
A Web-based Workflow Management System *

Xinfeng Ye
Department of Computer Science

Auckland University
New Zealand

email: xinfengQcs. auckland. ac. nz

Abstract
This paper describes a web-based workflow man-

agement system for a rental car company. Web
browsers are the interface between the system and
the users. The system consists of two types of tasks:
transactional and non-transactional. The transac-
tional tasks are atomic transactions. They can access
more than one database. Thus, the system provides
atomic operations on multiple databases.

1 Introduction
Workflow management systems provide an au-

tomated framework for managing intra- and inter-
enterprise business processes [SI. This paper describes
a web-based workflow management system for a rental
car company. Web browsers are the interface between
the system and the users. The system is Web-based
due to two features of Web: the ubiquitoushature
and the solid communication infrastructure. These
features allow the users with any computing platform
to be able to use the system without any additional
hardware or special-purpose training.

There are two types of tasks in the system: trans-
actional and non-transactional. The transactional
tasks are atomic transactions. That is, in the pres-
ence of failure, the updates made by the transactional
tasks are either all been carried out successfully or
none of the updates been carried out. Since a task
might access resources stored on different machines,
to achieved atomicity, the two phase commit protocol
is used for the transactional tasks. In order to make
the system portable, all the tasks are written in Java.

The system provides easy access to database man-
agement systems (DBMSs). Since an organisation
might have different types of DBMSs, in order to
achieve maximum flexibility, access to databases is
provided through JDBC API calls. As a result, a vari-
ety of DBMSs, e.g. Oracle, MS SQL Server, etc., can
be incorporated into the system. Many existing web-
based workflow management systems, e.g. [4, 6, 71,
do not support atomic updates on multiple databases.
The system in this paper allows transactional tasks ac-
cess more than one database. Thus, the system pro-
vides atomic operations on multiple databasesd

'This work is supported by Auckland University under grant
A18/XXXXX/6209O/F3414079.

2
The company has several regional offices which are

located at major cities across Australasia. The re-
gional offices are responsible for dispatching and col-
lecting cars to and from the customers. Each regional
office keeps a database which records (a) the informa-
tion on the cars (e.g. whether a car has been booked
or dispatched) and (b) the reservations made by the
customers. The head office oversees the operations of
the regional offices. The head office has a marketing
department which is responsible for analysing sales
and reservation information. According to the anal-
ysis, the marketing department introduces packages
targeting various customer groups.

Customers' queries which cannot be automatically
processed are forwarded to the customer service cen-
ter at the head office. These queries are submitted
through Email or HTML forms. The center is re-
sponsible for handling the queries submitted by the
customers.

The Structure of the Company

regional offic

head office

agent agent ... agent

Figure 1 Company Structure

The company has contracts with many travel agents
around the world. The travel agents are labeled as
agents in Figure 1. The agents are responsible for
handling reservations made by the customers and for
collecting payments made by the customers.

3 The System
3.1

The structure of the system is shown in Figure 2.
The system is web-based. The users use web browsers
to make requests (e.g. make reservation and initiate
tasks that handle the business within the company).
There are two kinds of users in the system. One is
the people from outside the company, e.g. the travel
agents and the customers. The other is the company

An Overview of the System

0-7803-5731-0B!&$l0.00 01999 IEEE 1-910

Authorized licensed use limited to: The University of Auckland. Downloaded on June 14, 2009 at 21:18 from IEEE Xplore. Restrictions apply.

employees. The outside users can only access the com-
pany’s public web site, while the company employees
can also access the company’s private web site.

The head office maintains the company’s public
web site. The web site keeps all the information on the
products of the company. Therefore, agents and cus-
tomers can browse the product information through
the Internet connection. While the head office keeps
the personal information (e.g. the age group of the
customers, the countries of origins of the customers,
etc.), the regional offices maintain the reservation in-
formation (e.g. the type of car being reserved, the du-
ration of the reservation, etc.). Reservations are sent
by the users to the head office through the Internet.
The head office processes the request and forwards the
reservation to the relevant regional office’. On receipt
of the reservation, the regional office updates its DB.

agent ... agent customer ... customer
- 9 1 I - 1 - 1 1

,7>\ ‘/
Figure 2 System Structure

This model might be more efficient if each regional
office has its own web site. In this case, reservations
made by agents or customers can be sent direfltly to
the relevant regional office instead of being re-directed
through the head office. However, this approach re-
quires each regional office maintains its own web site.
This is an extra cost to the company. When analysing
the access pattern to the head office’s web site, it is ob-
served that the access spread reasonably well through
the day. This is because the agents and the customers
are all over the world. Due to the time difference be-
tween different parts of the world, the accesses to the
head office’s web site do not concentrate on certain pe-
riod of time. Thus, the head office’s web site does not
appear to be an access bottleneck. As a result, redi-
recting the messages by the head office does not seem
to degrade the performance of the system noticeably.

The head office and each of the regional offices has
a private web site. The private web site stores vari-
ous HTML forms for specifying and initiating tasks.
When a company employee wants to initiate a task,
the employee downloads the form from the local web
site. After filling in the form, the employee submits
the form. The form triggers the CGI programs on the
local web site. The CGI programs carry out the task
requested by the employee. The HTML forms and the
CGI programs for processing these forms are the core
of the workflow management system. The forms and
the programs are replicated on each of the regional
offices and the head office. This allows the ueiers to

‘The request is forwarded to the regional office where the
customer wants to pick up the car.

download the forms locally. As a result, the access
efficiency is improved.

A task might update the values of more than one re-
source in the system. These resources might be stored
on different machines in the system. Since the ma-
chines and the communication links amongst the ma-
chines might fail, to maintain the consistency of the
information stored in the system, some of the tasks
must be made atomic. That is, either the updates are
all carried out or none of the updates are carried out.
The tasks which have atomicity property are called as
transactional tasks. The other tasks are called non-
transactional tasks.

The system handles the requests sent by parties
outside the company (e.g. travel agents and cus-
tomers) as well as the activities in the day to day run-
ning of the company. The tasks initiated by the users
outside the company might trigger the tasks which re-
quire the attention of the company’s employees (e.g.
the tasks which are triggered when the customers sub-
mit queries) and vice versa. Therefore, the tasks ini-
tiated by different types of users interact with each
other. However, since the procedures in processing
the tasks initiated by different users are different, in
the following, the tasks initiated by different types of
users are discussed separately.
3.2 Handling the Tasks Initiated by Out-

side Users
First, the tasks initiated by the travel agents and

the customers are discussed. Figure 3 shows the flow
of control. The action starts when an user downloads
an HTML form from the company’s public web site
(labeled 1 in Figure 3). The user submits the form to
the company’s web server (labeled 2 in Figure 3). The
CGI programs on the web server process the form sub-
mitted by the user. The programs extract information
from the form. Depending on the types of forms be-
ing submitted, the CGI programs invoke the following
tasks:

0 If the form is a query form2 submitted by a poten-
tial customer , the information of the prospective
customer are stored in the head office’s database
(labeled 3 in Figure 3). Some queries need ac-
cess to the regional offices’ databases (e.g. queries
about the availability of cars). In this case, the
queries are forwarded to the regional offices by
the head office (labeled 4 in Figure 3).

0 If the form is a reservation form, the informa-
tion of the customer is stored in the head office’s
database (labeled 3 in Figure 3) and the reser-
vation is forwarded to the relevant regional office
and added to the regional office’s database (la-
beled 4 and 5 in Figure 3).

0 Lf the form is a cancellation form, the informa-
tion of the customer recorded in the head office’s
database must be removed (labeled 3 in Figure

2An query form allows the users to specify (a) their per-
sonal details, (b) the expected travel time, (c) the type of cars
required and (d) their specific requirements.

I -911

Authorized licensed use limited to: The University of Auckland. Downloaded on June 14, 2009 at 21:18 from IEEE Xplore. Restrictions apply.

3), and the reservation must be deleted from the
relevant regional office’s database (labeled 4 and
5 in Figure 3) .

web browser E, 1 hiad head office DB web site

Figure 3 Tasks Initiated by Outside Users

The CGI programs for processing the forms are writ-
ten in Java. This allows the system to be easily ported
to various platforms. ODBC is a standard low level
API and is available with many of today’s popular
DBMSs (e.g. Oracle and MS SQL Server). Java in-
cludes a package which converts API calls in JDBC
to API calls in ODBC. Therefore, applications with
JDBC API calls can be used to access a wide range
of DBMSs. Due to this reason, the CGI programs in
the system use APIs, provided in JDBC to query and
update the databases in the system.

Query form and reservation form both include the
personal details of the customers. These information
are collected and stored in the head office’s database.
The marketing department will use these data to anal-
yse the trend of the sales.

Some of the queries can be processed automatically
(e.g. a query which checks the availability of a type
of car). In this case, the results of the queries are
sent back to the travel agents or the customers im-
mediately. The query results are sent to the users in
HTML forms. Thus, the users can read the results
using web browsers. If a query requires the participa-
tion of the regional offices, the regional offices make
JDBC API calls to query the databases (labeled 5 and
7 in Figure 3). The results of the queries are sent back
to the head office (labeled 8 in Figure 3). The head
office constructs an HTML form holding the result of
the query and sends the form to the customers.

Queries which cannot be processed automatically
(e.g. a customer requests for items which are not
included in any standard package) trigger the tasks
which notify the service center staff. The staff pro-
cess these queries manually. The need specified by the
customers in the queries will be stored in a database.
When new products are introduced by the company,
the database is checked to see whether the new prod-
ucts suit the requirements of the prospectixe cus-
tomers. The customers whose needs are matched by
the new products are made aware of the introduction
of the new products either by email or by post.

3.2.1 Enforcing Atomicity

Reservation and cancellation tasks need the participa-
tion of the head office and the regional offices. In this
case, the head office forwards the information to the
relevant regional office. A client/server model shown
in Figure 4 is used to implement these operations.

update I undoupdate M office

upd;iioj;;do update

I
U

Figure 4 Enforcing Atomicity

A server process (written in Java) runs on each of
the regional offices’ machines. The process waits for
messages from the head office. When a reservation or
cancellation is made, the databases at the head office
and the relevant regional bffice axe updated simulta-
neously. However, the updates to the databases might
not be carried out successfully due to machine crash
or communication failure. In order to ensure the co-
herency of the information stored in the databases of
the head office and the regional offices, the update
operations must be made as transactional tasks.

The two phase commit protocol [Z] is normally used
to achieve update atomicity. However, the protocol
causes long delays. To reduce the delays in using
the two phase commit protocol, the semantic of the
tasks can be explored. It can be seen that the reser-
vation and cancellation tasks only involve inserting
records into and deleting records from the databases.
These tasks do not influence or depend on other tasks.
Therefore, there is no strict ordering constrain in car-
rying out the insertion and the deletion operations
when they are mixed with the other tasks. Thus, an
augmented two phase commit protocol is used to guar-
antee the update atomicity for reservation and can-
cellation tasks. The protocol is described below and
shown in Figure 4. In Figure 4, the solid arrows rep-
resent the normal operations and the dashed arrows
represent the operations which are issued in the pres-
ence of a failure.

When a reservation or a cancellation task is initi-
ated, the head office sets up a link with the server pro-
cess running in the relevant regional office’s machine.
Before update requests are sent to the databases, the
head office machine sets up a log to record the up-
dates to be carried out. The log is stored on a reliable
storage device. Thus, the log can always survive a
failure. Then, the update requests are sent to the re-

1-912

Authorized licensed use limited to: The University of Auckland. Downloaded on June 14, 2009 at 21:18 from IEEE Xplore. Restrictions apply.

gional office. The processes at the head office and the
regional office will make JDBC API calls to update
the databases.

The updates at the regional office might not be car-
ried out successfully due to three reasons:

1. The communication link between the head office
and the regional office is broken.

2. The machine at the regional office crashes.

3. The booking cannot be carried out due to the

To discover the occurrence of problem 1 and 2, the
process running at the head office polls the process
running at the regional office periodically. If a reply is
not received within the timeout period, it is assumed
that the update cannot be carried out by the regional
office’s machine. In this case, the updates which have
already been carried out by the head office’s database
must be undone. The process at the head office issues
JDBC API calls to undo the update.

If a reservation cannot be carried out successfully
due to system failure, the person who submitted the
reservation will be notified and be asked whether
he/she wants to keep the reservation. If the reserva-
tion is kept, when the failure is repaired, the process
at the head office’s machine will use the information
kept in the log to make another attempt to update the
databases. If the update is successful, the customer
will be notified. A customer might decide to cancel a
reservation which cannot be made successfully ,due to
system failure. In this case, when the system returns
to normal operation, the process on the head office’s
machine will send an abort request to instruct the ma-
chine in the regional office to cancel the updates to the
database which were carried out before the failure oc-
curred. When the machine at the regional office has
undone the updates to the database, it acknowledges
the head office. At this point, the log for the task can
be deleted.

If the updates are carried out successfully by the
regional office without being interrupted by system
failure, a ready message is sent to the head office to
notify the completion of the updates. Since the up-
dates have been carried out successfully on both the
head office’s and the regional office’s databases, the
log of the task is deleted.

Apart from system failure, the updates to the re-
gional office’s database might also be aborted if there
are no cars available to meet the customers need.
The process running on regional office’s machine first
checks the availability of the cars requested in the
reservation. The updates to the database will not be
made unless a car is available to satisfy the customer’s
request. If there are no cars available, the head office
is notified by an abort message. As a result, the head
office undoes the updates to the head office’s database.

The machine at the head office might crash as well.
If the crash occurred before the log of the task is set
up, the databases a t the head office and the regional
office have not been updated. This is because updates

un-availability of the cars.

to the databases only occur after the log has been set
up. In this case, no action needs to be taken when
the system recovers from the failure. If the failure of
the head office’s machine occurs after the log is set
up, the databases at the head office and the regional
office might have been (partially) updated depending
on whether the update requests have been sent to the
databases before the failure occurs. As a result, the
updates to the databases must be undone first.

When the head office’s machine recovers from fail-
ure, it checks the log of the task. According to the log,
the head office machine issues instructions to its own
database and the regional office to undo the updates
which have been carried out before the failure occurs3.
Then, the updates recorded in the log are sent to the
appropriate databases; so that the updates can be re-
executed.
3.3 Managing the Workflow within the

The structure of the system for managing the work-
flow within the company is shown in Figure 5. The
system is web based. Users initiate tasks by submit-
ting HTML forms t o the system. The head office and
each regional office is called a site. Each site has a
web site which is only accessible to the machines at
that site. The site stores various forms that are used
to initiate the tasks. The users need to fill in some
of the forms. The informa:ion contained in the forms
are used as the parameters passed t o the tasks to be
initiated. For example, a form which initiates a task
for arranging a meeting should specify with whom the
meeting should be arranged. Each site has a task man-
ager. The manager is responsible for (a) handling the
workflow at that site and (b) communicating and co-
operating with the task managers at other sites.

Company

head office

manager

I I

regional office regional office
Figure 5 Managing Workflow within the Company

3The undo operations can be carried out by applying the re-
verse operations of the update operations. If the machines in the
regional offices do not fail while the head office machine crashes,
the databases at the regional offices are updated properly. As
a result, it is unnecessary to undo these updates. However, the
regional offices’ machines might also fail. This means there is
no guarantee that the updates to the databases at the regional
offices have been carried out successfully. Therefore, to ensure
information coherency, when the head office’s machine recovers,
the updates to the regional offices’ databases are also undone.

1-913

Authorized licensed use limited to: The University of Auckland. Downloaded on June 14, 2009 at 21:18 from IEEE Xplore. Restrictions apply.

control thread server

manager

manager

Figure 6 The Control flow of a Task

The activities involved in using the system is shown in
Figure 6. First, the user uses a browser to download
an HTML form which is used to specify and trigger
a task. After filling in the form, the user submits the
form to the local web site. The form is processed by
the CGI programs. The CGI programs first register
the task with the task manager. The manager creates
a Java thread which is responsible for coordinating the
task’s access to the resources in the company. If the
task need to access resources at other sites, the thread
will be responsible for passing the requests of the task
to the task manager of the relevant sites. If necessary,
the results of the execution of the task are returned
to the user.

Here is an example which illustrates how a task is
handled in the system. A secretary at regional office
A initiates a task which arranges a meeting for the
directors of regional office A and B. The scdedules
of the two directors are stored in the databases at
their respective site. In order to find a meeting time,
the schedules of the two directors must be checked to
find a time which suit both directors. Thus, the task
requires access to the databases at site A and B. When
the task manager at site A receives the task, it creates
a thread TA to handle the task. Thread TA contacts
the task manager at site B. The task manager at site
B creates a thread TB to handle the interaction with
TA. TA and TB access the database at their local
site to find out the time which are available for the
two directors to meet. Then, TA and TB updates the
schedules of the directors and send messages to notify
the directors and other parties that are concerned.

3.3.1 Handling Deadlock

Some of the tasks update databases at different sites.
The execution of some of these tasks requires the tasks
have exclusive access to the databases. Otherwise, er-
rors might occur. For example, assume the secretaries
of site A and C both initiate a task for arranging a
meeting between their directors and site B’s director.
The task manager at site B creates two threads, say
AB and CB, to handle the two tasks. Clearly, AB and
CB should not access the schedule of director B8simul-
taneously. This is because, if AB and CB access the
schedule simultaneously, they might allocate the same
time slot for director B to meet with director A and C.

Thus, A B and CB must lock the schedule to prevent
other threads from accessing the schedule. The task
manager on each site is responsible for maintaining
a table which records the locks on various local re-
sources. A thread must register its lock on a resource
in the table before it accesses the resource. If the re-
source has been locked, the thread must wait until the
resource becomes available.

Although locking guarantees the exclusive access
to shared resources, it might also cause deadlock. For
example, assume that:

1. Task X tries to set up a meeting between director

2. Task Y for setting up a meeting between director

3. Task 2 for setting up a meeting between director

4. Task X has locked director A’s schedule at site A .

5. Task Y has locked director Cs schedule at site C.

6. Task Z has locked director B’s schedule at site B.

It can be seen that task Xis waiting to access director
B’s schedule which is locked by task 2. Director B’s
schedule would not be available to task X until task
2 completes its execution, However, task Z has been
blocked waiting to access director Cs schedule which
is locked by task Y. Task Y cannot make progress since
it is waiting for task X to release its lock on director
A’s schedule. It can be seen that none of the tasks
can be completed.

In order t o detect deadlock, the algorithm de-
scribed in [3] is used. In the algorithm, a wait-for
graph representing the dependency amongst the tasks
is constructed during the execution. If there is a cycle
in the wait-for graph, a deadlock exists. In the sys-
tem, if a task has been blocked for a certain period of
time, a Java thread is created to look for cycles in the
wait-for graph. If a cycle is found, one of the tasks in
the cycle is aborted. As a result, the resources locked
by the task are released and the other tasks waiting
for the resources are able to make progress. A wait-for
graph might span across several sites. Thus, the task
managers must cooperate with each other during the
execution of the deadlock detection algorithm.

A and B has been initiated at site A.

A and C has been initiated at.site C.

B and C has been initiated at site C.

3.3.2 Enforcing Atomicity

Some of the transactional tasks update more than
one database, For example, the task for arranging a
meeting between two directors needs to update the
databases at two different sites. Generally speaking,
unlike the tasks for handling reservation and cancella-
tion, the execution of a task influences the outcome of
the other tasks. Therefore, the order in carrying out
the tasks is significant. To ensure atomicity, the two
phase commit protocol is used. The site which initi-
ates the task plays the role of the coordinator in the
two phase commit protocol. First, the resources used

1-914

Authorized licensed use limited to: The University of Auckland. Downloaded on June 14, 2009 at 21:18 from IEEE Xplore. Restrictions apply.

by the task are locked on all the sites. The locks will
not be released until the two phase commit protocol is
completed. Then, each site sets up a log to record the
updates to be carried out. The log is stored in the sta-
ble storage on each site. After the log has been stored,
the site notifies the coordinator. When the coordina-
tor has been notified by all the sites, the coordinator
records the identities of the participating sites in reli-
able storage. Then, the coordinator instructs a11 the
sites to carry out the updates on the databases. The
site releases its lock on the resource after the update
is completed. Since the updates have been logged by
all the participating sites, as shown in 121, it can be
guaranteed that the updates can be carried out on all
the sites. If a site fails before notifying the coordi-
nator that the site has logged the updates operations
in the stable storage, the coordinator instructs all the
other sites to discard the update operations. In this
case, the coordinator will re-start the task again when
the failed site recovers.

3.3.3 Utilising Computing Resources

Apart from automating the workflow within the com-
pany, the system also tries to utilise the computing
resources within the company. Some of the tasks
are computation intensive. For example, the task for
analysing (mining) the sales data to discover market
trend is an 1/0 and CPU intensive task. If the task
is run on a single machine, it takes many hours for
the task t o be completed. In fact, a majority of the
machines in the company are idle most of the time. If
these machines are utilised to carry out the computa-
tion intensive tasks, then (a) the time to complete the
tasks can be reduce, and (b) the cost effectiveness of
the computer systems can be improved.

To utilise the system resources, the task manager
monitors the load of the machines a t the local site.
The manager assigns the idle machines t o work on
the compute intensive tasks. To allow a task to be ex-
ecuted by several machines, the task must have a par-
allel implementation. At the moment, the task which
can be run in parallel is the one used by the marketing
department for analysing market trend. The task is
used to mining association rules [l], e.g. whether most
German customers in age group 25-30 make their jour-
ney during summer. The job is implemented based on
the algorithm in [SI.

4 Conclusions
The workflow management system described in this

paper combines the managing of workflow within the
company with e-commence facilities. The system is
designed for heterogeneous distributed environment.
Thus, the system is web based and the programs for
carrying out the operations are written in Java. Users
use web browsers to interact with the system. The
tasks are stored on the web servers as CGI programs.
These features allow the system to be run on a variety
of platforms.

The system uses JDBC API calls to access DBMSs.
Since (a) JDBC calls can be converted to ODBC calls

by a package included in Java, and (b) most DBMSs
support ODBC calls, the system is able to access a
wide range of commercial DBMSs, e.g. Oracle, MS
SQL Server etc. Thus, it gives more flexibility to the
company in choosing database products.

Tasks in the system can be transactional or non-
transactional. Transactional tasks guar antee update
atomicity. Two phase commit protocol is used to guar-
antee the update atomicity. As a result, during the
execution of the transactional tasks, some of the in-
formation need to be saved to stable storage. Thus,
transactional tasks are not as efficient as their non-
transactional counterparts. The system improves the
efficiency of some tasks by analysing the semantics of
the tasks. Since the updates carried out by some of the
tasks can be undone easily and the undone does not
affect the other tasks, an augmented two phase com-
mit protocol which requires less message exchange is
used for some of the transactional tasks.

The system uses parallel processing techniques to
speed up the processing of the compute intensive
tasks. Instead of using expensive parallel computers,
the system uses a pool of idle PCs to carry out par-
allel computation. As a result, the utilisation of the
computer resources has been improved.

References
R. Agrawal, T. Imielinski and A. Swami, Mining
association rules between sets of items in large
databases, Proc. of ACM SIGMOD Conference,

Bernstein P.A., Hadzilacos V. and Goodman N.:
concurrency control and recovery in database sys-
tems, Addison-Wesley, 1987

Chandy K.M., Misra J and Haas L.M.: Distributed
deadlock detection, ACM Transactions on Com-
puter Systems, Vol. 1, No. 2, pp144-156, 1983

Information Management Consultants: WebFlo -
delivery imaging and wokflow over the Web, Tech-
nical Report, Information Management Consul-
tants, 1997

Dogac A., Kalinichenko L., Ozsu M.T. and Sheth
A.: Workflow management systems and interoper-
ability, Springer, 1998

Palaniswami D.V.: Development of WebWork,
MSc Thesis, Georgia University, 1997

Action Technologies: Metro 3.0 coordinates work
across the Web, Technical Report, Action Tech-
nologies, 1997

Ye X. and Keane J . A.: Mining Composite Items
in Association Rules, Proc. of 1997 IEEE Interna-
tional Conference on Systems, Man and Cybernet-
ics, pp. 1367-1372

pp. 207-216, 1993

1-915

Authorized licensed use limited to: The University of Auckland. Downloaded on June 14, 2009 at 21:18 from IEEE Xplore. Restrictions apply.

