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Abstract 
A two layer neural network called an Extended 
Differentiator Network (EDN) which combines 
unsupervised and supervised training is presented The 
EDN uses a soft competitive learning method in the 
unsupervised layer followed by a supervised associative 
layer. 

The soft competitive learning in the EDN takes the 
activiry of all the competing neurons info account by 
using a one-step lateral inhibition mechanism. The 
functionality of the network is tested on a vowel 
recognition task and a cluster analysis problem. The 
simulation resulfs indicate an effective use of the 
competing neurons resulting in a high recognifion rate 
in a network with simple configurafwn. 

1. Introduction 
In a competitive learning system, a group of modules 
are used to produce the representative vectors of 
different clusters in the set of input vectors. This is a 
neural network implementation of the classical K- 
means clustering. In the clustering task, cluster 
centroids are modified in adaptation to the input data 
points to minimize an energy function which is the 
total average distortion error. 

In the well known Winner-Take-All (WTA) type of 
competition, only the best matching or winning 
weight vector is adapted to become more similar to the 
input vector. The WTA method fails to utilize the 
competing neurons efficiently (underutilization 
problem) and is frequently confined in local minima of 
the energy function. Two common methods used for 
overcoming the above problems are adding a 
conscience to the system by incorporating the winning 
rate of the neurons into the updating formula [ll or 
using a soft-max adaptation rule that affects all cluster 
centres depending on their proximity to the input 
vector [2]. 

The authors of this paper have developed a Dynamic 
Competitive Learning @CL) procedure [3,4] which is 
a form of soft competitive learning. In this paper, we 
propose a two layer neural network called an Extended 
Differentiator Network (EDN) to learn mapping 
operations and classify patterns. The EDN which is 
somewhat similar to tbe counterpropagation network 
of Hecht-Nielsen [ 5 ]  combines unsupervised and 
supervised training. The unsupervised layer of the EDN 
uses our variation of soft competitive learning to find 
the clusters in the input feature vectors and the 

supervised layer associates the responses of the 
unsupervised layer to the desired vectors. 

We have chosen the task of recognizing time-varying 
signals of 5 vowels and a two-dimensional cluster 
analysis problem to show the functionality of the EDN 
by way of computer simulations. In section 2, our 
variation of soft competitive learning is reviewed. In 
section 3, the EDN is. presented. Section 4 gives the 
simulation results and section 5 concludes the paper. 

2. Soft Competitive Learning 
In soft competition, all the neurons are updated but the 
amount of update depends on how close the neuron’s 
weight vector is to the current input vector. Nowlan 
[6] used this concept to model data distribution by 
overlapping radial basis functions in the context of 
maximum likelihood approach. In the maximum- 
entropy clustering technique suggested by Rose et. al. 
[7], the absolute distance between the weight vectors 
and the current input vector determines the adaptation 
step and an annealing process is used to reduce the 
temperature of the system. 

Martinetz et. al. [2] have recently proposed a soft- 
max rule which is an extension of classical K-means 
clustering procedure and takes into account a 
neighbourhood-ranking within the input space. To find 
the neighbourhood-rank, each neuron has to compare 
its distance with the input vector to the distance of all 
the other neurons. This method has a high performance 
but is very computationally intensive. Kohonen’s 
feature map algorithm [SI also uses a soft-max 
adaptation rule for the neurons which are in the 
neighbourhood of the winning neuron. Here, a 
neighbourhood-rank within an external lattice (instead 
of the input space) is considered. 

In our DCL method, a novel type of neuron called 
the control neuron is incorporated into the system to 
implement a lateral inhibition mechanism and provide 
feedback reinforcement signals for updating the 
weights. The reinforcement signal combines the 
activity of all the competing neurons. Thus, in this 
method, all the competing units have their own share 
in the competition and all the weights impinging upon 
them are updated at each step of training. As a 
consequence of this kind of competition, tlie weight 
vectors of strongly responding units move faster 
towards an input pattern than the others. The 
adaptation rule is given by 
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where r(t) is the input vector, w .  ( t )  is the weight 
vector of the jth competing neuron whose win-loss 
factor is represented by S.. The formal presentation of 
the DCL method is given in the next section. 

Based on the DCL algorithm, an unsupervised 
clustering network called a differentiator was proposed 
by the authors [4]. The weight vectors in the 
differentiator are utilized efficiently and they converge 
rapidly to the cluster centroids. The clustering results 
are also very much independent of the initial weight 
values. These effects can be seen in an example shown 
in Fig. 1. This example demonstrates the movement of 
8 weight vectors, starting from random initial 
positions as shown by the labels, to the cluster 
centroids during two iterations of the data set. For a 
complete description of this example refer to [4]. 
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Fig. 1: Eight clusters of randomly generated Gaussian 
two-dimensional patterns and convergence of the 
weight vectors during two iterations of training in the 
differentiator network. 

3. The Extended Differentiator Network 
The EDN may be conceptually represented by a two 
layer network as shown in Fig. 2 accompanied by the 
implementation of the lateral inhibition mechanism 
shown in Fig. 3. 

The network has three layers of neurons; input 
neurons, intermediate neurons (hidden neurons) and 
output neurons. The input neurons serve as fanout 
units and are connected to the neurons of the 
intermediate layer (hidden layer) through variable 
connection weights. Each input neuron is connected to 
every hidden neuron. 

Associated with each hidden neuron is a control 
neuron to implement a lateral inhibition mechanism as 
shown in Fig. 3. The control neuron receives a fixed 
excitatory connection from the corresponding hidden 
neuron and fixed inhibitory connections from other 
hidden neurons as well as a Bias value. The output of 
the control aeuron is used as a feedback in updating the 
weight vectors feeding the hidden layer. 
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Fig. 2: Topology of the EDN. 
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Fig. 3: Implementation of the lateral inhibition 
mechanism within the hidden layer. 

The hidden neurons are also connected to the output 
neurons through another set of variable connection 
weights similar to the previous layer. These weights 
are updated by using the Grossberg outstar algorithm 
[9] which requires the desired vectors to be supplied at 
the output neurons by an extemal teacher. The weight 
vectors of this layer are updated in the second phase of 
training. 

Formally, an n-dimensional input vector composed 
of real numbers is applied to the input layer. The 
weight vector of the hidden neuron j is denoted by w 

The squared Euclidean distance d .  between weight 
vector w .  and the input vector x is: 

i’ 
J 

J 

2 2 
dj = ( x i  - w i j )  

i 

where w .. is the connection strength between the ith 
input neuron and the jth hidden neuron, and xi is the 
ith element of the input vector x.  To obtain the 
activation value y .  for the hidden neuron j, the 
calculated distance is passed through a nonlinear 
Gaussian function: 
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(3) 
2 2 

y j  = exp( -  d / 2 p  ) i 
The characteristic distance p is a selectivity 

parameter that determines the degree of fine tuning of 
the hidden neurons to the input vectors. In order to 
hold a dynamic competition, the activation values for 
all the hidden neurons are calculated and fed to Uie 
control neurons through fixed connection strengths. 
Each associated control neuron receives a fixed 
excitatory connection from its own hidden neuron with 
strength 1 and fixed inhibitory connections from other 
hidden neurons with strength W ( 0 e W e 1 ) as well 
as a Bias value. The output of the control neuron k 
called Sensek is calculated from equation (4), where g 

is a squashing function which confines the signal 
between 0 and 1. 

Sensek = g ( y k  - w yi + Bias ) (4) 

The learning rule used in the unsupervised layer of 
the network is based on a neurobiologically inspired 
process called sensitization. By sensitization we mean 
that a neuron is made to produce a stronger response to 
a stimulus. This process has roots in competitive 
learning [4]. Equation ( 5 )  represents the learning rule 
in which S is the sensitization constant which 
determines the rate of learning: 

j z k  

A w . .  LJ = S . S e n s e . ( x i  J - w . . )  V 

At each step of training, the activation values for the 
hidden neurons are calculated using equations (2) and 
(3). Then the output of the control neurons are 
calculated from equation (4) and normalized. The next 
step in the training algorithm is to modify all the 
weight vectors according to equation (5 ) .  The above 
procedure is repeated for the number of times specified 
by the user. 

Note that the Sense value used in equation ( 5 )  is 
obtained by performing only one step of the lateral 
inhibition mechanism. Hence, this method saves 
computation time and retains most of the information 
concerning the matching quality between the weight 
vectors and the input vector. 

Having trained the first layer, the learning law for 
the change of w .. is turned off. Then, by applying an 
input vector, a set of y .  values are obtained. To 

J 
determine the vectors feeding the supervised layer the 
first k highly responding hidden neurons are chosen (k 
= 1 suffices for many cases) and their activities are 
normalized so that their sum equals 1. The activity of 
the other hidden neurons is set to 0. 

The weight vectors of the second layer are updated 
using equation (6), whereJ is a factor which decreases 
with time as training proceeds, dk is the k component 

LJ 

of the desired vector and v 
between the hidden neuron j and the output neuron: 

is the weight value 
j k  

After training, die actual activation value for Uic 
output neuron k ,  denoted by ZkB is calculated froiii 
equation (7) where M is the number of hidden neurons: 

M 
(7) 

4. Simulation Results 
In this section, we present two simulation examples. 
The first one demonstrates the clustering task of the 
unsupervised layer of the EDN, while the second 
example considers tlie complete EDN. 

EXAMPLE 1: 
In this example, we focus on the performance of the 
unsupervised layer of the EDN on a two-dimensional 
clustering problem described in Martinetz et. al. [23. In 
this regard, the DCL algorithm is compared with K- 
means clustering, Kohonen-map and Maximum- 
entropy method mentioned in section 1. 
The input data is drawn from 15 square shape clusters 

in a two-dimensional space as shown in Fig. 4.a. Also 
shown in this figure, are the randomly determined 
initial positions of 60 weight vectors. The global 
minimum for this clustering problem is known and it 
can be achieved if the weight vectors converge to the 
positions shown in Fig. 4.b. 

0 -Ju 

Fig. 4: A data distribution consisting of 15 separated 
clusters of square shape and positions of 60 weigh1 
vectors adapted from Martinetz et. al. [2]. 
(a) Weights have been initialized randomly. 
(b) Weights have converged to a position which gives 
the global minimum of total average distortion error. 

The performance of each algorithm can be measured 
from (E - E,,) / Eo where E is the average distortion 
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error at time f and Eo is the minimal distortion error. 

Fig. 5 compares the performance of 4 algorithms in 
minimizing the distortion error with respect to the 
adaptation steps. Since the clustering result of the K- 
means algorithm is very much dependent on the initial 
values, the weights in this method have been 
initialized to the values taken from the given clusters; 
i.e., the a priori knowledge available has been used in 
favour of this algorithm. That is the main reason it 
converges quickly to its final distortion level. 

The maximum-entropy method is capable of giving 
the lowest level of distortion. However, this is 
achieved after presenting a large number of patterns to 
the system and performing a high amount of 
computation for the annealing process. In this process, 
the temperature of the system must be carefully reduced 
to avoid the local minima. 

O+lO 
Training Iterations 
(First Phase + 
Second Phase) 

I Kohonen-map - K-means 
5 Maximumentropy 
- m  

10+10 10+10 

0 1 . .  I . .  1 . .  , . . i  
0 20000 40000 60000 80000 

Adaptation 8topo 

Fig. 5:  The performance of 4 clustering algorithms in 
minimizing the distortion error with respect to the 
adaptation steps. The performance measure is given by 
(E - Eo) / E o .  

To show the behaviour of the DCL algorithm, only 
the unsupervised layer of the EDN was used. This layer 
consisted of 2 input neurons to represent the input data 
values and 60 competing neurons. In order to reduce 
the wandering of weights in the vicinity of the cluster 
centroids, the sensitization learning rate was decreased 
from an initial given value (Sin> as training proceeded. 
The results shown for the DCL algorithm are the 
average of 10 runs of data with different initial 
positions of the weights. The parameters of the system 
were chosen as follows: 
Bias = 0.5, Sint = 0.01, W = 0.1, p = 0.2. 
Bias and Sinr were fixed to the given values, then W 
and p were found after a few trials. 

The DCL algorithm performs better tlian the 
Kohonen-map and the K-means algorithm both in 
terms of speed and level of distortion. The DCL 
method is much faster than the maximum-entropy 
method and it quickly converges to the vicinity of the 

global minimum; then it starts to wander in that 
region. Since it does not perform the annealing 
process, the final positions of the weights will not be 
as close to the global minimum as those of the 
maximum-entropy method. 

EXAMPLE 2: 
In this example, we used the time varying signals of 5 
vowels (/&,i,A,a,u/) uttered by a male speaker and 
sampled at 10 KHZ. In order to classify the signals, we 
extracted 12 Linear Prediction Coding (LPC) 
coefficients for each frame (200 samples) of the signals 
using the covariance method [lo]. Successive frames 
overlapped by 100 samples. The 12 coefficients were 
normalized to lie between 0.0 and 1 .O. 

The input data file to the network consisted of a total 
of 250 12-dimensional vectors for the 5 vowels (50 
vectors for each vowel). we corrupted the signals with 
30% noise. A segment of the noisy vowel / E /  is 
shown in Fig.6. 

By initializing the 5 weight vectors of the fust layer 
and using the network in a pattern matching style, a 
recognition rate of 88.8% was achieved which is very 
low. This result is summarized in Table 1. 

0 50 100 150 200 

Fig. 6: Signal representing vowel /&/,corrupted by 
30% noise. 

I Networksize 1 12-5-5 I 12-10-5 I 1 2 - 2 4  

I %Recognilion Ratel 88.8 I 93.6 I 98.81 

Table 1: Classification results for the vowel 
recognition experiment for 3 diferent sizes of the 
network with input signals corrupted by 30% noise. 
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To increase the recognition rate we tried to use the 
network in a more effective manner by chosing a 
suitable configuration and training Uie first layer as 
well as the second layer. The results of two different 
cases are also shown in Table 1. The first 125 patterns 
were used for training and the remaining 125 patterns 
were used €or testing the network. With 10 hidden 
neurons (using the first 2 vectors of each class for 
initializing the first layer weight vectors) and 10 
iterations in the first phase of training, the recognition 
rate increased to 93.6%. With 20 hidden neurons (using 
the first 4 vectors of each class for initializing the first 
layer weight vectors) and 10 iterations in the first 
phase of training the recognition rate increased to as 
high as 98.8%. 

The parameters of the network for the vowel 
recognition experiment were set to the following 
values: 
Bias = 0.3 S = 0.05 W = 0.3 p= 0.3. 

5. Conclusions 
We presented a two-layer supervised network based on 
a soft variation of competitive learning. With our soft 
competitive learning method, all the neurons 
participate in the competition effectively and the 
weights converge quickly to the cluster centroids. 

The simulation results for a vowel recognition task 
and a cluster analysis problem were presented. The 
results showed that the use of soft competitive learning 
can lead to high recognition rates without requiring 
long training sessions. 

In our future research, we will concentrate on the 
analysis of the network to find methods for automatic 
selection of parameters and will apply the network to 
some real world problems. 
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