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Abstract 

In this paper, adaptive fuzzy logic control (FLC) will be 
designed by using a simple reference model. This design 
approach is based on our new methodology “design rule 
base qualitatively and data base quantitatively”. If the 
linear rule base is used, the model of FLC can be 
obtained. It is actually a nonlinear function with only 
three scaling gains need to be designed and tuned. The 
conventional control theory can thus be used. This 
model reference adaptive fuzzy control (MRAFC) 
requires less restriction on the reference model, but 
often achieves a more robust performance than its 
classical counterpart. 

1. Introduction 

Different types of fuzzy logic control (FLC) should be 
used for different applications [81. The most popular 
type of fuzzy control is the feedback error type. In this 
paper, we only discuss the adaptive approach for this 
type of FLC. 

In industry, FLC is designed based on experience. 
Sound knowledge of the process is often needed. The 
tuning for matching linguistic rules and numerkal 
input/output is normally done by rule adjustment. This 
qualitative design is entirely heuristic, and thus difficult 
to obtain the systematic design. In academic area, there 
is research in artificial neural network (NNW) to 
possess self-learning capability. No or limited initial 
knowledge is needed. The quantitative training is carried 
out to generate the rule base. Except for the time- 
consuming, however, this pure quantitative approach 
may lose the original linguistic interpretation. There is 
another research in developing adaptive fuzzy control by 
combining NNW and fuzzy logic [2,9]. Fuzzy logic is 
used to build rule base a9d NNW to tune the data base. 
This approach is still complex and time consuming. 

There is another simple methodology that attempts to 
bridge qualitative and quantitative design by using 
conventional control theory [5]. The basic concept is to 
design rule base qualitatively and tune the data base 
quantitatively. The rule base is designed. based on the 
general dynamics of the prdcess [3], and preserved 
during the operation. By using this gen ral rule base, the 
tuning should be left to the data base, & nly, the scaling 
gains [7]. The mathematical model of FLC obtained 
under’the special conditions shows that FLC is actually a 
nonlinear variable structure control (VSC) [4]. The rest 
of FLC design is actually to design the scaling gains. 
Then conventional control theory could be used for this 
quantitative tuning. 

The classical model reference adaptive control (MRAC) 
can be derived from the gradient method [l]. Though 
FLC is a nonlinear control, it can be approximated as a- 
linear one around the equilibrium state. Then the idea 
for the classical control can be copied to FLC. 

The model of FLC is presented first. Then, model 
reference adaptive fuzzy control (MRAFC) is 
constructed based on the classical gradient method. In 
theory, these adaptive schemesare only valid around the 
equilibrium state and for linear plant, however, they can 
be extended to a more general situation in the reality. As 
it requires less restriction on the reference model, a 
simple first-order model can be used for a wide range of 
processes. Finally, perfoimance simulation demonstrates 
the viability of this approach: 

2. Mathematical model of FLC 

A basic structure of fuzzy two-term control is shown 
below. The model of FLC can be derived based on 
following assumptions. 
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+tpJ.iLb rule base 

Figure 1 : Basic structure of a fuzzy two-term control 

AssumDtions 

1) A linear rule base is used as shown in Figure 2, which 
has seven labels for each input and output. 
2) The triangular membership functions (MFs) are used 
with equal spread 2A for input and 2B for output. 
3) Mamdani’s max-min inference method is used. 

NS 
N M  
NL 

Figure 2: A 2-dimensional linear rule base 

The linear rule base can be divided into many inference 
cells (ICs) as shown in Figure 3. The mathematical 
model of a two-dimensional rule base can be derived 
from ICs as shown in (1) [4,10]. 

with S=E+ E =&(?e+ e 
k=i+j+l 
1 is the nonlinear parameter at sub-region ICI. 

For the simplicity, the index 1 is omitted in the rest of 
PaFr. 

3. Adaptive gain design based on the 
approximate model 

Gradient method 

Consider an unknowh plant described by 

y=PU 

Assume that its reference model is described by 

Ym=GmU, 

The model-plant mismatch is chosen as: 

E=Y-Y m 

and the criterion is chosen as: 

1 
2 

J(O)=-&* 

The parameter 0 should be adjusted in the direction of 
the negative gradient of J [ 11. 

A 

a y  (3) de aJ a& - = -q- = -q& - = 
dr ae 

r 

Standard MRAFC 

A-K 

FZ-PD can be simplified as a PD control F*e plus a 
relay term R as shown in (4). The relay term R goes to 
zero when the system approaches the equilibrium point. 
Thus, FZ-PD can be approximated as linear control 

(i+l j )  s-line J ( i d  
(PI 9uk-l) (b22rUkL) P I  around the equilibrium state. 

u=K(R+F*e) (4) 
B d with F=-yKd(h.+p) ,  p = -  
A dt 

Figure 3: Functional composition of the inference cell 

(1) B 
A 

uf =:-y,s+m(l-yf) (1=1,23,4) 

The gradient method can be used to construct the model 
reference adaptive fuzzy control (MRAFC) for the linear 
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plant around the equilibrium state. The results can be 
later extended to the nonlinear plant globally. 

By approximating y as constant, the closed-loop system 
around the equilibrium state can be approximated as: 

KFP 
)J=- 

1 + KFP 'c 
1 and e = -  

1 + KFP 

From (3), 

KFP The approximation - - is made by assuming y 

approaches ym. From (3), the adaptation law for the 
output gain of FLC is approximated as below: 

1 + KFP - ''' 

If the reference model is chosen as a first-order system 
as : 

G,=- b", (6) 
a", + P 

then, the adaptation law is approximated as: 

&e 
K + a, K = -q- 

K 
(7) 

where b, is absorbed in q. The MRAFC system can be 
constructed as shown in Figure 4. 

I I ............................. 

........ Kc ............... 
I I 

Figure 4: MRAFC for output gain 

Feedforward type MRAFC 

The equilibrium state of the above MRAFC is not the 
reference model, which may require smaller gain for the 
system to avoid too fast adaptation around the reference. 
A slight modification can be made to improve the 
adaptation by the feedforward MRAFC shown in Figure 
5. The error e between the input and the output is 
replaced by the model-plant mismatch E. Then the 
equilibrium state becomes ,the reference model. The 
controlled output should converge to the reference 
model. The closed-loop output y is: 

KFP 
)J=- 

1 + KFP ' m  

and the model-plant mismatch is: - 1 
1 + KFP ' I , ,  

AdaDtive scheme for the output Pain K 

From (3, we have 

after the approximation , KFP ~ - 1  by assuming y 

approaches y,,,. The new adaptation law for the output 
gain is obtained from (3). 

1 + KFP 
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dK e2 
17- dt K 

-= (9) 

As E replaces e, the new adaptation (9) can keep the fast 
convergence in the beginning and slow down when 
approaching the reference model. Practically, it can keep 
the better model-following performance than the 
adaptation (7). Similarly, the new adaptation does not 
require a perfect model match and also tolerates more 
uncertainties than MRAC. Thus, a first-order model can 
be used for a wide range of plant. 

~ ~ ~ ~~~~ 

Figure 5 :  Feedforward MRAFC with output gain only 
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Aabt ive  scheme for the input fain 

Among input gains, h is more important. FLC becomes 
linear in the equilibrium state; then from (4), we have 

Similarly from (8), we have: 

a& KP aF KFP E E -=-ay=- ax ax (I+KFP)~ -Ym ax = -"= = -h+p 

then, the adaptation for the input gain ratio h can be 
approximated from (3) as: 

4. Simulation 

In this section, some simulations will be carried out to 
compare MRAC and MRAFC for plants with 
unmodelled dynamics. The simulation is completed by 
using OMRON fuzzy inference board FB30at and the 
simulation software packet (DCS) developed in our 
control laboratory [6] .  

About the plant and the reference model 

The reference model is chosen as the first-order linear 
model in (6) with a,=b,=l. 

The plant includes: 

1) a first-order linear plant with unknown parameters 
which provides only parameter mismatch. 

2 P(s)  = - 
1 + 0.4s 

2) a third-order linear plant with unknown orders and 
parameters, which provides structure mismatch. 

1 458 P(s) = - ( 
l+s s2 +3Os+2$ 

3) a nonlinear plant with unknown time-varying 
parameters, which provides dynamic mismatch. 

0.4f+(1+0.2sin(O.lt))x := 2u-sgn(x) 

Performance comparison 

MRAC 

For the first-order linear plant, the performance of 
MRAC with q=O.1 is shown in Figure 6. It has a perfect 
model following after 500 seconds. 

I MRAC for fist-order Dlant 1 

1 

0.5 

0 

-OS5 

-1 

time (sec.) -1.5 ' I 

Figure 6: Performance of MRAC for lSt-order plant 

For the third-order linear plant, MRAC can still handle 
this partially known system as shown in Figure 7. 
However, the model following performance is 
deteriorated much from the above. 

For the nonlinear time-varying plant, MRAC can not 
achieve satisfactory performance. 

I MRAC for 3rdsrder plant I 
1 

0.5 

0 

-0.5 

-1 
I 

time (sec.) -1.5 

The command signal U, is the square wave and the 
sampling step is 0.1 second. 
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I 

Figure 7: Performance of MRAC for 3d-order plant 
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-1 
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time (sec.) 

lS I mrac tor 1st order nonlinear 1 

I 
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Figure 8: Performance of MRAC for lSt-order nonlinear 
time-varying plant 

MRAFC 

MRAFC is chosen as FZ-PI with the feedforward type 
adaptation. The adaptation gains for K and h are chosen 
as qK=0.5 and q ~ = O . l .  

For the first-order linear plant, the performance of 
MRAFC is satisfactory. The process output will follow 
the reference model quite well, though not as perfect as 
MRAC. 

For the third-order linear plant, the performance of 
MRAFC is not much different from the first-order plant. 
MRAFC achieves better performance than MRAC. 

first-order plant 1.5 I 
1 

0.5 

0 

-0.5 

-1 

-1.5 I I 

1.5 t I -model I 
time (sec.) 

-1.5 time (sec.) 

Figure 9: Performance of MRAFC for lSt-order plant 

third-order plant 1.5 1 
1 

0.5 

0 

-0.5 

-1 

time (sec.) -1.5 I 

1.5 - model 

time (sec.) -1.5 I 

Figure 10: Performance of MRAFC for 31d-order plant 
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For the nonlinear time-varying plant, the performance of 
MRAFC is still not much different from the first-order 
plant. M W J C  achieves much better performance than 
MRAC. 

1*5 first-order n o n l i n e a r 1  

I 
time (sec.) -1.5 I 

1.5 

1 

0.5 

0 

-0.5 

- I  

5 

-1.5 I time (sec.-’ 

Figure 1 1 : Performance of MRAFC for 1 “-order 
nonlinear time-varying plant 

5. Conclusions 

The conventional FLC can be considered as a nonlinear 
function with three scaling gains need to be designed 
and tuned. Of these three gains, only the input gain ratio 
h and the output gain K are critical based on the VSC 
theory [4]. By using the gradient method from the 
classical MRAC, the adaptive mechanism for these gains 
can be derived for the linear plant on the equilibrium 
state. The structure of this MRAPC is similar to MRAC. 
To improve the model-following performance, the 
feedforward type MRAFC is designed to keep the 
equilibrium state on the reference model. This 
feedforward type MRAFC is simple in structure, fast in 
convergence and better in performance. 

Though MRAFC is derived for the linear plant on the 
equilibrium state, however, it does not require the 
perfect model matching. Thus, it can be applied to 
systems globally with large model-plant mismatch, 

including plants with some nonlinear or time-varying 
features. Successful simulations demonstrate that 
MRAFC can achieve more robust performance than 
MRAC, especially for plant with the unmodelled 
dynamics. MRAC can only work well with plants having 
mainly parameter mismatch because of its time-invariant 
features. MRAFC shows the superior performance with 
the nonlinear and time-varying plant because of its 
nonlinear time-varying features. 
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