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Abstract 
Temporal databases maintain past, present and 

future data. TSQL2 is  a query language designed 
for  temporal databases. In TSQL2, the GROUP BY 
clause has the temporal grouping property. In tem- 
poral grouping, the t ime  line of each attribute value is  
partitioned into several sections, and aggregate func-  
tions are computed for each t ime  partition. This pa- 
per describes two approaches to  parallelising an  al- 
gorithm for computing temporal aggregates. The  two 
approaches have been implemented on  a n  SGl  Pow- 
erchallenge SIMP parallel system. The  experimen- 
tal results show that the performance of the two ap- 
proaches depends on data skew ratio and the number 
of processors used in the computation. 

1 Introduction 
Conventional databases are designed to capture 

the most recent data, that is, current data. When 
new data values become available, the existing data 
values are overwritten by the new values (the old 
values are removed from the database). Therefore, 
conventional databases capture a snapshot of reality. 

Although conventional databases serve some ap- 
plications well, they are inadequate for applications 
in which past or future data are also required. To 
overcome this inadequacy, temporal databases have 
been developed [3, GI. A temporal database supports 
the storage and querying of information which varies 
over time. In other words, a temporal database 
maintains past, present and future data. 

In general, a temporal database has a set of time- 
varying relations. Every time-varying relational 
schema has two timestamp attributes: time-start 
(T,) and time-end (Te). The timestamp attributes 
correspond to the lower and upper bounds of a time 
interval. In a relation, an attribute value of a tu- 
ple is associated with timestamps T, and T, if it is 
continuously valid in the interval [T,, T,]. 
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Aggregate operations are applied to the relations 
in databases to compute scalar values. Many query 
benchmarks contain a large percentage of aggregate 
operations [2, 71. Therefore, in order to improve the 
performance of database applications, it is essential 
to execute aggregate operations efficiently. 

In this paper, two parallel algorithms for process- 
ing aggregate operations in temporal databases are 
described. The two algorithms are based on the al- 
gorithm in [4]. They have been implemented, and 
results obtained, on a shared memory multiproces- 
sor (SMP) SGI Powerchallenge. 

This paper is organised as follows: in $2, temporal 
aggregate operations and the algorithm for comput- 
ing temporal aggregate in [4] are described; $3 intro- 
duces the two approaches to parallelising the algo- 
rithm on an SMP; the results of the two approaches 
obtained on an SGI Powerchallenge are discussed in 
$4; finally, conclusions are given in 55. 

2 Temporal Aggregate Operations 
Aggregate operations are evaluated over relations 

to compute a scalar values, e.g. the number of peo- 
ple in the departments of a university, etc. Con- 
ventional aggregate operations only show a snapshot 
of the database. For example, the query in Figure 
l (b)  will read the tuples in the Employee relation 
and output the number of people in each department 
at present. Aggregate operations in a conventional 
database consist of two steps 111: 

1. 

2. 

Set up a tuple to store the result of an aggregate 
operation; 

Scan the relation to find the tuples which qual- 
ify for the aggregate operation; and, update the 
aggregate result as appropriate. 

TSQL2 (51 is a temporal extension to the SQL- 
92 query language. TSQL2 extends the GROUP BY 
clause of SQL-92 with temporal grouping. In tem- 
poral grouping, the time line of each attribute value 
is partitioned into several sections (if necessary), and 
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aggregate operations are computed for each time 
partition. 

For example, assume that an Employee relation 
in a temporal database is shown in Figure l(a). The 
start and end attributes represent the time that a 
person starts and ends his/her service in a depart- 
ment. The two attributes correspond to tame-start 
and tzme-end. CO means that a person still works 
for a department when the query is made. From 
Figure l (a ) ,  it  can be seen that the number of peo- 
ple in a department varies over time. The query in 
Figure l (b)  counts the number of people in each of 
the departments during different time periods. Fig- 
ure l (c)  shows the results of the query. The time 
line for each department has been partitioned into 
several sections. A partition point is inserted into 
the time line of a department if there is a person- 
nel change in the corresponding department at that 
point of time. Within a time section, the personnel 
of the corresponding department remains stable. 

Tom 
Peter 
Bill 
Phil 

I NAME I DEPARTMENT I START I END I 
~~ 

Mathematics 1 03 

Mathematics 3 CO 

Physics 0 5 
Physics 5 00 

I Clark I Phvs i c s I 2  I C O I  

1. The tuples in a relation are scanned to deter- 
mine the periods of time during which the re- 
lation remain unchanged. For example, for the 
query in Figure l (b) ,  the tuples in Figure l ( a )  

2 .  

will be scanned to partition the time line of each 
department into several sections. During each 
time section, the personnel of the corresponding 
department remains unchanged. 

The t,upIes in the relation are scanned again to 
compute the aggregate value for each of the time 
periods found at the first scan. For example, for 
the query in Figure l (b) ,  at the second scan of 
the relation in Figure l(a), the number of people 
in a department during each of the department’s 
time sections will be counted. 

The main drawback of the algorithm is the ineffi- 
ciency of scanning the tuples in a relation twice. 

Kline and Snodgrass [4] describe an algorithm 
which only requires the tuples in a relation to  be 
scanned once. In the algorithm, trees are used to 
store the time partitions and the aggregate values 
of each partition. The trees are formed when the 
tuples are scanned. Each tree represents the aggre- 
gation results of one of the attribute values selected 
by the GROUP BY clause. Each node in the tree rep- 
resents a time section. When a tuple in a relation is 
checked, the tree is searched to determine whether 
the time sections recorded in the tree need to be 
divided further. If the sections need to be divided 
further, some nodes representing the new sections 
are inserted into the tree. The aggregation values 
recorded in the tree will also be updated when the 
tuples are checked. After all the tuples have been 
checked, the leaf nodes in a tree represent the time 
partitions of the corresponding attribute value. 

In this scheme, each node in a tree has five com- 
ponents, start, end, count, left-child and right-child. 
start and end indicate the time period represented by 
the node. count records the number of tuples which 
are valid within the period. left-child and right-child 
are two pointers pointing to the node’s children. The 
two children represent a partition of the time period 
represented by the node. For example, if a node rep- 
resents time period [O,co], the two children of the 
node would represent periods [0, U] and [U + 1, CO] 

respectively. 
For the example in Figure 1, when applying this 

algorithm, the trees will be constructed as shown 
in Figure 2 .  Two attribute values, Physics and 
Mathematics, are selected by the GROUP BY clause of 
the query in Figure l (b) .  Thus, two trees will store 
the aggregate results for Physics and Mathematics 
respectively. 

As shown in Figure 2(a), initially each tree has 
one node representing time period [O,CO].  Figure 
2(b) shows the trees after the first two tuples in Fig- 
ure l(a) have been checked. As Clark’s tuple is valid 
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for period [2,03], t,lie time line for Physics is par- 
titioned into two sections, [0, 11 and [a, co]. Hence, 
two nodes represenhg [0,1] and [2.co] are added to 
the Physics’ tree. Due to  Clark’s tuple, the counter 
of node [a, CO] is set to  1. Similarly, due to Tom’s tu- 
ple, two nodes are added t,o the Mathematics’ tree. 

Figure 2(c) shows the trees after the third and 
the fourth tuple in Figure l(a) have been checked. 
As Bill’s tuple is valid for [0,5], time period [2, CO] 

is partitioned into two sections, i.e. [2,5] and [ G ,  col. 
Thus, two nodes [2,5] and [ G ,  CO] are inserted into the 
Physics’ tree as [2,oo]’s children. As [0,5] overlaps 
with [0, 11, B i l l ’ s  tuple should also be counted as 
valid during [0,1]. Thus, the counter of node [0, 11 is 
incremented. Similarly, as Peter‘s tuple is valid for 
period [3,00], two nodes, [l, 21 and [3, CO], are added 
to the Mathematics’ tree. 

Figure 2(d) shows the Physics’ tree after the last 
tuple in Figure l(a) is checked. Phil’s tuple is valid 
for time period [5,co]. Since [5,co] intersects with 
[2,5], [2,5] is partitioned into two sections, [2, 41 and 
[j, 53. As a result, two nodes, [2, 41 and [5, 51, are 
inserted into the Physics’ tree. As [5,co] overlaps 
with [ G ,  CO], the counter for [ G ,  CO] is incremented. 

Physics m l a  Mathcmalics 

(3) 

Physic I < Mathematics < 
I1 0 0 

(h) 

(d) 

Figure 2 

3 Computing Temporal Aggregates 

In this section, two approaches to  parallelising 
Kline and Snodgrass’ algorithm [4] on an SMP par- 
allel system are described. 

In the first approach, group-partition, the tuples 
are divided into several groups according to the at- 
tribute in the GROUP BY clause of a query. Each 
processor is responsible for computing the aggregate 
functions of a group. For example, for the query in 
Figure l (b) ,  if there are ten different departments in 
the Employee relation and five processors, then five 
groups are formed where each group consists of two 
departments. Each processor is responsible for com- 
puting the aggregate functions of the departments in 
a group. That is, each processor computes the ag- 
gregate functions for two departments. A processor 
maintains the aggregate trees for the departments in 
its group. The processor checks all the tuples in a 
relation and updates the aggregate trees maintained 
by it accordingly. When a processor has checked all 
the tuples, the processor outputs the results of the 
departments in its group. 

in Parallel 

ol group n 

A A A . . .  

f f 
I I I 

tuplcs (sharcd hy ai1 prmcssors) I 
Figure 3 

Figure 3 shows the group-partition scheme. In 
the scheme, the tuples of the relations are shared by 
all the processors. Each processor is given a group 
of attribute values (e.g. ’ .  Physics department, 
Mathematics department etc). The processor is re- 
sponsible for maintaining the aggregation trees of 
the group. During the execution, a processor fetches 
a tuple from the memory. If the tuple corresponds 
to  an attribute value whose aggregation tree is main- 
tained by the processor, the processor updates the 
aggregation tree according to  the algorithm in [4]. 
Then, the processor fetches the next tuple. If the 
fetched tuple does not correspond to any of the at- 
tribute values maintained by the processor, the pro- 
cessor simply fetches the next tuple from the mem- 
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ory. These operations are repeated until the proces- 
sor has checked all the tuples in the memory. 

In the second approach, tree-sharzng, one aggre- 
gation tree is created for each of the attribute values 
selected by the GROUP BY clause in a query. For ex- 
ample, for the query in Figure l (b) ,  an aggregation 
tree is created for each department. The trees are 
shared by all processors. In tree-sharzng, the tuples 
of a relation are divided into several sections. Each 
processor only needs to  check the tuples in one of the 
sections. For example, if there are one hundred tu- 
ples in a relation and there are five processors, then 

(a) the tuples are divided into five sections where 
each section contains twenty tuples; and 

(b) each processor is responsible for checking twenty 
tuples (i.e. one section). 

The aggregation trees are updated by the proces- 
sors while the tuples are checked. Figure 4 shows 
the tree-sharing scheme. 

agcgregation trees (shared by all processors) 

4 Results 
The two parallel schemes have been implemented 

on an SGI Powerchallenge. Each processor is a 
MIPS RlOOOO running at 19GMHz. The operating 
system is IRIX 6.2. The programs are compiled us- 
ing cc with -mp option. 

The size of each tuple in a relation is set to  32 
bytes. The relation's lifespan has one million in- 
stants, i.e. the values for time-start and time-end 
attributes are taken from the range [0, 9999991. The 
value of the time-start attribute of the tuples is gen- 
erated randomly. The lifespan of a tuple (i.e. the 
difference between time-end and time-start) varies 
between 1 and 1000, and is determined randomly. 
The number of the distinct attribute values selected 
by the GROUP BY clause has been set t o  32l. 

The number of the tuples corresponding t o  the at- 
tribute values selected by the GROUP BY clause may 
vary widely. For example, for the query in Figure 1, 
the number of people working for the Mathematics 
department may be ten times more than the peo- 
ple working for the Physics department. Such an 
uneven distribution of tuples is called data skew. 

Assume: 

processor I processor 2 

A A 
r l  processor n 

+I . . .  +I 
tuples of relations 

Figure 4 

For the group-partition scheme, as each processor 
maintains the aggregation trees of its own group, 
the operations on the aggregation trees can be car- 
ried out on the processors simultaneously. However, 
each processor has to  check all the tuples in a rela- 
tion. Thus, the group-partitzon scheme trades com- 
putat.ion for concurrency. 

For the tree-sharing scheme, as the aggregation 
trees are shared by all the processors, if several pro- 
cessors want to update the same aggregation tree, 
the operations have to  be run sequentially. How- 
ever, instead of checking all the tuples in a relation, 
each processor only needs to  check a small portion of 
the tuples in a relation. Therefore, the tree-sharing 
scheme is a trade-off between concurrency and com- 
putation. 

an attribute value, say A,  has n tuples associ- 
ated with it; 

an attribute value, say B, has m tuples associ- 
ated with it; 

the number of tuples associated with A is 
greater than the number of tuples associated 
with the other attribute values; and 

the number of tuples associated with B is less 
than the number of tuples associated with the 
other attribute values. 

zi is called the skew ratio. 
In the group-partition scheme, each processor is 

responsible for maintaining the aggregation trees 
of some attribute values selected by the GROUP BY 
clause. Data skew may cause some processors t o  be 
overloaded. This is because, when the skew ratio is 
large, the number of tuples in a group, say G, might 
be significantly higher than the number of tuples in 
other groups. As a result, the processor responsible 
for G will perform most of the operations on aggre- 
gate trees. 

In the tree-sharing scheme, the aggregation trees 
are shared by all processors. Updating an aggrega- 
tion tree concurrently is not permitted. . Therefore, 

'This means, for the example in Figure 1, there are 32 

m 

different departments. 
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data skew may escalate t,he memory contention prob- 
lem. To analyse the effect of data skew several test 
data sets have been created. 

For the first sets of data, the skew ratio is set to 1. 
That is, the number of tuples associated with each 
of the 32 &tribute values is roughly the same. The 
tuples associated with different attribute values are 
stored in a relation in random order. 

,,,oi 

t r  ee-s har ing 
gr oup-par it zon 

Figure 5 128K Tuples with Skew Ratio 1 

2001 

1 group-parition 
O! 5 4 8 l=G 

Figure  6 64K Tuples with Skew Ratio 1 

40 1 

Figure 7 32K Tuples with Skew Ratio 1 

The results produced by these sets of data are 
shown in Figures 5, G and 7. The three figures show 
the running time of the two parallel schemes when 
the number of tuples in the relation is 128K, 64K 

and 32K respectively. From the figures, it can be 
seen that the performance of the two schemes is 
close to each other when a small number of pro- 
cessors (less than 4) are used. When more pro- 
cessors (more than 4) are used, the performance of 
the group-partition scheme is much better than the 
tree-sharing scheme. In fact, when 16 processors are 
used, the group-partition scheme takes less than half 
the time required by the tree-sharing scheme to com- 
plete its operations. 

Under these sets of data, the number of tuples 
in each group is roughly the same. Thus, the load 
of each processor is also roughly the same. From 
Figures 5, G and 7 ,  it can be seen that, under this 
circumstance, increasing concurrency is more effec- 
tive in reducing execution time than decreasing the 
amount of tuples to be checked by a processor. 

0.06 
0.05 
0.04 
0.03 
0.02 
0.01 

0 

Figure 8 Tuple Distribution when Skew Ratio 128 

For the second sets of data, the skew ratio is 
set to 128. Figure 8 shows the percentage of the 
tuples associated with the 32 attribute values. In 
the figure, each attribute value has been given an 
identifier j (0 5 j 5 31). The tuples associated 
with different attribute values are stored in a rela- 
tion in random order. In the group-partition scheme, 
for a processor i (where 0 5 i 5 15), the identi- 
fiers of the attribute values which are in processor 
2's group are { k  1 % x i 5 k 5 2 x (i + 1) - 1) 
where n is the number of processors used in a run. 
For example, if four processors are used in a run, 
{k I O  5 k 5 7 } , { k  18 5 k 5 15},{k I l G  5 - k  5 23) 
and {IC I 24 5 k 5 31) are the sets of identifiers in 
the groups maintained by processors 0, 1, 2 and 3 
respectively. Figures 9, 10 and 11 show the results 
of running the two schemes using these sets of data. 

From the figures, it can be seen that, for each test 
the group-partition scheme is better for 2 processors, 
but shows little improvement from 2 to  4 processors. 
This is because, according to  the distribution of the 
tuples shown in Figure 8, when four processors are 
used, processor 1 and 2 are responsible for processing 
78% of the tuples in the relation. This means that 
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most of the operations are carried out on two pro- 
cessors. Thus: the execution time on four processors 
is only slightly less than with two processors. 

From the figures, i t  can also be seen that the 
tree-sharing scheme outperforms the group-partition 
scheme between 4 and 8 processors. For 16 pro- 
cessors the group-partition scheme is better than or 
equal to the tree-sharing scheme. 

1200 I 

tree-sharing '1 2 4 8 1'6 
Figure 9 128K Tuples with Skew R a t i o  128 

300 1 

- 
'1 2 4 8 16 

Figure 10 64K Tuples wi th  Skew Ra t io  128 

O: 5 4 8 iG 
Figure 11 32K Tuples wi th  Skew R a t i o  128 

5 Conclusions 
In this paper, two approaches, group-partition and 

tree-sharing, to  paralleling an algorithm for comput- 
ing temporal aggregates [4] have been studied. 

In the group-partition scheme, the aggregate trees 
are maintained by different processors. Thus, the 
operations on the aggregate trees can be carried out 
simultaneously. 

In the tree-sharing scheme, aggregate trees are 
shared by all the processors. Thus, operations on 
an aggregate tree cannot be carried out by different 
processors concurrently. 

The results show that, when the skew ratio is 
small and a large number of processors are used 
(more than 4), the group-partition scheme performs 
better than the tree-sharing scheme. However, when 
the skew ratio is large, the tree-sharing scheme out- 
performs the group-partition scheme in most cases. 
Therefore, in practice, when computing aggregate 
functions in parallel, a more efficient scheme can be 
chosen based on skew ratio and the number of pro- 
cessors used in execution. 
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