
A Fault Tolerant Model for a Functional Language Parallel
Machine*

Xinfeng Ye,
Department of Computer Science,

University of Auckland,
New Zealand.

Abstract
This paper describes a fault tolerant model for a

functional language parallel machine. The model is
transparent to the user and ensures successful execu-
tion of programs in the presence of hardware fad-
ure. The model is based o n data replication. I t
takes advantage of the properties of the functional
languages. The recovery scheme can be cam‘ed out
simultaneously o n all processors, and occurs while
“normal” program execution as in progress. Thus
normal execution suffers less performance degrada-
tion than with other approaches.

1 Introduction
Flagship is a parallel, graph reduction machine

designed to support the execution of functional lan-
guages [9]. This paper describes an operating system
approach to achieve fault tolerance on the Flagship
machine. Normally, an operating system achieves
fault tolerance by checkpointing the states of the
processors in the system. The state of a paral-
lel/distributed system supporting the execution of
conventional languages must be restored to a consis-
tent status in the presence of system failure. There-
fore, for a conventional system, a relatively compli-
cated mechanism that must ensure cooperation in
the checkpointing of the states of the processors, is
needed to ensure that the information stored for cop-
ing with system failure does not contradict itself [8].

hnctional languages have the property of refer-
ential transparency [6]. Therefore, the system sup-
porting the execution of the functional programs do
not have the concept of ”state”. As a consequence,
checkpointing is simply replication of data in the sys-
tem, and this can be carried out without the coop-
eration of different parts of the system.

The approach in this paper takes advantage of
the properties of determinism and referential trans-
parency of the functional languages. Therefore, un-
like a conventional system, state restoration after a
failure is not needed in a declarative system (i.e. the
system supporting functional languages). The fault
tolerant model in this paper is transparent to the
users. The objective of the model is to allow the
execution of the program to be carried out in the

*This work is supported in part by Auckland University
under grant A18/XXXXX/62090/F3414029.

John A. Keane,
Department of Computation,

UMIST,
Manchester. UK.

presence of the failure of part of the hardware sys-
tem. The model is based on data replication. The
data lost due to system failure are replaced by their
backups during recovery. Data replication is carried
out by the system automatically. The information
concerning the replicated data is maintained by the
system. Therefore, the execution of the programs
does not need to synchronise with the backing up of
the data. Hence, compared with some previous ap-
proaches, the system should suffer less performance
degradation from the efforts made to achieve fault
tolerance. The recovery scheme in this paper can be
applied in a real-time fashion in the sense that the
recovery can be carried out while the execution of
the program is in progress. Also, the recovery can
be carried out simultaneously on all the PES.

2 Model of Computation
Graph reduction is a computational model for

functional programs [6]. It can be summarised:
1. A program can be represented as a graph.

2. Program evaluation proceeds by a sequence of
simple steps called reductions. Each reduc-
tion performs a transformation (rewrite) of the
graph according to the rules defined by the pro-
gram.

3. Reductions may take place in parallel.
Flagship is a set of closely-coupled processor-store
(PE-store) pairs. The PE-Store pairs are fully con-
nected by a network. There is a single route from
one PE to another. Therefore, the network has the
order-preserving property. A program is complied
into a graph. The reduction of the graph is carried
out by rewriting its nodes. The graph is distributed
among the PEStore pairs. Each PE can directly
access that part of the store to which it is closely-
coupled. Access to a non-local store is achieved by
sending a request message. Each PE performs re-
duction on the subgraph contained in its own local
store. Although the store is physically distributed,
it is globally addressable by any PE. The graph is
distributed dynamically as evaluation proceeds, thus
nodes migrate to load balance the PES during com-
putation. Each PE conceptually has four processing
units [2]:

1. The Memory Management Unit allocates
memory in the store coupled to the PE.

632

Authorized licensed use limited to: The University of Auckland. Downloaded on November 3, 2008 at 15:26 from IEEE Xplore. Restrictions apply.

item I item 1 item I ...

Figure 1: Packet St,ructure

(a) (b)

denotes an inactive node
denotes an active node

0 denotes a suspended node

Figure 2: Graph Rewriting

2. The Rewrite Unit performs reduction.

3. The Scheduler manages the nodes which can
be rewritten by the Rewrite Unit.

4. The Network Interface manages PE commu-
nication.

A node consists of a number of items (see Figure-
1). Before a node can be rewritten, child nodes
needed in the rewrite must be evaluated. A node
forces evaluation by activating the child nodes. Once
a parent node activates its children, the parent is sus-
pended. The parent is reactivated when all values
are returned from its children. When a node is acti-
vated, it becomes an active node. Only active nodes
can activate their children and be rewritten. Active
nodes are maintained by the Scheduler on each PE.
At the beginning of execution, only the root of the
graph is an active node. Thus, node activation starts
from the root and propagates down.

Figure-P(a) is the graph at the beginning of ex-
ecution. Figure-a(b) is the graph during execution.
It can be seen that, starting from active nodes, it is
possible to reach all nodes through pointers. During
the rewrite, some nodes will no longer be referenced
and will be garbage-collected.

3 Failure Model
The concern of this paper is with the toleration

of permanent failures in some of the PEStore pairs
of the Flagship machine, i.e. the situation where
the failed PEStore pairs cannot recover from their
failure. This kind of failure is termed PE failure.
The system assumptions are:

Reliable communication: It is guaranteed that
the messages are delivered correctly.
Fail-stop PE: All failures are detected immedi-
ately, and result in the halting of the failed PE.
Time-out: Failure to respond within a certain
time means a PE is treated as having failed.

Figure 3: Recover Graph

To simplify the presentation, the situation that a
PE fails when the system is recovering from a PE
failure is not discussed. However, this situation can
easily be coped with as explained in section 11.

4 Achieving Fault Tolerance
Fault tolerance is achieved via replication of the

computational graph. The graph is distributed
across several PES. Hence, replication is achieved
by copying the parts of the graph that reside on one
PE to another PE. A node in the original graph is
called a primary node, and its replication is termed
a backup node. Backup nodes are passive during
normal execution. They are only activated in the
recovery if their corresponding primary nodes are in
the failed PE.

When failure occurs, primary nodes in the failed
PE are lost. However, lost nodes can be replaced by
their backups which reside in another PE. In figure
3, a graph consisting of four nodes is spread across
three PES. If PE2 fails, nodes a and d are lost.
However, a and d can be replaced by their backups.

The properties of functional languages [6] allow
backup nodes to be integrated into the graph. Due to
the determinism property, nodes b and c return the
same results when re-evaluated. Thus, nodes b and c
can be adopted by the backup of a without being re-
executed. Due to the referential transparency prop-
erty, re-execution of nodes a and d does not make the
system incoqsistent. Thus, no state restoration is re-
quired when primary nodes (a and d) are replaced
by their backups.

In order to find nodes lost in the PE failure, dur-
inc the recoverv. each node on the “healthv” PES is
chucked to see 8’it has pointers to nodes in the failed
PE. If so, the pointers are amended to point to the
backups of the nodes in the failed PE.

5 Location of Replicated Data
A directional, logical ring consisting of all PES can

be formed. Each PE has both a unique predecessor
and a successor. Each PE knows the predecessor and
the successor of both itself and of every other PE.
The data on a PE is replicated on its successor PE.
Thus:
1. As each PE knows the failed PE’s successor, it is

easy to determine which PE holds the backups.
2. When a PE needs to replicate its data, it only

involves the PE and its successor.
A bottleneck may occur during recovery because

the successor of the failed PE has to inform other
PES of the addresses of the backups of lost nodes, so
that pointers can be amended to point to the back-
ups.

633

Authorized licensed use limited to: The University of Auckland. Downloaded on November 3, 2008 at 15:26 from IEEE Xplore. Restrictions apply.

(a) (b) (C)

Figure 4: Storing the Replicated Packets

Another way of locating replicated data is to dis-
tribute the replicated data evenly across the other
PES. This would avoid the bottleneck described
above. However, the number of new nodes which
are generated during the rewrite of the graph is un-
known. Therefore, in order to distribute the repli-
cated data evenly, the location of the replicated data
can only be determined during execution. In this
case, in order to discover the location of the repli-
cated data, a larger number of messages need to be
sent during both normal computation and recovery
[lo]. Thus, the first approach is adopted here.

6 Storing Replicated Data
There are two ways of storing replicated data:

1. Store the backup nodes as identical to their pri-
mary ones. The advantage is efficiency in setting
up backup nodes, since it is a simple copying
process. However, the pointers in the backup
nodes have to be changed when the backups
replace the primary ones.
Figure 4(b) shows how the graph in figure 4(a)
is represented in the store (where @X denotes
the address of node X) . In figure 4(c) the backup
node A ’ points to the primary nodes B and C
rather than to the backup nodes B’and C’.

2. Make the pointers within the backup nodes point
to other backup nodes when the backups are set
up. Thus, the pointers in the backup nodes do
not have to be changed during the recovery. In
this case the example in figure 4(c) would have
node A ’ pointing to the backup nodes B’and C’.
The extra complication in approach 2 significant1

affects performance during normal computation [lOf
Because the pointers in a node may point to a node
on a different processor, backing up may involve
more than one processor. In the example in figure
4(b), if A and B reside on different PEstore pairs
then when A is backed up, the address of B’ must
be stored in A’. Hence the processor which holds B’
must be consulted. Therefore, the first approach is
adopted in this paper.

7 Data Replication
Before execution, the graph is backed up, i.e. all

the nodes on each PE are copied to its successor.
During execution, backups will be set up for newly
created nodes, and some backups will be updated.
The reason for updating the backups is to avoid the
backup nodes being out-of-date.

For example, in figure 4, if node B is garbage-
collected then the pointer @B in A ’ becomes in-
valid. Therefore, the backup nodes must be upto-
date enough so that they do not refer to nodes which

no longer exist. Otherwise, the recovery cannot be
carried out. The setting up and updating of the
backup nodes can be carried out according to the
following:

1. If a node is rewritten into another node, then
the new node is backed up.

2. If the content of an item in a node is changed,
then the backup of the node is updated.

3. When a node migrates from one PE to another
PE, the backup of the node will be set up on
the successor PE of the destination PE of the
node.

8 Managing Replicated Data
During recovery, pointers to lost nodes are

amended to point to the backups of the lost nodes. A
Mapping Table on each PE, maintained by the Mem-
ory Management Unit (MMU), maps primary nodes
to backups. When a primary node in a PE needs to
be backed up, a backup request is sent to the succes-
sor of the PE. The request is parameterised by the
primary node’s address. The MMU of the successor
allocates the store for the backup node and makes an
entry in the Mapping Table to store the addresses of
the primary node and the backup. When the backup
of a primary node needs to be updated, a look-up is
made on the Mapping Table to find out the address
of the backup.

A computational graph does not contain any in-
formation concerning the mapping between primary
and backup nodes. This information is maintained
at the system level in the Mapping Tables. Hence,
creation of a new node can occur without waiting for
the setting up of the backup of the new node. Thus,
the setting up of backup nodes does not interfere
with “normal” execution, and there is little perfor-
mance degradation due to fault-tolerant activity.

It can be seen that the setting up of the backups
is slower than the execution of the program. This,
however, does not affect the correctness of the model
[12. A Mapping Table needs to be maintained on

idle for a large percentage of the total time. This
suggests that the overall performance is unlikely to
degrade as the Mapping Table can be maintained by
the MMU.

eat h PE. Greenberg [2] points out that the MMU is

9 The Recovery Scheme
During recovery the successor of the failed PE is

called the backup PE. The PE which detects a PE
failure is called the initiator. The PE which declares
termination of the recovery process is called the de-
tector. The aim of the scheme is to replace nodes
which are lost due to PE failure. The parts of the
graph which are not in the failed PE can carry on
computation while the recovery is in progress.

At any time, each PE is in one of the six states:
During normal execution, all PES are in the exe-
cution state.
When a PE fails, the initiator instructs all PES
except the failed PE to change from execution
to briefing.
When all PES are in briefing state, the initiator

634

Authorized licensed use limited to: The University of Auckland. Downloaded on November 3, 2008 at 15:26 from IEEE Xplore. Restrictions apply.

instructs all PES to change to initialisation.
All messages in the network are pushed to their
destinations in the initialisation state. Follow-
ing this, the initiator instructs all PES to change
to recovery.
The recovery process starts once a PE enters the
recovery state. Recovery processing starts from
the active nodes and the backups whose primary
nodes are in the failed PE. The recovery
process will be propagated along the pointers to
the whole graph. During the recovery, all refer-
ences to nodes in the failed PE are changed to be
references to their backups. Once recovery is
complete, the detector instructs each PE to
change to informing state.
When all PES are in informing, the detector in-
structs each PE to change to backing up. In this
state the backups of all nodes are set up again.
When backing-up is completed on all PES, the
detector instructs each PE to change to execu-
tion state, and the “normal” execution resumes.
The operations at each state are explained below.

1. When a PE is in the execution state, the pro-
gram on the PE can be executed normally.
2. When the initiator instructs the PES to enter
briefing, it informs each PE of the identity of the
failed PE. Thus, the backup PE becomes aware of its
responsibility. To handle more one PE simultane-
ously discovering a PE failure, the PES are ordered
based on their identifiers. A PE gives up its initia-
tor status once it receives a state-changing message
from a more senior PE. Hence, the most senior PE
that discovers failure becomes the initiator.
3. The initialisation stage involves network flush-
ing, and forbidding node migration. Network flush-
ing is needed because of node migration. Consider
the following. Node a is being sent from PE; to PEj
before a PE failure. If the transmission of a has not
been completed by the end of the recovery, then a
will not be processed by the recovery process. If a
contains some references to the nodes which reside
in the failed PE, then these references are invalid
after the recovery. Network flushing can be carried
out by letting each PE send special messages to all
other PES, and the initiator instructs the switeh-
ing elements of the network which are connected to
the failed PE to send the special messages on behalf
of the failed PE. The flushing is completed when
each PE receives the special messages from all other
PES. This technique takes advantage of the order-
preserving feature of the network. During network
flushing, the nodes bound for the failed PE are sent
back to their original PES. Node migration is forbid-
den during the initialisation stage because a migrat-
ing node may not reach its destination before the
recovery is completed.
4. In the recovery stage, all pointers are checked
such that if they point to a node in the failed PE,
then a request is sent to the backup PE to find the
new value for the pointer from the Mapping Table.
From the discussion in section 2, it can be seen that
any part of the graph can be reached from the ac-
tive nodes. However, the existence of the failed PE
complicates the issue. This problem is illustrated in
figure 5(a). It can be assumed that (a) B is an ac-
tive node, (b) E, A and C are on different PES, (c)
the PE where B resides fails. Nodes A and C cannot
be reached during the recovery, because B is in the

(a) (b)
Figure 5: Problems with data on the failed PE

failed PE and cannot be accessed. Hence, the recov-
ery should also be started from the backups of the
nodes in the failed PE. From figure 5(b) it can be
seen that A and C can be reached from B’ which is
the backup of B. Hence, the recovery is started from
(a) the active nodes on each PE and (b) the backups
of the nodes in the failed PE.
Once a PE enters the recovery state, nodes which
have been processed by the recovery process can be
migrated. Also, only nodes which have been pro-
cessed by the recovery process can be rewritten by
the Rewrite Unit. The advantage of this is that any
node which is generated by the rewrite does not need
to be processed by the recovery process. The reasons
being (a) the pointers in a newly generated node can
either be inherited from the node which is rewritten
or allocated by the Memory Management Unit, and
(b) only the nodes which have been processed by the
recovery process can be rewritten. Therefore, a new
node has no references to the nodes in the failed PE.
Completion of recovery is detected by the algorithm
in (111.
5. The informing state is introduced to make the
PES ready to receive messages from the subsequent
stage of the recovery.
6. Since backups are identical to primary nodes,
some backup nodes may contain pointers to the
nodes in the failed PE. For example, in fiy 4, ,if
(a) A and B are on different PES, and (b B IS m
the failed PE, then A’ contains a pointer to a node
(i.e. B) in the failed PE. To tolerate future PE fail-
ure, in the backing up state, the current graph is
replicated, and all old backups are discarded. The
replication is carried out by sending the data on a PE
to its successor PE. When each PE has completed
the backing-up, the detector instructs each PE to en-
ter the execution state. As a consequence, program
execution returns to normal.

10 Comparison with Other Schemes
The schemes in [l] and [4] are designed to handle

PE failure in a declarative system. In those schemes
data are not lost during the PE failure because it is
assumed that the store containing the data can still
be accessed. Hence, data are not backed up. In con-
trast, this assumption does not hold for the Flagship
closely-coupled PEstore pairs and thus the data in
the failed PE cannot be retrieved. As a result, data
are backed up in the model presented here.

In Grit’s [3] and Link [5 schemes, in order to sal-

some information about its ancestors or children.
The scheme in this paper does not require nodes to
keep any information about their ancestors or chil-

vage the intermediate resu \ ts, each node must keep

635

Authorized licensed use limited to: The University of Auckland. Downloaded on November 3, 2008 at 15:26 from IEEE Xplore. Restrictions apply.

dren. As a consequence, the execution of the pro-
gram does not need to synchronise with the efforts
made to achieve fault-tolerance. Hence, the scheme
in this paper seems to be more efficient.

In Sharma’s scheme [7] failure causes the re-
execution of the computational graph. In contrast
the scheme in this paper is based on node-by-node re-
covery. Therefore, instead of re-executing the whole
branch of the computational graph whose root is in
the failed PE, only the nodes in the failed PE need to
be re-executed. This means that the failure does not
affect the computation as much as Sharma’s scheme.

11 Conclusions
In this paper a fault tolerant model for a parallel

graph reduction machine designed to execute func-
tional languages has been described. The model is
transparent to the programmer. That is, the model
hides the partial failure of the system from the pro-
grammer and guarantees the correct execution of the
programs in the presence of partial system failure.

Recovery for functional languages is easier than
for conventional languages. This is because func-
tional languages are deterministic and referentially
transparent. Thus, the repeated execution of the
whole, or part of a functional program, always gives
the same result. Hence, the backing-up of the func-
tional programs can be carried out on any part of
the system without the co-operation of other parts.

The backing-up of the nodes is “lazy” in the sense
that the backup of each node is identical to the node.
This strategy simplifies the setting up of the backup
nodes. As a consequence, it minimises the effect on
“normal” computation in the absence of failure.

Although the backing up of the nodes increases
network traffic, the simulation and discussion in [2,
10 suggest that the backing up will not significantly
re J uce performance.

The mapping between a node and its backup is
achieved at the system level via a Mapping Table.
This means that primary nodes do not need to know
the locations of their backups. Therefore, the rewrite
of a primary node is not delayed by the setting up
of its backup.

The recovery can be started on all PES simulta-
neously. Therefore, the recovery can be carried out
efficiently.

The recovery can be carried out while the execu-
tion of the program continues. Hence, it can be ar-
gued that the bottleneck described in section 5 may
not seriously affect performance. This is because
a PE can rewrite the nodes which can be rewrit-
ten while waiting for the addresses of the backup
nodes to be looked up on the backup PE. However,
this depends on the data dependency amongst the
nodes. If most of the active nodes have references to
the nodes which are in the failed PE, then the bot-
tleneck remains. This is because only active nodes
which have been processed by the recovery process
can be rewritten. Thus, the PES cannot rewrite the
nodes containing references to nodes in the failed PE
until the addresses of the backups of the nodes in the
failed PE are returned from the backup PE.

The case that more than one PE fails simultane-
ously or a PE failure occurs while the machine is
recovering from a failure, can easily be coped with
by setting up more than one backup for the data in

the system. This is because, by setting up multiple
backups, it is always possible to obtain the backups
of the data on a PE in the presence of multiple PE
failure.

References

[l] Contessa A., An approach to fault tolerance and
error recovery in a parallel graph reduction ma-
chine: MaRS - a case study, Computer Architec-
ture News, 16(3), pp.25-32, ACM, 1988.

Greenberg M.I., An investigation into architec-
tures for a parallel packet reduction machine,
Technical Report, UMCS-89-8-1, Department of
Computer Science, Univ. of Manchester, 1989.

Grit D.H., Towards fault tolerance in a dis-
tributed applicative multiprocessor, pp.272-277,
Proc. 14th International Symp. Fault-Tolerant
Computing, IEEECS, 1984.

Hughes J.L.A., Error detection and correction
techniques for datallow systems, pp.318- 321,
Proc. 13th International Symp. Fault-Tolerant
Computing, IEEECS, 1983.

Lin F.C.H and Keller R.M., Distributed recovery
in applicative systems, pp.405-412, Proc. of 1986
International Conference on Parallel Processing,
IEEECS, 1986.

Peyton Jones S.L., The implementation of func-
tional programming languages, Prentice-Hall In-
ternational, 1987.

Sharma M. and Fuchs W.K., Applicative ar-
chitectures for fault- tolerant multiprocessors,
pp.475-493, in Concurrent computations: algo-
rithms, architecture and technology, Tewsbury
S.K., Dickson B.W and Schwartz S.C., Plenum
Press, 1988.

Strom R.E. and Yemini S., Optimistic recovery
in distributed systems, ACM Tkans. Computer
Systems 3(3), pp.204-226, 1985.

Watson P. and Watson I., Evaluating functional
programs on the Flagship machine, pp.80-97,
Lecture Notes in Computer Science, Vol. 274,
1987

[lo] Ye X., An investigation into the fault tolerant
models for a parallel graph reduction machine,
PhD Thesis, Department of Computer Science,
University of Manchester, 1991.

[l l] ,Ye X. and Keane J.A., Token scheme - an algo-
rithm for distributed termination detection and
its proof of correctness, pp.357-364, Information
Processing 92, Volume I, J van Leeuwen Eds.

[12] Ye X., The Modelling and the Verification of
a Fault-tolerant Functional System, pp.755-764,
Proc. of the Sixteenth Australian Computer Sci-
ence Conference, 1993

North-Holland, 1992.

11;

636

I

Authorized licensed use limited to: The University of Auckland. Downloaded on November 3, 2008 at 15:26 from IEEE Xplore. Restrictions apply.

