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Abstract 
This paper describes a fault tolerant model for  a 

functional language parallel machine. The model is 
transparent to the user and ensures successful execu- 
tion of programs in the presence of hardware fad- 
ure. The model is based o n  data replication. I t  
takes advantage of the properties of the functional 
languages. The recovery scheme can be cam‘ed out 
simultaneously o n  all processors, and occurs while 
“normal” program execution as in progress. Thus 
normal execution suffers less performance degrada- 
tion than with other approaches. 

1 Introduction 
Flagship is a parallel, graph reduction machine 

designed to support the execution of functional lan- 
guages [9]. This paper describes an operating system 
approach to achieve fault tolerance on the Flagship 
machine. Normally, an operating system achieves 
fault tolerance by checkpointing the states of the 
processors in the system. The state of a paral- 
lel/distributed system supporting the execution of 
conventional languages must be restored to a consis- 
tent status in the presence of system failure. There- 
fore, for a conventional system, a relatively compli- 
cated mechanism that must ensure cooperation in 
the checkpointing of the states of the processors, is 
needed to ensure that the information stored for cop- 
ing with system failure does not contradict itself [8]. 

hnctional languages have the property of refer- 
ential transparency [6]. Therefore, the system sup- 
porting the execution of the functional programs do 
not have the concept of ”state”. As a consequence, 
checkpointing is simply replication of data in the sys- 
tem, and this can be carried out without the coop- 
eration of different parts of the system. 

The approach in this paper takes advantage of 
the properties of determinism and referential trans- 
parency of the functional languages. Therefore, un- 
like a conventional system, state restoration after a 
failure is not needed in a declarative system (i.e. the 
system supporting functional languages). The fault 
tolerant model in this paper is transparent to the 
users. The objective of the model is to allow the 
execution of the program to be carried out in the 
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presence of the failure of part of the hardware sys- 
tem. The model is based on data replication. The 
data lost due to system failure are replaced by their 
backups during recovery. Data replication is carried 
out by the system automatically. The information 
concerning the replicated data is maintained by the 
system. Therefore, the execution of the programs 
does not need to synchronise with the backing up of 
the data. Hence, compared with some previous ap- 
proaches, the system should suffer less performance 
degradation from the efforts made to  achieve fault 
tolerance. The recovery scheme in this paper can be 
applied in a real-time fashion in the sense that the 
recovery can be carried out while the execution of 
the program is in progress. Also, the recovery can 
be carried out simultaneously on all the PES. 

2 Model of Computation 
Graph reduction is a computational model for 

functional programs [6]. It can be summarised: 
1. A program can be represented as a graph. 

2. Program evaluation proceeds by a sequence of 
simple steps called reductions. Each reduc- 
tion performs a transformation (rewrite) of the 
graph according to the rules defined by the pro- 
gram. 

3. Reductions may take place in parallel. 
Flagship is a set of closely-coupled processor-store 
(PE-store) pairs. The PE-Store pairs are fully con- 
nected by a network. There is a single route from 
one PE to another. Therefore, the network has the 
order-preserving property. A program is complied 
into a graph. The reduction of the graph is carried 
out by rewriting its nodes. The graph is distributed 
among the PEStore pairs. Each PE can directly 
access that part of the store to which it is closely- 
coupled. Access to a non-local store is achieved by 
sending a request message. Each PE performs re- 
duction on the subgraph contained in its own local 
store. Although the store is physically distributed, 
it is globally addressable by any PE. The graph is 
distributed dynamically as evaluation proceeds, thus 
nodes migrate to load balance the PES during com- 
putation. Each PE conceptually has four processing 
units [2]: 

1. The Memory Management Unit allocates 
memory in the store coupled to the PE. 
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Figure 1: Packet St,ructure 

(a) (b) 

denotes an inactive node 
denotes an active node 

0 denotes a suspended node 

Figure 2: Graph Rewriting 

2. The Rewrite Unit performs reduction. 

3. The Scheduler manages the nodes which can 
be rewritten by the Rewrite Unit. 

4. The Network Interface manages PE commu- 
nication. 

A node consists of a number of items (see Figure- 
1). Before a node can be rewritten, child nodes 
needed in the rewrite must be evaluated. A node 
forces evaluation by activating the child nodes. Once 
a parent node activates its children, the parent is sus- 
pended. The parent is reactivated when all values 
are returned from its children. When a node is acti- 
vated, it becomes an active node. Only active nodes 
can activate their children and be rewritten. Active 
nodes are maintained by the Scheduler on each PE. 
At the beginning of execution, only the root of the 
graph is an active node. Thus, node activation starts 
from the root and propagates down. 

Figure-P(a) is the graph at the beginning of ex- 
ecution. Figure-a(b) is the graph during execution. 
It can be seen that, starting from active nodes, it is 
possible to reach all nodes through pointers. During 
the rewrite, some nodes will no longer be referenced 
and will be garbage-collected. 

3 Failure Model 
The concern of this paper is with the toleration 

of permanent failures in some of the PEStore pairs 
of the Flagship machine, i.e. the situation where 
the failed PEStore pairs cannot recover from their 
failure. This kind of failure is termed PE failure. 
The system assumptions are: 

Reliable communication: It is guaranteed that 
the messages are delivered correctly. 
Fail-stop PE: All failures are detected immedi- 
ately, and result in the halting of the failed PE. 
Time-out: Failure to respond within a certain 
time means a PE is treated as having failed. 

Figure 3: Recover Graph 

To simplify the presentation, the situation that a 
PE fails when the system is recovering from a PE 
failure is not discussed. However, this situation can 
easily be coped with as explained in section 11. 

4 Achieving Fault Tolerance 
Fault tolerance is achieved via replication of the 

computational graph. The graph is distributed 
across several PES. Hence, replication is achieved 
by copying the parts of the graph that reside on one 
PE to another PE. A node in the original graph is 
called a primary node, and its replication is termed 
a backup node. Backup nodes are passive during 
normal execution. They are only activated in the 
recovery if their corresponding primary nodes are in 
the failed PE. 

When failure occurs, primary nodes in the failed 
PE are lost. However, lost nodes can be replaced by 
their backups which reside in another PE. In figure 
3, a graph consisting of four nodes is spread across 
three PES. If PE2 fails, nodes a and d are lost. 
However, a and d can be replaced by their backups. 

The properties of functional languages [6] allow 
backup nodes to be integrated into the graph. Due to 
the determinism property, nodes b and c return the 
same results when re-evaluated. Thus, nodes b and c 
can be adopted by the backup of a without being re- 
executed. Due to the referential transparency prop- 
erty, re-execution of nodes a and d does not make the 
system incoqsistent. Thus, no state restoration is re- 
quired when primary nodes ( a  and d) are replaced 
by their backups. 

In order to find nodes lost in the PE failure, dur- 
inc the recoverv. each node on the “healthv” PES is 
chucked to see 8’it has pointers to nodes in the failed 
PE. If so, the pointers are amended to point to the 
backups of the nodes in the failed PE. 

5 Location of Replicated Data 
A directional, logical ring consisting of all PES can 

be formed. Each PE has both a unique predecessor 
and a successor. Each PE knows the predecessor and 
the successor of both itself and of every other PE. 
The data on a PE is replicated on its successor PE. 
Thus: 
1. As each PE knows the failed PE’s successor, it is 

easy to determine which PE holds the backups. 
2. When a PE needs to replicate its data, it only 

involves the PE and its successor. 
A bottleneck may occur during recovery because 

the successor of the failed PE has to inform other 
PES of the addresses of the backups of lost nodes, so 
that pointers can be amended to point to the back- 
ups. 
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(a) (b) (C) 

Figure 4: Storing the Replicated Packets 

Another way of locating replicated data is to dis- 
tribute the replicated data evenly across the other 
PES. This would avoid the bottleneck described 
above. However, the number of new nodes which 
are generated during the rewrite of the graph is un- 
known. Therefore, in order to distribute the repli- 
cated data evenly, the location of the replicated data 
can only be determined during execution. In this 
case, in order to discover the location of the repli- 
cated data, a larger number of messages need to be 
sent during both normal computation and recovery 
[lo]. Thus, the first approach is adopted here. 

6 Storing Replicated Data 
There are two ways of storing replicated data: 

1. Store the backup nodes as identical to their pri- 
mary ones. The advantage is efficiency in setting 
up backup nodes, since it is a simple copying 
process. However, the pointers in the backup 
nodes have to be changed when the backups 
replace the primary ones. 
Figure 4(b) shows how the graph in figure 4(a) 
is represented in the store (where @X denotes 
the address of node X) .  In figure 4(c) the backup 
node A ’  points to the primary nodes B and C 
rather than to the backup nodes B’and C’. 

2. Make the pointers within the backup nodes point 
to other backup nodes when the backups are set 
up. Thus, the pointers in the backup nodes do 
not have to be changed during the recovery. In 
this case the example in figure 4(c) would have 
node A ’  pointing to the backup nodes B’and C’. 
The extra complication in approach 2 significant1 

affects performance during normal computation [lOf 
Because the pointers in a node may point to a node 
on a different processor, backing up may involve 
more than one processor. In the example in figure 
4(b), if A and B reside on different PEstore pairs 
then when A is backed up, the address of B’ must 
be stored in A’. Hence the processor which holds B’ 
must be consulted. Therefore, the first approach is 
adopted in this paper. 

7 Data Replication 
Before execution, the graph is backed up, i.e. all 

the nodes on each PE are copied to its successor. 
During execution, backups will be set up for newly 
created nodes, and some backups will be updated. 
The reason for updating the backups is to avoid the 
backup nodes being out-of-date. 

For example, in figure 4, if node B is garbage- 
collected then the pointer @B in A ’  becomes in- 
valid. Therefore, the backup nodes must be upto- 
date enough so that they do not refer to nodes which 

no longer exist. Otherwise, the recovery cannot be 
carried out. The setting up and updating of the 
backup nodes can be carried out according to the 
following: 

1. If a node is rewritten into another node, then 
the new node is backed up. 

2. If the content of an item in a node is changed, 
then the backup of the node is updated. 

3. When a node migrates from one PE to another 
PE, the backup of the node will be set up on 
the successor PE of the destination PE of the 
node. 

8 Managing Replicated Data 
During recovery, pointers to lost nodes are 

amended to point to the backups of the lost nodes. A 
Mapping Table on each PE, maintained by the Mem- 
ory Management Unit (MMU), maps primary nodes 
to backups. When a primary node in a PE needs to 
be backed up, a backup request is sent to the succes- 
sor of the PE. The request is parameterised by the 
primary node’s address. The MMU of the successor 
allocates the store for the backup node and makes an 
entry in the Mapping Table to store the addresses of 
the primary node and the backup. When the backup 
of a primary node needs to be updated, a look-up is 
made on the Mapping Table to find out the address 
of the backup. 

A computational graph does not contain any in- 
formation concerning the mapping between primary 
and backup nodes. This information is maintained 
at the system level in the Mapping Tables. Hence, 
creation of a new node can occur without waiting for 
the setting up of the backup of the new node. Thus, 
the setting up of backup nodes does not interfere 
with “normal” execution, and there is little perfor- 
mance degradation due to fault-tolerant activity. 

It can be seen that the setting up of the backups 
is slower than the execution of the program. This, 
however, does not affect the correctness of the model 
[12. A Mapping Table needs to be maintained on 

idle for a large percentage of the total time. This 
suggests that the overall performance is unlikely to 
degrade as the Mapping Table can be maintained by 
the MMU. 

eat h PE. Greenberg [2] points out that the MMU is 

9 The Recovery Scheme 
During recovery the successor of the failed PE is 

called the backup PE. The PE which detects a PE 
failure is called the initiator. The PE which declares 
termination of the recovery process is called the de- 
tector. The aim of the scheme is to replace nodes 
which are lost due to PE failure. The parts of the 
graph which are not in the failed PE can carry on 
computation while the recovery is in progress. 

At any time, each PE is in one of the six states: 
During normal execution, all PES are in the exe- 
cution state. 
When a PE fails, the initiator instructs all PES 
except the failed PE to change from execution 
to briefing. 
When all PES are in briefing state, the initiator 
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instructs all PES to change to initialisation. 
All messages in the network are pushed to their 
destinations in the initialisation state. Follow- 
ing this, the initiator instructs all PES to change 
to recovery. 
The recovery process starts once a PE enters the 
recovery state. Recovery processing starts from 
the active nodes and the backups whose primary 
nodes are in the failed PE. The recovery 
process will be propagated along the pointers to 
the whole graph. During the recovery, all refer- 
ences to nodes in the failed PE are changed to be 
references to their backups. Once recovery is 
complete, the detector instructs each PE to 
change to informing state. 
When all PES are in informing, the detector in- 
structs each PE to change to backing up. In this 
state the backups of all nodes are set up again. 
When backing-up is completed on all PES, the 
detector instructs each PE to change to execu- 
tion state, and the “normal” execution resumes. 
The operations at each state are explained below. 

1. When a PE  is in the execution state, the pro- 
gram on the PE can be executed normally. 
2. When the initiator instructs the PES to enter 
briefing, it informs each PE  of the identity of the 
failed PE. Thus, the backup PE becomes aware of its 
responsibility. To handle more one PE simultane- 
ously discovering a PE failure, the PES are ordered 
based on their identifiers. A PE gives up its initia- 
tor status once it receives a state-changing message 
from a more senior PE. Hence, the most senior PE 
that discovers failure becomes the initiator. 
3. The initialisation stage involves network flush- 
ing, and forbidding node migration. Network flush- 
ing is needed because of node migration. Consider 
the following. Node a is being sent from PE; to PEj 
before a PE failure. If the transmission of a has not 
been completed by the end of the recovery, then a 
will not be processed by the recovery process. If a 
contains some references to the nodes which reside 
in the failed PE, then these references are invalid 
after the recovery. Network flushing can be carried 
out by letting each PE  send special messages to all 
other PES, and the initiator instructs the switeh- 
ing elements of the network which are connected to 
the failed PE to send the special messages on behalf 
of the failed PE. The flushing is completed when 
each PE receives the special messages from all other 
PES. This technique takes advantage of the order- 
preserving feature of the network. During network 
flushing, the nodes bound for the failed PE are sent 
back to their original PES. Node migration is forbid- 
den during the initialisation stage because a migrat- 
ing node may not reach its destination before the 
recovery is completed. 
4. In the recovery stage, all pointers are checked 
such that if they point to a node in the failed PE, 
then a request is sent to the backup PE to find the 
new value for the pointer from the Mapping Table. 
From the discussion in section 2, it can be seen that 
any part of the graph can be reached from the ac- 
tive nodes. However, the existence of the failed PE 
complicates the issue. This problem is illustrated in 
figure 5(a). It can be assumed that (a) B is an ac- 
tive node, (b) E,  A and C are on different PES, (c) 
the PE where B resides fails. Nodes A and C cannot 
be reached during the recovery, because B is in the 

(a) (b) 
Figure 5: Problems with data on the failed PE 

failed PE and cannot be accessed. Hence, the recov- 
ery should also be started from the backups of the 
nodes in the failed PE. From figure 5(b) it can be 
seen that A and C can be reached from B’ which is 
the backup of B. Hence, the recovery is started from 
(a) the active nodes on each PE and (b) the backups 
of the nodes in the failed PE. 
Once a PE  enters the recovery state, nodes which 
have been processed by the recovery process can be 
migrated. Also, only nodes which have been pro- 
cessed by the recovery process can be rewritten by 
the Rewrite Unit. The advantage of this is that any 
node which is generated by the rewrite does not need 
to be processed by the recovery process. The reasons 
being (a) the pointers in a newly generated node can 
either be inherited from the node which is rewritten 
or allocated by the Memory Management Unit, and 
(b) only the nodes which have been processed by the 
recovery process can be rewritten. Therefore, a new 
node has no references to the nodes in the failed PE. 
Completion of recovery is detected by the algorithm 
in (111. 
5. The informing state is introduced to make the 
PES ready to receive messages from the subsequent 
stage of the recovery. 
6. Since backups are identical to primary nodes, 
some backup nodes may contain pointers to the 
nodes in the failed PE. For example, in fiy 4,  ,if 
(a) A and B are on different PES, and (b B IS m 
the failed PE, then A’ contains a pointer to a node 
(i.e. B) in the failed PE. To tolerate future PE fail- 
ure, in the backing up state, the current graph is 
replicated, and all old backups are discarded. The 
replication is carried out by sending the data on a PE 
to its successor PE. When each PE has completed 
the backing-up, the detector instructs each PE to en- 
ter the execution state. As a consequence, program 
execution returns to normal. 

10 Comparison with Other Schemes 
The schemes in [l] and [4] are designed to handle 

PE failure in a declarative system. In those schemes 
data are not lost during the PE failure because it is 
assumed that the store containing the data can still 
be accessed. Hence, data are not backed up. In con- 
trast, this assumption does not hold for the Flagship 
closely-coupled PEstore pairs and thus the data in 
the failed PE cannot be retrieved. As a result, data 
are backed up in the model presented here. 

In Grit’s [3] and Link [5 schemes, in order to sal- 

some information about its ancestors or children. 
The scheme in this paper does not require nodes to 
keep any information about their ancestors or chil- 

vage the intermediate resu \ ts, each node must keep 
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dren. As a consequence, the execution of the pro- 
gram does not need to synchronise with the efforts 
made to achieve fault-tolerance. Hence, the scheme 
in this paper seems to be more efficient. 

In Sharma’s scheme [7] failure causes the re- 
execution of the computational graph. In contrast 
the scheme in this paper is based on node-by-node re- 
covery. Therefore, instead of re-executing the whole 
branch of the computational graph whose root is in 
the failed PE, only the nodes in the failed PE need to 
be re-executed. This means that the failure does not 
affect the computation as much as Sharma’s scheme. 

11 Conclusions 
In this paper a fault tolerant model for a parallel 

graph reduction machine designed to execute func- 
tional languages has been described. The model is 
transparent to the programmer. That is, the model 
hides the partial failure of the system from the pro- 
grammer and guarantees the correct execution of the 
programs in the presence of partial system failure. 

Recovery for functional languages is easier than 
for conventional languages. This is because func- 
tional languages are deterministic and referentially 
transparent. Thus, the repeated execution of the 
whole, or part of a functional program, always gives 
the same result. Hence, the backing-up of the func- 
tional programs can be carried out on any part of 
the system without the co-operation of other parts. 

The backing-up of the nodes is “lazy” in the sense 
that the backup of each node is identical to the node. 
This strategy simplifies the setting up of the backup 
nodes. As a consequence, it minimises the effect on 
“normal” computation in the absence of failure. 

Although the backing up of the nodes increases 
network traffic, the simulation and discussion in [2, 
10 suggest that the backing up will not significantly 
re J uce performance. 

The mapping between a node and its backup is 
achieved at the system level via a Mapping Table. 
This means that primary nodes do not need to know 
the locations of their backups. Therefore, the rewrite 
of a primary node is not delayed by the setting up 
of its backup. 

The recovery can be started on all PES simulta- 
neously. Therefore, the recovery can be carried out 
efficiently. 

The recovery can be carried out while the execu- 
tion of the program continues. Hence, it can be ar- 
gued that the bottleneck described in section 5 may 
not seriously affect performance. This is because 
a PE can rewrite the nodes which can be rewrit- 
ten while waiting for the addresses of the backup 
nodes to be looked up on the backup PE. However, 
this depends on the data dependency amongst the 
nodes. If most of the active nodes have references to 
the nodes which are in the failed PE, then the bot- 
tleneck remains. This is because only active nodes 
which have been processed by the recovery process 
can be rewritten. Thus, the PES cannot rewrite the 
nodes containing references to nodes in the failed PE 
until the addresses of the backups of the nodes in the 
failed PE are returned from the backup PE. 

The case that more than one PE fails simultane- 
ously or a PE failure occurs while the machine is 
recovering from a failure, can easily be coped with 
by setting up more than one backup for the data in 

the system. This is because, by setting up multiple 
backups, it is always possible to obtain the backups 
of the data on a PE in the presence of multiple PE 
failure. 
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