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This paper describes prototyping of a neuroadaptive smart antenna beamforming algorithm using hardware-software imple-
mented RBF neural network and FPGA system-on-programmable-chip (SoPC) approach. The aim is to implement the adaptive
beamforming unit in a combination of hardware and software by estimating its performance against the fixed real-time constraint
based on IMT-2000 family of 3G cellular communication standards.
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1. INTRODUCTION

The widespread use of cellular communications systems is
evident for the past two decades. Third-generation (3G) cel-
lular systems, promising high-speed data transfer for multi-
media content and improved voice communications, have al-
ready been deployed in Japan by DoCoMo in the Tokyo area
experimentally in June 2001 and commercially in October
2001 [1, 2]. Other 3G systems with different protocols under
the IMT-2000 banner are currently under extensive devel-
opmental testing before their respective commercial deploy-
ments throughout the world. In the IMT-2000 family of 3G
cellular communications standards, the TD-SCDMA proto-
col from CATT explicitly requires smart antennas as a funda-
mental but not essential requirement [3], while CDMA2000
and WCDMA implicitly require smart antennas or advanced
beamforming techniques to enhance their performance [4].

In radio systems, smart antenna is initially drawn up to
combat electronic countermeasures in military communica-
tions and radar systems [5]. Its aim is to maximize signal-
to-noise ratio between the sender and receiver by adaptive
adjustments to output beam patterns with steerable me-
chanical/electronic antennas arrays. In cellular communica-
tions, smart antenna techniques maximize antenna gain and
signal-to-noise ratio (SNR) at desired directions, and place

nulls at the interference sources. Cellular receiver units move
constantly and smart antennas must consider user tracking
for genuine adaptive beamforming which requires real-time
user tracking and beamforming algorithms. Different re-
searchers have devised algorithms for optimum beamform-
ing for smart antennas. These algorithms are broadly sepa-
rated into [4, 5, 6]

(i) switched-Beam approximation;
(ii) statistically optimal beamforming;

(iii) direction-of-arrival (DoA) beamforming.

The biggest advantage is that it can achieve spatial division
multiple access (SDMA) or spatial separation between users
and allow them to share the same frequency bands or time
slots across cells [4], which increases system capacity through
higher spectral resources reuse. Smart antennas extend trans-
mission range with identical transmission power [6]. If ef-
fective power is increased by directing maximum antenna
gain with optimal antenna pattern, then available range is ex-
tended with higher effective tolerable path loss. Directional
beamforming also provides two key advantages over fixed
antennas: improved building penetration and hole filling in
coverage area [4]. Range extension and link quality improve-
ments are provided by managing or even exploiting multi-
path fading and time dispersion in realistic radio channels.
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An associated advantage with increased effective transmis-
sion power is a reduction of actual transmission power for
identical area/range coverage. During initial rollout, smart
antennas save capital costs by directed wide area coverage.
The operator can decrease transmission power at individual
base stations to cover a smaller area and deploying more base
stations to support more simultaneous subscribers when
their numbers increase. The precise power control essential
in CDMA systems for equal power transmission for arriving
signals could be alleviated with smart antennas by isolating
uplink signals for different users.

Many digital smart antenna algorithms involve matri-
ces to represent multiple signals. They become computation-
ally intensive to the point that real-time realizations are ex-
tremely difficult. A direction for real-time implementations
is to simplify and approximate computationally intensive op-
erations with simpler operations. By combining smart anten-
nas and neural networks, new possibilities can be opened for
genuine SDMA in cellular communications systems.

2. NEUROADAPTIVE BEAMFORMING USING RBFNNs

Artificial neural networks (ANNs) mathematically model the
human neuron initially to realize true artificial intelligence
(AI). Currently ANNs are mainly used for solving nonlin-
ear problems, complex function approximation problems,
or classification/recognition problems [7, 8] that algorithmic
computing proved unrealistic to solve. A neural network is
a universal function approximator to estimate function out-
put in a specific range by interpolation using hidden-layer
weights, which are representations of the input-output rela-
tionship inside the expected range. Generalization is defined
as interpolation between known sample pairs. If the unseen
input vector falls outside of the expected range, it returns
an output that extrapolates dependent on output-layer lin-
earity. Neural network is ideal for approximating complex
algorithms with inherent parallelism for high performance
and strong numerical approximation capabilities with sim-
ple arithmetic operations.

Figure 1 shows a generic RBF network with single output
from m-length input vector and m1 RBF function hidden-
layer neurons. The RBF neural network (RBFNN) is a single-
layer feed-forward back-propagation neural network [8, 9]
based on multidimensional curve fitting or interpolation
problem where output values for unseen inputs are estimated
in terms of the cluster centers in the training data samples.
The major differences between multilayer perceptron neural
network (MLPNN) and RBFNN are that RBFNN only has
one hidden-layer and uses different hidden-layer activation
functions. The MLPNN uses the sigmoid activation function
as shown in Figure 2 while RBFNN uses a group of functions
called radial basis functions also shown in Figure 2.

RBF maps input values into a highly nonlinear multidi-
mensional hypersurface for solving function approximation
and interpolation problems according to the theorem of sep-
arability of patterns proposed by Cover [7]. The input to RBF
is a distance measure between input vector and hidden-layer
weight vectors. A bias or data-independent variable is added
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Figure 1: RBF neural network topology.

to network output to serve as a form of y-intercept in func-
tion interpolation and approximation:

F∗(x) =
m∑

i=1

wiG
(∥∥x − ti

∥∥)
C + b. (1)

The relationship between input and output in any neural
network in terms of weight interconnections, including the
RBFNN shown in Figure 1, can be succinctly represented in
matrix notation as shown in (1). G is a generalized RBF, x is
input vector, wi is output weights, and ‖x − ti‖ is Euclidean
distance between input vector and hidden-layer weight vec-
tor. The hidden-layer weight vector set ti is within the func-
tion subspace; therefore generalization will consistently re-
cover a close estimate of the original function if input is
within the trained range. The output-layer operation is a lin-
ear summation of product between hidden-layer outputs and
output-layer weights. A detailed mathematical justification
for RBF neural networks could be found in [7].

The interconnected neural network structure is mathe-
matically equivalent to matrix arithmetic with matrix nota-
tion for hidden- and output-layer neurons. Depending on
network design, each column or row vector represents a
hidden-layer neuron and its weights, with the vector length
equal to the input vector. During network evaluation of un-
seen inputs, the input value vector is transformed into a set
of distances between the input vector and all stored proto-
types.

El Zooghby et al. published detailed descriptions and
results for adaptive beamforming algorithm to approxi-
mate Wiener beamforming weight evaluation algorithm us-
ing RBF neural networks for cellular [10, 11, 12, 13] and
satellite communications systems [14]. These are based
on approximating the subspace multiple signal classifica-
tion (MUSIC) DoA estimation algorithm and Wiener fil-
ter weight evaluation with respect to DoA estimates with
the spatial correlation matrix estimated from input signals.
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Figure 2: (a) Sigmoid (A-function gradient) and (b) Gaussian ac-
tivation function (s-function spread or standard deviation).

The standard beamforming weight evaluation algorithm in-
volves complex-number matrix inversion and eigendecom-
position [4]. Both operations are computationally intensive
with large spatial correlation matrix sizes. The neural net-
work substitution aims to eliminate matrix inversion and
eigendecomposition with a numeric subspace approxima-
tion to achieve real-time weight updates.

The algorithm consists of training and performance
stages. During training, the RBF neural network is trained
with input-output pairs obtained from Wiener solution for a
range of expected DoA angles:

R = E
[

X(n)X(n)
]H = 1

N
X(n)X(n). (2)

Signal samples from M antenna elements

. . .

Spatial correlation matrix evaluation unit

Neuroadaptive beamforming algorithm

R
vector

to
network

Wopt

vector
output

Figure 3: Top-level algorithm decomposition.

The network input is the vector of the upper/lower triangu-
lar of the normalized signal spatial correlation matrix esti-
mated from antenna array inputs evaluated by (2). The train-
ing output is the Wiener beamforming weights generated us-
ing the inverse spatial correlation matrix and output steering
direction vector as shown below:

Ŵopt = r
R−1Sd

Sd
HR−1Sd

. (3)

A fixed number of incoming signal samples are used to es-
timate R for Ŵopt evaluation using the trained neural net-
work. The detailed mathematical derivation of the training
algorithm and (3) is shown in [10, 11, 12, 13, 15]. The neural
network is expected to estimate Ŵopt from the trained neural
network by presenting unseen spatial correlation vectors to
the network input during the performance stage. Only R is
needed to estimate Ŵopt with a trained network:

Ŵopt = Wo
(
ϕ
(
d
(

Rv, ti
)
bh
)

+ bo
)
. (4)

The neural network solution in (4) transforms (3) into ma-
trix multiplication and is graphically represented in Figure 3.

A real-time criterion is required to determine algorithm
real-time performance and estimate performance improve-
ments over the Wiener solution. The antenna output pat-
tern is modified with updated beamforming weight vector
and its update time is largely independent of protocol data
and chip rates; the protocol frame length determines beam-
forming update period in TDD mode. TD-SCDMA outlined
a 5 milliseconds beamforming update time for smart antenna
base stations [3] based on the 10 milliseconds protocol frame
length. The frame length for CDMA2000 and WCDMA is
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Figure 4: Comparison between Gaussian RBF and reciprocal RBF.

identical to TD-SCDMA, and 5 milliseconds are the real-time
criterion for benchmarking performance.

Euclidean distance evaluation requires square, subtract,
accumulate, and square-root operations. Square-root oper-
ation involves iterative operation in software or hardware
using shift-and-subtract, convergence, or CORDIC meth-
ods [16]. An simpler alternative without changing network
topology is the Manhattan or city block model, where dis-
tance between two vectors in a multidimensional space is
measured as the sum of total traversed edges that involves
only subtract, negate, and add as shown below:

d(a, b) =
n∑

i=1

∣∣ai − bi

∣∣. (5)

The Gaussian RBF can be evaluated in software with lookup
tables or iterative approximation with high memory or com-
putation costs. In [17], Du et al. proposed reciprocation as
RBF in (6). The RBF function is termed as reciprocal RBF,
as it is reciprocal to distance between input- and hidden-
layer weights. d is the distance from basis centre/hidden-layer
weights, and c is similar to standard deviation in Gaussian
RBF. Figure 4 shows reciprocal RBF when c = 1, and com-
pares it to Gaussian RBF:

ϕ(d) = 1
1 + d2/c2

. (6)

Both functions are inversely proportional to input distance
d, and for positive d, the new RBF is simplified to (7), where
Rv is the input spatial correlation vector, and ti is a hidden-
weight vector:

ϕ
(∥∥Rv − ti

∥∥) = 1
1 +

∥∥Rv − ti
∥∥ . (7)

The arithmetic operations involved in reciprocal RBF are ad-
dition, subtraction, and division. This opens up pure soft-
ware or accelerated software implementations. The new im-

plementation is to substitute reciprocal RBF and Manhattan
distance model and generate new output-layer weights and
biases using a training algorithm.

From previous discussions on (2) and (4), we can en-
visage a matrix-centric neural network implementation in
Figure 5 with (5) and (7).

The part most affecting real-time performance is the
weight evaluation unit that implements (2) and (4). The
training algorithm is designed and implemented externally
from the neural beamforming weight evaluation unit as real-
time training is not yet required for continuous knowledge
refinement.

3. PROTOTYPING STRATEGY

We adopted a three-stage prototyping strategy at different
abstractions levels to simplify model implementation and to
investigate their relative performances. The first step is to
implement a simulation model under Matlab for functional
analysis and to save development time with a stable devel-
opment platform with readily available libraries and provide
comparison data to further implementation. The second step
is to manually translate the simulation model into generic
C/C++ working model with an external matrix arithmetic li-
brary [18]. The third step is to profile the C/C++ model on
the embedded processor platform, analyze for performance
bottlenecks, and determine and implement appropriate ac-
celeration techniques to achieve real-time performance.

The Altera APEX FPGA device family enables com-
plex digital system realizations in relatively short time. It
is manufactured on 0.18µ process for advanced system-on-
programmable-chip (SoPC) realizations and can host mul-
tiple Nios embedded processors for high-performance em-
bedded systems applications [19]. It provides extensive sup-
port for advanced I/O including PCI and true LVDS suitable
for high-bandwidth applications. The device used for inves-
tigations is the EP20K200E speed rated at −2X. It contains
376 user I/O pins and 200 000 usable logic gates grouped into
8 320 logic elements.

The Altera Nios is a customizable and expandable em-
bedded soft-core RISC microprocessor targeted to Altera
FPGA families. 16- and 32-bit designs are available with 17-
or 33-bit maximum memory address for 128 KB or 8 GB
of physical memory. The sliding window register bank ar-
chitecture shows 32 programmer-visible registers from a
user-customizable register bank of 128 to 512 total regis-
ters to reduce stack operations at subroutines. The instruc-
tion set is expandable with 5 opcodes reserved for addi-
tional combinational or multicycle sequential logic imple-
mented in parallel with the ALU and controlled by the pro-
cessor [20, 21]. Integrated C/C++ language development and
debugging is provided with the Redhat GNUPro embed-
ded software development toolkit for the Nios platform. The
toolkit is based on the open-source GNU compiler collection
(GCC) with C/C++ compiler, assembler, software debugger,
and profiler for embedded software development using opti-
mized libraries and custom SDK generated with the designer-
customized processor core.
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Figure 5: Block diagram for neuroadaptive beamforming algorithm.

A standard platform is followed for hardware and soft-
ware implementations. Software development is targeted to
the Nios synthesized and fitted onto the APEX device. All
logic synthesis, functional, and timing analyses were per-
formed with Altera Quatrus II FPGA development tool. The
initial target frequency is 33.333 MHz for all designs. If any
design is too large to fit onto the device, larger devices in the
family with identical speed rating will be used for synthesis
and simulation.

4. FUNCTIONAL-LEVEL MODEL WITH MATLAB

The Wiener and neuroadaptive beamforming algorithm are
separated into four parts for Matlab implementation:

(1) data sample generation;
(2) input direction-of-arrival (DoA) steering matrix gen-

eration;
(3) combine signal and DoA to generate spatial correla-

tion matrix R with (2);
(4) evaluate Wiener weights Ŵopt with matrix inversion

with (3).

The Matlab simulation model implementation takes ad-
vantage of matrix arithmetic for implementing training
data generation algorithm. The (R, Ŵopt) training pairs are
used for RBFNN training algorithm to generate network
weight/bias matrices. The two processes can be linked to-
gether as a single simulation model under Matlab which im-

plements the training data generation algorithm by mapping
the algorithm in (2) and (3) to Matlab.

The simulation model integrates parameter input, data
generation, network training, and simulation with beam-
forming weight graphical output to compare exact Wiener
output and neural network estimate, integrated on the
graphical user interface. It aims to verify the algorithm
against claims in [12, 13, 17]; and provides a tool to in-
vestigate the algorithm strengths, weaknesses, and limita-
tions. It also benchmarks the future software and hardware-
software codesign implementations in performance and ac-
curacy. Figure 6 shows the GUI screenshot and a brief intro-
duction on its usage.

The RBF network is a Matlab data object storing the net-
work structure, weights, and interconnections from newrb
or newrbe training functions that train the network in terms
of fixed MSE or using zero-error training paradigms. The
hidden- and output-layer weights and biases are stored in
the network data structure and accessible to the programmer.
Weights/biases can be exported to other Matlab routines or
other programs for analysis or create custom network mod-
els.

Figure 7 shows beamforming performance with gener-
ated weight vectors for a 4-element linear antenna array
tracking 2 signals at θ = 5◦ and ∆θ = 2◦. One thousand
signal samples per element and standard Matlab RBF are
used. Starting from left, the first Ŵopt vector corresponds
to (−88◦,−83◦) signal pairs, the second corresponds to
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Figure 6: Matlab simulation model running under Matlab R12.1 and Windows 2000.

(−3◦, 2◦) signal pairs, and the third corresponds to (29◦, 34◦)
signal pairs. The neuroadaptive beamforming algorithm can
produce close estimates to exact Wiener solution. There are
slight problems with signal pairs crossing the horizon and are
related to the input signal samples.

To verify and investigate Figure 5, the Manhattan dis-
tance model in (5) and reciprocal RBF in (7) are imple-
mented with newrbe training algorithm. The parameters and
structures were identical except the algorithm is adapted
for Euclidean and Manhattan distance models to test per-
formance and accuracy between them. Additional simula-
tions were performed to investigate the number range in the
hidden-layer weights and biases. The plots showed that re-
ciprocal RBF and Manhattan distance model is functionally
equivalent to Gaussian RBF and Euclidean distance model.
Further investigations into the training algorithm and net-
work parameters can improve approximation accuracy.

Figure 8 shows a comparison between Gaussian RBF/Eu-
clidean distance model and reciprocal RBF/Manhattan dis-
tance model at the θ pair (−3◦, 2◦) with identical simulation
parameters to previous testing.

During simulation model development, some limita-
tions were realized and possible ways to overcome them are
discussed. A realistic cellular antenna array must perform
beamforming operations in different signal and interference

conditions. The criteria for successful generalization include
these factors: the antenna tracks users and performs beam-
forming at arbitrary input elevation and azimuth angles, and
it tracks a changing number of user and interference sources
at all times. Assuming Sd = A for first K output signals solves
the problem of output direction finding and simplifies the
weight evaluation problem to a nonlinear (R, Ŵopt) map-
ping. This simplification leads to two related issues and pos-
sible limitations: training data must allow generalization for
arbitrary input elevation/azimuth for output beamforming,
and must consider changing signal and interference sources.

This issue is critical to real-life beamforming since the an-
tenna must estimate Ŵopt for different incoming signal eleva-
tions. The most important training constraint is keeping the
one-to-one ((R, Ŵopt) or (A, Ŵopt)) mapping. The aim is to
train the network for arbitrary output steering with training
samples. The second issue is also critical for real-life opera-
tions due to users continuously moving in and out of the cell.
Credible neural network training strategy must consider the
combined effects of changing signal elevation angles, chang-
ing output signal positions and changing number of infor-
mation and interference signals. It may be possible to extend
the algorithm to include Sd for more accurate beamforming.
The length and elevation position can be learned by the net-
work for different weights.
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Figure 7: Beamforming weights from Matlab simulation model for
4-element configuration (two signals, N = 1000, θ = 5, Ires = 2):
(a) (29, 34), (b) (−88,−83), and (c) (−3, 2).

Sources of generalization error for simulation model are
grouped into three cases:

(i) number of samples in the signal data matrix;
(ii) neural network spread parameter;

(iii) learning resolution.
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Figure 8: Beamforming weights from (a) Gaussian RBF/Euclidean
distance model and (b) reciprocal RBF/Manhattan distance model
(two signals, N = 1000, θ = 5, Ires = 2, (−3, 2)).

The neuron spread parameter is fixed at 1.0 for simulation
cases. Matlab documentation stated if the function width is
set too wide, it may cause the network to overfit during gen-
eralization. Computation effort increases with neuron num-
bers (i.e., the hidden-layer weight matrix size) and with out-
put vector length (i.e., the output-layer weight matrix size). It
was found that the learning resolution during network train-
ing, critical to beamforming accuracy and speed by control-
ling the number of neurons, should be less than half of the
angular separation to minimize neuron usage while retain-
ing required accuracy with unity RBF spread. A finer reso-
lution requires more neurons to fit the approximation with
a narrower spread, whereas a coarser resolution requires less
neuron to fit the approximation but a wider spread parame-
ter.
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Figure 9: 20-bit and 24-bit fixed-point number format.

5. IMPLEMENTATION ISSUES AND OPTIONS

A hard real-time system produces completely irrelevant re-
sults or fails beyond recovery if the real-time constraint
(deadline) is violated at a particular time instance [22]. A
soft real-time system produces undesirable behavior or in-
creasingly irrelevant results with respect to time but does
not fail beyond recovery if the deadline is violated on a
low-probability and low-risk basis. Beamforming weight rel-
evancy depends on deadline and drops rapidly with time
and is related to user movement. Desired signal for one user
can be a strong interference to another user if the deadline
is violated on a regular time basis. The beamforming algo-
rithm from R evaluation to Ŵopt evaluation is a hard real-
time operation from the above criterion. There is no require-
ment for online network weight update and hidden- and
output-layer weights can be generated externally. The net-
work training operation is time-insensitive for offline train-
ing, and soft real-time for online training. For future imple-
mentations with continuous neural network weight updates,
network training may become hard real-time, and must not
affect the beamforming operation.

To meet purpose, environment and resources con-
straints, tasks in embedded systems may be split between
hardware and software implementations to satisfy latency,
processing performance or throughput requirements, and
available processing resources. Generally, time-critical tasks
and tasks with low latency, high performance, or through-
put would often be implemented in hardware to exploit
parallelism and component specialization and optimization.
Complex, soft real-time or time-insensitive tasks or tasks
with high costs and low occurrence would often be imple-
mented in software to save hardware resources. The above
split is dependent on the available resources in terms of infor-
mation processing units, memory, and peripherals interfac-
ing with physical environment. The neural beamforming op-
eration is a hard real-time operation and must be performed
within time constraint; therefore a pure hardware or highly
accelerated software implementation is in a better position to
fulfill the real-time requirements.

Fixed-point representation interprets a bit string as frac-
tion with imaginary decimal point. The decimal point po-
sition does not change after arithmetic operations [23, 24].
The integer place value concept is valid in fixed-point nota-
tion with a slight difference. If p/n bits represent integer q/n
bits represent fraction, then integer range is 2P ; and preci-
sion is 2−q. Different fixed-point number formats, such as the
1.15 [23], 16.16, or 18.14 fixed-point formats are used in soft-

ware requiring high-performance fractional arithmetic with-
out hardware floating-point arithmetic [24].

Some assumptions were made based on the characteris-
tics for the incoming data to choose an appropriate number
format. Input signals and interferences are assumed to fol-
low a steady-state Gaussian/normal distribution model [15].
It is possible to devise a fixed-point format for hardware im-
plementation with normal distribution model µ = 0 and
σ = 1. The probability of incoming signal value falling in
±4σ is 99.7%. The worst case scenario would be all incom-
ing samples at maximum or minimum. The other criterion is
minimum data width to represent required range and preci-
sion to minimize storage and bus width. The third criterion
is to use minimum additional hardware to implement the
number format. From previous assumptions, it is possible to
draw up the criteria for designing a suitable number format.
The maximum value is ≥ 4 to cover ≤ 99.7% of possible sig-
nal samples. The data width, byte order, and sign convention
must be compatible with Nios and LPM arithmetic units,
and the output fixed-point number format is wide enough to
store accumulated product of repeated MAC without arith-
metic overflows. Underflows could be neglected.

Figure 9 shows the 20- and 24-bit fixed-point number
formats. The MSB is two’s complement sign bit. The next 3/7
bit represents an integer value between ±7/±64. The 16 LSB
bits represent a fractional with precision of 2−16. The formats
can be sign-extended to 16.16 fixed-point numbers with 16
integer bits to avoid arithmetic overflows in long MAC se-
quences and compatibility with Nios data path.

Multidimensional data and multiple signals are repre-
sented as matrices in signal processing and neural network
algorithms. For example, multiple discrete signals each with
n samples can be represented as m× n matrix. Matrix arith-
metic is a challenge to hardware and software designers with
its complexity. Multiple antenna elements are necessary to
obtain a reasonable gain for smart antenna beamforming.
For outdoor environments, antenna arrays with 6 to 10 el-
ements were proposed [5], with the 8-element array antenna
as the most researched design. The R evaluation unit uses a
4-element configuration for demonstration, and results will
be extrapolated for 6- and 8-element configurations to esti-
mate their performance.

It can be shown that the products between a matrix and
its transpose are mirrors at upper and lower triangular. This
enables simplification by eliminating lower triangular eval-
uations to halve multiply-add operations, eliminates upper
triangular extraction, and reduces memory requirements to
2M(M + 1) elements.
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for i = 1 : m do
for j = m : n do

for k = 1 : p do
C(i, j) = A(i, k)A(k, j) + C(i, j)

end for
end for

end for

Algorithm 1: Algorithm for matrix-transpose multiplication.

The total multiplications required in Algorithm 1 are
(m(n + 1)/2)p, and additions are (m(n + 1)/2)(p − 1). Its
complexity is O(n2). The total inner loop iterations are 10 for
the 4-element case, 21 for the 6-element case, and 36 for the
8-element case. The analysis is valid for integer and complex-
number matrices.

Complex numbers for I/Q signal representation adds
complexity to the problem. Abstract software implementa-
tions with dedicated data structures hide implementation
details. Abstract complex number arithmetic operations in
software are unrealistic with digital hardware implementa-
tion. The requirements of processing two related numbers
doubles/quadruples required memory and processing steps.
It becomes a major concern for designers in terms of process-
ing speed and logic element consumption.

The R evaluation unit is mathematically and algo-
rithmically identical to the Matlab model implementation
when translated to C/C++ implementation, as shown in
Algorithm 2, except the step to generate input steering ma-
trix is not performed, and signal samples are directly used.
The differences between Matlab and C/C++ implementation
will be centered on number format and level of software
functional abstraction.

Matlab has built-in complex number data type and op-
erations, while C/C++ requires users to define the data type
with an abstract data class and member functions for data
manipulation. The custom data structure contains two 32-bit
integers to represent real and imaginary components respec-
tively. Their signs are implicitly stored with the components.
The custom data format for 16.16 fixed-point complex num-
ber is shown in Algorithm 3.

The integer data type is defined as a 16.16 fraction. The
new data type cfraction stores the real and complex compo-
nents as two fractions. Addition and subtraction algorithms
are standard mathematical evaluations, and multiplication
algorithm requires a 16-bit shift to LSB to keep the correct
number format. The following flowchart shows a simplified
scalar R evaluation algorithm.

Variables from aa to af are used to store temporary re-
sults. Loop unrolling in the while loop shows future algo-
rithm parallelization and saves loop overheads by perform-
ing multiple operations in a single iteration.

A C++ RBFNN forward evaluation unit was imple-
mented with (4). A C++ matrix arithmetic library from
Ohio State University [18] was adapted to evaluate matri-
ces. Its block diagram and algorithm data flow are shown in
Figure 10.

t [·] = (0, 0);
while i < SAMPLE do

aa = mul (a[0][i], a[0][i])
ab = mul (a[0][i + 1], a[0][i + 1])
ac = mul (a[0][i + 2], a[0][i + 2])
ad = mul (a[0][i + 3], a[0][i + 3])
ae = add (aa, ab)
af = add (ac, ad)
t[0] = add (ae, af)
i = i + 4

end while

Algorithm 2: Matrix-transpose multiplication for R evaluation
unit.

typedef short int fraction;
typedef int dblfraction;
typedef struct cmplx
{

fraction real;
fraction imag;

} cfraction;

Algorithm 3: Custom data format for 16.16 fixed-point complex
number.

The hidden/output-layer weight/bias matrices in Figure
10 as memory blocks were implemented as global static C
arrays and wrapped around to matrix from the library to en-
able matrix arithmetic. Other matrices and vectors with dy-
namically assigned values are instantiated to matrix. The im-
plementation is algorithmically close to Matlab RBFNN and
(4) is split into 4 major components: Euclidean distance eval-
uation, RBF transformation, output-layer weight summation
and output-layer bias addition.

The software RBFNN implements a 4-element beam-
forming antenna array. The Euclidean distance between in-
put R and each hidden-layer weight vector is the output from
hidden-layer neurons and was implemented with standard
arithmetic operations and sqrt (·) in standard C mathematic
library. The distances are arranged into a column vector with
length equal to number of hidden-layer neurons. The RBF is
sequentially applied to each element in the hidden-layer out-
put vector to transform Euclidean distances to similarity in-
dex. The similarity index values replace Euclidean distances
in the vector to save memory. The output vector is estimated
by multiplying output-layer weight matrix to hidden layer
output vector. The output-layer bias vector is added to the
matrix-vector product to estimate the output.

The C++ RBF also accommodates the reciprocal RBF
and Manhattan distance model when the original imple-
mentation is fully debugged. To provide hidden/output-layer
weights/biases to accommodate new distance evaluation and
RBF functions, the Matlab training model is modified to gen-
erate the output-layer weights and biases for the C++ for-
ward evaluation unit, while the hidden-layer weights/bias re-
main unchanged. The RBF software routine does not take
possible hardware acceleration or algorithm parallelization
into account at this stage.
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Figure 10: Block and flow diagrams for neural network implementation.

Profiling is performed to obtain a percentage breakdown
of time for each major subroutine in the C/C++ solution.
Table 1 shows the time breakdown in cycles, milliseconds,
and percentage for the major subroutines in the algorithm
running at the initial target 33.333 MHz clock frequency. For
the 4-element case and assuming that processor performance
increases linearly with clock frequency, a Nios processor run-
ning at 542.87 MHz can satisfy the 5-milliseconds real-time
requirement. Performance extrapolations are made on 6/8-
element configurations using the software implementation.
The figures were based on dividing the number of clock cy-
cles for each subroutine by the number of iterations in the
subroutine for the 4-element scenario, and multiplied by the
expected number of operations performed for 6/8-element
scenarios. The number of neurons/samples and other param-
eters are unchanged. The 6-element case requires the proces-
sor to run at 624.54 MHz, and the 8-element case requires
718.53 MHz. These estimates do not consider the number of
neurons.

The slowest operation is hidden-layer bias multiplication
that multiplies a constant fixed-point number by a column
vector with 57% of total cycles. It multiplies 88 elements in
a column vector by a fixed hidden-layer bias. This is an O(n)
operation increasing in terms of neurons. The second slow-
est operation is distance evaluation to find Manhattan dis-
tances between input and neurons. Its complexity increases
both in terms of a number of antenna elements (R length)
and the number of neurons. If the number of neurons is fixed
for different antenna configurations, then its complexity is
identical to hidden-layer bias multiplication. Matrix multi-

plication/addition and RBF operations were also major oper-
ations. Taking the hidden-layer bias multiplication from the
total time, it can be seen that the total time for output weight
multiplication/bias addition and RBF operations is 58.25%
of the total time used for beamforming weight evaluation.

6. HARDWARE/SOFTWARE OPTIMIZATIONS

With bottlenecks identified in Table 1, it is possible to ad-
dress these shortcomings with software optimizations, hard-
ware accelerator units, and dedicated hardware implemen-
tations. The most significant software bottleneck is memory
access for vector/matrix element extraction in distance eval-
uation operation, and function call variable return for eval-
uating the hidden-layer multiplication by hidden-layer bias.

The distance evaluation and matrix-constant multipli-
cation algorithms were unchanged, except for hidden layer
weights which were accessed with pointers and not matrix
row extraction. The hidden-layer output column matrix is
evaluated and assigned element by element. Hidden-layer
Manhattan distance is multiplied with the fixed bias in the
same loop and assigned to the column matrix element. A
speedup of 38 was obtained for hidden-layer bias multipli-
cation by changing memory read operations to use pointer
arithmetic for direct static memory access. Distance evalu-
ation was faster by 16.5 with pointer operations. When the
improved software was used without hardware accelerators,
it completes a single beamforming operation in 22.15 mil-
liseconds, or a speedup of 3.46 over the original implemen-
tation.
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Table 1: Running time breakdown for individual operations in cycles and milliseconds.

Operation Clock cycles Time (ms) Percentage

R evaluation 152 156 4.56 5.61

Distance evaluation 330 817 9.93 12.18

Hidden-layer bias multiplication 1 553 749 46.61 57.24

RBF evaluation 194 941 5.84 7.18

Output weight multiplication 328 284 9.85 12.09

Output bias addition 154 408 4.63 5.69

Total 2 714 355 81.22 100
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Figure 11: Customized Nios for accelerated neuroadaptive beamforming algorithm.

The problem with Nios is low multiplication, MAC, and
reciprocation performance for R and Ŵopt estimation. These
operations can be accelerated by hardware. A 24-bit fixed-
point dual-mode (MAC and multiply) MAC unit fp mac and
RBF evaluation unit fp rbf were integrated to the Nios data
path.

Figure 11 shows the neuroadaptive beamforming algo-
rithm with the custom Nios processor. It is assumed that
data samples were stored in a buffer available from register
file by load/store instructions, and is reflected in coding that
samples were embedded as static program data. The MAC
unit maps to complex matrix-transpose multiplication and
neuroadaptive beamforming weight estimations with hid-
den/output weights generated externally from the Nios pro-
cessor. The RBF unit maps to the RBF distance evaluation

operation. The single memory block is conceptually split into
sample buffer, hidden- and output-layer weights.

Element-by-element matrix multiplication can be rear-
ranged into scalar multiply-accumulate sequences. The cost
of pure software MAC is the required register load/store
operations with each multiply-accumulate sequence and in
terms of multiplier implementation. A custom MAC unit
is assembled with the parameterized lpm mult and altaccu-
mulate blocks separately. The accumulator input data width
equals to multiplier output data width to minimize rounding
errors during fixed-point MAC sequences, and rounding is
performed at accumulator output. An additional feature for
this implementation is that a multiplexer is added for select-
ing multiplier/accumulator output for each operation with-
out clearing previous MAC results. The MAC control unit
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Figure 12: Block diagram for iterative reciprocation.

for both implementations is a 4-state FSM and is activated
by start signal from the processor to load input registers and
start operation. Add/subtract control is performed with two
LSB bits in the 11-bit prefix input to control the accumula-
tor addnsub input. 000hex indicates add, 001hex indicates sub-
tract, and 002hex indicates select multiplier result from cus-
tom MAC unit. The prefix value 7FFhex is used for accumu-
lator reset when starting a new MAC sequence.

The RBF evaluation unit evaluates 1/(1+d) similarity in-
dex during beamforming weights estimation. As Manhattan
distance does not produce negative distance, RTL handling
for divide-by-0 or arithmetic overflows is not required. The
bottleneck for hardware RBF evaluation is divider perfor-
mance. The Newton-Raphson iterative method finds roots
to equations numerically [25].

The expression x(i+1) = x(i)(2 − x(i)d) [16] is the itera-
tive solution for 1/x. To shorten computation time, a lookup
table is used to store initial iteration values x(0) to 8-bit pre-
cision for the input 8.16 fraction d between 1 < d < 256 and
shortens the total iterations to 2.

Figure 12 shows that a single iteration is separated into
three hardware blocks. The data path in Figure 12 maps
the 8.4 fixed-point input to x(0) LUT input address bus to
map x(0) in 0.16 fixed-point format. The 8.4 input is sub-
tracted by 1 for correct memory address. The LUT is imple-
mented with on-chip ESB (embedded system block) memory
as ROM. Lookup values are calculated with a spreadsheet and
converted into 0.16 fixed-point representations by multiply-
ing the quotient by 65535 and converted into hexadecimal
values. Multiplier sharing between xa and x(i+1) evaluation
is achieved with two multiplexers to select input to multi-
plier by the control unit for cycles 1 and 3 shown in pre-
vious iterative expressions. Multiplexer A (AMux) to multi-
plier dataa input corresponds to s init and s next; and mul-
tiplexer B (BMux) to multiplier datab input is connected to
s sub and dataa. The multiplication result s mul from bit 39
to 16 is connected to both s next register and subtractor B in-
put. The s next register is only updated every second multi-
plication operation. The data path involves feedback at s sub
and s next outputs. The design is modified to perform RBF
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Table 2: Running time in cycles for R evaluation with/without
hardware MAC unit.

Multiplier implementations Cycles

16-bit hardware multiplier 152 156

Custom MAC unit 63 194

Table 3: Running time in cycles for algorithm operations with/
without hardware accelerator units.

Software Accelerated

Hidden-layer bias multiplication 40 897 23 374

RBF evaluation 194 941 14 583

Output weight multiplication 328 284 179 156

evaluation by adding 1 to the integer component when the
input value is stored to the register.

Performance gains from hardware acceleration on matrix
multiplication and RBF evaluation are measured by modi-
fying software R evaluation and neuroadaptive beamform-
ing weight evaluation units to use hardware accelerators. The
custom 24-bit MAC is used in matrix-transpose multiplica-
tion for R evaluation and in matrix-matrix multiplication for
neural network evaluation. The tests investigate the speedup
from MAC to matrix operations. Table 2 shows performance
comparisons for software, with Nios multiplier, and custom
MAC unit fp mac for R evaluation.

The MAC unit provided a speedup of 2.4 over the 16-bit
hardware multiplier, and in terms of time in milliseconds,
the accelerated implementation requires 1.8 milliseconds to
complete the 64-sample R evaluation. The number of cycles
increases in terms of a number of elements and samples. The
MAC and RBF accelerators were also used for beamform-
ing weight evaluation to alleviate identified bottlenecks in
Table 1. The matrix arithmetic library and the forward eval-
uation unit were modified to use MAC and RBF accelerators.

Table 3 shows timing results for both implementations.
The required beamforming time for the optimized software
plus accelerated hardware implementation is 11.74 millisec-
onds without R evaluation and 13.64 milliseconds with R
evaluation when the processor is running at 33.333 MHz. It
can be concluded that simple hardware accelerator units de-
signed and implemented to speedup the operations were use-
ful for parts with O(n) complexity, while further parallelism
is required to speed up operations with O(n2) or higher com-
plexity.

If multiple signal inputs are placed on M data buses syn-
chronous to a clock signal sequentially to parallel arithmetic
units below, then matrix-transpose multiplication for R eval-
uation may be completed in O(n) time only in terms of a
number of samples in X(n) by parallelizing the MAC se-
quences in terms of a number of antenna elements.

The complex-number MAC unit shown in Figure 13 is
assembled from two integer MAC units to evaluate two
complex numbers and an add/subtract unit to combine the
results. If real and complex components are evaluated in par-
allel without data interdependence, then multiple complex-
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Figure 13: Block diagram for complex MAC unit.

number MAC units could be initiated in parallel to form
R evaluation unit shown in Figure 14. Since the input I/Q
components are represented as complex numbers, multiple
complex-number MAC units can be instantiated in parallel
to evaluate long MAC sequences required for R evaluation.
The number of parallel complex MAC units for M elements
is (M(M+1)/2+M(M+1)/2−M). For a 4-element design, 16
complex MAC units were required. Outputs of 2M × 32 bits
are used for the M-element case, therefore 8 20-bit inputs
and 8 32-bit outputs for real and complex components are
used for I/O in the 4-element case. A simple counter-based
control unit is used for controlling evaluation and output
stages. After the initial 4-cycle pipeline delay, 64 cycles were
used for evaluating input samples. After 64 samples were
evaluated, four cycles were used to output the R matrix se-
quentially to the output bus. Each value is valid on the bus
for 1 cycle. Averaging or divide-by-64 is performed with left
shifts by 6 bits during the output states. Each cycle returns a
column vector as stored in the complex-number MAC units.
The evaluation unit resets itself after R is presented to the
data bus.

The estimated time for single R evaluation for 64-sample
block is 2.8 microseconds for a 40 nanoseconds clock period.
The input bus units could be external to the Nios data path
and be connected to the ADC units/antenna IF section for
direct R evaluation.

Using the Altera Stratix FPGA as an alternative platform
with higher performance, some timing estimations for the
hardware-accelerated solution running at 78.23 MHz were
obtained and shown above.

As performance bottlenecks lie in sequential evaluation
for R and neural network output, it is proposed that the
R evaluation be moved to the hardware-based solution.
The neural network evaluation could be performed in soft-
ware with further refined hardware accelerators to achieve
instruction-level parallelism for vector operations. Improved
software algorithms to alleviate software bottlenecks are also
required for further speedup.
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Figure 14: Data path for 4-element sequential R evaluation unit with complex-number MAC.

A hardware-software solution exploits hardware accel-
eration for fast matrix processing required for R and neu-
ral network output yet retains flexibility and adaptability to
change neural network weights/biases in hardware-assisted
software solution.

As shown in Figure 15, it is possible to integrate the R
evaluation unit described in this section into Nios custom
instruction framework and control the unit directly from
software. The external input buses are connected to the an-
tenna/IF section ADC units to acquire signal samples. The
matrix block multiplier unit designed for accelerating ma-
trix arithmetic in neural networks can be integrated to and
controlled by ALU in the custom instruction framework.
The RBF evaluation unit could also be modified to perform
instruction-level parallel (ILP) operations with two operands
in registers Ra and Rb as shown in Figure 16. A similar ap-
proach may be applied to MAC operations.

A 24-bit block matrix arithmetic unit can be imple-
mented to accelerate matrix arithmetic by performing block
matrix operations in hardware in O(1) time with parallel
multiply-add units to perform 2 × 2 matrix multiplication
as block matrix arithmetic [26]. The input and output are
serialized and mapped to the custom instruction framework
shown by the I/O waveform below. Internally, fully parallel
operations can be supported with parallel storage registers

for input variables to evaluate the result in 2 clock cycles.
The output can be serialized again into single data output.
10 clock cycles are required to evaluate a single 2 × 2 fixed-
point matrix multiplication, as shown in Figure 17.

In [26], it can be seen that the number of block opera-
tions depends on block size, and can be determined mathe-
matically by Mn/k2 for a square k× k subblock. The number
of additions to combine completed subblocks is Mn. Assum-
ing that 10 clock cycles are required to evaluate 1 block ma-
trix multiplication, 1 clock cycle is required to evaluate 1 ad-
dition, and 4 additions are required to add two 2×2 matrices,
then the number of clock cycles required is (10(Mn/k2)+Mn)
for general matrix evaluation.

Performance estimations were made with output weight
multiplication in Table 3 when the software algorithm is ac-
celerated by the block matrix multiplier unit. Assuming the
output weight vectors are divisible by 2 and an additional
zero column vector is appended to the hidden-layer output to
create an n/2 block vector for multiplication, the clock cycles
required to multiply the output weights to the hidden-layer
vector are estimated as in Table 4 for an 88-neuron RBFNN.

This proposed matrix-centric block multiplier provides
significant performance improvements for matrix multipli-
cation in neural network evaluations, and can be extended to
matrix addition and subtraction.
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7. CONCLUSIONS

In this paper, we explore prototyping options and imple-
mentation of a neuroadaptive antenna beamforming algo-
rithm using RBF neural network using FPGA and system-
on-programmable-chip (SoPC) approach. The application
has many performance bottlenecks for pure software imple-
mentation as shown in Table 1. Those bottlenecks can be
partially alleviated with improved software algorithms and

Input Operation Output

clk
Ra

Rb

Output

a11 a12 a21 a22

b11 b12 b21 b22

c11 c12 c21 c22

Figure 17: Proposed timing waveform for block matrix arithmetic
unit.

Table 4: Performance estimations in cycles for 2 × 2 block matrix
multiplier.

Elements Block multiplication Addition Total

4 elements 1760 704 2464

6 elements 2640 1056 3696

8 elements 3520 1408 4928

simple hardware acceleration units to reduce its complexity
in an attempt to achieve the 5 milliseconds real-time beam-
forming constraint outlined in Section 2. Investigations into
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Table 5: Time estimates for 4-, 6-, and 8-element antenna configurations.

Operation
4-element 6-element 8-element

Cycles Time (ms) Cycles Time (ms) Cycles Time (ms)

R evaluation 63 194 0.81 132 707 1.70 277 498 3.55

Distance evaluation 19 933 0.25 19 933 0.59 19 933 0.59

Hidden bias multiplication 23 374 0.52 23 374 0.69 23 374 0.69

RBF evaluation 14 583 0.19 14 583 0.43 14 583 0.43

Output weight mul. 179 156 2.29 268 734 3.44 358 312 4.58

Output bias addition 154 408 1.97 231 612 2.96 308 816 3.95

Total 454 648 6.03 825 310 9.81 1 360 828 13.79

pure hardware implementations of R evaluation unit with
parallel MAC solutions showed that pure hardware solutions
can provide high performance suitable for real-time imple-
mentation by exploiting parallelism and optimal hardware
design. However, their current resource usage is very high.

Performance estimations presented in Table 5 showed
that by a combination of improved device technology, sim-
ple hardware accelerators, pure hardware R evaluation unit,
and improved software algorithms, it is possible to achieve
real-time beamforming for the 4-element scenario. How-
ever, further parallelism using the possible methods out-
lined in this section is required for further performance gains
to achieve real-time beamforming for 6/8-element or larger
configurations. Throughout investigations on antenna ele-
ments/antenna IF section, interfacing should be performed
to determine the final input data width, range, and precision,
so the design can be scaled and optimized to fit realistic op-
eration scenarios.
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WiMAX, LTE, and WiFi Interworking

Call for Papers

Although WiMAX, LTE, and WiFi provide wireless broad-
band connectivity, they have been optimized for different
usage models: WiFi for very high-speed local area network
connectivity and WiMAX, LTE for high-speed wireless
cellular connectivity. By combining WiMAX, LTE, and WiFi
technologies, service providers can offer better usability
of the networks infrastructure and support for seamless
mobility and roaming. The unique similarities between
WiMAX, LTE, and WiFi networks that make the proposed
synergy promising is these technologies are fully packet
switching uses IP-based technologies to provide connection
services to the Internet. This standards- and IP-based
network approach provides compelling benefits to service
providers to collaborate between these technologies.

This special issue is intended to foster state-of-the-art
research in the area of WiMAX, WiBro, LTE, and WiFi
networking, and the corresponding technical advances in
the design and deployment of feasible network architectures
and protocols, and to present novel results and solutions to
solve various problems and challenges foreseen in WiMAX,
LTE, and WiFi interworking. The special issue will cover the
following topical areas but are not limited to them:

• WiMAX, WiBro, MobileFi, LTE, and WiFi communi-
cations systems

• Single/dual radio handover
• Network architecture alternatives for interworking and

integration
• Heterogeneous wireless networks
• Seamless vertical handover and session continuity
• Multiradio coexistence and power management
• Authentication, authorization, and accounting
• Security issues
• Common charging and billing
• Quality of services (QoS)
• Interworking using IMS, SIP, MIH, VCC, and UMA
• IEEE802.11u, IEEE802.16g/j/m/h
• Scenarios and usage cases
• WiMAX,WiBro, LTE, and WiFi Interworking Testbed
• Hybrid wireless mesh network
• Applications, VOIP, video streaming, and so forth

• IP Mobile, roaming, and mobility management
• Core network architecture
• Fixed-mobile convergence (FMC)
• PHY, MAC, IP, and upper layers issues

Before submission authors should carefully read over the
journal’s Author Guidelines, which are located at http://www
.hindawi.com/journals/jcsnc/guidelines.html. Prospective au-
thors should submit an electronic copy of their complete
manuscript through the journal Manuscript Tracking Sys-
tem at http://mts.hindawi.com/, according to the following
timetable:

Manuscript Due October 1, 2009

First Round of Reviews January 1, 2010

Publication Date April 1, 2010
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Recently, there has been a growing interest in femtocell net-
works both in academia and industry. They offer significant
advantages for next-generation broadband wireless commu-
nication systems. For example, they eliminate the dead-
spots in a macrocellular network. Moreover, due to short
communication distances (on the order of tens of meters),
they offer significantly better signal qualities compared to
the current cellular networks. This makes high-quality voice
communications and high data rate multimedia type of
applications possible in indoor environments.

However, this new type of technology also comes with its
own challenges, and there are significant technical problems
that need to be addressed for successful deployment and
operation of these networks. Standardization efforts related
to femtocell networks in 3GPP (e.g., under TSG-RAN
Working Group 4 and LTE-Advanced) and IEEE (e.g., under
IEEE 802.16m) are already underway.

The goal of this special issue is to solicit high-quality
unpublished research papers on design, evaluation, and
performance analysis of femtocell networks. Suitable topics
include but are not limited to the following:

• Downlink and uplink PHY/MAC design for femtocells
in 3G systems, WiMAX systems, and LTE systems

• Interference analysis, avoidance, and mitigation
• Coexistence between a macrocellular network and

femtocell network
• Resource allocation techniques
• Closed subscriber group (CSG) versus open-access

femtocells
• Power control and power saving mechanisms (e.g.,

sleep/idle mode etc.)
• Mobility support and handover
• Time synchronization
• Multiple antenna techniques
• Tradeoffs between femtocells, picocells, relay networks,

and antenna arrays
• Comparison with other fixed-mobile convergence

(FMC) approaches such as UMA/GAN and dual-mode
terminals

• Self-organizing networks and issues in self mainte-
nance and self install

• Issues related to enterprise femtocells

Before submission, authors should carefully read over the
journal’s Author Guidelines, which are located at http://www
.hindawi.com/journals/wcn/guidelines.html. Prospective au-
thors should submit an electronic copy of their complete
manuscript through the journal Manuscript Tracking Sys-
tem at http://mts.hindawi.com/, according to the following
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Advances in Multidimensional Synthetic Aperture
Radar Signal Processing

Call for Papers

Synthetic Aperture Radar (SAR) represents an established
and mature high-resolution remote-sensing technology that
has been successfully employed to observe, study, and
characterize the Earth’s surface. Over the last two decades,
one-dimensional SAR systems have evolved more and more
toward multidimensional configurations, enabling quanti-
tative remote sensing with SAR sensors. The relevance of
the multidimensional SAR technology is primarily supported
by the recent launch of the Japanese ALOS, the German
TERRASAR-X, and the Canadian RADARSAT-2 orbital
systems, and also by the development of airborne and
ground-based SAR systems.

Multidimensional SAR data can be generated by different
sources of diversity: baseline, polarization, frequency, time,
as well as their different combinations. This degree of
freedom makes multidimensional SAR data sensitive to
a wide range of geophysical and biophysical features of
the Earth’s surface. Consequently, the definition of novel
multidimensional signal processing techniques is essential to
benefit from this information richness, especially when the
objective is the quantitative retrieval of new parameters, and
also necessary to extend already existing one-dimensional
SAR data tools.

This special issue is seeking for original contributions in
the definition of novel signal processing techniques, and also
for works on the assessment of new physical or statistical
models to improve the understanding of multidimensional
SAR data and the extraction of information, considering the
important challenges and limitations imposed by the physics
governing the imaging process. This issue is also open to
contributions oriented toward the exploitation of multidi-
mensional SAR data for novel and exciting applications.

Topics of interest include, but are not limited to:

• Multibaseline interferometry and differential interfer-
ometry

• 3D reconstruction and multidimensional SAR focus-
ing techniques

• Polarimetry and polarimetric interferometry
• Multitemporal and multifrequency SAR
• Novel multidimensional SAR system configurations

• Multidimensional SAR data classification and change
detection

• Information extraction from multidimensional SAR
data

• Multidimensional SAR data statistical modeling, filter-
ing, and estimation

• Definition and assessment of electromagnetic models
• Extraction and estimation of geophysical and biophys-

ical parameters
• Space-time adaptive processing (STAP)
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