Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.

- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.

- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
MINORS AND PLANAR EMBEDDINGS OF DIGRAPHS

JAMIE DAVID SNEDDON

A thesis submitted in partial fulfilment of the requirements of the degree of
This thesis may be consulted for the purpose of research or private study provided that due acknowledgement is made where appropriate and that the author’s permission is obtained before any material from the thesis is published.

I agree that the University of Auckland Library may make a copy of this thesis for supply to the collection of another prescribed library on request from that library; and I agree that this thesis may be photocopied for supply to any person in accordance with the provisions of Section 56 of the Copyright Act 1994.

Jamie David Sneddon

March 9, 2004
Abstract

Embedding graphs in surfaces is the central concept of topological graph theory. Classifying embeddability of graphs is motivated by Kuratowski’s Theorem and Robertson-Seymour theory, which confirms that the set of obstructions to embeddability in an arbitrary surface is finite.

We consider embedding directed graphs in surfaces, with restrictions on the direction of arcs in the local rotation at each vertex. Clustered planar digraphs have planar embeddings in which, at each vertex, all of the in-arcs occur sequentially in the local rotation. Three different variations of minors are presented, each of which produces a finite set of obstructions to clustered planarity. These variations include new operations on digraphs, and measures which refine the partial ordering.

Tournaments are digraphs with exactly one edge between every distinct pair of vertices. The domination graph of a tournament is a graph with the same vertices, and an edge between two of the vertices if every other vertex is beaten by one of those two vertices. We present two variations of domination graphs, and investigate the relationships between them and their limitations. We investigate those graphs which may be domination graphs of tournaments using excluded minors. Such graphs have a finite set of obstructions under a modification of the minor partial order.
Acknowledgements

A mathematician is a device for turning coffee into theorems.

Paul Erdős

I could not have come this far without the support and encouragement of Paul Bonnington, who has been my supervisor from the beginning, in 1999. If Paul Erdős was correct, then I must credit some central Auckland coffee houses (where our research meetings have been conducted for several years) for at least the occasional proposition. Over coffee Paul suggested an unusual word for me to attempt to use as part of a definition in this work; the only exercise for the reader is to find it.

Marston Conder has been my co-supervisor for the last part of my research, and has always had time to hear about my recent work, which I greatly appreciate. He replaced Margaret Morton as one of my supervisors after she passed away in August 2000.

Margaret’s contribution to my research has been deeply missed. She was the lecturer for my first course in combinatorics, and got me hooked. I knew then that discrete mathematics was for me. I like to recall that when I suggested (partly
in jest) that she take me to Texas with her in 2000, she considered it seriously, decided it was possible, and helped me make it happen.

Paul, Marston and Margaret have given me invaluable assistance in improving my skills of mathematical enquiry and, as I have progressed, my mathematical writing. I couldn’t have asked for better supervisors.

The Mathematics Department and the University of Auckland have been supportive of my research — in providing the means for me to present my work to others, and in providing me with constructive employment. I’m grateful that the University of Auckland Graduate Research Fund has contributed to my travel to Denton in Texas and Aveiro in Portugal for research and conferences. Support from a Marsden Fund grant (administered by the Royal Society of New Zealand) UOA-825 has also been of valuable financial assistance.

I am thankful to have been able to work with several co-authors in the course of my degree. Many thanks to Patty McKenna and Margaret Morton for working with me on new domination conditions for tournaments; it was my first published paper and one of Margaret’s last. My work on embedding ss-digraphs and clustered planar digraphs has been encouraged, supported, complemented and co-authored by Paul Bonnington and Marston Conder.

My investigation of obstructions to clustered planarity has been like hunting for something, and the outcomes of the hunt have been reported to family and friends. I am grateful for the enthusiasm they have shown for my announcements that I had found new obstructions and operations, or in some cases, eliminated them. They have shown more interest in my work than anyone could reasonably expect, for which I am forever grateful.

Throughout my studies, my wife Liz has given me her unstinting support and has tried to understand what I am always on about. Her love, understanding and
(sorely tested) patience have kept me going. She no longer wakes when I awake at 1 a.m. to scribble down ideas, but she is still willing to hear about them in the morning.

Jamie Sneddon
March 2004
Contents

I Introduction

1 Overview and Notation 3

2 Preliminaries 7
 2.1 Fundamental Results 11
 2.2 Topological Graph Theory 13
 2.3 Graph Minors 15
 2.4 Eulerian Embeddings 18
 2.5 Tournaments 25

3 Obstructions to ss-Planarity 27
 3.1 Operations for ss-minors 29
 3.2 Measures for ss-Minors 32
 3.3 The Obstructions 33
 3.4 Application to Graphs 36

II Obstructions to Clustered Planarity 41

4 Preliminary Definitions 43

5 Extended Minors 47
 5.1 Operations 48
 5.2 Measures 48
 5.3 Obstructions 50
List of Figures

2.1 K_5 and $K_{3,3}$... 10
2.2 A Graph Subdivision 11
2.3 An Embedding in the Torus 13
2.4 The Contraction Operation for Minors 16
2.5 The Smoothing Operation for Topological Minors 16
2.6 An Eulerian Embedding 18
2.7 The Obstruction K_3^2 20
2.8 Obstructions to Eulerian Planarity 21
2.9 The Slice Operation 22
2.10 The H-bowtie Operation 22
2.11 The Split Operation 22
2.12 The Triangle Deletion Operation 23

3.1 A Planar ss-Digraph 28
3.2 An s-Path Subdivision 29
3.3 The Double Smoothing Operation 30
3.4 The Cut Inversion Operation 31
3.5 Obstructions to ss-Planarity 34
3.6 Reducing $J_{i,k}$ to Σ_3 37
3.7 The s-path subdivision $J_{2,1}$ 38
3.8 Reducing J_i to Σ_4 39
3.9 Obstructions to Bipartite Planarity 40
4.1 A Clustered Planar Digraph .. 44
4.2 A Non Clustered Planar Digraph 44

5.1 The Expansion Operation 49
5.2 Extended Obstructions to Clustered Planarity 53

6.1 The Smoothing Operation 56
6.2 The Partial Inversion Operation 57
6.3 No Partial Inversion Operation Allowed 57
6.4 The Arc Reversal Operation 58
6.5 Loaded Obstructions to Clustered Planarity 63
6.6 The Cases of Proposition 6.8 65
6.7 The Structure of H in Lemma 6.9 67
6.8 The Eight Cases of Proposition 6.10 68

7.1 The Bead Smoothing Operation 74
7.2 The Diamond Smoothing Operation 75
7.3 The Contraction Operation 76
7.4 The Full Inversion Operation 77
7.5 The Non-Planar Obstruction to Clustered Planarity 79
7.6 A Full Minor of Σ_3 .. 81
7.7 Reducing an Odd Cycle of Beads to Ω_1 83
7.8 The Graph Q .. 83
7.9 Non Clustered Planar S-path Subdivisions of Q 85
7.10 The Structure of an Obstruction with a Cut Vertex 86
7.11 A properly 2-connected digraph 87
7.12 Elementary Bridges .. 88
7.13 An Almost 3-connected Digraph 88
7.14 Reducing to an Elementary Bridge 89
7.15 A Messy End .. 90
A.3 Obstructions Ω_0 .. 151
A.4 Ω_1, Ω_2 and Ω_3 Obstructions 151
A.5 Ω_i Obstructions ... 152
A.6 Obstructions to Bipartite Planarity 153
A.7 Φ_i Obstructions ... 153
List of Tables

3.1 Operations for ss-Planarity .. 33

4.1 Sizes of Partial Orders for Clustered Planarity 46

5.1 Operations for Extended Minors ... 50

6.1 Operations for Loaded Minors .. 61

7.1 Operations for Full Minors .. 78

7.2 Cases In Considering Full Minor Obstructions 80
xvi