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Experimental realization of a quantum ratchet through phase modulation
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We report on an experimental realization of unidirectional transporting island structures in an otherwise chaotic
phase space of the δ-kicked rotor system. Using a Bose-Einstein condensate as a source of ultracold atoms, we
employ asymmetric phase modulation in the kicks, with the narrow momentum distribution of the atoms allowing
us to address individual island structures. We observe quantum ratchet behavior in this system, with clear directed
momentum current in the absence of a directional force, which we characterize and connect to ε-classical theory.
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The concept of a Brownian ratchet, which allows Brownian
motion to do work, has been considered as a thought experi-
ment by von Smoluchowski [1] and analyzed by Feynman [2].
There has been reinvigorated interest in such ratchets in recent
years due to potential biological applications [3,4]. The great
progress made in the control of ultracold atoms [5] has allowed
for a different insight into ratchet systems [6].

Brownian motion is closely related to microscopic chaos
[7]. While there is some debate as to whether or not Brownian
motion is a direct result of underlying chaos [8], the similarities
between the random-walk-type evolution exhibited by chaotic
trajectories and Brownian particles are numerous [9]. The field
of quantum chaos examines such microscopic chaotic systems
in the quantum limit [10]. The δ-kicked rotor has become
established as a workhorse in this area owing to its simplicity
and exhibition of complex dynamics capturing the essence of
quantum chaos. An atom-optics implementation pioneered by
Raizen and co-workers [11,12] has provided rich experimental
insight into quantum chaos.

Directed transport in an unbiased potential (that is, a
potential periodic in space and time) must be achieved
through broken symmetry. Previous investigations have pri-
marily focused on modified initial conditions [6] and on
potentials asymmetric in space [13] and in time [14]. Ratchets
with classical analogs require mixed phase spaces: regular,
integrable regions embedded in a chaotic sea [15]. A number
of other interesting systems possess mixed phase spaces. The
accelerator modes of the kicked rotor, manifesting in the case
of an accelerated lattice, are an example of a mixed phase
space that has been experimentally studied [16,17]. Linearly
accelerated atoms result from classical trajectories launched
from the accelerator mode phase space islands.

The experiments that we report on have been motivated by
recent interest in a phase-modulated kicked rotor system. It has
been shown that islands of stability similar to the accelerator
modes can be induced through a phase modulation [18]. Gong
et al. suggested reversing the sign of the kicking potential every
two kicks or, equivalently, utilizing a phase-modulation set of
{0,0,π ,π}. Theoretical studies found this to produce paired
islands, accelerating atoms in opposite directions. Recent ex-
periments utilizing cold thermal atoms have shown broadening
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of the momentum distribution, indicating enhanced transport,
when a phase-modulation set of {0,π

2 ,0,−π
2 }was utilized [19].

We experimentally investigate a phase-modulated δ-kicked
rotor system that has a mixed pseudoclassical phase space,
with transporting islands of stability similar to those of
the accelerator modes. There is, however, an important
difference in our system. The accelerator modes exist only
in the presence of a net biased force (e.g., gravity). Our
system consists only of a pulsed lattice with a periodic phase
modulation, for which there is no net force. We propose
an asymmetric phase-modulation set of {0, 2π

3 ,0} to induce
broken symmetry and instigate ratchetlike directed transport,
despite the apparent directional neutrality. Use of a Bose-
Einstein condensate (BEC) enables us to explore the phase
space and probe individual islands of stability.

We employ the atom-optics kicked rotor (AOKR), which
consists of atoms subjected to a pulsed standing wave created
by off-resonance laser light. Consider a generalized AOKR
model with N kicks, in dimensionless units, with the scaled
time-dependent Hamiltonian

H (t ′) = k̄ρ2

2
+ k

N−1∑

i=0

cos(ϑ + φi)δ(t ′ − i). (1)

The absolute phase of the standing wave at the j th kick is given
by φj = ϕj modn, where we utilize the phase-modulation set
{ϕ0,ϕ1, . . . ,ϕn−1}. We utilize the following scaled units: ϑ =
2kLx, ρ = p/2pr , k̄ = 4h̄k2

LT /m, k = Pτ
2/8π |δ|Isatr
2, and

t ′ = t/T . Here kL is the wave number of the kicking laser,
pr = h̄kL is one photon recoil unit of momentum, m is the
atomic mass, T is the pulse period, τ is the duration of the
pulse, P is the power in each beam, 
 is the natural linewidth,
δ is the laser detuning from resonance, r is the laser beam-waist
radius, and Isat is the saturation intensity.

We write k̄ = 2π� + ε, where integer � determines the
resonance order and |ε| � π . For 87Rb, k̄ = 2π corresponds
to a pulse period of 33.1 μs. With 50 mW of power in each
beam, a beam waist of 110 μm, and a detuning of 100 GHz, a
pulse duration of 300 ns produces a kick strength of k = 4.5.

In the vicinity of a quantum resonance of the kicked rotor,
the dynamics can be described by a fictitious classical limit
[20], known as ε-classical theory. If |ε| is regarded as Planck’s
constant, it can be shown that the time evolution operator for
the system described by (1) is the formal quantization of the
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FIG. 1. Poincaré sections of transporting islands for the phase-
modulation set {0, 2π

3 ,0}, with k|ε| = 3.2. Islands embedded in the
chaotic sea are shown in (a). A visualization of the transporting nature
of these islands is provided in (b), showing an example classical
trajectory launched from a transporting island [with initial coordinates
(θ,J ) = (3.8,6.2)].

classical standard map [19,21,22]

Ji+1 = Ji + k|ε| sin(θ + ϕi), (2)

θi+1 = θi + Ji+1, (3)

where the dimensionless generalized momentum J = ερ +
π� + 2π�β and θ = ϑ + π [1 − sgn(ε)]/2. The fractional part
of the momentum, also known as the quasimomentum, is β.
The map is dependent only upon the parameters k|ε| and the
phases ϕi .

In Fig. 1(a) the Poincaré section for the {0, 2π
3 ,0} phase

set is drawn. One notable feature is that the attractors, or
islands, visible in the phase portrait are much larger than
those previously investigated [18,19]. Another particularly
interesting feature is that these islands are unidirectional in
momentum, as indicated in Fig. 1(b), unlike those from the
{0,0,π,π} set, which come in pairs of opposite directions [18].
This unidirectionality is induced by the asymmetry of the
phase-modulation set.

For our chosen phase modulation, transportation occurs
if the trajectory is launched from an island centered around
integer multiples of J = 2π . To access an island centered at J0,
a quasimomentum of β = (J0 − π�)/(2π� + ε) is required.
For ε = � = 1 and J0 = 2π we require β = 0.43.

We note that while our system is a special case of an
accelerator mode [16,17,23], our enforced phase periodicity
means that the behavior we observe is that of a quantum
ratchet. The phase of an accelerating lattice is given by
φ(t) = (at2 + bt)mod2π , where a is proportional to the lattice
acceleration and b to the initial lattice velocity. If a = −2π/3
and b = 4π/3, then the phase-modulation set {0, 2π

3 ,0} is
recovered. A general accelerator mode system does not have
phase periodicity as a property and can only be understood in
the context of a biased force. The system we present here is an
extraction of a ratchet system from the well-known accelerator
modes.

Our experimental setup is shown in Fig. 2. The starting
point for the experiment is a 87Rb BEC of ≈30 000 atoms,
prepared in the |F = 1〉 hyperfine state by evaporative cooling
in an all-optical BEC apparatus [24]. The BEC is allowed
to freely expand for 1.0 ms before kicking to minimize
nonlinear effects during the kicking sequence. A pulsed optical
standing wave is then applied via two linearly polarized
counterpropagating laser beams detuned by 100 GHz to
the red from the 5S1/2F = 1 → 5P3/2F = 2 transition. The
large detuning minimizes decoherence effects associated with

FIG. 2. (Color online) Experimental scheme. A 87Rb Bose-
Einstein condensate is subject to a phase-modulated pulsed standing
wave. The standing wave is created by two counterpropagating
linearly polarized laser beams detuned by 100 GHz from resonance.
The left channel of the arbitrary function generator (AFG) controls
an acousto-optic modulator (AOM) to modulate the phase of the
standing wave; the right channel controls the frequency difference
between the beams, thereby creating an initial condition of nonzero
atomic momentum. A two-channel programmable pulse generator
(not shown) controls both of the rf switching amplifiers that toggle
the AOMs, in addition to the phase-modulation input to the AFG.
The wavemeter allows us to monitor the detuning of the laser from
resonance.

spontaneous emission. The detuned optical standing wave
results in the sinusoidal term in the Hamiltonian (1) due to
the ac Stark shift. The amplitude, phase, and frequencies of
the two beams are independently controlled via acousto-optic
modulators (AOMs), driven by a Tektronix Arbitrary Function
Generator (AFG3252). Following the kick sequence, the atoms
are allowed to expand for 3 ms and are then imaged using
absorption imaging.

The AFG3252 is able to arbitrarily modulate the standing
wave phase with a response time of 35 μs, allowing us to
consider a positive-ε situation around the � = 1 resonance
or any ε for higher-order resonances. A two-channel pulse
generator signals rf switches to turn the AOMs on and off and
provides an analog signal to the phase-modulation input of the
AFG3252. A small frequency shift δω is applied to one beam
to create a moving standing wave in the laboratory frame; in
the frame of the standing wave, the atoms of mass m have
an initial momentum (measured in two-photon recoil units)
given by β = mδω/4h̄k2

L [25]. Here β = 0.43 corresponds to
a 12.9-kHz frequency difference.

Utilization of a BEC provides a very narrow initial spread of
momenta. After mean-field repulsion is considered, the BEC
has an initial spread in momentum space of 0.5h̄kL, or 25% of
a phase space cell. The BEC is completely delocalized in θ .
We are therefore able to individually address islands in phase
space separated in J by controlling the initial momentum β.

In order to compare our experimental data with theory,
we conduct Schrödinger equation simulations via the split-
step method, with the Hamiltonian in (1). The simulations are
conducted in one dimension. We use an initial condition of
a Gaussian state of 30 000 87Rb atoms with initial position
spread of 1.6 μm that has undergone mean-field repulsion for
1.0 ms, as in the experiment.

Directed transport is observed in the case where the initial
condition overlaps a transporting island. Figure 3(a) shows
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FIG. 3. (Color online) Behavior of the transporting island.
(a) False color experimental images of momentum distribution are
shown as a function of the number of kicks, with ε = 1. Quantum
simulations (with ε = 1) illustrate the differences between the island
and chaotic regions: The momentum wave function after eight kicks
is shown (arbitrary units) in (b)–(d). Closeups of a section of (c) the
chaotic region and (d) the island region are shown. (e) Experimental
data of the mean momentum of island atoms are plotted as a function
of 1/ε, where ε is the detuning from quantum resonance. All images
are for phase modulation {0, 2π

3 ,0}, with β = 0.43 and k = 3.2.

atoms on the island being linearly accelerated in the downward
direction with every kick. The island is narrow, only 3–4
diffraction orders in width, but contains up to 20% of the
atoms in the system. We measure an average acceleration
of 3.8 ± 0.2 photon recoils per kick, in agreement with the
classical prediction for a system of j islands of

�Jkick = ε�ρkick = 2π

j
. (4)

For the three-island system of the {0, 2π
3 ,0} phase-modulation

sequence, with ε = 1, the classical prediction gives �pkick =
4.2pr . A quantum-mechanical simulation gives an equivalent
result.

Our simulations reveal a striking difference between the
chaotic and island regions. Figure 3(b) shows the simulated
momentum wave function for our system. Zooming in on
the chaotic region in Fig. 3(c) shows typical quantum chaotic
behavior, with jagged peaks centered around integer momenta,
offset by β. In contrast, zooming in on the island region in
Fig. 3(d) shows near-perfect, narrow Gaussian peaks.

To first order, the island acceleration is independent of the
kick strength k, as indicated in (4), provided the phase space
does not bifurcate with changing k|ε|. Figure 3(e) shows the
average momentum of atoms in the island as a function of 1/ε.
The strong linearity is in excellent agreement with the classical
prediction of a 1/ε dependence of the island momentum, from
Eq. (4).

The reversible ratchet effect is clearly demonstrated in
Fig. 4(a). A phase scan is performed for the phase modulation
{0,φ,0}. A peak in the net momentum current of ±1.8 photon
recoils after eight kicks is observed for φ ≈ ± 2π

3 . The close
match of our experimental data to the simulation, extending
to the inflection feature observed near zero-phase modulation,
is indicative of the precise degree of control we have over the
phase of the standing wave.
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FIG. 4. (Color online) Experimental and theoretical net currents
and energies as a function of phase modulation and of quasimomen-
tum β. (a) Net momentum current and (b) average energy per atom
as a function of modulated phase φ for the phase sequence {0,φ,0},
with β = 0.43. (c) Net momentum current and (d) average energy
per atom as a function of quasimomentum β, for the phase sequence
{0, 2π

3 ,0}. Momentum is measured in single-photon recoil pr units.
Data are collected after eight kicks with ε = 1. The kick strength
is calibrated to be (a) and (c) k = 3.0 and (b) and (d) k = 2.9. The
experimental data are overlaid with quantum simulations.

Figure 4(c) demonstrates our ability to address individual
islands in the pseudoclassical phase space. As the frequency
difference between the beams is scanned, the quasimomentum
β is altered and the initial condition is offset in J . Peaks are
observed in the vicinity of β = ±0.43: This is the center of
the transporting island as predicted pseudoclassically.

The energy plots of Figs. 4(b) and 4(d) further illustrate
the transport enhancement brought about through the chosen
phase-modulation set. The transport peaks in the vicinity of
β = 0.43, around the modulated phase φ ≈ 2π

3 . These figures
further emphasize the agreement between the experimental
results and the theoretical predictions.

The results shown in Fig. 5 indicate experimental ob-
servations of a significant peak in the localization length
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FIG. 5. (Color online) Experimental plot of the momentum-space
localization length, measured in single-photon recoil units, as a
function of kε. Blue crosses represent data from a phase modulation
of {0, 2π

3 ,0}. Red circles represent data from an unmodulated kicked
rotor. The data are collected after 25 kicks around the � = 2
resonance, with β = 0.2. The kick strength is calibrated to be k = 5.7
for the modulated experiments and k = 6.4 for the unmodulated
experiments. The dotted lines indicate kε = ±3.2. The results are
overlaid with quantum simulations: The solid blue line indicates
phase modulation, while the dashed red line indicates an unmodulated
rotor. The simulations are conducted with a high momentum cutoff
of ±45pr to mimic our finite experimental view window.
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ξ =
√

〈p2〉/2 of chaotic atoms around k|ε| = 3.2 due to
the transporting islands generated by phase modulation. The
data are collected after 25 kicks, well into the dynamical
localization regime. For this experiment, we use � = 2, where
the transporting island is centered at β = 0: A value of
β = 0.2 means that the initial condition does not overlap
the transporting island. This choice of quasimomentum has
the added advantage that the zero-phase-modulation quantum
resonance at 66.3 μs is negated [25]. We record a localization
length of the chaotic region enhanced by 40% when compared
with the zero-phase-modulation equivalent.

We note that although the wave function clearly has two
separate behavior regimes, as shown in Figs. 3(c) and 3(d),
the chaotic and island motions are by no means independent.
Although the chaotic region is still subject to dynamical
localization [26], the localization length is greatly increased
by the phase modulation [19]. This is well demonstrated in
Fig. 5, despite the initial condition not classically overlapping
the transporting island and the island classically not affecting
the chaotic motion.

It is important to note the origin of the ratchet behavior
that we have observed. We stress that there is no net
biased force in our system: Every kick, when considered
in isolation, produces a symmetric momentum distribution
about the initial momentum state. The asymmetric phase
modulation that we impose induces interference effects that
lead to the observed net momentum current. The concept
of a well-defined trajectory loses its meaning for quantum

particles after the short (subkick period) Ehrenfest time [10].
Instead, interference from all sections of the phase space
contributes to the final momentum distribution. This results
in the chaotic region exhibiting greater transport and a longer
localization length than in the unmodulated case. Furthermore,
violation of a classical sum rule is possible [15,27], allowing
for directed quantum transport even when the entire phase
space is sampled [28].

In summary, we have experimentally observed a transport-
ing island structure originating from phase modulation of a
pulsed optical standing wave, resulting in linearly accelerated
atoms. The asymmetry of our chosen phase-modulation set
leads to unidirectional transporting islands in the ε-classical
phase space: A quantum ratchet has been demonstrated. The
net momentum current is tunable through the modulated phase
and the quasimomentum β. The phase modulation has been
found to enhance the localization length of chaotic atoms,
despite the chaotic region being classically independent of the
island structure. All of our data are in excellent agreement
with both ε-classical theory and quantum simulations. This
work could be extended by using a near noninteracting
condensate, with our simulations indicating that a narrower
initial momentum distribution results in an enhancement of a
factor of 5 in the directed current.
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