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Abstract 

TSQL2 is a query language designed for temporal 
databases. In TSQL2, the GROUP BY clause has the 
temporal grouping property. In temporal grouping, the 
time line of each attribute value is partitioned into sev- 
eral sections, and aggregate functions are computed for 
each time partition. This paper describes two paral- 
lel algorithms, data-partition and group-partition, which 
compute temporal aggregates over a network of work- 
stations. 

In the group-partition scheme, each workstation 
maintains the entire aggregate tree for some attribute 
values selected by the GROUP BY clause. Thus, some 
workstations may be overloaded while others are idle for 
most of the time. In the data-partition scheme, all the 
workstations participate in constructing the aggregate 
trees in the first phase of the scheme. Thus, the load 
is evenly distributed across the workstations in the sys- 
t,em in the first phase of the scheme. However, before 
the second phase starts, workstations must exchange 
the aggregate trees generated at the first phase. 

A simulator has been used to test the performance 
of the two algorithms. The results show that the per- 
foriiiance of algorithm group-partition is slightly better 
than data-partition. 

1 Introduction 
A temporal database supports the storage and 

querying of information which vary over time [3, 71. In 
general, a temporal database has a set of time-varying 
relations. Every time-varying relational schema has 
two timestamp attributes: time-start (T,) and t ime-end 
(Tc).  The timestamp attributes correspond to the lower 
and upper bounds of a time interval. In a relation, an 
attribute value of a tuple is associated with timestamps 
Ts and T, if it is continuously valid in interval [T,, T,]. 

Aggregate operations are applied to the database re- 
lations to compute a scalar value. Aggregate operations 
are very important in database applications: many 
query benchmarks contain a large percentage of aggre- 
gate operations [2, 81. Therefore, in order to achieve 
good performance of database applications, it is neces- 
sary to execute the aggregate operations efficiently. 
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In this paper, two algorithms for processing aggre- 
gate operations in temporal databases over a network 
of workstations are described. The two algorithms are 
based on the algorithm in [4]. A simulator has been 
written to simulate the execution of the two algorithms 
over a network of workstations. The experimental re- 
sults obtained from the simulator will also be discussed. 

2 Temporal Aggregate Operations 
Aggregate operations are evaluated over relations to 

compute a scalar value, e.g. the number of people 
in the departments of a university, etc. Conventional 
aggregate operations [l] only show a snapshot of the 
database. For example, the query in Figure l (b)  will 
read the tuples in the Employee relation and output 
the number of people in each department at present. 

TSQL2 [6] is a temporal extension to the SQL-92 
query language. TSQL2 extends the GROUP BY clause of 
SQL-92 with temporal grouping. In temporal grouping, 
the time line of each attribute value is partitioned into 
several sections (if necessary) , and aggregate operations 
are computed for each time partition. 

For example, assume that an Employee relation in a 
temporal database is shown in Figure l (a ) .  The start 
and end attributes represent the time that a person 
starts and ends his service in a department. The two 
attributes correspond to time-start and time-end. 00 

means that a person still works for a department when 
the query is made. From Figure l (a ) ,  it can be seen that 
the number of people in a department varies over time. 
The query in Figure l (b)  counts the number of people 
in each of the departments during different periods of 
time. Figure l(c) shows the results of the query. In 
the result, the time line for each department has been 
partitioned into several sections. A partition point is 
inserted into the time line of a department if there is 
a personnel change in that department at that point 
of time. Within a time section, the personnel of the 
corresponding department remains stable. 
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SELECT department, COUNT(name) 
FROM Employee 
GROUP BY department 

(b) 

Chemistry 
Statistics 

Statistics 
Statistics 

\ ,  
Figure 1 

In [4] an algorithm for calculating temporal aggre- 
gat,e is described in which trees are used to store the 
time partitions and the aggregate values of each parti- 
tion.. The trees are formed when the tuples are scanned. 
Each tree represents the aggregation results of one of 
t,he attribute values selected by the GROUP BY clause. 
Each node in the tree represents a time section. When a 
tuple in  a relation is checked, the tree is searched to de- 
t,eriiiine whether the time sections recorded in the tree 
need to be divided further. If the sections need to be 
divided further, some nodes representing the new sec- 
t,ioiis are inserted into the tree. The aggregation values 
recorded in the tree will also be updated when the tu- 
ples are checked. After all the tuples have been checked, 
the leaf nodes in a tree represent the time partitions of 
the corresponding attribute value. 

In  [4]’s scheme, each node in a tree has five compo- 
nents, start, end, count, left-child and right-child. start 
and end indicate the time period represented by the 
node. c o r d  records the number of tuples which are 
valid witahin the period. left-child and right-child are 
pointers to the node’s children. The two children rep- 
resent a partition of the time period represented by the 
node. For example, if a node represents time period 
[ O , C Q ] ,  the two children of the node would represent 
periods [0, a] and [U + 1, CO] respectively. 

For the example in Figure 1, when applying [4]’s al- 
gorithm, the trees will be constructed as shown in Fig- 
ure 2 .  Two attribute values, Statistics and Chemistry, 
are selected by the GROUP BY clause of the query. Thus, 
t,wo t,rees will be set up to store the aggregate result for 
St,atistics and Chemistry respectively. 

As shown in Figure 2(a), initially each tree has one 
node rkpresenting time period [0, m]. Figure 2(b) shows 
t,he t,rees after the first two tuples in Figure l ( a )  have 
been checked. As John’s tuple is valid for period [a ,  CO], 
t,he t,ime line for Statistics is partitioned into two sec- 
tions, [0, I] and [2, -]- Hence, two nodes representing 
[0,1] and [ a ,  CO] are added to Statistics’ tree. Due to 
John’s record, the counter of node [2,m] is set to 1. 
Similarly, due to David’s tuple, two nodes are added to 
Chemistry’s tree. 

Figure 2(c) shows the trees after the third and the 
fourth tuple in Figure l ( a )  have been checked. As Bob’s 
record is valid for [ O , 5 ] ,  time period [ 2 , 0 0 ]  is parti- 
t,ioned int,o two sections, i.e. [a ,  51 and [B, CO]. Thus, 

two nodes [2,5] and [6, CO] are inserted into Statistics’ 
tree as [2, 001’s children. As [0,5] overlaps with [0,1], 
it means Bob’s record should also be counted as valid 
during [0,1]. Thus, the counter of node [0, l] is incre- 
mented. Similarly, as Bruce’s tuple is valid for period 
[3,00], two nodes, [l, 21 and [3,00], are added to Chem- 
istry’s tree. 

Figure 2(d) shows Statistics’ tree after the last tuple 
in Figure l(a) is checked. Gary’s tuple is valid for time 
period [5, m]. As [5,00] intersects with [2,5], [2,5] is 
partitioned into two sections, [a, 41 and [5, 51. As a re- 
sult, two nodes, [2, 41 and [5, 51, are inserted into Statis- 
tics’ tree. As [5,m] overlaps with [6,03], the counter 
associated with [6, m] is incremented. 

Statistics -d=%TQ o - o 

Figure 2 

3 Compute Temporal Aggregates in 

3.1 Basic Principles 
In this section, two approaches to parallelise [4]’s 

algorithm over networked workstations are described. 
It is assumed that (a) a relation has been partitioned 
into n sections where n is the number of workstations 
participating in computing the aggregate functions, and 
(b) the tuples in a section are stored on one workstation. 

Parallel 
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In the first approach, group-partition, the tuples are 
divided int,o several groups according to the att,ribute 
in the GROUP BY clause of a query. Each workstation 
is responsible for computing the aggregate functions of 
ii group. For example, for the query in Figure l (b) ,  if 
there are ten different departments in the Employee re- 
lation and five workstations, then five groups are formed 
where each group consists of two departments. Each 
workstntioii is responsible for computing the aggregate 
functions of tlie departments in a group. That is, each 
workstat,ion computes the aggregate functions for two 
departments. A workstation maintains the aggregate 
trees for tlie departments in its group. First a worksta- 
t,ion checks the tuples stored on it. For the tuples be- 
longing to the departments for which the workstation is 
responsible for computing the aggregate functions, the 
workstation updates the aggregate trees maintained by 
it according to  [ill’s algorithm. For the other tuples, the 
workstat,ion sends them to  the appropriate workstations 
which are responsible for processing the tuples. Once 
a workstation completes checking the tuples stored on 
it, it starts processing the tuples sent to  it by the other 
workstations. When all the received tuples have been 
processed, the workstation outputs the results stored in 
t,he aggregate trees. 

The second algorithm data-partition consists of two 
phases. During the first phase, each workstation pro- 
cesses the tuples stored on it and constructs an aggre- 
gate tree for each attribute value in the GROUP BY clause 
whose tuples are stored on the workstation. For exam- 
ple, in Figure l (b ) ,  a workstation creates an aggregate 
tree for each of the departments during the first phase. 
As in the first algorithm, the attribute values in the 
GROUP BY clause are partitioned into several groups. In 
t,he secoiid phase, each workstation is responsible for 
producing the final results for the attribute values in 
one group. During the second phase, a workstation (i) 
sends the aggregate trees of the attribute values whose 
final results will be produced by other workstations to  
the appropriate workstations, and (ii) merges the ag- 
gregate trees received from the other workstations with 
the corresponding ones held by the workstation. For 
example, in Figure l (b ) ,  if there are ten departments 
and five workstations, each workstation will be respon- 
sible for producing the final results of two departments. 
In the second phase, each workstation (i) sends out tlie 
aggregate trees of the eight departments whose final re- 
sults are not produced by the workstation, and (ii) re- 
ceives two aggregate trees from each of the other work- 
stations. Once all the received trees have been merged, 
tlie workstation outputs the results stored in the trees. 

3.2 The Algorithms 
First algorithm group-partition is described. It is as- 

sumed that the algorithm is applied to workstation i. 

1. for all the tuples stored in local memory 
2. 

3.  

if a tuple records the attribute value whose 

then update the relevant aggregate tree 
aggregate tree is kept by workstation i 

4. else /* i.e. the aggregate tree of the attribute 
value recorded in the tuple 
is not kept by workstation i */ 

5. pack the tuple into a message and send the 
message to the workstation which keeps the 
aggregate tree of the attribute value recorded 
in the tuple 

endif  
endfor 

6. process the tuples sent by the other workstations 

In line 5 ,  when sending a tuple to another worksta- 
tion, there is no need to  send all the items recorded 
in the tuple. It is only necessary to  send the informa- 
tion needed for constructing the aggregate tree, i.e. the 
attribute value, and the start and end time. This ap- 
proach reduces the amount of information exchanged 
amongst the workst at ions. 

Next the algorithm data-partition is described. It is 
assumed that the algorithm is applied to workstation i. 

7. for each tuple stored in the local memory 
8. update the relevant aggregate tree 
9. endfor  
10. pack the aggregate trees of the attribute values for 

which workstation i is not responsible for producing 
the final result into messages; and, send the 
messages to  appropriate workstations 

received from other workstations 
11. for each of the aggregate trees 

12. merge the received trees with the corresponding 
aggregate trees maintained by workstation i 

endfor  

3.3 Data Skew 
The number of the tuples corresponding to the at- 

tribute values selected by the GROUP BY clause may vary 
widely. For example, for the query in Figure 1, the 
number of people working for the Chemistry depart- 
ment maybe ten times more than the people working 
for the Statistics department. This uneven distribution 
of tuples is called data skew. 

Assume (a) an attribute value, say A ,  has n tuples 
associated with it, (b) an attribute value, say B, has 
m tuples associated with it, (c) the number of tuples 
associated with A is greater than the number of tuples 
associated with the other att.ribute values, and (d) the 
number of tuples associated with B is less than the num- 
ber of tuples associated with the other attribute values. 
14 7n is called skew ratio. 

In the group-partition scheme, each workstation is 
responsible for maintaining the aggregate trees of some 
attribute values selected by the GROUP BY clause. Data 
skew might cause some of the workstations being over- 
loaded. This is because, when the skew ratio is large, 
the number of tuples in a group, say G, might be signifi- 
cantly higher than the number of tuples in other groups. 
As a result, the workstation which is responsible for G 
will perform most of the operations on aggregate trees. 

In the data-partition algorithm, at the first phase all 
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tflie workstations participate in constructing the aggre- 
gate trees for all the attribute values. Therefore, at the 
first phase, the load is shared amongst all the worksta- 
t,ions in t,he system. Although in the second phase of 
the algorithm, the workstations which handle the ag- 
gregate trees of the large tuple groups might still be 
overloaded, it remains to be seen whether the sharing 
of load in the first phase makes the data-partition algo- 
rithm more efficient than the group-partetion algorithm. 

4 Empirical Results 
A simulator has been written to simulate the exe- 

cution of the two algorithms over a network of work- 
stations. The simulator uses the message passing li- 
braries in  PVM. The simulator runs on a 275MHz Al- 
pha 2100 4/275 with 512M bytes RAM. Another Al- 
pha 2100 is set up t,o measure the communication time 
when messages are exchanged between workstations. A 
duininy program is run on this machine. The program 
receives and unpacks the messages sent by the simu- 
lat,or. For each received message, the program sends 
a reply to the simulator. The two machines are con- 
nected through a lightly loaded Ethernet. In the simu- 
lator, when two workstations exchange a message, the 
iiiessage is first sent to the Alpha where the dummy pro- 
gram resides. When a reply to the message is received 
from the duniiny program, the simulator delivers the 
message to the destination workstation. The time for 
exchanging a message is set as half of the elapsed time 
between sending a message to and receiving a reply from 
the dummy program. 

When algorithm group-partition is implemented, in- 
stead of packing each tuple into a message (line 5 of the 
algorithm), several tuples which are sent to the same 
workstation are packed into the same message. This 
will reduce the communication set up and packing cost. 
In the sinidatlor, up to 1000 tuples are packed into a 
message. 

The tuples associated with different attribute values 
are st,ored in a relation in random order. The relation 
has been divided into n sections which contain the same 
number of t,uples where n is the number of workstations 
used in the computation. A section is stored on one of 
t,lie workstat,ions in the system. 

The size of each tuple in a relation is set to 128 
bytes. The relation has a lifespan of one million in- 
st,ants, i.e. the values for t ime-start  and t ime-end at- 
t,ribut,es are taken from the range [0, 9999991. The value 
of the t ime-start  attribute of the tuples is generated 
randomly. The lifespan of a tuple (i.e. the difference 
between t i m e - e n d  and t i m e - s t a r t )  varies between 1 and 
1000, and is determined randomly. The number of the 
distinct, &tribute values selected by the GROUP BY clause 
has h e m  set, t,o 32'. 

Cache hit rate is one of the many factors that affects 
t,he speed up  of a parallel system. For some applica- 

'This means, for the example in Figure 1, there are 32 
different departments. 

tions, partitioning the data set will increase the cache 
hit rate. As a result, it is possible to have super lzn- 
ear speed up when applications are parallelised. That 
is, when running the applications on n machines, com- 
pared with running the applications on one machine, 
the speed up is greater than n [5]. Super linear speed 
up was observed in several cases during the experiment. 
In order to verify the results, the algorithms were run 
on a single Alpha 2100 4/275 for one data set contain- 
ing 128K tuples with 32 attribute values and skew ratio 
1 and another data set containing 4K tuples with 1 at- 
tribute value'. The execution time for the 128K and 
the 4K tuple sets is 1244.407 seconds and 25.023 sec- 
onds respectively. It can be seen that, although the size 
of the 128K tuple set is 32 times of the 4K tuple set, the 
execution time for the 128K tuple set is about 49 times 
of the execution time of the 4K tuple set. This indicates 
that the cache hit rate does play an important role in 
the performance of the algorithm. As shown later, in 
the experiment, due to communication overhead, the 
speed up is less than 32 when 32 workstations are use 
in the computation. 

For the first sets of data, the skew ratio is set to 1. 
That is, the number of tuples associated with each of 
the 32 attribute values is roughly the same. The results 
produced by these sets of data are shown in Figures 3, 
4 and 5. The three figures show the running time of the 
two parallel schemes when the number of tuples in the 
relation is 32K, 64K and 128K respectively. From the 
figures, it can be seen that the performance of the two 
schemes is very close. As explained earlier, when run- 
ning on a single workstation, super linear speed up has 
been observed. However, the scale of speed up shown in 
Figures 3 to 5 is less than that achieved when running 
the algorithms on a single workstation. This is because 
the cost of exchanging the tuples and aggregate trees 
reduces the gains obtained in improvement in the cache 
hit rate. 

group parition 
data parition 

-2 c 48 s 

Number of Workstations 
Figure 3 Time Comparison for 32K Tuples with Skew 

Ratio 1 

2This is because the simulator simulates a system con- 
taining up to  32 workstations. With 32 workstations for 
32 attribute values, each workstation is responsible for con- 
structing the aggregate tree of one attribute value. Thus, 
for a 128K tuple set with skew ratio equal to  1, there are 
4K tuples associated with each attribute value. Hence, each 
workstation will handle 4K tuples. 
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Figure 4 Time Comparison for 64K Tuples with Skew 

Ratio 1 
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Figure 5 Time Comparison for 128K Tuples with Skew 
Ratio 1 

0.07 1 

Figure 6 Tuple Distribution when Skew Ratio is 512 

For the second sets of data, the skew ratio is set to 512. 
Figure 6 shows the percentage of the tuples associated 
with the 32 attribute values. In the figure, each at- 
tribute value has been given an identifier j (0 < j < 31). 
For a workstation i (where 0 5 z 5 15), the iden- 
tifiers of the attribute values for which workstation i 
is responsible for processing the aggregate trees are 
{ I C  1 x ( i + l ) - 1 )  where n i s  thenumber 
of workstations used in computation. For example, if 
four workstations are used, { I C  I 0 5 k 5 7 } , { k  I 8 5 
k 5 15},{k I 16 5 k 5 2 3 )  and { k  I 24 5 IC 5 31) 
are the sets of identifiers in the groups maintained by 

x i  5 IC 5 

workstation 0, 1, 2 and 3 respectively. Figures 7, 8 and 
9 show the results of running the two schemes using 
these sets of data. 

c 80 ---_ group parition 

% loo 60 h 4 
8 l- data parition 

Number of Workstations 
Figure 7 Time Comparison for 32K Tuples with Skew 

Ratio 512 

Number of Workstations 
Figure 8 Time Comparison for 64K Tuples with Skew 

Ratio 512 

Number of Workstations 
Figure 9 Time Comparison for 128K Tuples with Skew 

Ratio 512 

From the figures, it can be seen that, when two 
workstations are used, (a) the execution time of algo- 
rithm group-partition is similar to executing the algo- 
rithm on a single machine; (b) the time to run algorithm 
data-partition is slightly longer than running the algo- 
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rithm on a single workstation. This is because, when 
t,wo workst,ations are used, according to Figure 6 one 
of the workst,ations is responsible for producing the ag- 
gregat,e t,rees for 99.3% of the tuples. For algorithm 
data-partition, the aggregate trees generated in the first 
phase will be sent to the appropriate workstations for 
merging before the second phase starts. Merging two 
trees is the same as inserting the leaf nodes of one tree 
iiko another t,ree. As the time intervals of most of the 
t,uples intersect with each other, the number of leafs in 
the aggregate trees is roughly the same as the number 
of t,iiples. Hence, the nuinber of insertion carried out 
on the aggregate trees are similar for the cases where 
m e  and two workstations are used. Therefore, when 
running on two workstations, the cost in exchanging 
the aggregate trees makes the data-partition algorithm 
perform worse than running on a single workstation. 

From t,he figures, it can be seen that, apart from 
the case where two workstations are used, the perfor- 
mance of the two algorithms are similar to each other. 
As explained above, this is because the number of leaf 
nodes iii t,he aggregate trees is almost the same as the 
number of tuples. T ~ L I S ,  (a) the amount of information 
being exchanged amongst the workstations in algorithm 
doh-partztzon, is almost the same as the amount of infor- 
ination exchanged in algorithm group-partition; and (b) 
t,he amount of insertion operations carried out on the 
aggregate trees in algorithm data-partition is almost the 
same as the one in algorithm group-partition. Point (b) 
ineans that,  although the load of the workstations at the 
first, phase of algorithm data-partition is balanced, the 
information processed by the workstations in the second 
phase of the algorithm will overload the workstations 
t,o t,he same extent as with algorithm group-partition. 
Thus, the data-partition scheme does not perform bet- 
t,er than the group-partition scheme. However, this is 
due t,o t,lie fact that the time intervals of the tuples are 
generat,ed randomly. Thus, the time intervals of the tu- 
ples hardly coincide with each other. As a result, the 
niimber of leaf nodes in the aggregate trees is similar 
t.o t,he number of tuples. For some applications, the 
t,inie int,ervals of many tuples might coincide with each 
ot,her, e.g. many student,s enter and graduate from the 
universit,ies at the same time. In this case the number of 
leaf nodes in t,he aggregate trees will be much less than 
t,he number of tuples. As a consequence, the number 
of insertmion operation carried out in the second phase 
of algorithm data-partition will be much lower than 
the insertion operations carried out in grouppart i t ion.  
Thus, in t,his kind of applications, it is possible that 
data-partition outperforms group-partition. 

5 Conclusions 
In this paper, two approaches, group-partition and 

data-partitron, t,o parallelise [4]’s algorithm for comput- 
ing t,eiiiporal aggregates over a network of workstations 
have been studied. In the grouppart i t ion scheme, each 
workst,at,ion maintains the aggregate trees of some at- 
t,ribiite values selected by the GROUP BY clause. Thus, 
when the skew ratio is high, some of the workstations 

are overloaded while the others are idle for most of the 
time. In the data-partztzon scheme, all the workstations 
participate in constructing the aggregate trees in the 
first phase of the scheme. Thus, the load is evenly dis- 
tributed across the workstations in the system at the 
first phase of the scheme. However, before the second 
phase starts, workstations must exchange the aggregate 
trees generated at the first phase. The results show 
that the group-partztion scheme performs slightly better 
than the data-partitzon scheme for all the data tested. 
This means that, for the data-partztzon scheme, the cost 
of exchanging the aggregate trees outweighs the perfor- 
mance gains obtained through having a balanced load 
at the first phase of the execution of the scheme. 

As the test data are generated over a life span of 1 
million instances, the start and end time of the tuples 
hardly coincide with each other. As a result, many time 
intervals are generated. Thus, the size of the aggregate 
trees is very lwge. Hence, the costs of exchanging the 
aggregation trees over the network and merging the ag- 
gregate trees is relatively high compared with exchang- 
ing tuples over the network. Future work will test how 
the data generated over a shorter life span affect per- 
formance of the two schemes. 
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