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ABSTRACT 

In this paper, we examine the problem of robust sta- 
bilization of time-delay nonlinear systems which are in 
parametric strict feedback (PSF) form. We propose an 
iterative procedure of stabilizing controller construction 
similiar to backstepping procedure for this class of time- 
delay nonlinear systems. 

1. INTRODUCTION 

Robust stabilization for nonlinear structural systems 
has long been an interesting and challenging problem. 
Since the inception of the matching conditions in the 
control literature by Leitmann’s paper [7], a number 
of systematic design procedures has been developed to 
stabilize nonlinear systems satisfying these conditions; 
see [3, 2, 1, 4, 11, 5, 81 for example. With the recent 
development of geometric theory for nonlinear feedback 
systems, there emerges a number of robust controller 
design techniques for linearizable nonlinear systems 
with mismatched nonlinearities/uncertainties. In [ti], 
an iterative procedure known as backstepping has been 
developed to design adaptive controllers which glob- 
ally (locally) stabilize systems which are in so-called 
parametric-strict-feedback (parametric-pure-feedback) 
form. In [SI, the authors considered systems which are 
of a much more general form than the PSF. An iterative 
procedure, similiar to backstepping procedure has been 
used to construct a globally stabilizing state feedback 
controllers for those systems. Nonlinear systems with 
block-traingular structure have been further studied in 
[lo] where the backstepping procedure is also used to 
provide global stabilization. 

Recently, the problem of stabilization of uncertain time- 
delay systems has been of great interest to many re- 
searchers. The motivation of this paper stems from 
the fact that all the aforementioned results assumed 
that the nonlinear systems under investigation are free 
of time-delay. As we know that, in general, the exis- 
tence of time delay degrades the control performance 

and sometimes makes the closed-loop stabilization dif- 
ficult, especially when the systems are nonlinear. What 
we intend to do in this paper is to propose an iterative 
procedure for designing a stabilizing controller for un- 
certain time-delay nonlinear systems which are in PSF 
form. 

The rest of the paper is organised as follows: In Sec- 
tion 2, we give a brief description of nonlinear systems 
which will be discussed throughout the paper. In Sec- 
tion 3 we propose an iterative robust controller design 
procedure for the class of nonlinear systems outlined in 
Section 2. Some conclusions are drawn in Section 4. 

2. SYSTEM AND PRELIMINARIES 

The class of single input time delay nonlinear systems 
to be considered in this paper is given by 

where Xi 
are the state variables, wi(t) = [ z l ( t ) ,  . . . , xi(t)] are the 
state vectors, wi(t - T )  = [xl(t - T ) ,  . . . ,  xi(t - T ) ]  are 
the delay state vector and U E R is the control input of 
the system. The nonlinear functions Fi (.) , Hi (.) , Gi (.) 
and Hi( . )  with Fi(0) = 0 and Hi(0) = 0 are assumed 
to satisfy the following conditions: 

C1: The nonlinear function Fi(wi(t)) is assumed to be 
a Caratheodory function and to satisfy 

where KF, 
tions. 

( w j ( t ) )  are known smooth nonlinear func- 
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C2: The nonlinear function Hi(wi(t - T ) )  is assumed 
to be a Carathkodory function and to satisfy 

where K ~ ; ~ ( w j ( t  - T ) )  are known smooth nonlinear 
functions. 

C3: 0 < Gi(wi) 5 yi where y; are known positive 
constants. 

To simplify our controller design, we introduce the fol- 
lowing nonlinear coordinates transformation: 

where ri(t)  = [ ~ l ( t ) ,  . . . , z ; ( t ) ]  and di-l(ri-1) with 
& - l ( O )  = 0 are some smooth functions. The system C 
under transformation 7 becomes 

2; = f i ( ' i ( t ) )  + hi(+ - .)) 
+ 9i(Ti(i))[Zi+l + 4i(ri(t))] + $i-l(ri(t)) 

where f i ( r i ( t ) ) ,  hi(ri(t - 7)) and gi(r i ( t ) )  are functions 
F i ( w i ( t ) ) , H i ( w i ( t  - T ) )  and Gi(wi(t)) in new coordi- 
nates, respectively. Also 

+ 9P(rP)[zP+l + d P ( d l )  (2.4) 

It is readily seen that Conditions C1- C3 under trans- 
formation 7 are given as: 

TC1: I f i ( v i ) l  5 E;=, Izjlpij(rj(t)) where p i j ( ~ j ( t ) )  
are known smooth nonlinear functions. 

TC2: (hi(ri(t - .))I 5 E;,, I ~ j ( t  - ~ ) I ~ i j ( r j ( t  - T)) 
where eij ( z j  (t - T ) )  are known smooth nonlinear func- 
tions. 

TC3: 0 < gi(ri) "/; where ~i are known positive 
const ants. 

Remark 1. We stress that conditions given in TC1 and 
TC2 are very weak. As the matter of fact, for any given 
smooth function, say M ( z l , z 2 , .  . . , zi) with M ( 0 )  = 0,  

3. hIAIN RESULT 

In this section, we present a design procedure, similiar 
to the backstepping procedure for constructing a nonlin- 
ear asymptotically stabilizing controller for the system 
C satisfying Conditions Cl-C3. The proof is given by 
explicitly show how to construct a nonlinear asymptot- 
ically stabilizing controller. 

Theorem 3.1. If the system ('E) satisfies Conditions 
Cl-C3, then there exists a state feedback controller such 
that the closed-loop system is asymptotically stable. 

Proof. Construction of a E's controller: The design 
procedure adopted here is very similar to  backstepping 
procedure [ lo ,  6, 91. 

Step 1.  Under transformation 7, the system E's first 
equation becomes 

il = fl(Zl(t)) + Ihl(Zl(t - 7)) 

+ 9l(Zl(t))[Z2 + 41(Z1)1 (3.1) 
First let ignore the term gl(zl(t))z2 and choose the 
Lyapunov function Vl(z1) = t z ; ( t )  + LLT S(z l ( r ) )  da 
where S(zl(a)) is a ]positive function yet to  be deter- 
mined. The time-derivative of Vl(z1) along (3.1) reads 

By triangular inequality and Conditions TC1 and TC2, 
(3.2) becomes 

Choose 

we have 
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(3.4) 

In order to have Vl(z1) 5 0, we may select 41(z1) as 

where 

and e1 is a positive constant. Substitute (3.5) into (3.4) 
yields 

n 1 
2 Vl(Z1) <. --c 1&t) - 2”?(t - 7 )  x 

Step 2. The second equation of system C under trans- 
formation 7 becomes 

where 

$1 (7-2) = a0lo(fi (21 ( t ) )  
dzl 

Choose a new Lyapunov function as 

where Sn(ra(a)) is a positive function yet to be com- 
puted. Using (3.7), it is easy to  show that the time 
derivative of (3.10) along (3.1) and (3.8) is given by 

V Z ( 7 - 2 )  5 - -C1Z1 n 2 . 1  - -2,”(t - T )  x 
2 2 

1 el1 (21 (t - .)I + (. - 1)eL (21 (t - .)) 

+ Zlgl(zl(t))Zz + .Z{fZ(TZ(t)) + h2(21(T2(t - T ) )  

+ Z2(t)g2(T2(t))[Z3 + 4 2 ( T Z ( t ) ) l  

+ S Z ( T Z ( t ) )  - SZ(T2(t - 7 ) )  

(3.12) 

Let us derive an upper bound for the term za$l(zl) + 
zlgl ( ~ 1 ) ~ 2 .  Using triangular inequality, we have 

where @1(z1) is a known smooth function (smooth- 
ness of @1(z1) is assured by Conditions TC1 and TC2). 
Choose 

1 
S(TZ(U) )  = #“)rcn - M Z ( T Z ( “ . ) )  

n 

+ E e,22(r2(4)1 (3.14) 

and with the upper bound derived in (3.13) and the 
choice of S( ~2 ( U ) )  given in (3.14), (3.12) becomes 

2=3 

(n  - 1)c1z,2 - -2?(t  1 - T )  x 
2 V 2 ( T Z )  I -___ 

e,21b1 (t - 

2 

1 + (. - 2)@?1(Z1 (t - .)) 
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n I (. - 2)@;2(1‘z(t - TI)  + @i22(T2(t - .I) (3.15) 
i=3 

Similiar to Step 1, we first forget about the term con- 
taining z3. Choose 

where 

and with the choice of ( 6 2 ( ~ 2 )  given in (3.16), (3.15) 
becomes 

1 
2 

llT2112 - -2?(t - T )  x ( n  - 1)cl 
V2(r2) I - 

i=3 1 

Step k (3 5 IC 5 n - 1). Under transformation 7, the 
system E’s kth equation becomes 

where 

Choose a new Lyapunov function as 

where S ~ ( T ~ ( U ) )  is a function yet to be found. Follow 
from Steps 1 and 2, it can be shown that the time- 
derivative of Vk  ( r k )  reads 

Again by triangular inequality and Conditions TC1 and 
TC2, Eq. (3.22) becomes 

k - 1  
(n  + 2 - k )  

V k ( T k )  L 
r=l  

2 

Let us derive an upper bound for the term 
z k $ k - l ( ~ k - l )  + z k - l g k - l ( T k - l ) z k .  By using triangu- 
lar inequality, we obtain 

. k-1  

where Qk-1 ( ~ k -  1) is some smooth nonlinear function. 
Once again, forget about the term containing z k + 1 .  

Choose 

n 
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and with the choice of s k ( T k ( 6 ) )  given in (3,25) and the 
upper obtained in (3.24), we have 

Choose q!Jk(Tk) as 

- Step n. Under transformation 7, the last equation be- 
comes 

where 

Choose a new Lyapunov function a5 

where Sn(m(a))  is a function yet to  be determined. It 
can be shown that the time derivative of (3.32) reads 

With triangular inequality and Conditions TC1 and 
TC2, (3.22) becomes 

Again, let us derive an upper bound for the term 
zn&-l(rn) + zn-Ign(rn)zn. By using triangular in- 
equality, we have 

where a n - l ( r f l - l )  is a smooth function. Choose 

and with the choice of Sn(rn(c)) given in (3.36) and 
the upper bound derived in (3.35), we have 

Now choose ut t )  as 

where 

(3.37) 

(3.38) 

r n  

(3.40) 

Clearly, (3.40) implies that the variables zi are expo- 
nentially stable. Now all we need to do is to show that 
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system C is asymptotically stable or zi are asymptoti- 
cally stable. From the transformation defined in (2.1), 
we have the following relationship: 

1211 = 1211 (3.41) 

5 Izil+ l&(ri)l, for i = 2 , 3 , . . . , n  (3.42) 

Note that $ i (O)  are zero because of pi (0)  = 0 and 
cpi(0) = 0. Clearly from (3.42), we deduce that zi are 

12il = IZi + & ( T i ) /  

asymptotically stable. m 

4. C O N C L U S I O N S  

In this paper, the problem of robust stabilization of 
time delay nonlinear system with a triangular struc- 
ture has been addressed. An iterative procedure with 
similiar to backstepping procedure has been proposed to 
construct a robust control which stabilizes this class of 
time-delay nonliner systems. 
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