
Efficient Word-graph Parsing and Search with a
Stochastic Context-free Grammar

C.J. Waters B.A. MacDonald
Department of Electrical and Electronic Engineering

The University of Auckland
Auckland, New Zealand

Abstract - Word-graphs provide a compact representation for the out-
put of the acoustic decoder in a speech recogniser. This paper proposes
an efficient algorithm for parsing the graph structure using a stochas-
tic context-free grammar (SCFG). By parsing an entire graph in a single
pass significant savings can be made over techniques that parse individual
sentences, such as the common N-best strategy, or methods that parse
paths through a graph. A backward Viterbi search is used to recover
the parsed sentences from the graph. The full graph parsing algorithm
is shown to be better than a heuristic search that parses only portions
of the graph.

On the Resource Management task a reduction in computation of 5
times over N-best is demonstrated. The integration a SCFG gives a
reduction in recogniser word error rate of 9.8%.

1 Introduction
Word-graphs [5] are a popular mechanism for representing sentence hy-

potheses between different stages of a speech recogniser. They provide a
compact representation of spoken words that is suitable for efficient search.
This has led to their widespread use in many large speech systems [4, I].

In [lo] we present an algorithm for efficiently parsing an entire word-graph
using a stochastic context-free Earley parser [6] . In this paper we cvaluate an
alternative heuristic search method that parses only promising seclions of the
word graph, and present empirical results showing that the complete graph
search is more effective than the alternative, heuristic method

The entire word-graph parsing technique is able to parse word-graphs con-
taining millions of sentence hypotheses in a few seconds. Parsing the entire
word-graph would appear wasteful when most of the time we are interested
in the single best grammatical sentence or at most a few hundred sentences.
An alternative method would be to use a search technique such E L S A* com-
bined with the acoustic and bigram scores to direct the parser to parse only
portions of the graph that are acoustically most likely. If the best acoustic

0-7803-3698-4/97/$10.00 0 1997 IEEE. 311

Authorized licensed use limited to: The University of Auckland. Downloaded on November 3, 2008 at 20:21 from IEEE Xplore. Restrictions apply.

path’ through the graph is also grammatical then only that path is parsed
making the technique very efficient. If however many of the paths that score
well acoustically are not grammatically correct or in fact no grammatical path
exists then large portions of the graph will be parsed.

The aim of the investigation was to compare the empirical performance of
the full graph parse and A* methods as opposed to the baseline technique of
extracting N-best sentences and parsing them one by one.

2 Word-graphs
The word-graphs we use are generated by ARISTOTLE [9], a HMM based

speaker-independent recogniser, on the Resource Management corpus. Words
are attached to edges in the graph. Since the graphs are generated online by
the acoustic processor they also contain information about silence and garbage
words. Before the graph can be parsed all silence edges are removed from the
graph with a single traversal. It may be fruitful to consider using a technique
similar to those used for removing nondeterminism from finite state automata
[7] for silence edge removal. This would also tend to reduce graph density by
removing duplicate paths.

3 Heuristic Word-graph Searching
An heuristic, A*, search chooses the best path to follow based on the cost

to the current edge and a heuristic cost to the end of the path. Thus we
need an estimate for the lower bound on the cost from the current edge to
the end of the sentence. A fast backward pass over the graph computes the
backward Viterbi cumulative score which becomes the lower bound estimate.
This estimate is admissible since we are using the product of Pbigram and
PSCFG as our language model which will always result in a value that is less
than or equal to the bigram probability alone. If the word-graph is created
during a traceback phase then cummulative score can also be computed at
that stage removing the need for an extra graph traversal.

To extract the best sentence from the graph we perform a forward pass
over the graph using the Earley graph parsing algorithm with A* choosing the
sentences to expand a t each parsing step. The A* search ensures that only
likely paths are considered. The graph is expanded into a tree as the search
proceeds and so paths are not recombined when they rejoin in the graph.

4 Earley Parsing
The top down Earley parsing algorithm [3] operates in O(n3) time on any

context-free grammar (CFG). It was chosen over the generalised LR method of

‘The words ‘path’ and ‘sentence’ are used interchangably-by definition a complete path
through the graph corresponds to a sentence.

312

Authorized licensed use limited to: The University of Auckland. Downloaded on November 3, 2008 at 20:21 from IEEE Xplore. Restrictions apply.

Tomita [S] because of the existence of a general, efficient and exact rnethod for
computing probabilities when using stochastic CFGs with the Earley method
[6] . Also the performance of Earley’s method is improved when precomputed
matrices of parsing hints are created.

In this section we use the following notation. The input string, z, to be
parsed has length 1x1 and is made up of terminal symbols 20, XI, ..., ~ 1 ~ 1 - 1

from some finite alphabet C, the elements of which are denoted by lowercase
roman letters a, b, c, Nonterminal symbols are identified with uppercase
roman letters X , Y , 2 etc. The parser manipulates arbitrary strings A, p, U of
terminal and nonterminal symbols. The empty string is denoted b,y E .

The Earley parser operates on sets of Earley s tates of the form:

where i is the current position in the input and also the state set identifier.
X -+ Ap is a production from the grammar that was first hypot:hesized at
position IC in the input. The dot shows the current position in the parse.

The parser moves the dot through productions in the grammar until the
entire input string has been processed. A state with the dot on the extreme
right of the right-hand side of the rule is a complete state. The parser uses
three operations to create new states and add them to the state sets.

The three operations are:

Prediction For each state of the form:

i : k X - + A . Y p

and all rules Y -+ y add the state:

i : ay 3 .y

This operation expands eligible grammar rules creating new predicted
states.

Scanning For each state of the form:

i : k x - b A . a p

and the next input token xi = a add the state:

i + 1 : kX + Aa.p

This operation consumes input and creates scanned states. Scanning is
the only operation that creates states in a different state set, i + 1, from
the motivating state, i. Essentially it moves the dot over a, terminal
s ymb 01.

Completion For each complete state:

i : jy-by.

313

Authorized licensed use limited to: The University of Auckland. Downloaded on November 3, 2008 at 20:21 from IEEE Xplore. Restrictions apply.

and each state in state set j that has Y to the right of the dot:

add the state:
i : k x * A Y . p

The completion operation corresponds to identifying a substring in the
input that has been correctly parsed. The new state created is called a
completed state.

The parser is seeded by creating a state in the first state set with the form

0 : o+.s (2)

where S is the left hand side of the designated initial rule of the grammar.
Note the empty left-hand side of the rule being used here is not from the
grammar but is a psuedo rule used to intialise the parser.

The three operations are applied repeatedly and exhaustively to all of the
state sets until no new states are created. When the parser tries to create a
new state for which an identical state already exists then a duplicate state
is not created. Because of this it should be clear that only a finite number
of states could be created. There are only a finite number of grammar rules,
positions in the input and positions for the dot so the process must terminate.

If in the final state set, 1x1 there is a state of the form

1x1 : 0 3 s. (3)

then a legitimate parse of the input exists.

5 Parsing a Word-graph
The Earley parsing algorithm can be adapted to parse all of the sentences

contained in a word-graph simultaneously. In the standard algorithm state
sets are numbered for the position in the input they correspond with. To
maintain the relationship between words and state sets when extending to
word-graph parsing a state set is attached to each edge, since in our graphs
words are on edges. If the edges of a graph are numbered uniquely in some
arbitrary way then the same numbering scheme can be used for the state sets.

The scanning operation is also modified since it can create states in a
different state set. In the standard algorithm the new scanned state is created
in the state set of the next word. In the extension to word-graph parsing the
state set of every edge ejl, ej,, ... that ca.n directly follow the current edge ei
needs to be populated with an identical scanned state. This ensures a correct
parse for all sentences passing through the branches (ez, ejl), (e t , e j z) ,
Prediction and completion are done as before.

The algorithm is best illustrated with an example. The simple grammar:

314

Authorized licensed use limited to: The University of Auckland. Downloaded on November 3, 2008 at 20:21 from IEEE Xplore. Restrictions apply.

b
scanned C

e l s t a. S scanned
predicted ezS+ b.

a e 2 S t .s c e 3 S t d.
e l + .S ezS+ .b completed

s. c
predicted state set e2 e2S+ s. c

b) state set e A

.a S
state set el

scanned
e 2 S + s c .
e 3 S + s c .
completed
e l s t a S.
P . t s.
state set e5

scanned

predicted d a. S

state set e3

Figure 1: State sets created during graph parsing.

S + a S
s 4 s c
S + b
S + d

generates strings such as abc and adc. These two strings can be represented
in a graph. Each edge of the graph is labeled, these labels become the state
set identifiers. A dummy edge is created from the last vertex to hold the final
state set.

Figure 1 shows the same graph after the parse is complete. The final state
set, on edge e5 contains the state el: e5 + .S signifying that ai; least one
correct parse was found in the graph.

Note how scanning on the state el: ,,S -i .a S creates two new states,
one in each of the state sets e2 and e3. By state set e5 no extra computation
needs to be performed for the e2,e3 branches because the state e:;: .,S -+ a
S. is generated for both. Once branches in a sub-graph have converged no
extra information needs to be carried over for computation of the containing
graph. This fact is at the core of the algorithm's efficiency.

As long as paths through the graph tend to recombine, and in actual
word-graphs they do, then parsing the entire graph is far more economical
that parsing an N-best list created from the graph.

6 Extracting Parse Results
As the graph is parsed a forest of parse trees is being construlcted in the

form of the parser states. There is one tree for each parsed path (multiple if

315

Authorized licensed use limited to: The University of Auckland. Downloaded on November 3, 2008 at 20:21 from IEEE Xplore. Restrictions apply.

+
+ + ++ i ++ 4-

+ ++
+ *

15

0
200 400 600 800

Number of edges

Figure 2: (a) The number of paths contained in each graph as a function of
the number of edges. (b) Number of parser states generated for each graph
plotted against the number of graph edges. Notice that the increase in parser
states is roughly linear with an increase in edges.

the sentence is ambiguous) and thus a huge number of trees given the large
number of potential paths. Because of the graph structure however the trees
are factored together so that identical portions are shared.

The graph is rescored with the prefix scores computed by the SCFG. We
incorporate both the bigram grammar and SCFG probablities as a product to
maintain the benefit of both types of model. This technique forces the input
to conform to the grammar while also lying amongst the best Markovian
candidates [a] . When dealing with new input that may not be covered by
the SCFG we can also apply a minimum threshold to P ~ C F G to prevent
ungrammatical but highly scoring hypotheses from being rejected.

Then using a backwards Viterbi search the best (and second best etc)
sentence can be extracted.

7 Results
Both algorithms were tested on 330 sentences, 10 each from 33 speak-

ers, from the Resource Management corpus August evaluation set. The word
graphs used contained an average of 28 edges per word. Table 1 shows the
results of the tests. For comparison, when the N-best sentences were ex-
tracted from the word-graphs and parsed an average of 260 Earley states per
sentence were generated. Parsing each entire graph resulted in an average of
91 states per edge or 25,000 states per graph. The computation required to

316

Authorized licensed use limited to: The University of Auckland. Downloaded on November 3, 2008 at 20:21 from IEEE Xplore. Restrictions apply.

Num. Parser
States
per sentence
per edgelword
per graph

Table 1: System comparison

N-best Heuristic Full Graph
Search Parse

260 49,900 0.00029
30.8 30.8 90.6

2 x 1o1o 49,900 25,000

extracted the parsed sentences from the graph is identical to extracting the
N-best sentences. On average parsing an entire graph equates to the same
amount of work as parsing the first 96 hypotheses in an N-best lis:. Previous
experiments[lO] have shown that 500-750 hypotheses are required in order to
guarantee inclusion of the correct hypothesis and so the graph paming tech-
nique is at least 5 times more efficient that parsing an N-best list. There was
much more variability in the results from the heuristic search. In cases where
the best acoustic path through the graph was also grammatically correct then
only the minimum number of parser states were generated. When there was
no grammatical path in the graph the entire search tree must be constructed
and so a huge number of parser states were created, in some cases exhaust-
ing available memory resources before completing. Since the graph is being
parsed as a tree the computation quickly becomes exponential in the number
of edges in the graph. On average the heuristic search takes twice as long as
a full graph parse and only generates the top hypothesis.

8 Summary
We have presented two algorithms for parsing sentences contained in a

word-graph with a SCFG. The complete word-graph parsing algorithm gives
better and more consistent results than the heurisc A* search technique. Ben-
efits of the word-graph parser are:

parsing is done in situ without requiring an N-best list to be generated
or sentence strings to be extracted.

because of the compactness of the graph structure there is a huge re-
duction in parsing effort over N-best list or A* techniques which must
process the same substrings repeatedly or use a complicated memoiza-
tion technique.

the algorithm is linear in the number of graph edges and doesn’t explode
if the graph contains no grammatical sentences.

0 multiple hypotheses can be produced for rescoring by another knowledge
source. These could be extracted in the form of an N-best list or left
in the graph for another graph-processing technique.

317

Authorized licensed use limited to: The University of Auckland. Downloaded on November 3, 2008 at 20:21 from IEEE Xplore. Restrictions apply.

Acknowledgments
This work was carried out with the assistance of Telecom Corporation of

New Zealand Ltd and the Centre for High Performance Computing at the
University of Auckland.

References
[l] Xavier Aubert and Hermann Ney. Large vocabulary continuous speech

recognition using word graphs. In International Conference on Acoustics,
Speech and Signal Processing, pages 49-52, 1995.

[2] Anne-Marie Derouault and Bernard Merialdo. Natural language mod-
eling for phoneme-to-text transcription. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8(6):742-748, November 1986.

[3] Jay Earley. An efficient context-free parsing algorithm. Communicatzons
of the ACM, 13(2):94-102, February 1970.

[4] Hy Murveit, John Butzberger, Vassilios Digalakis, and Mitch Weintraub.
Large-vocabulary dictation using Sri’s decipher speech recognition sys-
tem: Progressive search techniques. In International Conference on
Acoustics, Speech and Signal Processing, pages 319-322, 1993.

[5] M. Oerder and H. Ney. Word graphs: An efficient interface between
continuous-speech recognition and language understanding. In Interna-
tional Conference on Acoustics, Speech and Signal Processing, volume 2,
pages 49-52, 1993.

[6] Andreas Stolcke. An efficient probabalistic context-free parsing algo-
Computational Linguistics, rithm that computes prefix probabilities.

21 (2) :165-201, 1995.

[7] Thomas A. Sudkamp. Languages and Machines. Addison-Wesley, 1988.

[8] M Tomita. Eficient Parsing for Natural Language. Kluwer Academic
Publishers, 1986.

[9] Christopher Waters and Bruce MacDonald. The ARISTOTLE speech
recognition system. In The Fifth Australian and New Zealand Interna-
tional Conference on Intelligent Information Processing Systems, pages
1061-1064.1997.

[lo] Christopher Waters and Bruce MacDonald. Efficient parsing of word-
graphs for speech recognition. In The Fifth Australian and New Zealand
International Conference on Intelligent Information Processing Systems,
pages 1084-1087,1997.

318

Authorized licensed use limited to: The University of Auckland. Downloaded on November 3, 2008 at 20:21 from IEEE Xplore. Restrictions apply.

