
A Petri Net-based Visual Language for Specifying GUIs

Xiaosong Li, Warwick B. Mugridge, and John G. Hosking

Department of Computer Science University of Auckland
Private Bag 9201 9, Auckland, New Zealand

{x-li,rick,john}@cs.auckland.ac.nz

Abstract

We describe PUIST, a visual language f o r graphical
interface specification and prototyping. PUIST uses a Petri
net notation, with a declarative means of defining nets
which have complex, yet regular interconnections. This
significantly improves the understandability of large
specifications, permitting PUIST to be used f o r complex
interface component specification and prototyping.

1. Introduction

PUIST (Petri net based graphical User Interface
Specification Tool) is a visual language for specifying the
static form and dynamic behaviour of graphical user
interfaces. Petri nets [l] are used as the specification
notation. Petri net nodes may be associated with GUI
objects, such as windows and menu items. The PUIST
environment also allows realisation and execution of the
Petri net specifications, permitting prototype user
interfaces to be tested concurrently with their specification.

A common problem with large Petri nets is the
"spaghetti mess" of resulting interconnections that make
them difficult to understand. Thus, despite benefits, such as
their amenability to formal analysis [1,2], they have had
little success as a large scale specification notation. PUIST
solves this problem by introducing modularity into the
specification language in the form of subnets which permit
complex Petri nets to be specified in a generative form.

The paper commences with a brief description of the
PUIST notation, followed by an example illustrating how
large Petri nets arise. The subnet specification notation is
then introduced, together with an example illustrating its
use. A description of related work is followed by a
discussion and conclusions.

2. Basic PUIST notation

PUIST's Petri nets are graphs consisting of two types
of nodes, places (circles) and transitions (boxes), and arcs
connecting places to transitions or vice-versa. Each place

can have a nonnegative integer number of tokens. The right
hand side of Fig.] shows a Petri net with two places (p l ,
p2), three transitions (t l , t2, 13) and one token in place p l .

The state of a Petri net is changed according to the
following transition firing rules:

A transition t is said to be enabled if each input place p of
t has at least w(p,t) tokens, where w(p,t) is the weight of
the arc from p to t.

An enabled transition fires when its associated event
occurs.
* Firing transition t removes w(p,t) tokens from each input
place p of t , adding w(t,p') tokens to each output place p' of
t, w(t,p') being the weight of the arc from t to p'.

Fig.1. A dialog box with the corresponding Petri net

PUIST permits places and transitions to be associated
with GUI component objects. GUI objects are classified
into action and base objects. Action objects, such as
buttons or menu items, are associated with transitions.
GUI events, such as a key press or mouse click, fire the
associated transition. Base objects, such as dialogue boxes
or windows, are associated with places. When the place
holds a token, the corresponding base object is displayed
(window) or enabled (menu). Removal of all tokens closes
or disables the base object. The Petri net execution
semantics thus specify the GUI's dynamic behaviour.

For example, Fig. 1 shows a dialog (associated with
place p l) with three buttons (associated with transitions t l ,
t2, and t3). A token in p l means that the dialog box is
open. Transitions t l and t3 are enabled (as shown by their
icons being filled in) because of the token in p l , thus
enabling the "open" and "Quit" buttons. Place p2 is

50
1049-2615/97 $10.00 0 1997 IEEE

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 19:25 from IEEE Xplore. Restrictions apply.

associated with a window. In Fig.1, i t is empty so the
window is hidden. If the "Open" button is clicked,
transition t l fires, removing the token from pl and passing
tokens back to pl (due to the bidirectional arc) and on to
place p2. This causes the window to open and the "Close"
button to be enabled, as shown in Fig. 2. If the "Close"
button is then selected, the net returns to its initial state.

Fig.2. Dialog box of Fig.1 after the Open button is hit

Each transition may have an associated firing routine (a
Prolog predicate), to be invoked upon firing the transition.
Aspects of the underlying application semantics can thus
be modelled to make the prototype more comprehensive.

To specify complicated dependencies among elements,
PUIST provides three specialised components. Emptying
urcs, are specialised place-to-transition arcs: the transition
may be enabled independently of the number of tokens in
the place. When the transition fires, the place becomes
empty. Inhibitor urcs also connect a place to a transition:
only when the place is empty can the transition be enabled.
As long as an auto-firing transition is enabled it fires, i.e. a
triggering event is not required. Further details of the basic
PUIST notation may be found in [3, 41.

'Plain Text
Bold
Italic
Strike Thru
Outline
Shadow
Underline
Word Underline
Double underline
Superscript
Subscript

Fig.3. A menu with mutually exclusive and mutually
compatible menu items

3. A Larger Example

Fig. 3 is a simplified MacWrite Style mcnu from [51.
Plain Text is the default, so it is ticked (ie selected) if no
other item is ticked. Plain Text and the whole group {Bold,
Italic, Strike Thru, Outline, Shadow, Underline, Word

Underline, Double Underline, Superscript, Subscript} are
mutually exclusive, so if any one in the group is ticked,
Plain Text becomes unticked and vice versa. Bold, Italic,
Strike Thru, Outline, Shadow, group {Underline, Word
Underline, Double Underline} and group {Superscript,
Subscript} are mutually compatible: any number of them
can be ticked at the same time. Superscript and Subscript
are mutually exclusive. In addition, when a ticked menu
item (except Plain Text) is selected, it becomes unticked.

Fig. 4 shows the Petri net specification of this menu.
In contrast to other approaches, such as Lean Cuisine [5],
this specification not only describes the mutuaIly exclusive
and mutually compatible relationships among the menu
items but also their dynamic behaviour. PUIST d s o
generates a prototype implementation of the menu, which
interacts with the Petri net during simulation. The Style
place represents the menu Style. Transition B reprcscnts
menu item Bold and Bp represents the tick status of Bold.
When B fires, Bp gets a token indicating that Bold is to be
ticked. B1 is an automatic firing transition with a weight
two arc leading to it. A second selection of Bold puts a
second token in Bp enabling B 1 which immediately fires.
This consumes all the tokens in Bp so Bold becomes
unticked. The I, ST, 0 and Sh places and transitions
similarly model the Italic, Strike Thru, Outline, and
Shadow menu items.

Sup and Sub represents the mutually exclusive
Superscript and Subscript menu items, Emptying arcs
connect Supp to Sub and Subp to Sup specifying the
mutual exclusivity: if one of Sup or Sub fires the ticking
place for other is emptied. The U, W , D group of
components similarly represent the mutually exclusive
Underline Word Underline, and Double Underline items.

Finally, a significant amount of "plumbing" is
associated with implementing the Plain Text default. The
Plain Text item is represented by transition P, and its tick
status by place Pp. Emptying arcs from place P to the
other style transitions guarantee Plain Text is unticked if
any of those transitions fire. Similarly, emptying arcs from
the other style tick status places to transition P ensure no
other style is ticked if Plain Text is selected. Inhibitor arcs
from each tick status place connect to the Default
automatic firing transition, ensuring it is fired when ALL
items are unticked, setting Plain Text to be ticked.

While Fig. 4 captures the static and dynamic
requirements of the menu, it is too complex to easily
understand, markedly reducing its value as a specification.
It is clear there are repeating patterns and some hierarchical
organisation, but the complexity primarily arises from the
large numbers of interconnections required for the mutual
exclusivity and default behaviuur. In the next section we
describe subnet specifications which permit such complex,
yet regular, Petri nets to be specified simply.

51

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 19:25 from IEEE Xplore. Restrictions apply.

Fig.4. The Petri net for the menu in Fig.3

' U P ' ' W P ' ' U P '

type178

Fig.5 Example subnet icons

4. Subnets

A subnet type specification defines an abstract Petri net
structure which can include recursive generative
components and can produce different Petri nets with

different GUI semantics dependent on specific instantiation
parameters. Subnets are instantiations of a subnet type
specification. Visually, a subnet is represented as a
rectangular icon with named connection points,
representing internal places and transitions accessible from
outside the subnet, along its edges, as shown in Fig. 5.

4.1 Subnet type specifications

Fig. 6 shows a subnet type specification with two
formal parameters. This defines subncts that consist of a
set of mutually exclusive menu items, such as the
SuperlSubscript or Underlining groups of the Style menu.
Type specifications may include a number of cases. Each
case is differentiated by its parameter list, specified in a box
at the top, and its definition inside the window area.
Prolog-style pattern matching is used to select between the
cases when a specification is instantiated. In Fig. 6, the
first case, exclusive_items[l I , has two parameters. The
first is the variable MenuName, while the second matches
an empty list. In the second case, exclusive_items[2], the
first parameter is the menu name variable, while the second
matches the head and tail of a non-empty list, each element
being a menu item name.

The internal specification of each case can contain
standard PUIST elements (places, transitions, and arcs)
together with applications of subnet type specifications,
instantiation bindings, and connection specifiers. The latter

52

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 19:25 from IEEE Xplore. Restrictions apply.

specify the external connections resulting from the subnet,
i.e. which internal components are connectable from
outside the subnet, and their relative positions on the edges
of the subnet icon. In the example in Fig. 6, there are two
connection specifiers for each case: a list of transitions
(a transition collection) on the top edge, and a list of
places (0 place collection) on the bottom. The actual

transitions and places appearing in an instantiation of the
subnet are determined by the internal connection "wiring"
specified by the thick grey lines. In exclusive-items[l],
there are no such "wires", so both lists are empty (ie there
will be no transitions or places exported from the
instantiation of exclusive-items[11).

'ManuName'Jl

'MenuName',['EName'l'E I tems'l

a m ' , 'MemNam', 3,

'.
* C

Fig. 6: Subnet type specification for exclusive items

53

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 19:25 from IEEE Xplore. Restrictions apply.

a

DP

Dauto

Fig.7 The underline group subnet instantiated from
the subnet type of Fig.6

In the exclusive-items[2] case, two transitions and a
place are connected together to represent one element in the
mutually exclusive set. Instantiation bindings (0) are
used to name and initialise the internal transitions and
places. A variety of parameter binding options are provided
for a transition, such as: its name; whether it is autofiring;
whether a GUI object is associated with it and, if so, its
type and instantiation parameters. Places have similar
binding options. For example the top transition is defined
to be a menu-item GUI object with name EName,
associated with menu MenuName (and other parameters to
initialise the menu item). The names of the middle place,
representing the ticking or selection status of the
menu-item, and the bottom (auto-firing) transition are
defined to be the menu item name with an additional "p"
and "auto" appended respectively. On the right, there is a
recursive application of the exclusive-items Petri net type
with the same menu name and the tail of the menu item
name list as arguments. The exclusive-items[l] case acts
as the base case of the recursive specification.

r 'MenuName'!',['CName' I ' C I tems'l

' C Ma me I, i m e m i t e m(' C N
a m ' , 'MewNat", 3,

Fig. 8: Recursive case of compatible-items specification

54

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 19:25 from IEEE Xplore. Restrictions apply.

The output connection wiring (grey) prepends (indicated
by the ordering of the "pin" connections) the menu item
transition to the top list of menu item transitions exported
from the recursive application. Similarly it prepends the
ticking status place to the recursively exported list of
ticking status places at the bottom of the subnet type.
Internally, an emptying arc connects the menu item
transition to each of the places, that are exported from the
recursive instantiation. Likewise, each of the exported
transitions is connected by an emptying arc to the ticking
status place. These single lines thus represent collections
of arcs, simplifying the complex interconnections visible
in Fig. 5 . The arcs ensure only one of the generated
elements has its ticking status set.

4.2 Subnet instantiation

A subnet is instantiated by supplying actual parameter
values to a Petri net type specification via a dialog box.
Fig. 7 shows the Petri net resulting from an instantiation
of exclusive-items with three entries in the menu item list
(U,W,D). This net corresponds to the underline mutually
exclusive menu item group of the style menu example.
The instantiation can also be viewed as a subnet icon (top
subnet icon in Fig. 5) , which hides the internal wiring of
the generated Petri net and just presents the exported
transitions and places in the order specified by the recursive
generation across the top and bottom respectively of the
subnet icon. These can then be "wired" to as if they are any
normal transition or place.

5. Specification of the Style Menu

The exclusive-items type can be used as one
component of a complete specification for the Style menu
example of Fig. 3 . In addition, a specification for the
mutually compatible components is needed, together with
the "plumbing" to manage the default Plain case.

Fig. 8 shows the recursive case of a specification for a
compatible items subnet type. This follows a similar form
to the mutually exclusive case, but omits the emptying
arcs, allowing multiple ticking status places to hold tokens
at once. The base case (not shown) is empty. Fig. 9 (left)
shows the style-items subnet type which specifies all of
the style menu items, except the Plain Text item and its
default processing. Style-items is parameterised by three
menu item lists corresponding to the "standard" styles, the
underline group, and the super/subscript group. Constant
bindings could just as easily have been used in this
specification, avoiding the parameterisation. Exported are a
list of the menu item transitions and ticking status places
of all of the composite menu items.

Figure 9 (right) shows the whole style menu
specification, including the Plain Text menu item, and the
default processing connections. The structure of the menu
is now quite clear: the emptying arcs have a similar role to
those in the mutually exclusive items specification, with
the inhibitor arcs associated with the Default automatic
firing transition, ensuring the Plain Text is selected if none
of the others are. The only component exported is the place
representing the Style menu as a whole. Again, the
specification has been parameterised by the menu item data,
although constant lists could just as easily have been used.
Fig. 10 shows an automatically generated subnet which
results from instantiating the style menu type of Fig. 9
(with appropriate menu item names, etc) together with the
prototype GUI menu component. The resulting Petri net is
live and hence the prototype menu can be tested
dynamically.

6. Related Work

A number of research groups are investigating the use
of Petri net specifications of GUIs. Most notable is the
work of Palanque and his associates developing the PNO
(Petri Nets with Objects) and I C 0 (Interactive Cooperative
Objects) systems [6,7]. These are based on Colored Petri
nets, using typed tokens for comunication. However, these
systems lack any form of modularity such as the subnet
types of PUIST. Other groups have been investigating
formal properties that can be extracted from analysis of
computer systems specified by Petri nets [1,2].

The work most closely related to the Petri net type
specification mechanism comes from another area: hardware
design specification. Hardware design involves specification
of wiring between complex, but often repeated, elements, a
problem very similar to that addressed by PUIST. Smedley
[SI, for example, describes a visual language for specifying
digital circuits which uses a modular/recursive wiring
approach similar to that of PUIST. Smedley's system is
itself implemented using Prograph [9], a visual dataflow
programming language which also has modularh-ecursive
structuring similar to that of PUIST, but with dataflow
rather than Petri-net token flow semantics. Recently Cox
and Smedley have also applied similar techniques to
specification of structured graphical objects [lo].

7. Discussion and Conclusions

We have presented and implemented a visual language
for specifying GUIs using a Petri net notation. The basic
notation allows simple GUI components to be rapidly
specified and prototyped. The subnet formalism provides a
novel and useful form of parametric abstraction permitting
straightforward reuse of specifications.

55

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 19:25 from IEEE Xplore. Restrictions apply.

r 'MenuName'.'List 1 '.'ListZ'.'Lisi3' I i 'MenuName'.'TName','List 1 '.'ListZ'.'ListJ' I

Fig. 9: style-items subnet type specification (left) and whole style menu subnet type specification (right)

File Edit Search Windows Fonts Eva1 Ph-F PN-M PN..UJin PN-H

Strike Thru

Word Under1
Double Unde
Superscript

~ ~ ~ _ _ - _ _
~~ _ _ _ ~- ~~- style80 __ __-

line
!rline

I Subscript I I

Fig. 10: An instantiated style menu specification

56

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 19:25 from IEEE Xplore. Restrictions apply.

The visual formalism allows both hicrarchical and
recursive composition of GUI components to be specified,
overcoming the problems of diagram complexity that
typically arise from the use of larger Petri nets. The visual
notations used for subnet specification usc a similar style
to Prograph [9] method definitions in their use of
attachment points and different flavours of “flow“ wire, but
differ significantly in Lhe underlying semantics represented
(Petri net token flow rather than dataflow).

While the languagc has a simple notation, it is capable
of defining complex Petri nets. It is particularly good for
Petri nets with complex and repeated pattern structures,
where abstractions can be applied.

We are currently constructing a library o f standard
subnet types, including the exclusive and compatible items
types, and extending the range of systern specifications
beyond that of simple GUX componentry. We are also
investigating the application of formal analysis tcchniques,
previously developed for Petri nets [11, to the analysis of
GUIs specified using PUIST. We expect to extend such
analysis to the evaluation of specified 6171s according to
Petri net properties, with visualization of the evaluation
metr ia .

Other possibilities for the application of PUIST’s
subnet formalism are also being investigated. These include
the provision of modular specifications for Petri-net based
software process specifications, such as SLANG [1 I] and
ProcessWEAVER [121

efesences

[I] W. Reisig, Combining Petri nets and other fornial
methods, LNCS 616, pp24-39, 1992.

[2] C. Sibertin-Blanc, Cooperative ners, LNCS 815, p471-
490, 1994.

[3] X. Li and W.B. Mugridge, Petri Net Based Graphical Uscr
Interface Specification Tool, Proceedings of Software
Engineering Education and Practice Conference, IEEE CS
Press, pp.50-57, 1994, November.
X . Li anti W.B. Mugridge, Extensions to the PUIST User
Interface Specification Tool, Proceedings of Software
Engineering Education and Practice Conference, IEEE CS
Press, 1996, January.
M.D. Apperlcy and R. Spence, “Lean Cuisine: a low €at
notation for menus”, Interacting with Computers, Vol 1

P.A. Palanque, R, Bastide, L. Dourte, and C. Sibertin-
Blanc, Design of user-driven interfaces using Petri nets
and objects, LNCS 685, pp 569-585, i 993 .

171 R . Bastide and P.A. Palanquc, A Petri net based
environment for the design of event-driven interfaces,
LNCS 935, pp 66-83, 1995.

[8] T.J. Smedley, A high-level language for the graphical
description of digital circuits, Proc VL‘9.5, IEEE CS Press,
pp77-82, 1995
P.T. Cox, F.R. Cilcs and T. Pietrzykowski, “Prograph: A
step towards liberating programming from textual
conditioning”, [EEE Workshop on Visual Languages,
pp. 150.156, October1989.

[lo] P.T. Cox and T.J. Smcdley, A visual language for the
design of structured graphical objects, Proc VL’96, IEEE
CS Press, pp296-303, 1996.

11 I] Bandinelli, S., Fuggetta, A., Ghezzi, C., and Lavazza, L.,
SPADE: an environment f o r software process analysis,
design and enactment, Software Process Modelling &
Technology. Finkelstein, A. and Kramer, J. and
Nuseibeh, B. Eds, Research Studies Press, 1994.

[121 Fernstrom, e., “PProcessWEAVER: Adding process
support to UNIX,” in 2nd International Conference on
the Software Process: Continuous Software Process
Improvement, IEEE CS Press, Berlin, Germany, February

[4]

[SI

NO 1, pp. 43-68, 1989.

[6]

191

1993, pp. 12-26.

57

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 19:25 from IEEE Xplore. Restrictions apply.

