
Processing Temporal Aggregates in Parallel *

Xinfeng Ye,
Department of Coinputer Science,

University of Auckland,
New Zealand.

Abstract
Temporal databases maintain past, present and

future data. TSQL2 is a query language designed
for temporal databases. In TSQL2, the GROUP BY
clause has the temporal grouping property. In tem-
poral grouping, the t ime line of each attribute value is
partitioned into several sections, and aggregate func-
tions are computed for each t ime partition. This pa-
per describes two approaches to parallelising an al-
gorithm for computing temporal aggregates. The two
approaches have been implemented on a n SGl Pow-
erchallenge SIMP parallel system. The experimen-
tal results show that the performance of the two ap-
proaches depends on data skew ratio and the number
of processors used in the computation.

1 Introduction
Conventional databases are designed to capture

the most recent data, that is, current data. When
new data values become available, the existing data
values are overwritten by the new values (the old
values are removed from the database). Therefore,
conventional databases capture a snapshot of reality.

Although conventional databases serve some ap-
plications well, they are inadequate for applications
in which past or future data are also required. To
overcome this inadequacy, temporal databases have
been developed [3, GI. A temporal database supports
the storage and querying of information which varies
over time. In other words, a temporal database
maintains past, present and future data.

In general, a temporal database has a set of time-
varying relations. Every time-varying relational
schema has two timestamp attributes: time-start
(T,) and time-end (Te). The timestamp attributes
correspond to the lower and upper bounds of a time
interval. In a relation, an attribute value of a tu-
ple is associated with timestamps T, and T, if it is
continuously valid in the interval [T,, T,].

'This work is supported by Auckland University un-
der grant AlS/XXXXX/62090/F3414040, and by ESPRIT
HPCN Project No 22693.

John A. Keane,
Department of Computation,

UMIST,
Manchester, UK.

Aggregate operations are applied to the relations
in databases to compute scalar values. Many query
benchmarks contain a large percentage of aggregate
operations [2, 71. Therefore, in order to improve the
performance of database applications, it is essential
to execute aggregate operations efficiently.

In this paper, two parallel algorithms for process-
ing aggregate operations in temporal databases are
described. The two algorithms are based on the al-
gorithm in [4]. They have been implemented, and
results obtained, on a shared memory multiproces-
sor (SMP) SGI Powerchallenge.

This paper is organised as follows: in $2, temporal
aggregate operations and the algorithm for comput-
ing temporal aggregate in [4] are described; $3 intro-
duces the two approaches to parallelising the algo-
rithm on an SMP; the results of the two approaches
obtained on an SGI Powerchallenge are discussed in
$4; finally, conclusions are given in 55.

2 Temporal Aggregate Operations
Aggregate operations are evaluated over relations

to compute a scalar values, e.g. the number of peo-
ple in the departments of a university, etc. Con-
ventional aggregate operations only show a snapshot
of the database. For example, the query in Figure
l (b) will read the tuples in the Employee relation
and output the number of people in each department
at present. Aggregate operations in a conventional
database consist of two steps 111:

1.

2.

Set up a tuple to store the result of an aggregate
operation;

Scan the relation to find the tuples which qual-
ify for the aggregate operation; and, update the
aggregate result as appropriate.

TSQL2 (51 is a temporal extension to the SQL-
92 query language. TSQL2 extends the GROUP BY
clause of SQL-92 with temporal grouping. In tem-
poral grouping, the time line of each attribute value
is partitioned into several sections (if necessary), and

1373

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 19:24 from IEEE Xplore. Restrictions apply.

aggregate operations are computed for each time
partition.

For example, assume that an Employee relation
in a temporal database is shown in Figure l(a). The
start and end attributes represent the time that a
person starts and ends his/her service in a depart-
ment. The two attributes correspond to tame-start
and tzme-end. CO means that a person still works
for a department when the query is made. From
Figure l (a) , it can be seen that the number of peo-
ple in a department varies over time. The query in
Figure l (b) counts the number of people in each of
the departments during different time periods. Fig-
ure l (c) shows the results of the query. The time
line for each department has been partitioned into
several sections. A partition point is inserted into
the time line of a department if there is a person-
nel change in the corresponding department at that
point of time. Within a time section, the personnel
of the corresponding department remains stable.

Tom
Peter
Bill
Phil

I NAME I DEPARTMENT I START I END I
~~

Mathematics 1 03

Mathematics 3 CO

Physics 0 5
Physics 5 00

I Clark I Phvs i c s I 2 I C O I

1. The tuples in a relation are scanned to deter-
mine the periods of time during which the re-
lation remain unchanged. For example, for the
query in Figure l (b) , the tuples in Figure l (a)

2 .

will be scanned to partition the time line of each
department into several sections. During each
time section, the personnel of the corresponding
department remains unchanged.

The t,upIes in the relation are scanned again to
compute the aggregate value for each of the time
periods found at the first scan. For example, for
the query in Figure l (b) , at the second scan of
the relation in Figure l(a), the number of people
in a department during each of the department’s
time sections will be counted.

The main drawback of the algorithm is the ineffi-
ciency of scanning the tuples in a relation twice.

Kline and Snodgrass [4] describe an algorithm
which only requires the tuples in a relation to be
scanned once. In the algorithm, trees are used to
store the time partitions and the aggregate values
of each partition. The trees are formed when the
tuples are scanned. Each tree represents the aggre-
gation results of one of the attribute values selected
by the GROUP BY clause. Each node in the tree rep-
resents a time section. When a tuple in a relation is
checked, the tree is searched to determine whether
the time sections recorded in the tree need to be
divided further. If the sections need to be divided
further, some nodes representing the new sections
are inserted into the tree. The aggregation values
recorded in the tree will also be updated when the
tuples are checked. After all the tuples have been
checked, the leaf nodes in a tree represent the time
partitions of the corresponding attribute value.

In this scheme, each node in a tree has five com-
ponents, start, end, count, left-child and right-child.
start and end indicate the time period represented by
the node. count records the number of tuples which
are valid within the period. left-child and right-child
are two pointers pointing to the node’s children. The
two children represent a partition of the time period
represented by the node. For example, if a node rep-
resents time period [O,co], the two children of the
node would represent periods [0, U] and [U + 1, CO]

respectively.
For the example in Figure 1, when applying this

algorithm, the trees will be constructed as shown
in Figure 2 . Two attribute values, Physics and
Mathematics, are selected by the GROUP BY clause of
the query in Figure l (b) . Thus, two trees will store
the aggregate results for Physics and Mathematics
respectively.

As shown in Figure 2(a), initially each tree has
one node representing time period [O,CO]. Figure
2(b) shows the trees after the first two tuples in Fig-
ure l(a) have been checked. As Clark’s tuple is valid

1374

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 19:24 from IEEE Xplore. Restrictions apply.

for period [2,03], t,lie time line for Physics is par-
titioned into two sections, [0, 11 and [a, co]. Hence,
two nodes represenhg [0,1] and [2.co] are added to
the Physics’ tree. Due to Clark’s tuple, the counter
of node [a, CO] is set to 1. Similarly, due to Tom’s tu-
ple, two nodes are added t,o the Mathematics’ tree.

Figure 2(c) shows the trees after the third and
the fourth tuple in Figure l(a) have been checked.
As Bill’s tuple is valid for [0,5], time period [2, CO]

is partitioned into two sections, i.e. [2,5] and [G , col.
Thus, two nodes [2,5] and [G , CO] are inserted into the
Physics’ tree as [2,oo]’s children. As [0,5] overlaps
with [0, 11, B i l l ’ s tuple should also be counted as
valid during [0,1]. Thus, the counter of node [0, 11 is
incremented. Similarly, as Peter‘s tuple is valid for
period [3,00], two nodes, [l, 21 and [3, CO], are added
to the Mathematics’ tree.

Figure 2(d) shows the Physics’ tree after the last
tuple in Figure l(a) is checked. Phil’s tuple is valid
for time period [5,co]. Since [5,co] intersects with
[2,5], [2,5] is partitioned into two sections, [2, 41 and
[j, 53. As a result, two nodes, [2, 41 and [5, 51, are
inserted into the Physics’ tree. As [5,co] overlaps
with [G , CO], the counter for [G , CO] is incremented.

Physics m l a Mathcmalics

(3)

Physic I < Mathematics <
I1 0 0

(h)

(d)

Figure 2

3 Computing Temporal Aggregates

In this section, two approaches to parallelising
Kline and Snodgrass’ algorithm [4] on an SMP par-
allel system are described.

In the first approach, group-partition, the tuples
are divided into several groups according to the at-
tribute in the GROUP BY clause of a query. Each
processor is responsible for computing the aggregate
functions of a group. For example, for the query in
Figure l (b) , if there are ten different departments in
the Employee relation and five processors, then five
groups are formed where each group consists of two
departments. Each processor is responsible for com-
puting the aggregate functions of the departments in
a group. That is, each processor computes the ag-
gregate functions for two departments. A processor
maintains the aggregate trees for the departments in
its group. The processor checks all the tuples in a
relation and updates the aggregate trees maintained
by it accordingly. When a processor has checked all
the tuples, the processor outputs the results of the
departments in its group.

in Parallel

ol group n

A A A . . .

f f
I I I

tuplcs (sharcd hy ai1 prmcssors) I
Figure 3

Figure 3 shows the group-partition scheme. In
the scheme, the tuples of the relations are shared by
all the processors. Each processor is given a group
of attribute values (e.g. ’ . Physics department,
Mathematics department etc). The processor is re-
sponsible for maintaining the aggregation trees of
the group. During the execution, a processor fetches
a tuple from the memory. If the tuple corresponds
to an attribute value whose aggregation tree is main-
tained by the processor, the processor updates the
aggregation tree according to the algorithm in [4].
Then, the processor fetches the next tuple. If the
fetched tuple does not correspond to any of the at-
tribute values maintained by the processor, the pro-
cessor simply fetches the next tuple from the mem-

1375

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 19:24 from IEEE Xplore. Restrictions apply.

ory. These operations are repeated until the proces-
sor has checked all the tuples in the memory.

In the second approach, tree-sharzng, one aggre-
gation tree is created for each of the attribute values
selected by the GROUP BY clause in a query. For ex-
ample, for the query in Figure l (b) , an aggregation
tree is created for each department. The trees are
shared by all processors. In tree-sharzng, the tuples
of a relation are divided into several sections. Each
processor only needs to check the tuples in one of the
sections. For example, if there are one hundred tu-
ples in a relation and there are five processors, then

(a) the tuples are divided into five sections where
each section contains twenty tuples; and

(b) each processor is responsible for checking twenty
tuples (i.e. one section).

The aggregation trees are updated by the proces-
sors while the tuples are checked. Figure 4 shows
the tree-sharing scheme.

agcgregation trees (shared by all processors)

4 Results
The two parallel schemes have been implemented

on an SGI Powerchallenge. Each processor is a
MIPS RlOOOO running at 19GMHz. The operating
system is IRIX 6.2. The programs are compiled us-
ing cc with -mp option.

The size of each tuple in a relation is set to 32
bytes. The relation's lifespan has one million in-
stants, i.e. the values for time-start and time-end
attributes are taken from the range [0, 9999991. The
value of the time-start attribute of the tuples is gen-
erated randomly. The lifespan of a tuple (i.e. the
difference between time-end and time-start) varies
between 1 and 1000, and is determined randomly.
The number of the distinct attribute values selected
by the GROUP BY clause has been set t o 32l.

The number of the tuples corresponding t o the at-
tribute values selected by the GROUP BY clause may
vary widely. For example, for the query in Figure 1,
the number of people working for the Mathematics
department may be ten times more than the peo-
ple working for the Physics department. Such an
uneven distribution of tuples is called data skew.

Assume:

processor I processor 2

A A
r l processor n

+I . . . +I
tuples of relations

Figure 4

For the group-partition scheme, as each processor
maintains the aggregation trees of its own group,
the operations on the aggregation trees can be car-
ried out on the processors simultaneously. However,
each processor has to check all the tuples in a rela-
tion. Thus, the group-partitzon scheme trades com-
putat.ion for concurrency.

For the tree-sharing scheme, as the aggregation
trees are shared by all the processors, if several pro-
cessors want to update the same aggregation tree,
the operations have to be run sequentially. How-
ever, instead of checking all the tuples in a relation,
each processor only needs to check a small portion of
the tuples in a relation. Therefore, the tree-sharing
scheme is a trade-off between concurrency and com-
putation.

an attribute value, say A, has n tuples associ-
ated with it;

an attribute value, say B, has m tuples associ-
ated with it;

the number of tuples associated with A is
greater than the number of tuples associated
with the other attribute values; and

the number of tuples associated with B is less
than the number of tuples associated with the
other attribute values.

zi is called the skew ratio.
In the group-partition scheme, each processor is

responsible for maintaining the aggregation trees
of some attribute values selected by the GROUP BY
clause. Data skew may cause some processors t o be
overloaded. This is because, when the skew ratio is
large, the number of tuples in a group, say G, might
be significantly higher than the number of tuples in
other groups. As a result, the processor responsible
for G will perform most of the operations on aggre-
gate trees.

In the tree-sharing scheme, the aggregation trees
are shared by all processors. Updating an aggrega-
tion tree concurrently is not permitted. . Therefore,

'This means, for the example in Figure 1, there are 32

m

different departments.

1376

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 19:24 from IEEE Xplore. Restrictions apply.

data skew may escalate t,he memory contention prob-
lem. To analyse the effect of data skew several test
data sets have been created.

For the first sets of data, the skew ratio is set to 1.
That is, the number of tuples associated with each
of the 32 &tribute values is roughly the same. The
tuples associated with different attribute values are
stored in a relation in random order.

,,,oi

t r ee-s har ing
gr oup-par it zon

Figure 5 128K Tuples with Skew Ratio 1

2001

1 group-parition
O! 5 4 8 l=G

Figure 6 64K Tuples with Skew Ratio 1

40 1

Figure 7 32K Tuples with Skew Ratio 1

The results produced by these sets of data are
shown in Figures 5, G and 7. The three figures show
the running time of the two parallel schemes when
the number of tuples in the relation is 128K, 64K

and 32K respectively. From the figures, it can be
seen that the performance of the two schemes is
close to each other when a small number of pro-
cessors (less than 4) are used. When more pro-
cessors (more than 4) are used, the performance of
the group-partition scheme is much better than the
tree-sharing scheme. In fact, when 16 processors are
used, the group-partition scheme takes less than half
the time required by the tree-sharing scheme to com-
plete its operations.

Under these sets of data, the number of tuples
in each group is roughly the same. Thus, the load
of each processor is also roughly the same. From
Figures 5, G and 7 , it can be seen that, under this
circumstance, increasing concurrency is more effec-
tive in reducing execution time than decreasing the
amount of tuples to be checked by a processor.

0.06
0.05
0.04
0.03
0.02
0.01

0

Figure 8 Tuple Distribution when Skew Ratio 128

For the second sets of data, the skew ratio is
set to 128. Figure 8 shows the percentage of the
tuples associated with the 32 attribute values. In
the figure, each attribute value has been given an
identifier j (0 5 j 5 31). The tuples associated
with different attribute values are stored in a rela-
tion in random order. In the group-partition scheme,
for a processor i (where 0 5 i 5 15), the identi-
fiers of the attribute values which are in processor
2's group are { k 1 % x i 5 k 5 2 x (i + 1) - 1)
where n is the number of processors used in a run.
For example, if four processors are used in a run,
{k I O 5 k 5 7 } , { k 18 5 k 5 15},{k I l G 5 - k 5 23)
and {IC I 24 5 k 5 31) are the sets of identifiers in
the groups maintained by processors 0, 1, 2 and 3
respectively. Figures 9, 10 and 11 show the results
of running the two schemes using these sets of data.

From the figures, it can be seen that, for each test
the group-partition scheme is better for 2 processors,
but shows little improvement from 2 to 4 processors.
This is because, according to the distribution of the
tuples shown in Figure 8, when four processors are
used, processor 1 and 2 are responsible for processing
78% of the tuples in the relation. This means that

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 19:24 from IEEE Xplore. Restrictions apply.

most of the operations are carried out on two pro-
cessors. Thus: the execution time on four processors
is only slightly less than with two processors.

From the figures, i t can also be seen that the
tree-sharing scheme outperforms the group-partition
scheme between 4 and 8 processors. For 16 pro-
cessors the group-partition scheme is better than or
equal to the tree-sharing scheme.

1200 I

tree-sharing '1 2 4 8 1'6
Figure 9 128K Tuples with Skew R a t i o 128

300 1

-
'1 2 4 8 16

Figure 10 64K Tuples wi th Skew Ra t io 128

O: 5 4 8 iG
Figure 11 32K Tuples wi th Skew R a t i o 128

5 Conclusions
In this paper, two approaches, group-partition and

tree-sharing, to paralleling an algorithm for comput-
ing temporal aggregates [4] have been studied.

In the group-partition scheme, the aggregate trees
are maintained by different processors. Thus, the
operations on the aggregate trees can be carried out
simultaneously.

In the tree-sharing scheme, aggregate trees are
shared by all the processors. Thus, operations on
an aggregate tree cannot be carried out by different
processors concurrently.

The results show that, when the skew ratio is
small and a large number of processors are used
(more than 4), the group-partition scheme performs
better than the tree-sharing scheme. However, when
the skew ratio is large, the tree-sharing scheme out-
performs the group-partition scheme in most cases.
Therefore, in practice, when computing aggregate
functions in parallel, a more efficient scheme can be
chosen based on skew ratio and the number of pro-
cessors used in execution.

References
[l] R. Epstein, Techniques for Processing of

Aggregates in Relational Database Systems,
UCB/ERL M7918, Computer Science Depart-
ment, University of California at Berkeley, 1979

[2] J. Gray, The benchmark handbook for database
and transaction processing systems, Morgan
Kaufmann, 1991

[3] N. Kline, An update of the temporal databases
bibliography, A C M SIGMOD Record, 22(4), pp.
66-80, 1993

[4] N. Kline and R. Snodgrass, Computing tempo-
ral aggregates, Proceedings of 11th International
Conference on Data Engineering, pp. 222-231,
IEEE, 1995

[5] R. Snodgrass, I Ahn, G, Ariav, D.S. Batory, J.
Clifford, C.E. Dyreson, R. Elmasri, F. Grandi,
C.S. Hensen, W. Kafer, N. Kline, K. Kulka-
nri, T.Y. Leung, N. Lorentzos, J.F. Roddick,
A. Segev, M.D. So0 and S.M. Sripada, TSQL2
language specification, A C M SIGMOD Record,

[6] A. Tansel, J. Clifford, S. Gadia, S. Jajo-
dia, A. Segev and R. Snodgrass, Temporal
Databases: Theory, Design, and Implementa-
tion, Benjamin/Cummings, 1993

[7] TPC, TPC benchmarkTM, Transaction process-

23(1), pp. 65-86, 1994

ing performance council, 1994

[8] P.A. Tuma, Implementing historical- aggregates
in TempIS, Master Thesis, Wayne State Univer-
sity, 1992

1378

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 19:24 from IEEE Xplore. Restrictions apply.

