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Abstract

We present a new open source software tool called BEASTling, designed to simplify the

preparation of Bayesian phylogenetic analyses of linguistic data using the BEAST 2 plat-

form. BEASTling transforms comparatively short and human-readable configuration files

into the XML files used by BEAST to specify analyses. By taking advantage of Creative

Commons-licensed data from the Glottolog language catalog, BEASTling allows the user to

conveniently filter datasets using names for recognised language families, to impose mono-

phyly constraints so that inferred language trees are backward compatible with Glottolog

classifications, or to assign geographic location data to languages for phylogeographic anal-

yses. Support for the emerging cross-linguistic linked data format (CLDF) permits easy

incorporation of data published in cross-linguistic linked databases into analyses. BEASTl-

ing is intended to make the power of Bayesian analysis more accessible to historical lin-

guists without strong programming backgrounds, in the hopes of encouraging

communication and collaboration between those developing computational models of lan-

guage evolution (who are typically not linguists) and relevant domain experts.

Introduction

Recent years have seen an increased interest in the use of computational and especially Bayes-

ian methods for inferring phylogenetic trees of languages within an explicit, model-based

framework [1–13]. The recency of this trend means there is currently a lack of software tai-

lored to the needs of this sort of analysis of linguistic data. Thus, published analyses to date

have all relied on software developed for biological phylogenetics, such as BayesPhylogenies

[14], BEAST [15, 16] or MrBayes [17, 18].

Amongst these existing pieces of software, BEAST 2 is unique in that it was deliberately

designed from the ground up to support user extensibility. It is possible for users to write pack-

ages which extend the phylogenetic modelling capabilities of BEAST 2, by e.g. specifying new

tree priors or new substitution models. This makes BEAST 2 an appealing platform for the

burgeoning field of computational linguistic phylogenetics, as those working in the field have
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the ability to develop language-specific models and readily share them amongst themselves, in

a process requiring no input from the BEAST 2 development team.

In this paper we provide a brief overview of the application of computational phylogenetics

to lingustics and introduce a new software tool named BEASTling, which provides an interface

to BEAST 2 designed specifically for linguistic applications. The goal of BEASTling is to make

the specification of BEAST analyses for linguistic phylogenetics simple and accessible, even

when the analyses are large or complicated, and to encourage the reproduction, validation and

extension of published analyses. By making the power of BEAST accessible to a broader range

of interested researchers in linguistics, we hope to foster increased collaboration between

experts in linguistics and computational evolution to further and faster develop a formal,

quantitative and data-driven approach to historical linguistics.

Bayesian linguistic phylogenetics

The recent explosion of interest in linguistic phylogenetics has quickly settled on a standard

framework of Bayesian inference using probabilistic models of language evolution. In this

framework, languages are placed into a binary phylogenetic tree and linguistic data, such as

cognacy judgements or structural/typological observations, are associated with the leaf nodes

of the tree, representing extant or recently extinct languages. The data is assumed to have been

generated via a probabilistic process defined on the tree, with features taking a particular value

at the root and then potentially changing along each branch. The probability of a feature

changing value depends upon the length of the branch. The model for calculating probabilities

can be simple or quite complicated, with multiple parameters controlling the behaviour.

Bayesian inference is performed using Markov Chain Monte Carlo (MCMC). In this proce-

dure, the phylogenetic tree and other model parameters are typically initialised to random

starting values. Then, both the tree and the parameters are subject to a long series of small, ran-

dom changes, e.g. part of a tree may be “pruned” off and then “regrafted” elsewhere, or the

length of a branch may be scaled by a random factor. If one of these randomly proposed

changes increases the likelihood of the data, it is accepted, whereas if the likelihood is

decreased the change may be rejected with some probability proportional to the decrease. At

regular intervals, the tree and all model parameters are sampled until a large number—say

10,000—of sampled trees has been collected. The probabilities of accepting or rejecting pro-

posals are calculated in such a way that the resulting sample of trees represent independent

samples from a posterior distribution, which uses Bayes’ theorem to combine the likelihood of

the observed data under the chosen model with a prior distribution which represents a priori
expectations about the tree.

One of the strengths of this framework is that the prior probability distribution can be used

to include existing linguistic knowledge in an analysis. For example, tree topologies which vio-

late some known truth—that a particular set of languages are related—can be given a prior

probability of zero, in which case they will never be sampled. Or, if the approximate age of a

common ancestor of some languages is known, say due to the dating of written artifacts, then

a prior distribution can ensure that trees are increasingly less likely to be sampled as the age

they assign that ancestor deviates further from the provided estimate. Any aspect of the model

may be constrained via the use of prior distributions if the researcher believes that such a

restriction is well-supported by previous research.

Another strength is that the output is not a single tree or a single set of parameter values,

but rather a large collection of sampled trees and values. The variation across the trees in the

posterior sample conveys information about how certain the linguistic data suggests we should

be about certain details. Two languages may be siblings in 900 out of 1,000 sampled trees if the
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data strongly supports their being related, while two other languages may be siblings in 500

trees but unrelated in 500, suggesting that the data is inconclusive on this point. Just as any

aspect of the model may be constrained by the prior, every aspect of the model also automati-

cally comes with a direct measure of probabilistic uncertainty.

This framework is widely applicable to problems of interest in historical linguistics. Things

which can be estimated, complete with measures of uncertainty, include the internal structure

of family trees, the time depth of the root of the tree or the most recent common ancestor of

any set of languages, the geographic location of protolanguages, and the amount of variation

in the rate of change across features in dataset (e.g. across meaning slots in cognate data or

across different features in a typological survey), as well as providing an explicit ranking of fea-

tures by rate. Prior distributions can be used to ensure that estimates are consistent with

accepted or theorised relationships, age estimates and geographical locations. Multiple kinds

of prior information can be combined in a single analysis without problems.

Design and implementation

BEASTling analyses are focussed on the inference of phylogenetic trees from linguistic data. It

is also possible for users to provide a known and trusted phylogenetic tree which is held fixed

during the analysis, so that model parameters may be estimated conditional on that tree.

BEASTling is not itself a tool for performing MCMC analyses, but rather it is a tool to facili-

tate configuring an existing MCMC tool, namely BEAST. When using BEAST, analyses are

specified using a single eXtensible Markup Language (XML) file, which contain the input data,

all the details of the modelling, including tree constraints, substitution models, clock and

mutation rate variation, prior distributions for trees and all parameters, as well as the various

mechanisms for drawing MCMC proposals, details on which parameters to log, etc. These

XML files have a complicated structure which may appear cryptic to new users, and for com-

plex analyses of large data sets the files can easily be thousands of lines long.

BEASTling takes the form of a command-line program written in the Python programming

language (Python versions 2.7 and 3.4+ are supported) which transforms its own kind of con-

figuration file into a BEAST XML file, effectively specifying an alternative configuration file

format for BEAST. Noteworthy modelling features supported by the current BEASTling

release (1.2.1) are Gamma-distributed rate heterogeneity across features, relaxed and random

local clocks, age calibrations on clades, monophyly constraints, a range of substitution models

suitable for linguistic data and one phylogeographic model, which supports spatial calibrations

on clades. Full details of the modelling options available in BEASTling are given in the section

“modelling details”.

The format of BEASTling’s configuration files and the process by which they are trans-

formed was designed to satisfy the following design criteria.

Easy model specification

BEASTling configuration files are designed to be short, neat, human-readable, and intuitively

editable by hand. Analyses are specified at a high-level of abstraction, roughly corresponding

to the details that a typical user might have in their head when designing an analysis, e.g. “I’d

like to infer a phylogenetic tree of the Austronesian languages, using structural data from the

World Atlas of Language Structures [19] (WALS) and the Lewis Mk substitution model [20],

with a relaxed clock and rate variation across features”. Typical BEASTling configuration files

are approximately 10-20 lines long, meaning they can be viewed on-screen in their entirety

without scrolling and can easily be included inline in emails or in publications. An example

valid configuration file, implementing the Austronesian analysis just described, is shown
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below. The configuration also includes a calibration on the age of the protolanguage (4,700-

5,700 years).

[admin]
basename= austronesian_wals
[MCMC]
chainlength= 50000000
[languages]
families= Austronesian
monophyly= True
[model wals]
data = wals_data.csv
model = mk
rate_variation= True
[clock default]
type = relaxed
[calibration]
root = 4700 - 5700
The syntax of BEASTling configurations files is intended to be expressive: Often only one

or two lines need to be added to a configuration in order to include powerful additional

modelling components which may correspond to many hundreds of lines of XML. The user is

expected to provide only the minimal amount of information required for BEASTling to make

sensible high-level decisions about the underlying phylogenetic models in accordance with

emerging best practices. This approach necessarily affords the user less control than requiring

them to explicitly specify each and every detail of the analysis, however BEASTling attempts to

provide sufficient control and flexibility that appropriate models can be specified for most

investigations.

Encouragement of replication

Ideally, scientific software should not only make it easy for the original researcher to tell the

computer what to do, but should also make it easy for other researchers to understand the

original researcher’s intentions and to use published work as a departure point of work for

their own. It is not only important that other researchers be able to exactly replicate a pub-

lished analysis to confirm the results, but it should also be as easy as possible to make small,

precise changes to published analyses in order to investigate the consequences of things such

as changing the values of contentious data points or exploring different modelling assump-

tions. Further, software should encourage “shoulder standing”, so that published analyses can

be easily improved and extended with additional data or more realistic models. BEASTling’s

clean configuration files serve this purpose: not only are they easy to write, they are easy to

read and easy to rewrite. Several additional features are intended to further encourage and

facilitate replication.

When a BEASTling configuration file is transformed into a BEAST XML file, the text of the

original BEASTling configuration is embedded at the start of the XML file in a comment

block, along with the date and time the transformation was performed and the version of

BEASTling which was used. Because of the clean, high-level nature of BEASTling configura-

tions, this goes a long way to making the generated XML file self-documenting. The broad

nature of an old, forgotten analysis file, or one being subject to peer-review, can be understood

at a glance, even if the corresponding XML is thousands of lines long. Furthermore, BEASTl-

ing provides an option to embed copies of all referenced data files in the XML file as additional
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comment blocks. The resulting XML file is then entirely self-contained, allowing researchers

to distribute in a single file everything required to precisely reproduce and to modify the analy-

sis in question.

In addition to the XML file, BEASTling can optionally also produce an “executive sum-

mary” report (in MarkDown format) detailing the languages and modelling involved in an

analysis, and a map of the languages’ locations (in GeoJSON format). Both of these files will be

automatically rendered by GitHub if committed to a repository there, encouraging users to

share their analyses in this way, which in turn further encourages replication and modification

of published analyses.

Broad data compatibility and intelligent processing

Reflecting its origin in computational biology, phylogenetic software often expects input data

to be specified in file formats designed for genetic data, such as the NEXUS file format [21].

Linguists are unlikely to have their data formatted in this way, meaning they are forced to

reformat their data prior to analysing it. While no widespread standard file format is yet in use

for linguistic data, BEASTling supports two different structures of specifying linguistic data

tables, which can be stored in comma separated value (CSV) or tab separated value (TSV) file

formats: one is an emerging standard file structure, expecting and encouraging further adop-

tion; the other is a “lowest common denominator” structure, making data provision easy in

the interim. Files in the TSV and CSV formats can be easily viewed or edited using a wide vari-

ety of programs on any computer platform, including standard spreadsheet applications and

existing libraries for most commonplace programming languages.

The first data file structure BEASTling supports is the Cross-Linguistic Data Format [22], a

recently introduced format standardizing exchange of data within the Cross-Linguistic Linked

Data project and related database projects (see http://cldf.clld.org/ for more on CLDF). This

makes it extremely easy to specify analyses using data from existing databases which use the

CLDF format, such as WALS, South American Indigenous Language Structures [23] (SAILS)

and the electronic World Atlas of Varieties of English [24] (eWAVE). A very similar data

structure is used by LingPy [25], a Python library for historical linguistics.

The other is a simple “matrix” structure, in which each row corresponds to one language,

and contains that language’s datapoints for every linguistic feature in the dataset, with each

column corresponding to one feature.

Regardless of which of these formats is used, BEASTling aims to provide flexibility in the

encoding of data, to minimise the amount of work required to use existing data files. As long

as the data file conforms to one of the two supported file formats, names for languages and fea-

tures can be arbitrary strings (though each language and feature must have a unique name).

Feature values similarly can be arbitrary strings, with distinct strings being treated as distinct

values. Thus, BEASTling will readily accept data files where different feature values are coded

numerically (0, 1, 2, . . . or 1, 2, 3, . . .), alphabetically (A, B, C, . . .) or in any consistent freely

written form (SOV, SVO, VSO, VOS, OVS, OSV for word order, for example). Missing data

points can be represented by question marks (?).

BEASTling can also automatically handle many data-preprocessing chores such as automat-

ically filtering a dataset down to only a specified set of languages and/or features, removing

languages which have only missing data for the selected feature set, removing features which

have only missing data or constant values for the selected language set, and recoding cognate

judgements into independent binary features. It is possible to specify multiple datasets in a sin-

gle BEASTling analysis, and each dataset may be assigned a different substitution model. This

allows combining cognate data and structural data in a single analysis, with appropriate
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models used for each. If the languages present in multiple datasets do not match exactly,

BEASTling can produce analyses using either the intersection or the union of the languages

involved. If the union is specified, languages will be treated as having missing data for all fea-

tures defined in datasets from which they are absent. Automating this sort of data processing

not only saves time, but also reduces the likelihood of researchers making minor errors when

performing the changes manually, which may go unnoticed.

Integration of expert knowledge

The recent dawn of computational methods for historical linguistics should not be an impetus

for discarding the valuable findings of decades of previous scholarship. Bayesian modelling

permits the integration of existing expert knowledge into analyses, and BEASTling is designed

to make such integration as easy as possible.

BEASTling features integration with the Glottolog language catalog [26], which “aims to pro-

vide a comprehensive list of languoids (families, languages, dialects)”. The 7,748 spoken lan-

guages in Glottolog (as of version 2.7) are classified in a principled manner into a collection of

phylogenetic trees comprising some 241 families with more than one member. All clades in the

Glottolog classification are provided with names (e.g. Standard English belongs to the Macro-

English clade, which is a subclade of Mercian, which is a subclade of Anglian, and so on, up

through West Germanic, Northwest Germanic and Germanic to Indo-European) as well as

with alphanumeric identifiers called “glottocodes” (e.g. Standard English is stan1293).

Because the Glottolog classification is made available under a Creative Commons Attribution-

ShareAlike 3.0 license, it is possible to include a machine-readable copy of the classification in

BEASTling. If users ensure that languages in their datafiles are referred to either by their three

letter ISO-639-3 code or by their glottocode, then BEASTling is aware of the Glottolog classifi-

cation of the languages in the dataset, and this facilitates several useful features.

Most importantly BEASTling is able to impose monophyly constraints on its analyses

which enforce consistency with the Glottolog classification. This means that, for example, in a

BEASTling analysis involving the Indo-European languages, trees in which the Germanic,

Romance, Slavic languages etc. are not appropriately organised into distinct clades will be

assigned a prior probability of zero. This ensures that the posterior distribution of trees and

model parameters are grounded in a widely recognised and respected pre-existing expert

classification.

BEASTling’s Glottolog integration also makes it very convenient to add important details

to configurations. Any clade in the Glottolog classification can be referred to by name or glot-

tocode for the purposes of imposing calibration dates or selecting subsets of data files. This

makes it quick and convenient to add important pre-existing linguistic knowledge to analyses.

For example, BEASTling recognises “Imperial Latin” as a particular node within the Indo-

European clade, and we can refer to it by name to use the known age of the Roman empire to

provide a calibration date range, rather than having to manually list all of the languages in our

analysis which are descended from Imperial Latin.

Glottolog clade names can also be used to specify a subset of languages in a dataset to use

for an analysis, enabling the user to easily extract, say, only the Indo-European and Uralic lan-

guages from a global database. This removes the need to maintain multiple copies of the same

data for use with modelling different sets of language families, once again reducing the chance

of minor errors where one file is updated but another is not.

Finally, Glottolog also provides geographic location data for the vast majority of its lan-

guages, in the form of latitude and longitude values and an assignment to one of six ‘macroar-

eas’ [27]. BEASTling automatically uses this data to specify leaf node locations for
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phylogeographic analyses, removing the need for the daunting task of researching and manu-

ally enter locations for each language in a large analysis. Alternative location data for families

can be easily loaded from a CSV file, overriding the Glottolog data if required. It is also possi-

ble to filter datasets by macroarea instead of or as well as by family. Using both filters allows,

for example, succinctly selecting all the Austronesian languages in a dataset except for the geo-

graphic outlier Malagasy which is spoken in Madagascar.

These features demonstrate the importance and the power of making broadly useful lin-

guistic data available in machine-readable formats under permissive copyright licenses and of

referring to languages using standardised, unique identifiers.

Glottolog is an ongoing effort, and names and classifications are subject to change between

releases. Each release of BEASTling will be packaged with the latest Glottolog release available

at the time (currently 2.7). However, any previous Glottolog release back to 2.4 can be specified

in a BEASTling configuration file, and BEASTling will download the appropriate data from

glottolog.org. This allows published analyses to be accurately replicated and modified by

future releases of BEASTling, even after new Glottolog releases have been made.

Advanced features

Good software should not only make easy tasks easy, it should also make difficult tasks possi-

ble. In addition to functioning as a command-line program for transforming BEASTling con-

figuration files into BEAST analysis specifications, BEASTling can also be used as a library

from within Python scripts.

When used in this fashion, it is possible to generate BEAST XML files without first creating

a BEASTling configuration file. Instead, the high-level analysis parameters are specified as

attributes of a Python object. This is convenient for programmatically generating large num-

bers of BEAST XML files in which either the same model specification is used for several dif-

ferent datasets, or a range of slightly different model specifications are used for one dataset

This is particularly useful for large simulation studies. Quickly generating a large number of

BEAST XML files can also be achieved by asking BEASTling to read the linguistic data from

stdin, and using shell (e.g. Unix bash) functionality to generate variant input.

When used in this fashion, it is possible to generate BEAST XML files without first creating

a BEASTling configuration file. Instead, the high-level analysis parameters are specified as

attributes of a Python object. This is convenient for programmatically generating large num-

bers of BEAST XML files in which either the same model specification is used for several dif-

ferent datasets, or a range of slightly different model specifications are used for one dataset

This is particularly useful for large simulation studies. Quickly generating a large number of

BEAST XML files can also be achieved by asking BEASTling to read the linguistic data from

stdin, and using shell (e.g. Unix bash) functionality to generate variant input.

For more complicated projects, partial analysis specifications can be separated into multiple

files. When BEASTling is provided with a list of several files, settings in later files override

those in earlier files, similar to multiple inheritance in Object Oriented Programming. This

enables many different variations of an analysis to be constructed efficiently simply by includ-

ing or excluding different files, without duplicating common content across multiple files.

The current BEASTling release supports several different substitution models useful for

inference of language phylogenies with linguistically reasonable defaults, as will be described

in detail in the following section. In addition, an advanced user can write their own Python

class for a model not covered by BEASTling yet and specify it in a BEASTling configuration

file, without having to modify BEASTling’s code. This makes BEASTling useful even for

advanced users who are developing new models.
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Modelling details

BEASTling analyses use the Yule pure birth process [28] to define a prior distribution over

phylogenetic trees. The birthrate parameter is constant over all locations on the tree, but the

particular constant value is inferred during the MCMC procedure. The Yule prior is one of

two tree prior families supported by BEAST, and in biological applications is typically used to

constrain trees over multiple species, i.e. the branching events are interpreted as speciation.

The other supported family is the coalescent process [29], which is typically used for trees over

populations of a single species, i.e. the branching events are interpreted as reproduction. Coa-

lescent trees have a characteristic shape in which the oldest branching events are very much

older than the most recent. There is no theoretical basis for expecting the language diversifica-

tion process, which is more often analogised to speciation than within-population variation, to

yield trees with this shape, nor is there empirical evidence in any established reconstructions.

BEASTling therefore prefers the Yule prior. One shortcoming of this approach is that the Yule

model assumes that languages never go extinct, when in fact language extinction is believed to

be a frequent occurrence. The development of new tree priors specifically designed for linguis-

tic phylogenetics is a continuing area of research, and future releases of BEASTling will include

support for any suitable new tree priors implemented for BEAST.

BEASTling supports a number of different clock models, for controlling how tree branch

lengths are converted into a measure of evolutionary time; strict clocks, where the same con-

stant rate is applied all over the tree, relaxed clocks [30], where each branch has its own rate

sampled from a tree-wide distribution (Lognormal, Exponential and Gamma distributions are

supported), and random local clocks [31] which interpolate between these two possibilities. If

no calibration dates are provided, then the rate of a strict clock or the mean rate of a relaxed or

random local clock is fixed at 1.0, and the branch lengths of the tree can then be interpreted as

having units of “expected number of substitutions per feature”. However, if calibration dates

are provided for any clades in the tree, then the tree branch lengths are in the same units as the

calibration dates, and the appropriate corresponding clock rate is inferred. Date calibrations

can be combined with Yule priors exactly in certain cases [32] and only approximately in oth-

ers. Both approaches are supported by BEAST, and BEASTling automatically applies the exact

method when appropriate. When calibration dates are specified, BEASTling will also automat-

ically include appropriate ascertainment correction in analyses where constant-value features

are absent, so that age estimates are not biased due to this absence.

In addition to variation in clock rate over the tree, BEASTling also provides support for var-

iation in substitution rate across different linguistic features. If enabled, each feature is

assigned its own substitution rate whose value is inferred during the analysis. These rates act as

per-feature multipliers for the clock rate. Substitution rates are assigned a Gamma-distributed

prior with a mean value of 1.0. The mean of all substitution rates is also constrained to be 1.0,

so that the resulting rates are easily interpreted as rates relative to the average rate, e.g. a feature

with rate 2.4 evolves at more than twice the average speed, while a rate of 0.13 is almost ten

times slower than average. The Gamma distribution’s shape parameter, which determines the

amount of variation in rate, is fitted to the data. Restricting the per-feature rates to have a

mean of 1.0 still allows the shared clock rate to control the expected number of substitutions

across the tree, given the inferred branch lengths. The need to support variation in substitution

rate across features is very well established in linguistics. The assumption that no such varia-

tion exists was one of the strongest and earliest criticisms of the first formulations of glotto-

chronology, and modern analyses have demonstrated the existence of considerable rate

variation for both lexical [33] and typological [34, 35] data.
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The probabilistic models within BEAST, used to compute the likelihood of data on a pro-

posed tree, are composed of two main parts: equilibrium frequencies and a substitution model.

BEASTling allows users to choose equilibrium frequencies to be uniform, which means that all

values have equal equilibrium probabilities. However, by default the inference procedure

assumes empirical frequencies, where each value’s equilibrium probability is proportional to

its frequency in the dataset. For the substitution model which specifies the relative rates of

transition between two states, several suitable for use with linguistic data are available.

The Lewis Mk model [20] is a generalised Jukes-Cantor model suitable for discrete features

with an arbitrary fixed number of permitted states. Transitions are permitted from any state to

any other, and all transitions are equally likely. This provides a simple and sensible default

model for many types of linguistic data, including typological data from sources such as the

World Atlas of Language Structures [19] (WALS) or South American Indigenous Language

Structures [23] (SAILS). The Bayesian Stochastic Variable Selection (BSVS) model is a more

complex model, similar to the well-known GTR model, in which some transitions may be

more likely than others. BSVS extends GTR in allowing some transitions to be explicitly disal-

lowed, which permits searching for directional preferences in the evolution of linguistic fea-

tures. Precisely which transitions are disallowed is inferred during the MCMC analysis, and a

prior distribution is placed on the number of allowed transitions.

The binary Covarion model [36] is defined for datasets where each feature has two permit-

ted values, 0 and 1. The model permits a feature to transition between latent “fast” and “slow”

states, which influence the rate at which transitions between 0 and 1 are permitted (transitions

in either direction are equally probable). During the analysis, BEAST will estimate the rate at

which features switch between the fast and slow states, and the difference in speed between the

two states. This model has previously been applied to binary-encoded cognate data [2, 7]. This

is its intended use in BEASTling, and the requisite recoding of cognate data can be applied

automatically, along with the appropriate ascertainment correction. For example, a meaning

slot with six attested cognate classes will be coded as six independent binary features, with lan-

guages typically receiving a 1 for one or two features and a 0 for all others. However, if

BEASTling is provided with binary data (be it pre-binarised cognate data or typological data

with two permissible values), it will recognise this and avoid a secondary binarisation.

In addition to substitution models for fitting trees to linguistic data, BEASTling also sup-

ports a spherical diffusion model [37] for fitting trees to location data. This model can be used

to infer posterior locations for the homelands of language families, similar to a previous phylo-

geographic analysis of the Indo-European language family [7].

Example analyses

To illustrate the sorts of analyses BEASTling is designed to facilitate, we present the results of

two example analyses. Our intent is to concisely demonstrate the various abilities of the soft-

ware, and these analyses should not be construed as serious attempts at historical linguistic

scholarship. The BEASTling configuration files for both analyses are available as S1 and S2

Files in the Supporting Material. Further, the configuration files, data files and processing

scripts required to replicate both of these example analyses are available in a GitHub repository

at https://github.com/glottobank/BEASTling_paper/.

Estimating Indo-European family tree from cognate data

Our first example is an inference of a phylogenetic tree for the Indo-European language family,

using cognate data and the binary Covarion model. The dataset [38] (prepared by List [39]

uses material from the “Tower of Babel” project [40]) and is comparatively small, containing
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19 languages and 110 features, each of which corresponds to a word meaning. The datapoints

are cognate class assignments, coded as integers. That is, two languages have the same integer

for a given meaning if their words for that meaning are cognate. Known borrowings are indi-

cated by negative values, i.e. a datapoint of -4 indicates that a language has borrowed a mean-

ing from cognate class 4. Before running the analysis, we replace all known borrowings with

question marks, so that they are treated by BEAST as missing data. Seven meanings in the

dataset are automatically removed by BEASTling because they are constant for the 19 lan-

guages included, and thus cannot provide information about the tree topology (these mean-

ings are claw, name, new, salt, two, what and who). Because the binary Covarion model was

specified, BEASTling automatically reformats the cognate data for the 103 remaining mean-

ings into binary form, resulting in 645 binary features. Because the languages in the datafile are

identified by English names (“Dutch”, “Swedish”, “English”, etc.) and not ISO codes or Glotto-

codes, BEASTling cannot automatically impose monophyly constraints, so this feature is dis-

abled. No calibration dates are provided, and rate variation across features is enabled.

The maximum clade credibility tree produced by this analysis is shown in Fig 1. Note that

despite the lack of monophyly constraints, the tree is in good agreement with conventional

wisdom on Indo-European history. The Slavic, Germanic and Romance sub-families are all

correctly positioned in their own clades. The Slavic clade is correctly divided into East, South

and West Slavic, and the Germanic clade is correctly divided into North and West Germanic.

The order in which Armenian, Greek and Hindi branch differs from previous analyses [1, 7],

which may be at least partially due to the small number of languages in the dataset (note Hindi

is the only representative of the Indo-Iranian subfamily). The close relationship between

Romanian and French is also unexpected, and may be due to the influence of an erroneous

cognate judgement in the dataset [41] as well as efforts at “purification” of Romanian [42]. It is

important to understand that the tree shown in Fig 1 is one of a posterior sample of 10,000

trees, in particular the tree which best represents the relationships which are most strongly

Fig 1. Maximum clade credibility tree for the Indo-European languages in our example analysis of Indo-European cognate data. The coloured

blocks correspond to the correctly reconstructed subfamilies Slavic, Germanic and Romance. This tree is a summary of a posterior sample, and some

aspects are more or less certain than others. Tree branches are solid if they subtend clades with posterior support exceeding 0.66 (common inside

established subfamilies), dashed if support is between 0.33 and 0.66 and dotted if support is below 0.33 (which occurs only for the relationship between

Armenian and Greek).

https://doi.org/10.1371/journal.pone.0180908.g001
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supported in the overall sample. Different parts of the tree topology are more or less strongly

supported, and this is indicated graphically in the figure by the solidity of the branches. While

the well-established Slavic, Germanic and Romance sub-families have posterior probabilities

of 1.0, the more questionable Romanian-French clade has a posterior probability of 0.60 and

the Armenian-Greek clade has a probability of just 0.29.

In addition to a posterior sample of trees, the analysis logs posterior distributions over the

relative substitution rate parameters for the 103 meaning slots. A considerable amount of rate

variation is inferred, with the fastest meaning undergoing change 20 times faster than the slow-

est meaning. Table 1 shows the meanings with the ten highest and ten lowest rates, while Fig 2

shows how the distribution over rates varies across different parts of speech (see S1 Table for

part of speech assignments). Verbs and nouns both have median rates well below the average

of 1.0, with long tails toward higher rates. In contrast, adjectives have a median rate very close

to average, with symmetric tails toward lower and higher rates. Words for body parts evolve

somewhat more slowly than other nouns, and pronouns have a tight rate distribution with

only a single outlier with an above average rate (the pronoun that), consistent with previous

accounts of Indo-European pronouns showing little evidence of borrowing or grammaticalisa-

tion [43]. Similarly, colour terms are markedly more stable than other adjectives, with no col-

our terms having faster than average rates.

The rates obtained from the analysis allow us to order these meaning slots by stability. Pre-

viously, very similar word lists ordered by purported stability have been published by Swadesh

[44], Starostin [45] and Pagel et al. [33]. Using electronic versions of these rankings available

from the Concepticon project [46] we calculate the Spearman rank correlation coefficients

between them and the ranking derived from our posterior mean substitution rates. The coeffi-

cients against the Swadesh and Starostin rankings are 0.46 and 0.45 respectively, and a slightly

higher 0.57 against the mean of these two rankings (it is worth noting that both these authors

based their conclusions on larger data sets than ours). Against Pagel et al.’s results, which are

also based on Bayesian analysis of only Indo-European languages, albeit a different set of lan-

guages taken from a separate database, we get our highest correlation of 0.69. This kind of

Table 1. Relative substitution rates of the ten slowest and fastest changing meaning slots in our

example analysis of Indo-European cognate data.

Slowest Fastest

Feature Rate Feature Rate

give 0.11 walk 1.61

tooth 0.11 heavy 1.63

sun 0.12 snake 1.68

full 0.12 big 1.76

I 0.12 short 1.76

star 0.12 woman 1.81

eye 0.12 many 1.98

ear 0.12 know 2.02

tongue 0.12 tail 2.20

heart 0.14 belly 2.21

Rates are relative to the average across all features, e.g. tooth evolves almost 10 times more slowly than

average, while know evolves at just over twice the average rate. Note that many of the slowest meanings are

body parts.

https://doi.org/10.1371/journal.pone.0180908.t001
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analysis paves the way for future studies of cross-linguistic variation in the relative stability of

different meaning slots.

Fitting substitution rates to WALS features using a fixed Austronesian

tree

Our second example is an illustration of BEASTling’s ability estimate model parameters on the

basis of a fixed tree, specified by the user. We use the maximum clade credibility tree from a

2009 Bayesian investigation of the Austronesian language family phylogeny by Gray et al. [2]

as the fixed tree, and typological features from WALS [19] as the data. During the MCMC run,

the tree topology and branch lengths are held fixed, while model parameters concerning the

relative rates of different WALS features are sampled.

We label the leaves of the reference tree with ISO codes, and BEASTling automatically

prunes the tree to include only those languages whose ISO codes are present in the WALS

database. We configure BEASTling to exclude any features which have known values for less

than 25% of languages. We also manually exclude 3 WALS features (IDs 95A, 96A and 97A)

which are not features in their own right, but instead encode the relationship between other

features (these feature exclusions are specified in the BEASTling configuration file and do not

require editing of the data file). The final analysis involves 169 Austronesian languages and 25

WALS features (see S1 Appendix for a full discussion of the languages and features involved).

A Lewis Mk model is specified for the data, with rate variation across features enabled. The

Fig 2. Distributions of relative substitution rates for different categories of meaning slot. Most categories have a median rate well below the

average of 1.0, with long tails extending to faster than average rates. All colour terms have below average rates, as do all pronouns except for the outlier

that.

https://doi.org/10.1371/journal.pone.0180908.g002
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inferred per-feature substitution rates are the subject of interest. Since the tree is fixed to a

known value, BEASTling automatically disables tree logging to save disk space.

The inferred rates of change of these typological features show a wider variation than the

lexical rates of change in the Indo-European example above. The fastest changing feature has a

rate around 27 times higher than the slowest changing feature. Table 2 shows the 10 slowest

and fastest changing features, while Fig 3 shows a histogram and fitted distribution of the rela-

tive substitution rates across WALS features, which indicates that most features have a rate

close to the average while below average rates are more common than above average rates.

Many of the slowest features are categorised by WALS as word order features, consistent with

a previous finding that these are some of the most stable structural features [47].

Availability and future directions

BEASTling is an open source project and full source code is available in a version control

repository hosted by GitHub at https://github.com/lmaurits/BEASTling, under the terms of a

2-clause BSD license. BEASTling is also hosted at the Python Package Index (PyPI) and thus

may be easily installed using standard Python packaging tools such as easy_installor

pip. Searchable documentation, including a tutorial, is hosted by Read The Docs at https://

beastling.readthedocs.org.

Table 2. Relative substitution rates of the ten slowest and fastest changing features in our example

analysis of Austronesian typological data.

Feature Rate

Slowest

Order of Object and Verb 0.08

Order of Adposition and Noun Phrase 0.12

Order of Genitive and Noun 0.23

Position of Pronominal Possessive Affixes 0.27

Order of Subject and Verb 0.34

Order of Subject, Object and Verb 0.38

Preverbal Negative Morphemes 0.39

Order of Numeral and Noun 0.46

Position of Interrogative Phrases in Content Questions 0.47

Numeral Classifiers 0.50

Fastest

Position of Tense-Aspect Affixes 1.19

Polar Questions 1.23

Position of Polar Question Particles 1.31

SVNegO Order 1.32

Weight Factors in Weight-Sensitive Stress Systems 1.41

Indefinite Articles 1.47

Definite Articles 1.60

Order of Degree Word and Adjective 1.63

Weight-Sensitive Stress 1.86

Fixed Stress Locations 2.14

Rates are relative to the average across all features. Note that many of the slowest features relate to word

order.

https://doi.org/10.1371/journal.pone.0180908.t002
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The authors intend to continually update BEASTling to support any new linguistically-rele-

vant BEAST packages which may appear, and to keep model specifications in line with emerg-

ing consensuses on best practice. Contributions from the historical computational linguistics

research community are welcomed.

Supporting information
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to display rate variation.
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S1 Appendix. Details of Austronesian example analysis language and feature sets.

(PDF)
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