
Processing Temporal Aggregates over Networked Workstations

Xiiifeng Ye,
Department of Computer Science,

University of Auckland,
New Zealand.

Abstract

TSQL2 is a query language designed for temporal
databases. In TSQL2, the GROUP BY clause has the
temporal grouping property. In temporal grouping, the
time line of each attribute value is partitioned into sev-
eral sections, and aggregate functions are computed for
each time partition. This paper describes two paral-
lel algorithms, data-partition and group-partition, which
compute temporal aggregates over a network of work-
stations.

In the group-partition scheme, each workstation
maintains the entire aggregate tree for some attribute
values selected by the GROUP BY clause. Thus, some
workstations may be overloaded while others are idle for
most of the time. In the data-partition scheme, all the
workstations participate in constructing the aggregate
trees in the first phase of the scheme. Thus, the load
is evenly distributed across the workstations in the sys-
t,em in the first phase of the scheme. However, before
the second phase starts, workstations must exchange
the aggregate trees generated at the first phase.

A simulator has been used to test the performance
of the two algorithms. The results show that the per-
foriiiance of algorithm group-partition is slightly better
than data-partition.

1 Introduction
A temporal database supports the storage and

querying of information which vary over time [3, 71. In
general, a temporal database has a set of time-varying
relations. Every time-varying relational schema has
two timestamp attributes: time-start (T,) and t ime-end
(Tc). The timestamp attributes correspond to the lower
and upper bounds of a time interval. In a relation, an
attribute value of a tuple is associated with timestamps
Ts and T, if it is continuously valid in interval [T,, T,].

Aggregate operations are applied to the database re-
lations to compute a scalar value. Aggregate operations
are very important in database applications: many
query benchmarks contain a large percentage of aggre-
gate operations [2, 81. Therefore, in order to achieve
good performance of database applications, it is neces-
sary to execute the aggregate operations efficiently.

*This work is supported by Auckland University under
grant A18/XXXXX/62090/F3414079, and by the UK EP-
SRC under grant GRIJ48979.

John A. Keane,
Department of Computation,

UMIST,
Manchester, UK.

In this paper, two algorithms for processing aggre-
gate operations in temporal databases over a network
of workstations are described. The two algorithms are
based on the algorithm in [4]. A simulator has been
written to simulate the execution of the two algorithms
over a network of workstations. The experimental re-
sults obtained from the simulator will also be discussed.

2 Temporal Aggregate Operations
Aggregate operations are evaluated over relations to

compute a scalar value, e.g. the number of people
in the departments of a university, etc. Conventional
aggregate operations [l] only show a snapshot of the
database. For example, the query in Figure l (b) will
read the tuples in the Employee relation and output
the number of people in each department at present.

TSQL2 [6] is a temporal extension to the SQL-92
query language. TSQL2 extends the GROUP BY clause of
SQL-92 with temporal grouping. In temporal grouping,
the time line of each attribute value is partitioned into
several sections (if necessary) , and aggregate operations
are computed for each time partition.

For example, assume that an Employee relation in a
temporal database is shown in Figure l (a) . The start
and end attributes represent the time that a person
starts and ends his service in a department. The two
attributes correspond to time-start and time-end. 00

means that a person still works for a department when
the query is made. From Figure l (a) , it can be seen that
the number of people in a department varies over time.
The query in Figure l (b) counts the number of people
in each of the departments during different periods of
time. Figure l(c) shows the results of the query. In
the result, the time line for each department has been
partitioned into several sections. A partition point is
inserted into the time line of a department if there is
a personnel change in that department at that point
of time. Within a time section, the personnel of the
corresponding department remains stable.

I Gary I Statistics 1 5 I 03 1
(a)

0-7803-4778-1 /98 $10.00 0 1998 IEEE 251 3

Authorized licensed use limited to: The University of Auckland. Downloaded on June 15, 2009 at 21:39 from IEEE Xplore. Restrictions apply.

SELECT department, COUNT(name)
FROM Employee
GROUP BY department

(b)

Chemistry
Statistics

Statistics
Statistics

\ ,
Figure 1

In [4] an algorithm for calculating temporal aggre-
gat,e is described in which trees are used to store the
time partitions and the aggregate values of each parti-
tion.. The trees are formed when the tuples are scanned.
Each tree represents the aggregation results of one of
t,he attribute values selected by the GROUP BY clause.
Each node in the tree represents a time section. When a
tuple in a relation is checked, the tree is searched to de-
t,eriiiine whether the time sections recorded in the tree
need to be divided further. If the sections need to be
divided further, some nodes representing the new sec-
t,ioiis are inserted into the tree. The aggregation values
recorded in the tree will also be updated when the tu-
ples are checked. After all the tuples have been checked,
the leaf nodes in a tree represent the time partitions of
the corresponding attribute value.

In [4]’s scheme, each node in a tree has five compo-
nents, start, end, count, left-child and right-child. start
and end indicate the time period represented by the
node. c o r d records the number of tuples which are
valid witahin the period. left-child and right-child are
pointers to the node’s children. The two children rep-
resent a partition of the time period represented by the
node. For example, if a node represents time period
[O , C Q] , the two children of the node would represent
periods [0, a] and [U + 1, CO] respectively.

For the example in Figure 1, when applying [4]’s al-
gorithm, the trees will be constructed as shown in Fig-
ure 2 . Two attribute values, Statistics and Chemistry,
are selected by the GROUP BY clause of the query. Thus,
t,wo t,rees will be set up to store the aggregate result for
St,atistics and Chemistry respectively.

As shown in Figure 2(a), initially each tree has one
node rkpresenting time period [0, m]. Figure 2(b) shows
t,he t,rees after the first two tuples in Figure l (a) have
been checked. As John’s tuple is valid for period [a , CO],
t,he t,ime line for Statistics is partitioned into two sec-
tions, [0, I] and [2, -]- Hence, two nodes representing
[0,1] and [a , CO] are added to Statistics’ tree. Due to
John’s record, the counter of node [2,m] is set to 1.
Similarly, due to David’s tuple, two nodes are added to
Chemistry’s tree.

Figure 2(c) shows the trees after the third and the
fourth tuple in Figure l (a) have been checked. As Bob’s
record is valid for [O , 5] , time period [2 , 0 0] is parti-
t,ioned int,o two sections, i.e. [a , 51 and [B, CO]. Thus,

two nodes [2,5] and [6, CO] are inserted into Statistics’
tree as [2, 001’s children. As [0,5] overlaps with [0,1],
it means Bob’s record should also be counted as valid
during [0,1]. Thus, the counter of node [0, l] is incre-
mented. Similarly, as Bruce’s tuple is valid for period
[3,00], two nodes, [l, 21 and [3,00], are added to Chem-
istry’s tree.

Figure 2(d) shows Statistics’ tree after the last tuple
in Figure l(a) is checked. Gary’s tuple is valid for time
period [5, m]. As [5,00] intersects with [2,5], [2,5] is
partitioned into two sections, [a, 41 and [5, 51. As a re-
sult, two nodes, [2, 41 and [5, 51, are inserted into Statis-
tics’ tree. As [5,m] overlaps with [6,03], the counter
associated with [6, m] is incremented.

Statistics -d=%TQ o - o

Figure 2

3 Compute Temporal Aggregates in

3.1 Basic Principles
In this section, two approaches to parallelise [4]’s

algorithm over networked workstations are described.
It is assumed that (a) a relation has been partitioned
into n sections where n is the number of workstations
participating in computing the aggregate functions, and
(b) the tuples in a section are stored on one workstation.

Parallel

251 4

Authorized licensed use limited to: The University of Auckland. Downloaded on June 15, 2009 at 21:39 from IEEE Xplore. Restrictions apply.

In the first approach, group-partition, the tuples are
divided int,o several groups according to the att,ribute
in the GROUP BY clause of a query. Each workstation
is responsible for computing the aggregate functions of
ii group. For example, for the query in Figure l (b) , if
there are ten different departments in the Employee re-
lation and five workstations, then five groups are formed
where each group consists of two departments. Each
workstntioii is responsible for computing the aggregate
functions of tlie departments in a group. That is, each
workstat,ion computes the aggregate functions for two
departments. A workstation maintains the aggregate
trees for tlie departments in its group. First a worksta-
t,ion checks the tuples stored on it. For the tuples be-
longing to the departments for which the workstation is
responsible for computing the aggregate functions, the
workstation updates the aggregate trees maintained by
it according to [ill’s algorithm. For the other tuples, the
workstat,ion sends them to the appropriate workstations
which are responsible for processing the tuples. Once
a workstation completes checking the tuples stored on
it, it starts processing the tuples sent to it by the other
workstations. When all the received tuples have been
processed, the workstation outputs the results stored in
t,he aggregate trees.

The second algorithm data-partition consists of two
phases. During the first phase, each workstation pro-
cesses the tuples stored on it and constructs an aggre-
gate tree for each attribute value in the GROUP BY clause
whose tuples are stored on the workstation. For exam-
ple, in Figure l (b) , a workstation creates an aggregate
tree for each of the departments during the first phase.
As in the first algorithm, the attribute values in the
GROUP BY clause are partitioned into several groups. In
t,he secoiid phase, each workstation is responsible for
producing the final results for the attribute values in
one group. During the second phase, a workstation (i)
sends the aggregate trees of the attribute values whose
final results will be produced by other workstations to
the appropriate workstations, and (ii) merges the ag-
gregate trees received from the other workstations with
the corresponding ones held by the workstation. For
example, in Figure l (b) , if there are ten departments
and five workstations, each workstation will be respon-
sible for producing the final results of two departments.
In the second phase, each workstation (i) sends out tlie
aggregate trees of the eight departments whose final re-
sults are not produced by the workstation, and (ii) re-
ceives two aggregate trees from each of the other work-
stations. Once all the received trees have been merged,
tlie workstation outputs the results stored in the trees.

3.2 The Algorithms
First algorithm group-partition is described. It is as-

sumed that the algorithm is applied to workstation i.

1. for all the tuples stored in local memory
2.

3.

if a tuple records the attribute value whose

then update the relevant aggregate tree
aggregate tree is kept by workstation i

4. else /* i.e. the aggregate tree of the attribute
value recorded in the tuple
is not kept by workstation i */

5. pack the tuple into a message and send the
message to the workstation which keeps the
aggregate tree of the attribute value recorded
in the tuple

endif
endfor

6. process the tuples sent by the other workstations

In line 5 , when sending a tuple to another worksta-
tion, there is no need to send all the items recorded
in the tuple. It is only necessary to send the informa-
tion needed for constructing the aggregate tree, i.e. the
attribute value, and the start and end time. This ap-
proach reduces the amount of information exchanged
amongst the workst at ions.

Next the algorithm data-partition is described. It is
assumed that the algorithm is applied to workstation i.

7. for each tuple stored in the local memory
8. update the relevant aggregate tree
9. endfor
10. pack the aggregate trees of the attribute values for

which workstation i is not responsible for producing
the final result into messages; and, send the
messages to appropriate workstations

received from other workstations
11. for each of the aggregate trees

12. merge the received trees with the corresponding
aggregate trees maintained by workstation i

endfor

3.3 Data Skew
The number of the tuples corresponding to the at-

tribute values selected by the GROUP BY clause may vary
widely. For example, for the query in Figure 1, the
number of people working for the Chemistry depart-
ment maybe ten times more than the people working
for the Statistics department. This uneven distribution
of tuples is called data skew.

Assume (a) an attribute value, say A , has n tuples
associated with it, (b) an attribute value, say B, has
m tuples associated with it, (c) the number of tuples
associated with A is greater than the number of tuples
associated with the other att.ribute values, and (d) the
number of tuples associated with B is less than the num-
ber of tuples associated with the other attribute values.
14 7n is called skew ratio.

In the group-partition scheme, each workstation is
responsible for maintaining the aggregate trees of some
attribute values selected by the GROUP BY clause. Data
skew might cause some of the workstations being over-
loaded. This is because, when the skew ratio is large,
the number of tuples in a group, say G, might be signifi-
cantly higher than the number of tuples in other groups.
As a result, the workstation which is responsible for G
will perform most of the operations on aggregate trees.

In the data-partition algorithm, at the first phase all

251 5

Authorized licensed use limited to: The University of Auckland. Downloaded on June 15, 2009 at 21:39 from IEEE Xplore. Restrictions apply.

tflie workstations participate in constructing the aggre-
gate trees for all the attribute values. Therefore, at the
first phase, the load is shared amongst all the worksta-
t,ions in t,he system. Although in the second phase of
the algorithm, the workstations which handle the ag-
gregate trees of the large tuple groups might still be
overloaded, it remains to be seen whether the sharing
of load in the first phase makes the data-partition algo-
rithm more efficient than the group-partetion algorithm.

4 Empirical Results
A simulator has been written to simulate the exe-

cution of the two algorithms over a network of work-
stations. The simulator uses the message passing li-
braries in PVM. The simulator runs on a 275MHz Al-
pha 2100 4/275 with 512M bytes RAM. Another Al-
pha 2100 is set up t,o measure the communication time
when messages are exchanged between workstations. A
duininy program is run on this machine. The program
receives and unpacks the messages sent by the simu-
lat,or. For each received message, the program sends
a reply to the simulator. The two machines are con-
nected through a lightly loaded Ethernet. In the simu-
lator, when two workstations exchange a message, the
iiiessage is first sent to the Alpha where the dummy pro-
gram resides. When a reply to the message is received
from the duniiny program, the simulator delivers the
message to the destination workstation. The time for
exchanging a message is set as half of the elapsed time
between sending a message to and receiving a reply from
the dummy program.

When algorithm group-partition is implemented, in-
stead of packing each tuple into a message (line 5 of the
algorithm), several tuples which are sent to the same
workstation are packed into the same message. This
will reduce the communication set up and packing cost.
In the sinidatlor, up to 1000 tuples are packed into a
message.

The tuples associated with different attribute values
are st,ored in a relation in random order. The relation
has been divided into n sections which contain the same
number of t,uples where n is the number of workstations
used in the computation. A section is stored on one of
t,lie workstat,ions in the system.

The size of each tuple in a relation is set to 128
bytes. The relation has a lifespan of one million in-
st,ants, i.e. the values for t ime-start and t ime-end at-
t,ribut,es are taken from the range [0, 9999991. The value
of the t ime-start attribute of the tuples is generated
randomly. The lifespan of a tuple (i.e. the difference
between t i m e - e n d and t i m e - s t a r t) varies between 1 and
1000, and is determined randomly. The number of the
distinct, &tribute values selected by the GROUP BY clause
has h e m set, t,o 32'.

Cache hit rate is one of the many factors that affects
t,he speed up of a parallel system. For some applica-

'This means, for the example in Figure 1, there are 32
different departments.

tions, partitioning the data set will increase the cache
hit rate. As a result, it is possible to have super lzn-
ear speed up when applications are parallelised. That
is, when running the applications on n machines, com-
pared with running the applications on one machine,
the speed up is greater than n [5]. Super linear speed
up was observed in several cases during the experiment.
In order to verify the results, the algorithms were run
on a single Alpha 2100 4/275 for one data set contain-
ing 128K tuples with 32 attribute values and skew ratio
1 and another data set containing 4K tuples with 1 at-
tribute value'. The execution time for the 128K and
the 4K tuple sets is 1244.407 seconds and 25.023 sec-
onds respectively. It can be seen that, although the size
of the 128K tuple set is 32 times of the 4K tuple set, the
execution time for the 128K tuple set is about 49 times
of the execution time of the 4K tuple set. This indicates
that the cache hit rate does play an important role in
the performance of the algorithm. As shown later, in
the experiment, due to communication overhead, the
speed up is less than 32 when 32 workstations are use
in the computation.

For the first sets of data, the skew ratio is set to 1.
That is, the number of tuples associated with each of
the 32 attribute values is roughly the same. The results
produced by these sets of data are shown in Figures 3,
4 and 5. The three figures show the running time of the
two parallel schemes when the number of tuples in the
relation is 32K, 64K and 128K respectively. From the
figures, it can be seen that the performance of the two
schemes is very close. As explained earlier, when run-
ning on a single workstation, super linear speed up has
been observed. However, the scale of speed up shown in
Figures 3 to 5 is less than that achieved when running
the algorithms on a single workstation. This is because
the cost of exchanging the tuples and aggregate trees
reduces the gains obtained in improvement in the cache
hit rate.

group parition
data parition

-2 c 48 s

Number of Workstations
Figure 3 Time Comparison for 32K Tuples with Skew

Ratio 1

2This is because the simulator simulates a system con-
taining up to 32 workstations. With 32 workstations for
32 attribute values, each workstation is responsible for con-
structing the aggregate tree of one attribute value. Thus,
for a 128K tuple set with skew ratio equal to 1, there are
4K tuples associated with each attribute value. Hence, each
workstation will handle 4K tuples.

2516

Authorized licensed use limited to: The University of Auckland. Downloaded on June 15, 2009 at 21:39 from IEEE Xplore. Restrictions apply.

2500

Number of Workstations
Figure 4 Time Comparison for 64K Tuples with Skew

Ratio 1

lO0Ok
I \\ 4

8
% G O O +

d group parition
data parition

d
.C

a 400
E

n L '"t-,
"1 4 8 16 32
Number of Workstations

Figure 5 Time Comparison for 128K Tuples with Skew
Ratio 1

0.07 1

Figure 6 Tuple Distribution when Skew Ratio is 512

For the second sets of data, the skew ratio is set to 512.
Figure 6 shows the percentage of the tuples associated
with the 32 attribute values. In the figure, each at-
tribute value has been given an identifier j (0 < j < 31).
For a workstation i (where 0 5 z 5 15), the iden-
tifiers of the attribute values for which workstation i
is responsible for processing the aggregate trees are
{ I C 1 x (i + l) - 1) where n i s thenumber
of workstations used in computation. For example, if
four workstations are used, { I C I 0 5 k 5 7 } , { k I 8 5
k 5 15},{k I 16 5 k 5 2 3) and { k I 24 5 IC 5 31)
are the sets of identifiers in the groups maintained by

x i 5 IC 5

workstation 0, 1, 2 and 3 respectively. Figures 7, 8 and
9 show the results of running the two schemes using
these sets of data.

c 80 ---_ group parition

% loo 60 h 4
8 l- data parition

Number of Workstations
Figure 7 Time Comparison for 32K Tuples with Skew

Ratio 512

Number of Workstations
Figure 8 Time Comparison for 64K Tuples with Skew

Ratio 512

Number of Workstations
Figure 9 Time Comparison for 128K Tuples with Skew

Ratio 512

From the figures, it can be seen that, when two
workstations are used, (a) the execution time of algo-
rithm group-partition is similar to executing the algo-
rithm on a single machine; (b) the time to run algorithm
data-partition is slightly longer than running the algo-

251 7

Authorized licensed use limited to: The University of Auckland. Downloaded on June 15, 2009 at 21:39 from IEEE Xplore. Restrictions apply.

rithm on a single workstation. This is because, when
t,wo workst,ations are used, according to Figure 6 one
of the workst,ations is responsible for producing the ag-
gregat,e t,rees for 99.3% of the tuples. For algorithm
data-partition, the aggregate trees generated in the first
phase will be sent to the appropriate workstations for
merging before the second phase starts. Merging two
trees is the same as inserting the leaf nodes of one tree
iiko another t,ree. As the time intervals of most of the
t,uples intersect with each other, the number of leafs in
the aggregate trees is roughly the same as the number
of t,iiples. Hence, the nuinber of insertion carried out
on the aggregate trees are similar for the cases where
m e and two workstations are used. Therefore, when
running on two workstations, the cost in exchanging
the aggregate trees makes the data-partition algorithm
perform worse than running on a single workstation.

From t,he figures, it can be seen that, apart from
the case where two workstations are used, the perfor-
mance of the two algorithms are similar to each other.
As explained above, this is because the number of leaf
nodes iii t,he aggregate trees is almost the same as the
number of tuples. T ~ L I S , (a) the amount of information
being exchanged amongst the workstations in algorithm
doh-partztzon, is almost the same as the amount of infor-
ination exchanged in algorithm group-partition; and (b)
t,he amount of insertion operations carried out on the
aggregate trees in algorithm data-partition is almost the
same as the one in algorithm group-partition. Point (b)
ineans that, although the load of the workstations at the
first, phase of algorithm data-partition is balanced, the
information processed by the workstations in the second
phase of the algorithm will overload the workstations
t,o t,he same extent as with algorithm group-partition.
Thus, the data-partition scheme does not perform bet-
t,er than the group-partition scheme. However, this is
due t,o t,lie fact that the time intervals of the tuples are
generat,ed randomly. Thus, the time intervals of the tu-
ples hardly coincide with each other. As a result, the
niimber of leaf nodes in the aggregate trees is similar
t.o t,he number of tuples. For some applications, the
t,inie int,ervals of many tuples might coincide with each
ot,her, e.g. many student,s enter and graduate from the
universit,ies at the same time. In this case the number of
leaf nodes in t,he aggregate trees will be much less than
t,he number of tuples. As a consequence, the number
of insertmion operation carried out in the second phase
of algorithm data-partition will be much lower than
the insertion operations carried out in grouppart i t ion.
Thus, in t,his kind of applications, it is possible that
data-partition outperforms group-partition.

5 Conclusions
In this paper, two approaches, group-partition and

data-partitron, t,o parallelise [4]’s algorithm for comput-
ing t,eiiiporal aggregates over a network of workstations
have been studied. In the grouppart i t ion scheme, each
workst,at,ion maintains the aggregate trees of some at-
t,ribiite values selected by the GROUP BY clause. Thus,
when the skew ratio is high, some of the workstations

are overloaded while the others are idle for most of the
time. In the data-partztzon scheme, all the workstations
participate in constructing the aggregate trees in the
first phase of the scheme. Thus, the load is evenly dis-
tributed across the workstations in the system at the
first phase of the scheme. However, before the second
phase starts, workstations must exchange the aggregate
trees generated at the first phase. The results show
that the group-partztion scheme performs slightly better
than the data-partitzon scheme for all the data tested.
This means that, for the data-partztzon scheme, the cost
of exchanging the aggregate trees outweighs the perfor-
mance gains obtained through having a balanced load
at the first phase of the execution of the scheme.

As the test data are generated over a life span of 1
million instances, the start and end time of the tuples
hardly coincide with each other. As a result, many time
intervals are generated. Thus, the size of the aggregate
trees is very lwge. Hence, the costs of exchanging the
aggregation trees over the network and merging the ag-
gregate trees is relatively high compared with exchang-
ing tuples over the network. Future work will test how
the data generated over a shorter life span affect per-
formance of the two schemes.

References
R Epstein, Techniques for Processing of Aggregates
in Relational Database Systems, UCB/ERL M7918,
Computer Science Department, University of Cali-
fornia at Berkeley, 1979
J. Gray, The benchmark handbook for database and
transaction processing systems, Morgan Kaufmann,
1991

N. Kline, An update of the temporal databases bib-
liography, ACM SIGMOD Record, Vol. 22, No. 4,

N. Kline and R. Snodgrass, Computing temporal ag-
gregates, Proceedings of 11th International Confer-
ence on Data Engineering, pp222-231, IEEE, 1995
H.S. Morse, Practical Parallel Computing, AP Pro-
fessional, 1994
R. Snodgrass, I Ahn, G, Ariav, D.S. Batory, J. Clif-
ford, C.E. Dyreson, R. Elmasri, F. Grandi, C.S.
Hensen, W. Kafer, N. Kline, K. Kulkanri, T.Y. Le-
ung, N. Lorentzos, J.F. Roddick, A. Segev, M.D.
So0 and S.M. Sripada, TSQL2 language specifica-
tion, ACM SIGMOD Record, Vol. 23, No. 1, pp65-
86, 1994
A Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev
and R Snodgrass, Temporal Databases: Theory,
Design, and Implementation, Benjamin/Cummings,
1993
TPC, TPC benchmarkTM, Transaction processing
performance council, 1994

pp66-80, 1993

251 8

Authorized licensed use limited to: The University of Auckland. Downloaded on June 15, 2009 at 21:39 from IEEE Xplore. Restrictions apply.

