
Improving Optical Flow using Residual Images

Tobi Vaudrey1, Andreas Wedel2, and Reinhard Klette1

1 The .enpeda.. Project, The University of Auckland, Auckland, New Zealand
2 Daimler Research, Daimler AG, Stuttgart, Germany

Abstract. Optical flow is a highly researched area in low-level computer vision.
It is a complex problem which tries to solve a 2D search in continuous space,
while the input data is 2D discrete data. The major assumption in most optical
flow applications is the intensity consistency assumption, introduced by Horn
and Schunck. This constraint is often violated in practice. This paper proposes
and generalises one such approach; using residual images (high-frequencies) of
images, to remove the illumination differences between corresponding images.

1 Introduction

Dense optical flow was first presented by Horn and Schunck [8]. Their approach ex-
ploited the intensity consistency assumption (ICA), coupled with a smoothness con-
straint. This was solved in a variational approach. Many more approaches have been
proposed since this, most using this basic ICA and smoothness constraint. In recent
years, the use of pyramids, warping and robust minimisation equations have improved
results dramatically [3]. This has further been improved and computational enhance-
ment in [21].

Previous studies have compared the results of optical flow algorithms against ground
truth using various types of scenes [1, 2, 6, 11]. The earlier works in [2, 6, 11] use syn-
thetically rendered scenes, and calculate the ground truth via ray-tracing. The more re-
cent work of [1] calculates ground truth using structured lighting for real scenes. All of
the scenes in these papers have been made publicly available. They are of good quality,
but have a very limited number of frames (under 20).

Fig. 1. Example for removing illumination artifacts due to different camera exposure in the frame
2 of EISATS set 2; see Section 3. Original (left) has its residual image (middle, computed us-
ing TV-L2) and Sobel edge image (right) shown. Notice that the residual image retains more
information than the Sobel image.



None of these scenes are very difficult for the latest optical flow algorithms. The
Yosimite scene from [2] has varying illumination in the sky, therefore most people do
not use the sky for their evaluations. This means that most approaches still rely heavily
on the ICA, and if this is violated the results become much worse. This was formally
highlighted in [18], and then experimentally in [14]. This violation of the ICA is a major
issue in real-world scenarios, such as driver assistance and security video analysis.

For dealing with illumination artifacts, there are three basic approaches: simultane-
ously estimate the optical flow matching and model brightness change within the optical
flow estimation [7], try to map both images into a uniform illumination model, or map
the intensity images into images which carry the illumination-independent information
(e.g., using colour images [12, 20]).

Using the first option, only reflection artifacts can be modeled without major com-
putational expense. From experiments with various unifying mappings, the second op-
tion is basically impossible (or, at least, a very big challenge). The third approach has
more merit for research; we restrain our study to using the more common grey value
images.

An example of mapping intensity images into illumination-independent images is
the structure-texture image decomposition [15] (an example can be seen in Figure 1).
More formally, this is the concept of residuals [9], which is the difference between an
intensity image and a smoothed version of itself. One of the first approaches, that ex-
ploited the residual images of [15], is TV-L1 improved optical flow [19], which is an
improvement to the original TV-L1 proposed in [21]. A residual is, in fact, an approxi-
mation of a high-pass filter, so only high frequencies remain present.

In this paper we generalise the residual operator by using any smoothing operator
to calculate the low frequencies. Included in this study are three edge-preserving filters
(TV-L2 [15], median, bilateral [17]), two general filters (mean and Gaussian), and a gra-
dient preserving filter (trilateral [4]) This paper shows experimentally that any residual
image is better than the original image when illumination variance is causing issues.

2 Smoothing Operators and Residuals

Let f be any frame of a given image sequence, defined on a rectangular open set Ω and
sampled at regular grid points within Ω.

f can be defined to have an additive decomposition f(x) = s(x)+r(x), for all pixel
positions x = (x, y), where s = S(f) denotes the smooth component (of an image) and
r = R(f) = f − S(f) the residual (Figure 1 shows an example of the decomposition).
We use the straightforward iteration scheme:

s(0) = f, s(n+1) = S(s(n)), r(n+1) = f − s(n+1), for n ≥ 0.

The concept of residual images was already introduced in [9] by using a 3 × 3 mean
for implementing S. We apply the m ×m mean operator and also an m ×m median
operator in this study. Furthermore, we use an m × m Gaussian filter, with σ for the
normal approximation. The other operators for S are defined below.



2.1 TV-L2 filter

[15] assumed an additive decomposition f = s + r into a smooth component s and
a residual component r, where s is assumed to be in L1(Ω) with bounded TV (in
brief: s ∈ BV), and r is in L2(Ω). This allows one to consider the minimization of the
following functional:

inf
(s,r)∈BV×L2∧f=s+r

(∫
Ω

|∇s|+ λ||r||2L2

)
(1)

The TV-L2 approach in [15] was approximating this minimum numerically for identi-
fying the “desired clean image” s and “additive noise” r. See Figure 1. The concept
may be generalized as follows: any smoothing operator S generates a smoothed image
s = S(f) and a residuum r = f − S(f). For example, TV-L2 generates the smoothed
image s = STV (f) by solving Equ. (1).

2.2 Sigma filter

This operator [10] is effectively a trimmed mean filter; it uses an m ×m window, but
only calculates the mean for all pixels with values in [a − σf , a + σf ], where a is the
central pixel value and σf is a threshold. We chose σf to be the standard deviation of f
(to reduce parameters for the filter).

2.3 Bilateral filter

This edge-preserving Gaussian filter [17] is used in the spatial domain (using σ2 as
spatial σ), also considering changes in the colour domain (e.g., at object boundaries).
In this case, offset vectors a and position-dependent real weights d1(a) define a local
convolution, and the weights d1(a) are further scaled by a second weight function d2,
defined on the differences f(x + a)− f(x):

s(x) =
1

k(x)

∫
Ω

f(x + a) · d1(a) · d2 [f(x + a)− f(x)] da (2)

k(x) =
∫
Ω

d1(a) · d2 [f(x + a)− f(x)] da

Function k(x) is used for normalization. In this paper, weights d1 and d2 are defined
by Gaussian functions with standard deviations σ1 and σ2, respectively. The smoothed
function s equals SBL(f). It therefore only takes into consideration values within a
Gaussian kernel (σ2 for spatial domain, f for kernel size) within the colour domain (σ1

as colour σ).

2.4 Trilateral filter

This gradient-preserving smoothing operator [4] (i.e., it uses the local gradient plane
to smooth the image) only requires the specification of one parameter σ1, which is
equivalent to the spatial kernel size. The rest of the parameters are self tuning.



It combines two bilateral filters to produce this effect. At first, a bilateral filter is
applied on the derivatives of f (i.e., the gradients):

gf (x) =
1

k∇(x)

∫
Ω

∇f(x + a) · d1(a) · d2 (||∇f(x + a)−∇f(x)||) da (3)

k∇(x) =
∫
Ω

d1(a) · d2 (||∇f(x + a)−∇f(x)||) da

Simple forward differences∇f(x, y) ≈ (f(x+1, y)−f(x, y), f(x, y+1)−f(x, y)) are
used for the digital image. For the subsequent second bilateral filter, [4] suggested the
use of the smoothed gradient gf (x) [instead of∇f(x)] for estimating an approximating
plane pf (x,a) = f(x) + gf (x) · a Let f4(x,a) = f(x + a)− pf (x,a). Furthermore,
a neighbourhood function

n(x,a) =
{

1 if ||gf (x + a)− gf (x)|| < A
0 otherwise (4)

is used for the second weighting.A specifies the adaptive region and is discussed further
below. Finally,

s(x) = f(x) +
1

k4(x)

∫
Ω

f4(x,a) · d1(a) · d2(f4(x,a)) · n(x,a) da (5)

k4(x) =
∫
Ω

d1(a) · d2(f4(x,a)) · n(x,a) da

The smoothed function s equals STL(f). Again, d1 and d2 are assumed to be Gaus-
sian functions, with standard deviations σ1 and σ2, respectively. The method requires
specification of parameter σ1 only, which is at first used to be the radius of circular
neighbourhoods at x in f ; let gf (x) be the mean gradient of f in such a neighbour-
hood. Let

σ2 = 0.15 · ||max
x∈Ω

gf (x)−min
x∈Ω

gf (x)|| (6)

(Value 0.15 was recommended in [4]). Finally, also use A = σ2.

2.5 Numerical Implementation

All filters have been implemented in OpenCV, where possible the native function was
used. For the TV-L2, we use an implementation (with identical parameters) as in [19].
All other filters used are virtually parameterless (except a window size) and we use a
window size of m = 3 (σ1 = 3 for trilateral filter3). For the bilateral filter, we use
color standard deviation σ1 = Ir/10, where Ir is the range of the intensity values (i.e.,
σ1 = 0.2 for the scaled images). The default value of σ = 0.95 is used for the Gaussian
filter. All images are scaled to the range −1 < h(x) < 1 using normalisation.

In our analysis, we also use Sobel edge images [16]; this operator provides a nor-
malised gradient function. This is another form of illumination invariant images.

3 The authours thank Prasun Choudhury (Adobe Systems, Inc.) and Jack Tumblin (EECS,
Northwestern University), for their implementation of the trilateral filter.



Fig. 2. Example frames from EISATS scene. Frame 1 (top, left) and 2 (top, right) are shown with
ground truth flow (bottom) also showing the color key (HSV circle for direction, saturation for
vector length, max saturation at flow length 10).

3 EISATS Synthetic Dataset

This dataset was made public in [18] for Set 2 and is available from [5]. We are only
interested in bad illumination conditions. We therefore use the altered data to resemble
illumination differences in time, as performed in [14]; the differences start high between
frames, then go to zero at frame 50, then increase again. For all t (frame number) we
alter the original image f using a constant brightness. For all x we use f(x) = f(x)+c.
The constant brightness change is defined by:

Even values of t : c = t− 52
Odd values of t : c = 51− t

An example of the data used can be seen in Figure 2.

4 Optical Flow on EISATS Dataset

One of the most influential evaluations of optical flow in recent years is from Middle-
bury Vision Group [1]. This dataset is used to evaluate optical flow in relatively simple



Fig. 3. Sample optical flow results on EISATS scene. Colour is encoded as in Figure 2. Top row
(left to right): Using original images, Sobel edge images, and trilateral filter. Middle row (left to
right): Gaussian, mean, and sigma filter. Bottom row (left to right): Median, bilateral, and TV-L2

filter.

situations. To highlight the effect of using residual images, we used a high ranking (see
[13]) optical flow technique called TV-L1 optical flow [21]. The results for optical flow
were analysed on the EISATS dataset [5]; see [18] for Set 2. Section 3 has full de-
tails of data used. Numerical details of implementation are given in [19]. The specific
parameters used were:

Smoothness: 35 Number of pyramid levels: 10
Duality threshold θ: 0.2 Number of iterations per level: 5
TV step size: 0.25 Number of warps per iteration: 25

The flow field is computed using U(h1, h2) = u. This is to show that a residual
image r provides better data for matching than for the original image f . We computed
the flow using U(r(n)

1 , r
(n)
2 ) with n = 1, 10, 50, and 100 to show how each filter

behaves. The results are compared to optical flow on the original images U(f1, f2), and
also for the Sobel-edge images. Figure 3 shows an example of this effect, obviously the
residual image vastly improves optical flow results. In fact, the original image results
are so noisy that they cannot be used.
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Fig. 4. End-Point-Error results over entire EISATS sequence. Filter iterations r(n) of n = 100 are
shown. The top shows how different the magnitude is for the original sequence, and the bottom
graph is zoomed in between 0.5 and 7.

To compare the results numerically, we calculated the end-point-error (EPE) as used
in [1], which is basically a 2D-root mean squared error. The results can be seen in Fig-
ure 4. The zoomed out graph highlights that the results for the original image are un-



n TV-L2 Sigma Mean Median Bilateral Trilateral Gaussian Original Sobel
1 Ave. 7.58 7.74 7.69 7.36 6.80 6.34 7.71 55.04 1.35

ZMSD 7.59 7.76 7.71 7.38 6.83 6.36 7.72 69.41 1.84
Rank 5 8 6 4 3 2 7 9 1

2 Ave. 7.42 7.71 7.37 6.84 6.15 4.98 7.49 - -
ZMSD 7.44 7.72 7.39 6.89 6.20 5.05 7.51 - -
Rank 6 8 5 4 3 2 7 9 1

10 Ave. 6.88 7.45 5.63 4.73 3.30 1.72 6.66 - -
ZMSD 6.91 7.47 5.69 4.93 3.44 1.93 6.70 - -
Rank 7 8 5 4 3 2 6 9 1

40 Ave. 5.36 6.14 2.79 3.85 1.63 1.72 2.93 - -
ZMSD 5.43 6.21 3.21 4.17 1.95 1.93 3.29 - -
Rank 7 8 4 6 3 2 5 9 1

50 Ave. 5.17 5.59 2.83 3.85 1.47 1.72 2.83 - -
ZMSD 5.24 5.67 3.27 4.16 1.75 1.93 3.23 - -
Rank 7 8 5 6 1 3 4 9 2

70 Ave. 4.94 4.65 2.36 3.84 1.32 1.72 2.81 - -
ZMSD 5.02 4.76 2.88 4.15 1.56 1.93 3.25 - -
Rank 8 7 4 6 1 3 5 9 2

100 Ave. 4.76 3.78 1.95 3.84 1.26 1.72 2.19 - -
ZMSD 4.85 3.89 2.53 4.16 1.46 1.93 2.72 - -
Rank 8 6 4 7 1 3 5 9 2

Table 1. Results of TV-L1 optical flow on EISATS sequence. Results are shown for different num-
bers n of iterations. Statistics are presented for the average (Ave.), zero-mean standard deviation
(ZMSD), and the rank based on ZMSD.

usable. The shape of the graph is appropriate as well, because the difference between
intensities of the images gets closer together near the middle of the sequence, and fur-
ther away near the end. The zoomed graph shows the EPE values between 0.5 and 7.

A major point to highlight is that at different frames in the sequence, there are
different rankings for the filters. If you look, for example, at the n = 100 graph at
frame 25, the rank is (best to worst): trilateral, bilateral, sigma, TV-L2, median, then
mean. But if you look at frame 75 (roughly the same difference in illumination) the rank
is (best to worst): mean, bilateral, trilateral, median, sigma, then TV-L2; a completely
different order! From this it should be obvious that a smaller dataset will not pick up on
these subtleties, so a large dataset (such as a long sequence) is a prerequisite for better
understanding of the behaviour of an algorithm.

Since we have such a large dataset (99 results, 100 frames) we can calculate metrics
for the results as in the previous subsection. We calculate the average and ZMSD for
n = 1, 10, 50, and 100. These results are shown in Table 1. Obviously, the original
images are far worse than any residual image. From this table you can see that the order
of the rankings shift around depending on the number of iterations for the residual image
n. Another point to note is that the trialteral filter (which is stopped at 10 iterations) is
the best until after 50 iterations of the other filters; when bilateral filtering becomes
the best. Simple mean filtering (which is much faster than any other filter) comes in at
rank 3 after 40 iterations, and gets better around 100 iterations. It is notable that the



difference between the average and ZMSD highlights how volatile the results are, the
closer together the numbers, the more consistent the results.

5 Conclusions and Future Research

We have identified a methodology for analysing the effect of illumination reducing
filters using numerical comparisons, exploiting the co-occurrence metrics and Spatial-
RMS. We went on to show that the results for this test do align with the optical flow
performance, on a scene with drastic illumination variation. The tests showed that gen-
erating a simple mean residual image, produces acceptable improvements, while being
the fastest (computational time) and easiest (simplicity) to implement. The bilateral and
trilateral filter were also very good. Future work should test the limits of the proposed
methodology. Other smoothing algorithms and illumination invariant models need to
be tested. Finally, a larger dataset can be used to further verify the illumination artifact
reducing effects of residual images.
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