands in the arc-type of X are just
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the sizes of the orbits of Gv on the neighbourhood of a vertex v of X , while the brackets
depend on the pairings of arc-orbits of G.

By finding the generating function for the set of marked partitions, we can count the
(maximum) number of possible arc-types for each valency d.

Let t′(d, k) denote the number of marked partitions of dwith k parts, and let t(d) denote
the number of marked partitions of an integer d. Obviously, t(d) =

∑
k t
′(d, k). We can

obtain the generating function T ′(x, y) for t′(d, k) by adapting the generating function for
standard partitions, to take account of the bracketed pairs. This can be found from [30, p.
95], for example, and is as follows:

T ′(x, y) =
∑
d≥0

∑
k≥0

t′(d, k)xdyk =
∏
n≥1

1

(1− yxn)(1− y2x2n)
.

Then by taking y = 1, we get

T (x) = T ′(x, 1) =
∏
n≥1

1

(1− xn)(1− x2n)
=
∑
d≥0

t(d)xd

as the generating function for t(d) itself.
Here we remark that a different combinatorial approach can be taken for the generating

function T (x), namely through refining integer partitions by labelling some even parts
(with an asterisk). For example, the partition 6 = 2 + 2 + 1 + 1 gives rise to three labelled
partitions: 6 = 2 + 2 + 1 + 1, 6 = 2 + 2∗ + 1 + 1, and 6 = 2∗ + 2∗ + 1 + 1.

Now let t∗(d, k) denote the number of labelled partitions of an integer d having k parts.
Then the generating function for t∗(d, k) is

T ∗(x, y) =
∑
d≥0

∑
k≥0

t∗(d, k)xdyk =
∏
n≥1

1

(1− yxn)(1− yx2n)
,

and we find that T ∗(x, 1) = T ′(x, 1) = T (x).

Also we note that the generating function T (x) defines the sequence

1, 1, 3, 4, 9, 12, 23, 31, 54, 73, 118, . . . ,

which is denoted by A002513 in The On-Line Encyclopedia of Integer Sequences [24].
Finally, it should come as no surprise that marked partitions of a positive integer d can

be used also to count different types of solutions of a real polynomial equation of degree
d, when attention is paid whether the roots are real and unequal, real and equal (in various
combinations) or simple or multiple complex conjugate; see [4].

5 Edge-types and arc-types for small valency
In this section we give examples of vertex-transitive graphs with every possible edge-type
and arc-type, for valencies up to 4, and summarise the information in Table 1 at the end.
Note that it is enough to find examples of VT graphs for each arc-type, since the same
graphs will give also all the possible edge-types. We do not give a proof that the arc-type
is as claimed in each case, since that can be easily verified by computer (using for example
Magma [2]), or in some cases by hand.
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Graphs with arc-type 1 + 1 + 1 of order up to 120 are given in [8, Part III], and graphs
with arc-type (1 + 1) + 1 of order up to 120 are given in [8, Part II]. The other zero-
symmetric graphs listed here were found with the help of Magma [2], by checking the
Cayley graphs for certain kinds of generating sets for small groups. In some cases, we give
the smallest possible example with the given arc-type. Some examples were found by also
checking tables of vertex-transitive graphs on up to 31 vertices; see [22].

Valency d = 1 (one case):

(P1) There is only one marked partition of 1, namely 1, and only one VT graph with this
arc-type, namely the complete graph K2.

Valency d = 2 (three cases):

(P2) 2 = 2: For every n ≥ 3, the simple cycle Cn has arc-type 2.

(P3) 2 = 1 + 1: No VT graph has arc-type 1 + 1, because cycles are the only connected
regular graphs with valency 2.

(P4) 2 = (1+1): No VT graph has arc-type (1+1), because cycles are the only connected
regular graphs with valency 2.

Valency d = 3 (four cases):

(P5) 3 = 3: The VT graphs with arc-type 3 are precisely the arc-transitive cubic graphs,
and there are infinitely many examples, the smallest of which is the complete graph
K4. Numerous other small examples, including the ubiquitous Petersen graph, are
given in the Foster census [9], which was later expanded by Conder and Dobcsányi
[6], and again further by Conder [5] up to order 10000.

(P6) 3 = 2 + 1: The smallest VT graph with arc-type 2 + 1 is the triangular prism, on 6
vertices; see Figure 1. It is easy to see that the edges on the two triangles form one
edge-orbit, while all the other edges form another orbit.

Figure 1: The triangular prism, which has arc-type 2 + 1

(P7) 3 = 1 + 1 + 1: The smallest VT graph with arc-type 1 + 1 + 1 is the zero-symmetric
graph on 18 vertices from [8, p. 4]; see also Figure 2. This is the Cayley graph of
a group of order 18 generated by three involutions, and it can also be described as a
cubic Hamiltonian graph with LCF-code [5,−5]9.
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Figure 2: The smallest VT graph with arc-type 1 + 1 + 1, on 18 vertices

(P8) 3 = 1+(1+1): The smallest VT graph with arc-type 1+(1+1) is the zero-symmetric
graph on 20 vertices from [8, p. 35]; see Figure 3. This is the Cayley graph of a group
of order 20, generated by one involution and one non-involution, and it can also be
described as a cubic Hamiltonian graph with LCF-code [6, 6,−6,−6]5. For more
properties of this graph, see Lemma 8.4.
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Figure 3: The smallest VT graph with arc-type 1 + (1 + 1), on 20 vertices

Valency d = 4 (nine cases):
(P9) 4 = 4: The VT graphs with arc-type 4 are arc-transitive quartic graphs. The smallest

example is the complete graph K5.
(P10) 4 = (2 + 2): The VT graphs with arc-type (2 + 2) are half-arc-transitive quartic

graphs. The smallest example is the Holt graph [12], of order 27; see Figure 4.

Figure 4: The Holt graph (the smallest 4-valent half-arc-transitive graph)
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(P11) 4 = 3 + 1: The smallest VT graph with arc-type 3 + 1 is K4 �K2, which is the
Cartesian product of K4 and K2. The two summands K4 and K2 have arc-types 3
and 1, respectively, and are ‘relatively prime’. The example will be generalised in
Theorem 6.6.

(P12) 4 = 2 + 2: The smallest VT graph with arc-type 2 + 2 is the circulant graph
Cay(Z7; {1, 2}) on 7 vertices, where Z7 is viewed as an additive group. This graph
is shown in Figure 5. Each of the edges on the outer 7-cycle lies in two triangles
while each edge of the inner 7-cycle lies in only one triangle, and it follows that
Cay(Z7; {1, 2}) has two edge orbits.

Figure 5: The circulant Cay(Z7; {1, 2}), which has arc-type 2 + 2

(P13) 4 = 2 + (1 + 1): The graph on 40 vertices in Figure 6 is the smallest known VT
graph with arc-type 2 + (1 + 1). It is a thickened cover of the trivalent graph on 20
vertices with arc-type (1 + 1) + 1; see Section 7 for generalisations of this.

Figure 6: A VT graph with arc-type 2 + (1 + 1), on 40 vertices

(P14) 4 = (1 + 1) + (1 + 1): The graph on 42 vertices in Figure 7 is the smallest VT graph
with arc-type (1+1)+(1+1). As a GRR, it is a Cayley graph of the group C7oC6

with generating set that contains an element of order 6, an element of order 7, and
their inverses. For more details on this graph see Lemma 8.6.
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Figure 7: On the left is the smallest VT graph with arc-type (1+1)+(1+1), on 42 vertices
— and on the right is an illustration of an embedding of this graph on the torus, using a
hexagon with opposite sides identified

(P15) 4 = 2 + 1 + 1: The graph on 12 vertices in Figure 8 is the smallest VT graph with
arc-type 2 + 1 + 1. It can be obtained from the hexagonal prism by adding diagonals
to three non-adjacent quadrangles.

Figure 8: The smallest VT graph with arc-type 2 + 1 + 1, on 12 vertices

(P16) 4 = 1 + 1 + (1 + 1): The graph on 20 vertices in Figure 9 is the smallest VT graph
with arc-type 1 + 1 + (1 + 1). If G is the Frobenius group C5 o C4 of order 20,
generated by the permutations a = (1, 2, 3, 4, 5) and b = (2, 3, 5, 4), which satisfy
the relations a5 = b4 = 1 and b−1ab = a2, then this graph is the Cayley graph (in
fact a GRR) for G given by the generating set S = {ab2, a2b2, b, b−1}.

Figure 9: The smallest VT graph with arc-type 1 + 1 + (1 + 1), on 20 vertices



M. Conder, T. Pisanski, A. Žitnik: Vertex-transitive graphs and their arc-types 395

(P17) 4 = 1 + 1 + 1 + 1: The graph on 16 vertices in Figure 10 is the smallest VT
graph with arc-type 1 + 1 + 1 + 1. It is the Cayley graph (in fact a GRR) for the
dihedral group D8 = 〈x, y | x2 = y8 = (xy)2 = 1 〉 of order 16 with generating set
S = {x, xy, xy2, xy4}.

Figure 10: The smallest VT graph with arc-type 1 + 1 + 1 + 1, on 16 vertices

The above examples are summarised in Table 1.

Valency Edge-type Arc-type Example Case
1 1 1 K2 P1
2 2 2 C3 P2

(1 + 1) [Impossible] P3
2 1 + 1 1 + 1 [Impossible] P4
3 3 3 K4 P5
3 2 + 1 2 + 1 prisms P6

(1 + 1) + 1 LCF [6, 6,−6,−6]5 P7
3 1 + 1 + 1 1 + 1 + 1 LCF [5,−5]9 P8
4 4 4 K5 P9

(2 + 2) Holt graph P10
4 3 + 1 3 + 1 K4 �K2 P11
4 2 + 2 2 + 2 Cay(Z7; {1, 2}) P12

2 + (1 + 1) Figure 6 P13
(1 + 1) + (1 + 1) Figure 7 P14

4 2 + 1 + 1 2 + 1 + 1 Figure 8 P15
(1 + 1) + 1 + 1 Figure 9 P16

4 1 + 1 + 1 + 1 1 + 1 + 1 + 1 Figure 10 P17

Table 1: Edge-types and arc-types of VT graphs with valency up to 4

6 Arc-types of Cartesian products
Given a pair of graphs X and Y (which might or might not be distinct), the Cartesian
product X �Y is a graph with vertex set V (X)× V (Y ), such that two vertices (u, x) and
(v, y) are adjacent in X �Y if and only if u = v and x is adjacent with y in Y, or x = y
and u is adjacent with v in X .
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This definition can be extended to the Cartesian product X1 � . . . �Xk of a larger
number of graphsX1, . . . , Xk. The termsXi are called the factors of the Cartesian product
X1 � . . . �Xk. The Cartesian product operation � is associative and commutative. A
good reference for studying this and other products is the book by Imrich and Klavžar [13].

There are many properties of Cartesian product graphs that can be easily derived from
the properties of their factors. For example, we have the following:

Proposition 6.1. A Cartesian product graph is connected if and only if all of its factors are
connected.

Proposition 6.2. Let X1, . . . , Xk be regular graphs with valencies d1, . . . , dk. Then their
Cartesian product X1 � . . . �Xk is also regular, with valency d1 + · · ·+ dk.

A graph X is called prime (with respect to the Cartesian product) if it is not isomorphic
to the Cartesian product of a pair of smaller, non-trivial graphs. It is well-known that
every connected graph can be decomposed to a Cartesian product of prime graphs, which
is unique up to reordering and isomorphism of the factors; for a proof, see [13, Theorem
4.9]. Similarly, two graphs are said to be relatively prime (with respect to the Cartesian
product) if there is no non-trivial graph that is a factor of both. Note that two prime graphs
are relatively prime unless they are isomorphic.

We are interested in the question of how the symmetries of individual graphs are in-
volved in the symmetries of their product. Let X = X1 � . . . �Xk, and let α be an
automorphism of one of the Xi. Then α induces an automorphism β of X , given by

β : (v1, . . . , vk) 7→ (v1, . . . , vi−1, v
α
i , vi+1, . . . , vk).

The set of all automorphisms ofX induced in this way forms a subgroup of Aut(X), and if
some of the factors of X are isomorphic, then Aut(X) contains also other automorphisms
that permute these factors among themselves, but if the factors of X are relatively prime,
then there are no other automorphisms. Indeed we have the following:

Theorem 6.3. ([13, Corollary 4.17]) LetX be the Cartesian productX = X1 � . . . �Xk

of connected pairwise relatively prime graphs X1, . . . , Xk . Then every automorphism ϕ
of X has the property that

ϕ : (v1, . . . , vk) 7→ (v ϕ1

1 , . . . , v ϕk

k ) for all (v1, . . . , vk) ∈ V (X),

where ϕi is an automorphism of Xi for 1 ≤ i ≤ k.

Corollary 6.4. If X be the Cartesian product X1 � . . . �Xk of connected pairwise rela-
tively prime graphs X1, . . . , Xk, then Aut(X) ∼= Aut(X1)× · · · ×Aut(Xk).

Corollary 6.5. A Cartesian product of connected graphs is vertex-transitive if and only if
every factor is vertex-transitive.

Corollary 6.5 follows directly from Theorem 6.3 when the factors are pairwise rela-
tively prime. But it is also true in the general case — for a proof, see [13, Proposition
4.18].

We now come to the key observation we need to prove our main theorem.

Theorem 6.6. Let X1, . . . , Xk be non-trivial connected vertex-transitive graphs, with arc-
types τ1, . . . , τk. Then also X = X1 � . . . �Xk is a connected vertex-transitive graph,
and if X1, . . . , Xk are pairwise relatively prime, then the arc-type of X is τ1 + · · ·+ τk.
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Proof. First, the graph X is connected by Proposition 6.1, and vertex-transitive by Corol-
lary 6.5. For the second part, suppose that X1, . . . , Xk are pairwise relatively prime. Then
by Corollary 6.4, we know that Aut(X) ∼= Aut(X1) × · · · × Aut(Xk). Moreover, by
Theorem 6.3, the stabiliser in Aut(X) of a vertex (v1, . . . , vk) of X is isomorphic to
Aut(X1)v1 × · · · ×Aut(Xk)vk .

We will now show that two arcs incident with a given vertex u = (u1, . . . , uk) in X are
in the same orbit of Aut(X) if and only if the corresponding arcs are in the same orbit of
Aut(Xi) for some i, and that two such arcs are in paired orbits of Aut(X) if and only if the
corresponding arcs of Xi belong to paired orbits of Aut(Xi) for some i. This will imply
that the sizes of arc-orbits of Aut(X) on X match the sizes of arc-orbits of the subgroups
Aut(Xi) on the corresponding Xi, for 1 ≤ i ≤ k, and hence that the arc-type of X is just
the sum of the arc-types of X1, . . . , Xk.

So suppose that u′ = (u ′1, . . . , u
′
k) and u′′ = (u ′′1 , . . . , u

′′
k ) are adjacent to u =

(u1, . . . , uk) in X , and that the arcs (u, u′) and (u, u′′) lie in the same orbit of Aut(X).
Then there exists an automorphism ϕ of X taking (u, u′) to (u, u′′), and since ϕ stabilises
u, we know that ϕ = (ϕ1, . . . , ϕk) where ϕi ∈ Aut(Xi)ui for 1 ≤ i ≤ k. Also u′ differs
from u in only one coordinate, say the i-th one, in which case u ′j = uj for j 6= i, and then
since ϕ = (ϕ1, . . . , ϕk) takes u′ to u′′ (and ϕj fixes uj), we find that u ′′j = uj , so that u′′

differs from u only in the i-th coordinate as well. In particular, ϕi fixes ui and takes u ′i to
u ′′i , so the arcs (ui, u

′
i ) and (ui, u

′′
i ) lie in the same orbit of Aut(Xi).

The converse is easy. For suppose the arcs (ui, u
′
i ) and (ui, u

′′
i ) lie in the same orbit

of Aut(Xi), and ϕi is an automorphism of Xi taking (ui, u
′
i ) to (ui, u

′′
i ). Then letting

u ′j = u ′′j = uj for j 6= i, and u′ = (u ′1, . . . , u
′
k) and u′′ = (u ′′1 , . . . , u

′′
k ), we find that the

automorphism of X induced by ϕi takes (u, u′) to (u, u′′), and so these two arcs lie in the
same orbit of Aut(X).

On the other hand, suppose the arcs (u, u′) and (u, u′′) lie in different but paired orbits
of Aut(X). Then there exists an automorphism ϕ of X taking (u, u′) to (u′′, u), and
ϕ = (ϕ1, . . . , ϕk) where ϕi ∈ Aut(Xi) for 1 ≤ i ≤ k. Again, u′ differs from u in only
one coordinate, say the i-th one, in which case u ′j = uj for j 6= i. Then since ϕ takes u′ to
u, we find that ϕj fixes uj , and since ϕ takes u to u′′, also u ′′j = uj . Thus, as before, u′′

differs from u only in the i-th coordinate, and the arcs (ui, u
′
i ) and (ui, u

′′
i ) lie in the same

orbit of Aut(Xi). The converse is analogous to the previous case, and this completes the
proof.

Our final observations in this section are often helpful when proving that a given graph
is prime with respect to the Cartesian product. The first two are easy, and the third one is
proved in [14], for example.

Lemma 6.7. Let X = X1 �X2 be a Cartesian product of two connected graphs, each of
which has at least two vertices. Then every edge of X is contained in a 4-cycle.

Corollary 6.8. Let X be a connected graph. If some edge of X is not contained in any
4-cycle, then X is prime. In particular, if X has no 4-cycles, then X is prime.

Lemma 6.9. Let X be a Cartesian product of connected graphs.

(a) All the edges in a cycle of length 3 in X belong to the same factor of X .

(b) Let (v, u, w, x) be any 4-cycle in X . Then the edges {v, u} and {w, x} belong to the
same factor of X , as do the edges {u,w} and {x, v}.
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(c) If e and f are incident edges that are not in the same factor of X , then there exists a
unique 4-cycle that contains e and f , and this 4-cycle has no diagonals.

7 Thickened covers
In this section we explain the general notion of a thickened cover of a graph, and show how
it can be used to build larger vertex-transitive graphs from a given one.

Let X be any simple graph, F any subset of the edge-set of X , and m any positive
integer. Then we define X(F,m) to be the graph with vertex set V (X) × Zm, and with
edges of two types:

(a) an edge from (u, i) to (v, i), for every i ∈ Zm and every {u, v} ∈ E(X) \ F ,

(b) an edge from (u, i) to (v, j), for every (i, j) ∈ Zm × Zm and every {u, v} ∈ F .

We call X(F,m) a thickened m-cover of X over F .
In other words, a thickened m-cover of a graph X over a given set F of edges of X

is obtained by replacing each vertex of X by m vertices, and each edge by the complete
bipartite graph Km,m if the edge lies in F , or by mK2 (a set of m ‘parallel’ edges) if the
edge does not lie in F .

For example, the thickened 3-cover of the path graph P6 on 6 vertices over the unique
1-factor of P6 is shown in Figure 11.

Figure 11: A thickened 3-cover of P6 (over its 1-factor)

Here we note that X(F, 1) is isomorphic to X , while X(∅,m) is isomorphic to mX
(the union of m copies of X).

Also the base graph X is a quotient of X(F,m), obtainable by identifying all vertices
(u, i) that have the same first coordinate, but X(F,m) is not a covering graph of X in the
usual sense of that term when F is non-empty and m > 1, because in that case the valency
of a vertex (u, i) of X(F,m) is greater than the valency of u.

On the other hand, if X(m) is the multigraph obtained from X by replacing each edge
from F by m parallel edges, then X(F,m) is a regular covering graph of X(m), with
voltages taken from Zm: we may choose the voltages of the edges not in F to be 0, and
for each set of m parallel edges, choose a direction and then assign distinct voltages from
Zm to these edges. The derived graph of X(m) with this voltage assignment is a covering
graph of X(m) that is isomorphic to X(F,m).

(For the definitions of voltage graphs and covering graphs, see the book on topological
graph theory by Gross and Tucker [10].)

For each u ∈ V (X), we may call the set {(u, i) : i ∈ Zm} of vertices of X(F,m)
the fibre over the vertex u of X . Similarly the fibre over the edge {u, v} of X is the
set {{(u, i), (v, i)} : i ∈ Zm} of edges of X(F,m) if {u, v} ∈ E(X) \ F , or the set
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{{(u, i), (v, j)} : i, j ∈ Zm} if {u, v} ∈ F . Also for each i ∈ Zm we call the subgraph of
X(F,m) induced by the vertices {(u, i) : u ∈ V (X)} the i-th layer of X(F,m).

We now define three families of bijections on the vertex set of X(F,m). The first is ϕ̃,
which is induced by addition of 1 mod m on Zm, and given by the rule

ϕ̃ : (u, i) 7→ (u, i+ 1) for all u ∈ V (X) and all i ∈ Zm. (7.1)

Next, if ψ is any automorphism of X , then we define ψ̃ by the rule

ψ̃ : (u, i) 7→ (uψ, i) for all u ∈ V (X) and all i ∈ Zm. (7.2)

Finally, if i, j ∈ Zm and {u, v} is an edge in F such that u and v lie in different components
of X \ F (the graph obtained from X by deleting all the edges in F ), then we define the
bijection θ̃ = θ̃(u, v, i, j) by

θ̃ : (w, k) 7→


(w, j) if k = i and w lies in the same component of X \ F as v,
(w, i) if k = j and w lies in the same component of X \ F as v,
(w, k) otherwise.

(7.3)

Lemma 7.1. If X is any graph, F ⊆ E(X) and m ≥ 2, then ϕ̃ is an automorphism of
X(F,m).

Proof. The mapping ϕ̃ is a bijection and obviously sends edges of X(F,m) to edges, so is
an automorphism of X(F,m).

Lemma 7.2. If ψ ∈ Aut(X) and ψ preserves F setwise, then ψ̃ is an automorphism of
X(F,m) for all m.

Proof. The given mapping ψ̃ is clearly a bijection. Next, if {u, v} ∈ F then also {uψ, vψ}∈
F by hypothesis, and so {(u, i), (v, j)}ψ̃ = {(uψ, i), (vψ, j)} is an edge of X(F,m), for
all i, j ∈ Zm. Similarly, if {u, v} ∈ E(X) \ F , then {uψ, vψ} ∈ E(X) \ F , and so
{(u, i), (v, i)}ψ̃ = {(uψ, i), (vψ, i)} is an edge of X(F,m), for all i ∈ Zm.

Corollary 7.3. If X is a vertex-transitive graph, and F ⊆ E(X) is a union of some edge-
orbits of X , then X(F,m) is vertex-transitive for every m ≥ 2.

Proof. The subgroup of Aut(X(F,m)) generated by ϕ̃ and {ψ̃ : ψ ∈ Aut(X)} acts
transitively on the vertex set of X(F,m).

Here we note that X(F,m) is vertex-transitive also when F is the union of edge-orbits
of some vertex-transitive subgroup of Aut(X).

Lemma 7.4. If X is any graph, F ⊆ E(X) and m ≥ 2, and {u, v} is any edge in F such
that u and v lie in different components ofX \F , then θ̃ = θ̃(u, v, i, j) is an automorphism
of X(F,m), for all i, j ∈ Zm.

Proof. The mapping θ̃ is clearly a bijection, and to prove it is an automorphism ofX(F,m),
all we have to do is show that it preserves the set E′ of edges incident with one or more
vertices not fixed by θ̃. So suppose w is any vertex of X lying in the same component of
X \ F as v, and consider the effect of θ̃ on an edge from (say) the vertex (w, i) to a vertex
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(z, k) in X(F,m). If {w, z} ∈ E(X) \ F and k = i, then z lies in the same component
of X \ F as w and hence in the same one as v, and therefore θ̃ takes (w, i) to (w, j), and
(z, k) = (z, i) to (z, j), which is a neighbour of (w, j). On the other hand, if {w, z} ∈ F
and k is arbitrary, then θ̃ takes (w, i) to (w, j), and (z, k) to (z, k), which is a neighbour of
(w, j). The analogous things happen for edges incident with (w, j) in place of (w, i), and
so the set E′ is preserved by θ̃, as required.

Next, we note that under the assumptions of Lemma 7.4, the automorphism θ̃(u, v, i, j)
fixes the vertex (u, k), for every k ∈ Zm, and therefore the stabiliser of every such (u, k)
contains the automorphisms θ̃(u, v, i, j) for all i, j ∈ Zm.

We now give a helpful example of an application of this thickened cover construction,
to cycles of even order.

Theorem 7.5. Let X be the cycle on n vertices, where n is even and n > 2, and let F be
a 1-factor of X . Then X(F,m) is vertex-transitive for all m ≥ 2, with arc-type m + 1
(that is, with two self-paired arc orbits of lengthsm and 1) whenever (n,m) 6= (4, 2). Also
X(F,m) is prime with respect to the Cartesian product, for m ≥ 2 and n 6= 4.

Proof. We may take V (X) = Zn and E(X) = {{r, r+1} : r ∈ Zn}, and assume without
loss of generality that F = {{2r, 2r+1} : r ∈ Zn}. By Lemma 7.1 and Lemma 7.4, we
know that ϕ̃ and θ̃(2r, 2r + 1, i, j) are automorphisms of X(F,m), for all r ∈ Zn and all
i, j ∈ Zm. Also let ρ̃ and τ̃ be the permutations of V (X(F,m)) given by

ρ̃ : (u, i) 7→ (u+ 2, i) and τ̃ : (u, i) 7→ (1− u, i) for all u ∈ V (X) and all i ∈ Zm.

By Lemma 7.2, these are automorphisms of X(F,m), induced by the automorphisms ρ
and τ of X taking u 7→ u + 2 and u 7→ 1 − u, and from this is is clear that ρ̃ and
τ̃ generate a dihedral subgroup of Aut(X(F,m)) of order n (with n/2 ‘rotations’ and
n/2 ‘reflections’). Moreover, this subgroup acts transitively on the vertices of the i-th
layer {(u, i) : u ∈ Zn} of X(F,m), for every i ∈ Zm. It follows that the subgroup of
Aut(X(F,m)) generated by the automorphisms ϕ̃, ρ̃ and τ̃ acts transitively on the set of
all vertices of X(F,m), and therefore X(F,m) is vertex-transitive.

Now let ∆1 and ∆2 be the sets of arcs associated with edges of the types (a) and (b)
from the construction of X(F,m). Specifically, let ∆1 be the set of arcs associated with
edges of the form {(2r + 1, i), (2r + 2, i)} for r ∈ Zn and i ∈ Zm, and let ∆2 be the set
of arcs associated with edges of the form {(2r, i), (2r + 1, j)} for r ∈ Zn and i, j ∈ Zm.
Note that by the thickening construction, every vertex of X(F,m) is incident with one arc
from ∆1, and with m arcs from ∆2.

All the arcs in ∆1 lie in the same orbit of Aut(X(F,m)). In fact ∆1 is an arc-orbit
of the subgroup generated by ϕ̃, ρ̃ and τ̃ , and here we may note that τ̃ ρ̃ reverses each
arc ((1, i), (2, i)), and so ρ̃−r(τ̃ ρ̃)ρ̃ r reverses each arc ((2r + 1, i), (2r + 2, i)) in ∆1.
Similarly, all the arcs associated with edges of the form {(2r, i), (2r + 1, i)} for r ∈ Zn
and i ∈ Zm lie in the same orbit of the subgroup generated by ϕ̃, ρ̃ and τ̃ , and then since
θ̃(2r, 2r + 1, i, j) interchanges the vertices (2r, i) and (2r, j) while fixing (2r + 1, i) and
(2r + 1, j), we find that all the arcs in ∆2 lie in the same orbit of Aut(X(F,m)).

Next, we show there is no automorphism taking an arc in ∆1 to an arc in ∆2, unless
(n,m) = (4, 2). To see this, we consider the number of quadrangles containing a given
edge. Every edge of the form {(2r, i), (2r + 1, j)} is contained in at least (m− 1)2 quad-
rangles, namely those with vertices (2r, i), (2r + 1, j), (2r, k) and (2r + 1, `), for given
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k ∈ Zm \ {i} and ` ∈ Zm \ {j}. On the other hand, if n > 4 then no edge of the form
{(2r + 1, i), (2r + 2, i)} is contained in a quadrangle, because the other neighbours of
(2r+ 1, i) and 2r+ 2, i) are all of the form (2r, j) and (2r+ 3, j) respectively, and no two
of these are adjacent, while if n = 4, then every edge of the form {(2r + 1, i), (2r + 2, i)}
is contained in exactly m quadrangles, namely those with vertices (2r + 1, i), (2r + 2, i),
(2r+ 3, j) and (2r, j), for given j ∈ Zm. Since (m− 1)2 > m for all m > 2, the numbers
of quadrangles are different when (n,m) 6= (4, 2).

Hence if (n,m) 6= (4, 2), we find that ∆1 and ∆2 are arc-orbits of X(F,m). Then
since every vertex is incident with one arc from ∆1 and m arcs from ∆2, the arc-type of
X(F,m) is m + 1 in this case. Finally, if n > 4, then by Corollary 6.8, the fact that not
every edge of X(F,m) is contained in a quadrangle implies that X(F,m) is prime with
respect to the Cartesian product.

In the exceptional case (n,m) = (4, 2), the graph C4(F, 2) is isomorphic to the 3-cube
Q3, which is arc-transitive (with arc-type 3). Also for every m ≥ 2, the graph C4(F,m) is
isomorphic to the Cartesian product of Km,m and K2, and hence is not prime.

Thickened covers of cycles belong to the family of cyclic Haar graphs [11], which
are regular covering graphs over a dipole. Indeed the graph C2k(F,m) we considered in
Theorem 7.5 is a covering graph over a dipole with n + 1 edges, and voltage assignments
1, 0,m, 2m, . . . , (n− 1)m from the additive group Zmn.

Next, we prove the following, which will be very helpful later.

Theorem 7.6. Let X be a vertex-transitive graph, let F be union of edge-orbits of X , and
let m be any integer with m ≥ 2. Also suppose that for every edge {u, v} ∈ F , the vertices
u and v lie in different components of X \ F , and let (x, y) and (z, w) be two arcs lying in
the same arc-orbit of X . Then

(a) the arcs ((x, i), (y, i)) and ((z, j), (w, j)) lie in the same arc-orbit of X(F,m) for
all i, j,∈ Zm, and

(b) the arcs ((x, i), (y, j)) and ((z, k), (w, `)) lie in the same arc-orbit of X(F,m) for
all i, j, k, ` ∈ Zm, when {x, y} ∈ F .

Proof. First, there exists an automorphism ψ that maps (x, y) to (z, w). Now let ϕ̃ and ψ̃
be the mappings defined earlier in this section in (7.1) and (7.2). These are automorphisms,
by Lemma 7.1 and Lemma 7.2, and ϕ̃ j−i ψ̃ takes the arc ((x, i), (y, i)) to ((z, j), (w, j)),
and so these two arcs lie in the same orbit of Aut(X(F,m)).

Next, suppose {x, y} ∈ F . Then also {z, w} ∈ F , since {x, y} and {z, w} are in the
same edge-orbit, and the vertices z and w lie in different components of X \ F , by hy-
pothesis. Note that the automorphism ϕ̃k−iψ̃ takes ((x, i), (y, i)) to ((z, k), (w, k)), Now
let θ̃ = θ̃(z, w, k, `), as defined in (7.3). This is an automorphism of X(F,m), by Lemma
7.4, which takes ((z, k), (w, k)) to ((z, k), (w, `)). Thus ϕ̃k−iψ̃θ̃ takes ((x, i), (y, i)) to
((z, k), (w, `)), and so these two arcs lie in the same of Aut(X(F,m)).

Note that Theorem 7.6 cannot be pushed much further. For example, if F is a 1-factor
in X = C6, then the graph Y = C6(F, 2) has arc-type 2 + 1, by Theorem 7.5. Now one
might expect that if Φ1 is the smaller edge-orbit of Y, then the 4-valent graph Y (Φ1, 2) has
arc-type 2 + 2, but this does not happen: it turns out that Y (Φ1, 2) is arc-transitive, and so
has arc-type 4.
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8 Building blocks
In this section we produce families of examples (and a few single examples) of vertex-
transitive graphs with certain arc-types, which we will use as building blocks for the Carte-
sian product construction, to prove our main theorem in the final section. The marked
partitions that occur as arc-types in these cases have a small number of summands. We
begin with the arc-transitive case, for which there is just one summand.

Lemma 8.1. For every integer m ≥ 2, there exist infinitely many VT graphs that have
arc-type m and are prime with respect to the Cartesian product.

Proof. First, when m = 2 we can take the cycle graphs Cn, for n ≥ 5. These are vertex-
transitive, with arc-type 2, and taking n > 4 ensures that Cn contains no 4-cycles and is
therefore prime, by Lemma 6.7.

Now suppose m ≥ 3. We construct infinitely many m-valent arc-transitive graphs,
using a theorem of Macbeath [16] which gives the following: for almost all positive integer
triples (m1,m2,m3) with 1/m1 + 1/m2 + 1/m3 < 1, there exist infinitely many odd
primes p for which the simple group PSL(2, p) is generated by two elements x and y such
that x, y and xy have orders m1, m2 and m3, respectively.

Here we can take (m1,m2,m3) = (2,m,m+4), and then for each such prime p > m,
takeG = PSL(2, p) and letH be the cyclic subgroup ofG generated by y. Then |H| = m,
and the double coset graph Γ = Γ(G,H, x) is an arc-transitive graph of order |G|/m =
p(p − 1)(p + 1)/(2m). This graph has valency m, because the stabiliser in G of the arc
(H,Hx) is the cyclic subgroup H ∩ x−1Hx, which is trivial since G is simple. Thus Γ
has arc-type m.

It remains to show that Γ is prime. For the moment, suppose that Γ ∼= X �Y where
X and Y are relatively prime non-trivial graphs. Then by Corollary 6.5, X and Y are
vertex-transitive, and so by Theorem 6.6 we have m = at(Γ) = at(X) + at(Y ), which is
impossible. Hence the prime factors of Γ must be all the same, and so Γ is the Cartesian
product of (say) k copies of a single prime graph X . But then the order of Γ is |V (X)|k,
which is impossible unless k = 1, since the prime p divides |V (Γ)| = p(p−1)(p+1)/(2m)
but p2 does not. Hence Γ itself is prime.

At this point we remark that there are several other ways to produce infinitely many
m-valent arc-transitive graphs for all m ≥ 3. For example, another construction uses ho-
mological covers: start with a given m-valent arc-transitive graph X (such as the complete
graph on m + 1 vertices), and then for every sufficiently large prime p, construct a homo-
logical p-cover Γp over X with no 4-cycles. Then Γp is also an m-valent arc-transitive
graph, and is prime since it contains no 4-cycles; see [17].

Next, we consider half-arc-transitive graphs.

Lemma 8.2. For every integer m ≥ 2, there exist infinitely many VT graphs that have
arc-type (m+m) and are prime with respect to the Cartesian product.

Proof. In 1970, Bouwer [3] constructed an infinite family of vertex- and edge-transitive
graphs of even valency, indexed by triples (m, k, n) of integers such that m, k, n ≥ 2 and
2k ≡ 1 mod n. Each such graph, which we will call B(m, k, n), has order knm−1 and
valency 2m. The construction is easy, using only modular arithmetic. Bouwer proved that
the graphs B(m, 6, 9) are half-arc-transitive, thereby showing that for every even integer
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2m > 2, there exists a half-arc-transitive graph with valency 2m. Recently the first and
third authors of this paper adapted Bouwer’s approach to prove that almost all the graphs
B(m, k, n) are half-arc-transitive [7]. In particular, they showed that if n > 7 and k > 6
(and 2k ≡ 1 mod n), then X(m, k, n) is a half-arc-transitive graph of girth 6, for every
m ≥ 2. This gives infinitely many prime graphs of type (m+m), for every m ≥ 2.

Here we note that there are several constructions for half-arc transitive graphs. In par-
ticular, Li and Sim used properties of projective special linear groups to construct infinitely
many half-arc transitive graphs of every even valency greater than 2 in [15]. A census of
4-valent half-arc transitive graphs up to 1000 vertices is given in [20].

Lemma 8.3. For every integer m ≥ 2 there exist infinitely many prime VT graphs with
arc-type m+ 1.

Proof. By Theorem 7.5, for every m ≥ 2 and every even n > 4, the thickened m-cover of
Cn over a 1-factor F (of Cn) is a prime VT graph with arc-type m+ 1.

In fact we will need only one prime VT graph with arc-type m + 1 for each m in the
proof of Theorem 9.1, as we do for the next two arc-types, m+ (1 + 1) and 1 + (m+m),
as well.

Lemma 8.4. For every integer m ≥ 2 there exists a prime VT graph with arc-type m +
(1 + 1).

Proof. Let X be the graph with arc-type 1 + (1 + 1) given in Figure 3. Before proceeding,
we describe some additional properties of X . First, Aut(X) is generated by the involutory
automorphism α that takes v 7→ 21−v for all v ∈ V (X), and the automorphism β of order
4 that acts as (1, 7, 8, 2)(3, 20, 6, 9)(4, 14, 5, 15)(10, 17, 19, 12)(11, 16, 18, 13) on vertices.
In fact Aut(X) is isomorphic to the semi-direct product C5 o3 C4, with normal subgroup
of order 5 generated by γ = αβ2 (= [β, α]), and β−1γβ = γ3. In particular, X is a Cayley
graph (and a GRR) for this group.

The graphX has two edge-orbits: one of size 20 containing the edges {1, 2} and {1, 7},
and one of size 10 containing the edge {1, 20}. Edges in the first orbit lie in quadrangles,
while those in the second do not. The arc (1, 20) is reversed by the automorphism α, so it
lies in a self-paired arc-orbit, of size 20. On the other hand, the arcs (1, 2) and (1, 7) lie
in distinct paired arc-orbits, also of size 20. (This can be seen by either considering the
images of (1, 20) under the 20 automorphisms βiγj (for i ∈ Z4 and j ∈ Z5), or by using
the effect on 7-cycles to show there is no automorphism that takes (1, 2) to (1, 7).)

Now let F be the smaller edge-orbit, containing the edges of the form {2i, 2i+1} (with
the vertices considered mod 20, so we treat 20 as 0), and let Y be the thickened m-cover
X(F,m) of X over F . Then Y is vertex-transitive, by Corollary 7.3, and its valency is
m+ 2.

The edges from (1, 0) to (2, 0) and (1, 0) to (7, 0) both lie in a single quadrangle,
namely the one with vertices (1, 0), (2, 0), (8, 0) and (7, 0), while the edge from (1, 0) to
(20, 0) lies in exactly (m−1)2 quadrangles, namely the ones with third and fourth vertices
(1, i) and (20, j) for any i, j ∈ Zm \ {0}. Hence if m > 2, then the edges from (1, 0) to
(2, 0) and (1, 0) to (7, 0) cannot lie in the same edge-orbit as the edge from (1, 0) to (20, 0).
This is also true when m = 2, because (for example) the edges from (1, 0) to (2, 0) and
(1, 0) to (7, 0) both lie in 16 different 7-cycles, while the edge from (1, 0) to (20, 0) lies



404 Ars Math. Contemp. 12 (2017) 383–413

in only 12 different 7-cycles. (This can be checked by hand or by use of MAGMA.) Also
X \F is a disjoint union of quadrangles (on vertex-sets {4i+ 1, 4i+ 2, 4i+ 7, 4i+ 8} for
i ∈ Z5), and so Theorem 7.6 applies. By part (b) of Theorem 7.6, the edge-orbit F of X
gives rise to a summand m for the arc-type of Y, and then by part (a), noting that (1, 2) and
(7, 1) lie in the same arc-orbit of X , we find that Y = X(F,m) has arc-type m+ (1 + 1)
or m+ 2.

To show that Y has arc-type m + (1 + 1), again we consider 7-cycles. It is an easy
exercise to show that there are exactly 4m2 cycles of length 7 containing the edge from
(1, 0) to (2, 0), namely those of the following forms:

• ((1, 0), (2, 0), (3, i), (4, i), (5, j), (6, j), (7, 0)), for any i, j ∈ Zm,

• ((1, 0), (2, 0), (3, i), (4, i), (18, i), (19, j), (20, j)), for any i, j ∈ Zm,

• ((1, 0), (2, 0), (3, i), (17, i), (18, i), (19, j), (20, j)), for any i, j ∈ Zm,

• ((1, 0), (2, 0), (8, 0), (9, i), (15, i), (14, j), (20, j)), for any i, j ∈ Zm.

Note that some of these can differ in only one vertex, namely in the 4th vertex of the second
and third forms, for a given pair (i, j). Similarly, there are exactly 4m2 cycles of length 7
containing the edge from (1, 0) to (7, 0), namely those of the following forms:

• ((1, 0), (7, 0), (6, i), (12, i), (13, j), (14, j), (20, j)), for any i, j ∈ Zm,

• ((1, 0), (7, 0), (6, i), (12, i), (13, j), (19, j), (20, j)), for any i, j ∈ Zm,

• ((1, 0), (7, 0), (6, i), (5, i), (4, j), (3, j), (2, 0)), for any i, j ∈ Zm,

• ((1, 0), (7, 0), (8, 0), (9, i), (15, i), (14, j), (20, j)), for any i, j ∈ Zm.

But in these cases, when two such 7-cycles differ in only one vertex, they differ in the 6th
vertex (of the first and second form, for a given pair (i, j)). It follows that there can be
no automorphism of Y taking the arc ((1, 0), (2, 0)) to the arc ((1, 0), (7, 0)), and so the
arc-type of Y must be m+ (1 + 1).

It remains to show that Y = X(F,m) is prime. For this, we consider any decompo-
sition of Y into Cartesian factors, which are connected by Proposition 6.1, and we apply
Lemma 6.9. The edge {(1, 0), (2, 0)} lies in no quadrangle with any of the edges of the
form {(1, 0), (20, i)}, for i 6= 0, and it follows from part (c) of Lemma 6.9 that all those
edges must lie in the same factor of Y as {(1, 0), (2, 0)}, say U . The same argument holds
for the edge {(1, 0), (7, 0)}, and so this lies in U as well. Hence U contains allm+2 edges
incident with the vertex (1, 0). By vertex-transitivity and connectivity, all edges of Y lie in
U , and so U = Y . Thus X(F,m) is prime.

Lemma 8.5. For every integer m ≥ 2 there exists a prime VT graph with arc-type 1 +
(m+m).

Proof. This is very similar to the proof of Lemma 8.4. Again, let X be the graph with arc-
type 1+(1+1) given in Figure 3, but this time take F to be the edge-orbit ofX containing
the edge {1, 2} (and the edge {1, 7}). Then the thickened m-cover Z = X(F,m) of X
over F is vertex-transitive, with valency 1 + 2m. Also the edge from (1, 0) to (20, 0) lies
in no quadrangles, which implies immediately that Z is prime. On the other hand, the edge
from (1, 0) to (2, 0) lies in (2m − 1)2 quadrangles, and so again the edge from (1, 0) to
(2, 0) cannot lie in the same edge-orbit as the edge from (1, 0) to (20, 0). Next, X \ F
is a union of 10 non-incident edges, and hence by part (a) of Theorem 7.6, we find that
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Z = X(F,m) has arc-type 1 + (m + m) or 2m + 1. Finally, as before, there are 4m2

cycles of length 7 containing the edge from (1, 0) to (2, 0), and 4m2 containing the edge
from (1, 0) to (7, 0), but when two of these cycles differ in only one vertex, it is in the
4th vertex in the former case, but in the 6th vertex in the latter case, and so there can be
no automorphism of Z taking the arc ((1, 0), (2, 0)) to the arc ((1, 0), (7, 0)). Hence the
arc-type of Z is 1 + (m+m).

Now we consider the marked partition (1 + 1) + (1 + 1) of 4. For this one, we use a
quite different construction.

Lemma 8.6. There are infinitely many prime VT graphs with arc-type (1 + 1) + (1 + 1).

Proof. For any prime number p ≡ 1 mod 6, let G be the group Cp ok C6, generated by
two elements a and b of orders 6 and p such that a−1ba = bk, where k is a primitive 6th
root of 1 mod p. Also take S = {x, y, x−1, y−1} where x = a and y = ba2, and let X be
the Cayley graph Cay(G,S).

ThenX is a 4-valent VT graph, and from the natural action ofG by right multiplication,
it is easy to see that all edges of the form {g, xg} or {g, x−1g} lie in a single edge-orbit,
as do all edges of the form {g, yg} or {g, y−1g}. We now show that these edge-orbits are
distinct, and that each gives rise to two distinct arc-orbits, by proving that the stabiliser in
Aut(X) of vertex 1 is trivial.

First, we observe that 0 ≡ 1 − (k2)3 ≡ (1 − k2)(1 + k2 + k4) mod p, and then since
k2 6≡ 1 mod p, we have 1 + k2 + k4 ≡ 0 mod p. It follows that

y3 = (ba2)3 = b(a−4ba4)(a−2ba2) = bbk
4

bk
2

= b1+k
4+k2 = b0 = 1.

In particular, every edge of the form {g, yg} or {g, y−1g} lies in a 3-cycle (associated with
the relation y3 = 1). On the other hand, it is easy to see that no edge of the form {g, xg}
or {g, x−1g} lies in a 3-cycle, and so X has two distinct edge-orbits, and its edge-type is
2 + 2.

Similarly, we note that 0 ≡ 1 − (k3)2 ≡ (1 − k3)(1 + k3) mod p but k3 6≡ 1 mod
p, so k3 ≡ −1 mod p, and therefore yx = ba3 = a3b−1 = a−3b−1 = x−1y−1. Hence
the two vertices x and y−1 have two common neighbours, namely 1 and yx. Also xy =
x(yx)x−1 = x(x−1y−1)x−1 = y−1x−1, and therefore x−1 and y have two common
neighbours, namely 1 and xy. Furthermore, it is an easy exercise to verify that no other
two neighbours of 1 have a second common neighbour.

It follows that every automorphism α ofX that fixes the vertex 1 must either fix or swap
its two neighbours y and y−1, and similarly, must fix or swap its two neighbours x and x−1.
Also if α swaps one pair, then it must also swap the other pair. Hence α either fixes all four
neighbours of 1, or induces a double transposition on them. By vertex-transitivity, the same
holds for any automorphism fixing a vertex v. Moreover, if the automorphism α fixes one
of the arcs incident with the vertex 1, then it fixes every neighbour s of 1, and then since it
fixes the arc (s, 1), it must act trivially on the neighbourhood of s. Then by induction and
connectedness, α fixes every vertex of X .

Now suppose Aut(X) 6= G, or equivalently, that the stabiliser in Aut(X) of each
vertex is non-trivial. Now if β and γ are non-trivial automorphisms of X that fix the vertex
1, then they induce the same permutation (x, x−1)(y, y−1) on the four neighbours of 1, so
βγ−1 acts trivially on the neighbourhood of 1 and hence is trivial, giving β = γ. Hence
the stabiliser of vertex 1 contains a unique non-trivial automorphism, which must have
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order 2. In particular, |Aut(X)| = 2|V (X)| = 2|G|, and so G is a normal subgroup of
index 2 in Aut(X). Moreover, the element of Aut(X) of order 2 stabilising the vertex
1 must normalise G, and hence induces an automorphism θ of G, and from what we saw
earlier, θ swaps x with x−1, and y with y−1. Now θ takes a = x to x−1 = a−1, and
b = ya−2 = yx−2 to y−1x2 = (ba2)−1a2 = a−2b−1a2 = b−k

2

, and so θ takes bk to
(bk)−k

2

= b−k
3

= b−(−1) = b. But on the other hand, bk = a−1ba, and so θ takes bk

to ab−k
2

a−1 = b−k (since a−1b−ka = (bk)−k = b−k
2

). Thus b−k = (bk)θ = b, and it
follows that k ≡ −1 mod p, a contradiction.

Hence no such automorphism θ of G exists, and we find that Aut(X) = G, and that X
has arc-type (1 + 1) + (1 + 1), as required.

Finally, we show that X is prime, using a similar argument to the one in the proof of
Lemma 8.1. If X ∼= X1 �X2 where X1 and X2 are relatively prime non-trivial graphs,
then by Theorem 6.6 we have (1 + 1) + (1 + 1) = at(X) = at(X1) + at(X1), which is
impossible, since no VT graph has arc-type (1 + 1). Hence the prime factors of X must be
all the same, and so X is a Cartesian product of (say) k copies of a single prime graph Y .
But then 6p = |V (X)| = |V (Y )|k, which is impossible unless k = 1, since p is a prime
number congruent to 1 mod 6. Thus X itself is prime.

Next, we use the first of these graphs (the one with p = 7) to prove the following.

Lemma 8.7. For every integer m ≥ 2, there exists a prime VT graph with arc-type (m +
m) + (1 + 1).

Proof. Let X be the graph with arc-type (1 + 1) + (1 + 1) in Figure 7, which is also the
graph constructed in Lemma 8.6 for p = 7, and let F be the edge-orbit of X consisting
of all the edges that are not contained in a triangle. (These are the edges corresponding to
multiplication by the generator x for G = C7oC6.) Now let Y = X(F,m), the thickened
m-cover of X over F . Then Y is vertex-transitive, by Corollary 7.3, and its valency is
2m + 2. Also X \ F is a disjoint union of triangles, so Theorem 7.6 applies, and tells us
that all the edges of Y associated with edges of F lie in the same edge-orbit, and all the
edges of Y associated with edges of E(X) \ F lie in the same edge-orbit. We will show
that Y has arc-type (m+m) + (1 + 1), by proving that these edge-orbits are distinct, and
that each gives rise to two arc-orbits.

We do this by showing that every automorphism of Y = X(F,m) induces a permuta-
tion of the fibres over X , and therefore projects to an automorphism of X . It then follows
that any automorphism of Y taking an arc ((v, i), (w, j)) to an arc ((v′, i′), (w′, j′)) gives
rise to an automorphism of X taking (v, w) to (v′, w′). Hence if (v, w) and (v′, w′) lie
in different arc-orbits of X , then ((v, i), (w, j)) and ((v′, i′), (w′, j′)) lie in different arc-
orbits of Y , for all i, j, i′, j′ ∈ Zm.

Observe that the graph X \F is a disjoint union of 14 triangles in X , and that there are
no other triangles inX . Also it is quite easy to see that every triangle in Y is one of the 14m
triangles of the form Ti = {(u, i), (v, i), (w, i)} for some triangle T = {u, v, w} in X and
some i ∈ Zm, and that these 14m triangles are pairwise disjoint. In particular, since every
automorphism takes triangles to triangles, we find that every automorphism of Y preserves
the set of edges of Y the form {(u, i), (v, i)} with i ∈ Zm and {u, v} ∈ E(X) \ F , and
hence also preserves the set of edges of Y of the form {(u, i), (v, j)} with {u, v} ∈ F .
(This also implies that Y is not edge-transitive, so its edge-type is m+ 2.)
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Next, consider what happens locally around a vertex (u, i) of Y . This vertex lies in a
unique triangle Ti = {(u, i), (v, i), (w, i)}, where v = yu and w = y−1u, and also lies in
m edges of the form (r, j) and m edges of the form (s, j), for j ∈ Zm, where r = xu and
s = x−1u. The other vertices in the fibre over the vertex u have the form (u, `) for some
` ∈ Zm, and each of these lies at distance 2 from (u, i).

In fact, there are 2m paths of length 2 from each such (u, `) to the given vertex (u, i),
namely the m paths of the form ((u, `), (r, j), (u, i)) for j ∈ Zm, and the m paths of the
form ((u, `), (s, j), (u, i)), for j ∈ Zm. On the other hand, from every other vertex at
distance 2 from the given vertex (u, i) there are only 1, 2 or m paths of length 2 to (u, i). It
follows that the stabiliser in Aut(Y ) of the vertex (u, i) preserves the fibre over the vertex
(u, i), and therefore Aut(Y ) permutes the fibres over vertices of X .

Thus X(F,m) has arc-type (m+m) + (1 + 1).
Finally, we show that Y = X(F,m) is prime. If Y ∼= Y1 �Y2 where Y1 and Y2 are

relatively prime non-trivial graphs, then each Yi is vertex-transitive, and by Theorem 6.6
the arc-type of Y1 or Y2 is (1 + 1), which is impossible. Hence the prime factors of Y must
be all the same, and so Y is a Cartesian product of (say) k copies of a single prime graph
Z. Also by part (a) of Lemma 6.9, all the edges of a given triangle lie in the same factor,
so Z contains a triangle. But now if k > 1 then some subgraph of Y is a Cartesian product
of two triangles, and in the latter, every vertex lies in two distinct triangles, which does not
happen in Y . Hence k = 1, and Y itself is prime.

We use yet another construction in the next case, to produce zero-symmetric graphs
with arc-type 1 + 1 + 1. Many examples of such graphs are already well known, but we
need an infinite family of examples that are prime. A sub-family of the family we use
below appears in [8, p. 66].

Lemma 8.8. There are infinitely many prime VT graphs with arc-type 1 + 1 + 1.

Proof. Let G be the dihedral group Dn of order 2n, where n is any integer of the form
2m− 1 where m ≥ 6 (so that n is odd and n ≥ 11). Then G is generated by two elements
x and y satisfying x2 = yn = 1 and xyx = y−1, and the elements of G are uniquely
expressible in the form xiyj where i ∈ Z2 and j ∈ Zn. (In factG is the symmetry group of
a regular n-gon, with the powers of y being rotations and elements of the form xyj being
reflections.)

Now defineX as the Cayley graph Cay(G, {x1, x2, x3}), where x1 = x, x2 = xy and
x3 = xy3. This graph is vertex-transitive, and since the xi are involutions, it is 3-valent
and bipartite. We show that X is prime and has arc-type 1 + 1 + 1.

The vertices at distance 2 from the identity element are the products of two of the xi,
which are all distinct: x1x2 = y, x1x3 = y3, x2x1 = y−1, x2x3 = y2, x3x1 = y−3 and
x3x2 = y−2. In particular, X has no 4-cycles, and hence is prime. Since X is bipartite, it
also follows that the girth of X is 6.

Next, there are 12 paths of length 3 starting from the identity element, but only 7 ver-
tices at distance 3 from the identity element. Indeed it is an easy exercise to show that the
coincidences are precisely the following:

x1x2x1 = x2x3x2 = xyn−1, x1x2x3 = x2x1x2 = x3x2x1 = xy2,
x1x3x2 = x2x3x1 = xyn−2, and x2x1x3 = x3x1x2 = xy4.
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In particular, the edge {1, x1} lies in exactly four cycles of length 6, namely (1, x1,
x2x1, x1x2x1, x3x2, x2), (1, x1, x2x1, x3x2x1, x2x3, x3), (1, x1, x2x1, x3x2x1, x1x2, x2)
and (1, x1, x3x1, x2x3x1, x3x2, x2). Similarly, the edge {1, x2} lies in exactly five 6-
cycles, and the edge {1, x3} lies in only three. These numbers are different, and it follows
that the edges {1, x1}, {1, x2} and {1, x3} lie in distinct arc-orbits.

Hence the arc-type of X is 1 + 1 + 1, as claimed.

The next four lemmas deals with the remaining basic arc-types we need.

Lemma 8.9. There exist more than one prime VT graphs with arc-type 1 + (1 + 1).

Proof. We have already observed that the zero-symmetric graph on 20 vertices given in
Figure 3 has arc-type 1 + (1 + 1), and because not every edge is contained in a 4-cycle,
it is prime by Corollary 6.8. Some other examples of graphs of arc-type 1 + (1 + 1)
appear in [8, p. 39]; these can be described with LCF-codes [2k, 2k,−2k,−2k]m for
(m, k) ∈ {(13, 5), (17, 13), (25, 7), (29, 17)}, and they are all prime, since they all have
edges that are not contained in 4-cycles.

Lemma 8.10. There exists a prime VT graph with arc-type 1 + 1 + (1 + 1).

Proof. The graph on 20 vertices given in Figure 9 has arc-type 1+1+(1+1). Now suppose
that this graph is not prime. Then since 20 is not a non-trivial power of any integer, the
graph must be the Cartesian product of two smaller connected VT graphs that are relatively
prime. Then since there are no VT graphs with arc-type 1 + 1 or (1 + 1), it must be a
Cartesian product of two connected VT graphs with arc-types 1 and 1 + (1 + 1). The
former has to be K2, and so the other is a VT graph of order 10 with arc-type 1 + (1 + 1).
But no such graph exists — in fact, the smallest VT graph with arc-type 1 + (1 + 1) has 20
vertices. Hence the given graph is prime.

Lemma 8.11. There exists a prime VT graph with arc-type 1 + 1 + 1 + 1.

Proof. The graph on 16 vertices given in Figure 10 has arc-type 1+1+1+1. Also this graph
cannot be the Cartesian product of two smaller connected VT graphs that are relatively
prime, by a similar argument to the one given in the proof of Lemma 8.10, because there
is no VT graph of order 8 with arc-type 1 + 1 + 1. (The smallest VT graph with arc-
type 1 + 1 + 1 has order 18.) Finally, if it is the Cartesian power of some smaller graph,
then it has to be the Cartesian square of C4 (or the Cartesian 4th power of K2, which is
isomorphic to C4 �C4), but this graph is arc-transitive, with arc-type 4. Hence the given
graph is prime.

Lemma 8.12. There exists a prime VT graph with arc-type (1 + 1) + (1 + 1) + (1 + 1).

Proof. Let X be the Cayley graph Cay(G,S) for the group G = SL(2, 3) of all 2 × 2
matrices of determinant 1 over Z3, given by the set S = {x, x−1, y, y−1, xy, (xy)−1},
where

x =

(
1 0
1 1

)
and y =

(
0 1
−1 0

)
.

These two elements generate G and satisfy the relations x3 = y4 = 1 and yx−1 = (xy)2,
which are defining relations for G. This Cayley graph X is 6-valent, with girth 3, and it is
not difficult to show that its diameter is 3.
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In the neighbourhood of the identity element 1 inX , there is an edge between y and xy,
and a path of length 3 from y−1 to (xy)−1 via x and x−1, but there are no other edges (be-
tween vertices of that neighbourhood). Also the vertices y and y−1 have another common
neighbour, namely y2, and the vertices xy and (xy)−1 have another common neighbour,
namely y−1xy (= (xyx)−1), but y and (xy)−1 have no other common neighbour, and y−1

and xy have no other common neighbour. It follows that the stabiliser in Aut(X) of the
vertex 1 either fixes all its neighbours, or interchanges y with xy, and y−1 with (xy)−1,
and x with x−1. But the number of neighbours of the vertex y that are at distance 2 from
x is 4, while the number of neighbours of the vertex xy that are at distance 2 from x−1 is
only 3, so the latter cannot happen, and hence the stabiliser in Aut(X) of 1 acts trivially
on the neighbourhood of 1. By vertex-transitivity, the same holds at every vertex, and then
by induction and connectedness, it follows that the stabiliser of every vertex is trivial.

Thus Aut(X) = G, making X a GRR. Then since the edges {1, s} and {1, s−1} lie in
the same edge-orbit for each s ∈ S, we find that X has type (1 + 1) + (1 + 1) + (1 + 1).

Finally, X cannot be the Cartesian product of two smaller connected VT graphs that
are relatively prime, since there are no VT graphs with arc-type (1 + 1). Also X cannot be
a Cartesian power of some smaller VT graph, since its order 24 is not a non-trivial power
of any integer. Hence X is prime.

The graph used in the proof of Lemma 8.12 is shown in Figure 12.

Figure 12: A VT graph with arc-type (1 + 1) + (1 + 1) + (1 + 1), on 24 vertices

9 Realisability
We say that a marked partition Π is realisable if there exist a vertex-transitive graph with
arc-type Π. Recall that the marked partitions 1 + 1 and (1 + 1) are not realisable (as we
explained in the introductory section), and on the other hand, some other marked parti-
tions with few summands are realisable by infinitely many vertex-transitive graphs (as we
showed in Section 8).

In this final section we prove that all other marked partitions are realisable. We then
find (as a corollary) that all standard partitions except 1 + 1 are realisable as the edge-type
of a vertex-transitive graph.
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Theorem 9.1. Every marked partition other than (1 + 1) and 1 + 1 is realisable as the
arc-type of a vertex-transitive graph.

Proof. Let Π = n1 + · · ·+ nt + (m1 +m1) + · · ·+ (ms +ms) be a marked partition of
an integer d ≥ 2, different from 1 + 1 and (1 + 1). We may assume that n1 ≥ · · · ≥ nt
and m1 ≥ · · · ≥ ms. If d ≤ 4, then we know from the examples given in Section 5 that Π
is realisable, and therefore we may assume that d ≥ 5 when necessary.

We will show how to find a VT graph with arc-type Π, by taking the Cartesian product
of prime graphs with smaller degrees and simpler arc-types, chosen so that the sum of their
arc-types is Π. To do this, we consider separately the two cases where s = 0 and t = 0,
with a focus on the number of ni or mj that are equal to 1, respectively, and then we
combine these two cases in order to show how to handle all possibilities.

Case (A): s = 0, with Π = n1 + · · ·+ nt.
Let k be the number of ni that are equal to 1, so that ni > 1 for 1 ≤ i ≤ t − k, and

nt = 1 for t− k + 1 ≤ i ≤ t.
If k = 0, then by Lemma 8.1 we can find t pairwise non-isomorphic prime VT graphs

with arc-types n1, . . . , nt, and by Theorem 6.6, their Cartesian product is a VT graph with
arc-type Π.

If k = 1, we can take the Cartesian product of t − 2 pairwise non-isomorphic prime
VT graphs with arc-types n1, . . . , nt−2, and one prime VT graph with arc-type nt−1 + 1,
as given by Lemma 8.3, and again, this is a VT graph with arc-type Π.

If k = 2, we can take the Cartesian product of t−3 pairwise non-isomorphic prime VT
graphs with arc-types n1, . . . , nt−3, one prime VT graph with arc-type nt−2 + 1, and the
graph K2.

Finally, if k ≥ 3, we can take the Cartesian product of t − k pairwise non-isomorphic
prime VT graphs with arc-types n1, . . . , nt−k, plus

(i) k/3 pairwise non-isomorphic prime VT graphs with arc-type 1 + 1 + 1 taken from
Lemma 8.8, when k ≡ 0 mod 3, or

(ii) one prime VT graph of type 1 + 1 + 1 + 1 from Lemma 8.11, and (k−4)/3 pairwise
non-isomorphic prime VT graphs with arc-type 1 + 1 + 1, when k ≡ 1 mod 3, or

(iii) one copy of K2, and one prime VT graph of type 1 + 1 + 1 + 1, and (k − 5)/3
pairwise non-isomorphic prime VT graphs with arc-type 1 + 1 + 1, when k ≡ 2 mod
3.

Case (B): t = 0, with Π = (m1 +m1) + · · ·+ (ms +ms).
Let ` be the number of mj that are equal to 1, so that mj > 1 for 1 ≤ i ≤ s − `, and

mj = 1 for s− `+ 1 ≤ i ≤ s.
If ` = 0, then by Lemma 8.2 we can find s pairwise non-isomorphic VT graphs with

arc-types (m1 +m1), . . . , (ms +ms), and then their Cartesian product is a VT graph with
arc-type Π.

If ` = 1, we can take the Cartesian product of s−2 pairwise non-isomorphic VT graphs
with arc-types (m1 + m1), . . . , (ms−2 + ms−2), and one prime VT graph with arc-type
(ms−1 +ms−1) + (1 + 1) from Lemma 8.7.

Finally, if ` ≥ 2, we can take the Cartesian product of s − ` pairwise non-isomorphic
prime VT graphs with arc-types (m1 +m1), . . . , (ms−` +ms−`), plus
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(i) `/2 pairwise non-isomorphic prime VT graphs with arc-type (1 + 1) + (1 + 1) from
Lemma 8.6, when ` is even, or

(ii) one prime VT graph of type (1 + 1) + (1 + 1) + (1 + 1) from Lemma 8.12, and
(`−3)/2 pairwise non-isomorphic prime VT graphs with arc-type (1+1)+(1+1),
when ` is odd.

Case (C): s > 0 and t > 0.

In this case, we can write Π as the sum of the marked partitions Π1 = n1 + · · · + nt
and Π2 = (m1 + m1) + · · · + (ms + ms), and we can deal with most possibilities by
simply taking a Cartesian product of a VT graph X1 with arc-type Π1 and a VT graph X2

with arc-type Π2. Note that case (A) uses the prime VT graphs produced by Lemmas 8.1,
8.3, 8.8 and 8.11, plus the graph K2, while case (B) uses the prime VT graphs produced
by Lemmas 8.2, 8.7, 8.6 and 8.12. These prime graphs can be chosen to be pairwise non-
isomorphic, and hence pairwise relatively prime, in which case X1 and X2 are relatively
prime, and therefore X1 �X2 has arc-type Π1 + Π2 = Π.

All that remains for us to do is to deal with the exceptional situations, namely those
where the sum of the ni or the sum of the mj is so small that no suitable candidate can be
found forX1 orX2. There are two exceptional possibilities for Π1 not covered in case (A),
namely 1 and 1 + 1, and just one for Π2 in case (B), namely (1 + 1).

If Π1 = 1, then we can take a Cartesian product of K2 with a VT graph produced in
case (B), since we are assuming that d ≥ 5.

If Π1 = 1 + 1, then there are two sub-cases to consider, depending on the number `
of terms mj that are equal to 1. If ` < s, then we can adapt the approach taken in case
(B) by replacing the prime VT graph of type (m1 + m1) by a prime VT graph of type
1 + (m1 +m1) from Lemma 8.5, and then also add a single copy of K2 as above. On the
other hand, if ` = s, so that Π2 is the sum of s terms of the form (1 + 1), then we take

(i) two non-isomorphic prime VT graphs with arc-type 1 + (1 + 1) from Lemma 8.9,
when s = 2, or

(ii) a prime VT graph of type 1 + 1 + (1 + 1) from Lemma 8.10, and a 2(s− 1)-valent
VT graph of type (1 + 1) + · · ·+ (1 + 1) as found in case (B) when s ≥ 3.

Finally, if Π2 = (1 + 1), again there are two sub-cases to consider, this time depending
on the number k of terms ni that are equal to 1. If k < t, then we can adapt the approach
taken in case (A) by replacing the prime VT graph of type n1 by a prime VT graph of type
n1 + (1 + 1) from Lemma 8.4. On the other hand, if k = t, so that Π1 is the sum of t terms
all equal to 1, then we take

(i) a single copy ofK2 and a prime VT graph with arc-type 1+1+(1+1) from Lemma
8.10, when t = 3, or

(ii) a prime VT graph of type 1+(1+1) and a (t−1)-valent VT graph of type 1+ · · ·+1
as found in case (A) when t ≥ 4.

This completes the proof.

Corollary 9.2. With the exception of 1 + 1 (for the integer 2), every standard partition of
a positive integer is realisable as the edge-type of a vertex-transitive graph.
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Proof. This follows easily from Theorem 9.1. In fact, every such partition n1 + · · · + nt
(except 1 + 1) occurs as both the edge-type and the arc-type of some VT graph with the
property that all of its arc-orbits are self-paired.
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[13] W. Imrich and S. Klavžar, Product graphs : Structure and recognition, Wiley-Interscience
Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, 2000.

http://dx.doi.org/10.1016/S0195-6698(82)80003-6
http://dx.doi.org/10.1016/S0195-6698(82)80003-6
http://dx.doi.org/10.1006/jsco.1996.0125
http://dx.doi.org/10.1006/jsco.1996.0125
http://dx.doi.org/10.4153/CMB-1968-063-0
http://dx.doi.org/10.4153/CMB-1968-063-0
http://dx.doi.org/10.2307/2317284
http://dx.doi.org/10.2307/2317284
http://www.math.auckland.ac.nz/~conder/symmcubic10000list.txt
http://www.math.auckland.ac.nz/~conder/symmcubic10000list.txt
http://dx.doi.org/10.1016/j.ejc.2015.12.011
http://dx.doi.org/10.1016/j.ejc.2015.12.011
http://dx.doi.org/10.1016/S0012-365X(01)00064-4
http://dx.doi.org/10.1016/S0012-365X(01)00064-4
http://dx.doi.org/10.1002/jgt.3190050210
http://dx.doi.org/10.1002/jgt.3190050210
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