
Soft Competitive Learning in the Extended Differentiator Network
Seyed Jalal Kia & George Coghill

Electrical & Electronic Engineering Department
The University of Auckland

Auckland, New Zealand

Abstract
A two layer neural network called an Extended
Differentiator Network (EDN) which combines
unsupervised and supervised training is presented The
EDN uses a soft competitive learning method in the
unsupervised layer followed by a supervised associative
layer.

The soft competitive learning in the EDN takes the
activiry of all the competing neurons info account by
using a one-step lateral inhibition mechanism. The
functionality of the network is tested on a vowel
recognition task and a cluster analysis problem. The
simulation resulfs indicate an effective use of the
competing neurons resulting in a high recognifion rate
in a network with simple configurafwn.

1. Introduction
In a competitive learning system, a group of modules
are used to produce the representative vectors of
different clusters in the set of input vectors. This is a
neural network implementation of the classical K-
means clustering. In the clustering task, cluster
centroids are modified in adaptation to the input data
points to minimize an energy function which is the
total average distortion error.

In the well known Winner-Take-All (WTA) type of
competition, only the best matching or winning
weight vector is adapted to become more similar to the
input vector. The WTA method fails to utilize the
competing neurons efficiently (underutilization
problem) and is frequently confined in local minima of
the energy function. Two common methods used for
overcoming the above problems are adding a
conscience to the system by incorporating the winning
rate of the neurons into the updating formula [ll or
using a soft-max adaptation rule that affects all cluster
centres depending on their proximity to the input
vector [2].

The authors of this paper have developed a Dynamic
Competitive Learning @CL) procedure [3,4] which is
a form of soft competitive learning. In this paper, we
propose a two layer neural network called an Extended
Differentiator Network (EDN) to learn mapping
operations and classify patterns. The EDN which is
somewhat similar to tbe counterpropagation network
of Hecht-Nielsen [5] combines unsupervised and
supervised training. The unsupervised layer of the EDN
uses our variation of soft competitive learning to find
the clusters in the input feature vectors and the

supervised layer associates the responses of the
unsupervised layer to the desired vectors.

We have chosen the task of recognizing time-varying
signals of 5 vowels and a two-dimensional cluster
analysis problem to show the functionality of the EDN
by way of computer simulations. In section 2, our
variation of soft competitive learning is reviewed. In
section 3, the EDN is. presented. Section 4 gives the
simulation results and section 5 concludes the paper.

2. Soft Competitive Learning
In soft competition, all the neurons are updated but the
amount of update depends on how close the neuron’s
weight vector is to the current input vector. Nowlan
[6] used this concept to model data distribution by
overlapping radial basis functions in the context of
maximum likelihood approach. In the maximum-
entropy clustering technique suggested by Rose et. al.
[7], the absolute distance between the weight vectors
and the current input vector determines the adaptation
step and an annealing process is used to reduce the
temperature of the system.

Martinetz et. al. [2] have recently proposed a soft-
max rule which is an extension of classical K-means
clustering procedure and takes into account a
neighbourhood-ranking within the input space. To find
the neighbourhood-rank, each neuron has to compare
its distance with the input vector to the distance of all
the other neurons. This method has a high performance
but is very computationally intensive. Kohonen’s
feature map algorithm [SI also uses a soft-max
adaptation rule for the neurons which are in the
neighbourhood of the winning neuron. Here, a
neighbourhood-rank within an external lattice (instead
of the input space) is considered.

In our DCL method, a novel type of neuron called
the control neuron is incorporated into the system to
implement a lateral inhibition mechanism and provide
feedback reinforcement signals for updating the
weights. The reinforcement signal combines the
activity of all the competing neurons. Thus, in this
method, all the competing units have their own share
in the competition and all the weights impinging upon
them are updated at each step of training. As a
consequence of this kind of competition, tlie weight
vectors of strongly responding units move faster
towards an input pattern than the others. The
adaptation rule is given by

0-7803-1901-X/94 $4.00 01994 E E E 714

Authorized licensed use limited to: The University of Auckland. Downloaded on November 2, 2008 at 22:06 from IEEE Xplore. Restrictions apply.

where r(t) is the input vector, w . (t) is the weight
vector of the jth competing neuron whose win-loss
factor is represented by S.. The formal presentation of
the DCL method is given in the next section.

Based on the DCL algorithm, an unsupervised
clustering network called a differentiator was proposed
by the authors [4]. The weight vectors in the
differentiator are utilized efficiently and they converge
rapidly to the cluster centroids. The clustering results
are also very much independent of the initial weight
values. These effects can be seen in an example shown
in Fig. 1. This example demonstrates the movement of
8 weight vectors, starting from random initial
positions as shown by the labels, to the cluster
centroids during two iterations of the data set. For a
complete description of this example refer to [4].

J

J

1.0 I i

0.0:. * 1 - . I * . I - - 1 . . I
0.0 0.2 0.4 0 .6 0.8 1.0

Fig. 1: Eight clusters of randomly generated Gaussian
two-dimensional patterns and convergence of the
weight vectors during two iterations of training in the
differentiator network.

3. The Extended Differentiator Network
The EDN may be conceptually represented by a two
layer network as shown in Fig. 2 accompanied by the
implementation of the lateral inhibition mechanism
shown in Fig. 3.

The network has three layers of neurons; input
neurons, intermediate neurons (hidden neurons) and
output neurons. The input neurons serve as fanout
units and are connected to the neurons of the
intermediate layer (hidden layer) through variable
connection weights. Each input neuron is connected to
every hidden neuron.

Associated with each hidden neuron is a control
neuron to implement a lateral inhibition mechanism as
shown in Fig. 3. The control neuron receives a fixed
excitatory connection from the corresponding hidden
neuron and fixed inhibitory connections from other
hidden neurons as well as a Bias value. The output of
the control aeuron is used as a feedback in updating the
weight vectors feeding the hidden layer.

z
1

I

HIDDEN U Y E K

y y INI’urUYW Y
X X

1 x2 N
Fig. 2: Topology of the EDN.

Hiddcn
Ncurons

Fig. 3: Implementation of the lateral inhibition
mechanism within the hidden layer.

The hidden neurons are also connected to the output
neurons through another set of variable connection
weights similar to the previous layer. These weights
are updated by using the Grossberg outstar algorithm
[9] which requires the desired vectors to be supplied at
the output neurons by an extemal teacher. The weight
vectors of this layer are updated in the second phase of
training.

Formally, an n-dimensional input vector composed
of real numbers is applied to the input layer. The
weight vector of the hidden neuron j is denoted by w

The squared Euclidean distance d . between weight
vector w . and the input vector x is:

i’
J

J

2 2
dj = (x i - w i j)

i

where w .. is the connection strength between the ith
input neuron and the jth hidden neuron, and xi is the
ith element of the input vector x. To obtain the
activation value y . for the hidden neuron j, the
calculated distance is passed through a nonlinear
Gaussian function:

1J

J

715

Authorized licensed use limited to: The University of Auckland. Downloaded on November 2, 2008 at 22:06 from IEEE Xplore. Restrictions apply.

(3)
2 2

y j = exp(- d / 2 p) i
The characteristic distance p is a selectivity

parameter that determines the degree of fine tuning of
the hidden neurons to the input vectors. In order to
hold a dynamic competition, the activation values for
all the hidden neurons are calculated and fed to Uie
control neurons through fixed connection strengths.
Each associated control neuron receives a fixed
excitatory connection from its own hidden neuron with
strength 1 and fixed inhibitory connections from other
hidden neurons with strength W (0 e W e 1) as well
as a Bias value. The output of the control neuron k
called Sensek is calculated from equation (4), where g

is a squashing function which confines the signal
between 0 and 1.

Sensek = g (y k - w yi + Bias) (4)

The learning rule used in the unsupervised layer of
the network is based on a neurobiologically inspired
process called sensitization. By sensitization we mean
that a neuron is made to produce a stronger response to
a stimulus. This process has roots in competitive
learning [4]. Equation (5) represents the learning rule
in which S is the sensitization constant which
determines the rate of learning:

j z k

A w . . LJ = S . S e n s e . (x i J - w . .) V

At each step of training, the activation values for the
hidden neurons are calculated using equations (2) and
(3). Then the output of the control neurons are
calculated from equation (4) and normalized. The next
step in the training algorithm is to modify all the
weight vectors according to equation (5) . The above
procedure is repeated for the number of times specified
by the user.

Note that the Sense value used in equation (5) is
obtained by performing only one step of the lateral
inhibition mechanism. Hence, this method saves
computation time and retains most of the information
concerning the matching quality between the weight
vectors and the input vector.

Having trained the first layer, the learning law for
the change of w .. is turned off. Then, by applying an
input vector, a set of y . values are obtained. To

J
determine the vectors feeding the supervised layer the
first k highly responding hidden neurons are chosen (k
= 1 suffices for many cases) and their activities are
normalized so that their sum equals 1. The activity of
the other hidden neurons is set to 0.

The weight vectors of the second layer are updated
using equation (6), whereJ is a factor which decreases
with time as training proceeds, dk is the k component

LJ

of the desired vector and v
between the hidden neuron j and the output neuron:

is the weight value
j k

After training, die actual activation value for Uic
output neuron k , denoted by ZkB is calculated froiii
equation (7) where M is the number of hidden neurons:

M
(7)

4. Simulation Results
In this section, we present two simulation examples.
The first one demonstrates the clustering task of the
unsupervised layer of the EDN, while the second
example considers tlie complete EDN.

EXAMPLE 1:
In this example, we focus on the performance of the
unsupervised layer of the EDN on a two-dimensional
clustering problem described in Martinetz et. al. [23. In
this regard, the DCL algorithm is compared with K-
means clustering, Kohonen-map and Maximum-
entropy method mentioned in section 1.
The input data is drawn from 15 square shape clusters

in a two-dimensional space as shown in Fig. 4.a. Also
shown in this figure, are the randomly determined
initial positions of 60 weight vectors. The global
minimum for this clustering problem is known and it
can be achieved if the weight vectors converge to the
positions shown in Fig. 4.b.

0 -Ju

Fig. 4: A data distribution consisting of 15 separated
clusters of square shape and positions of 60 weigh1
vectors adapted from Martinetz et. al. [2].
(a) Weights have been initialized randomly.
(b) Weights have converged to a position which gives
the global minimum of total average distortion error.

The performance of each algorithm can be measured
from (E - E,,) / Eo where E is the average distortion

716

Authorized licensed use limited to: The University of Auckland. Downloaded on November 2, 2008 at 22:06 from IEEE Xplore. Restrictions apply.

error at time f and Eo is the minimal distortion error.

Fig. 5 compares the performance of 4 algorithms in
minimizing the distortion error with respect to the
adaptation steps. Since the clustering result of the K-
means algorithm is very much dependent on the initial
values, the weights in this method have been
initialized to the values taken from the given clusters;
i.e., the a priori knowledge available has been used in
favour of this algorithm. That is the main reason it
converges quickly to its final distortion level.

The maximum-entropy method is capable of giving
the lowest level of distortion. However, this is
achieved after presenting a large number of patterns to
the system and performing a high amount of
computation for the annealing process. In this process,
the temperature of the system must be carefully reduced
to avoid the local minima.

O+lO
Training Iterations
(First Phase +
Second Phase)

I Kohonen-map - K-means
5 Maximumentropy
- m

10+10 10+10

0 1 . . I . . 1 . . , . . i
0 20000 40000 60000 80000

Adaptation 8topo

Fig. 5: The performance of 4 clustering algorithms in
minimizing the distortion error with respect to the
adaptation steps. The performance measure is given by
(E - Eo) / E o .

To show the behaviour of the DCL algorithm, only
the unsupervised layer of the EDN was used. This layer
consisted of 2 input neurons to represent the input data
values and 60 competing neurons. In order to reduce
the wandering of weights in the vicinity of the cluster
centroids, the sensitization learning rate was decreased
from an initial given value (Sin> as training proceeded.
The results shown for the DCL algorithm are the
average of 10 runs of data with different initial
positions of the weights. The parameters of the system
were chosen as follows:
Bias = 0.5, Sint = 0.01, W = 0.1, p = 0.2.
Bias and Sinr were fixed to the given values, then W
and p were found after a few trials.

The DCL algorithm performs better tlian the
Kohonen-map and the K-means algorithm both in
terms of speed and level of distortion. The DCL
method is much faster than the maximum-entropy
method and it quickly converges to the vicinity of the

global minimum; then it starts to wander in that
region. Since it does not perform the annealing
process, the final positions of the weights will not be
as close to the global minimum as those of the
maximum-entropy method.

EXAMPLE 2:
In this example, we used the time varying signals of 5
vowels (/&,i,A,a,u/) uttered by a male speaker and
sampled at 10 KHZ. In order to classify the signals, we
extracted 12 Linear Prediction Coding (LPC)
coefficients for each frame (200 samples) of the signals
using the covariance method [lo]. Successive frames
overlapped by 100 samples. The 12 coefficients were
normalized to lie between 0.0 and 1 .O.

The input data file to the network consisted of a total
of 250 12-dimensional vectors for the 5 vowels (50
vectors for each vowel). we corrupted the signals with
30% noise. A segment of the noisy vowel / E / is
shown in Fig.6.

By initializing the 5 weight vectors of the fust layer
and using the network in a pattern matching style, a
recognition rate of 88.8% was achieved which is very
low. This result is summarized in Table 1.

0 50 100 150 200

Fig. 6: Signal representing vowel /&/,corrupted by
30% noise.

I Networksize 1 12-5-5 I 12-10-5 I 1 2 - 2 4

I %Recognilion Ratel 88.8 I 93.6 I 98.81

Table 1: Classification results for the vowel
recognition experiment for 3 diferent sizes of the
network with input signals corrupted by 30% noise.

717

Authorized licensed use limited to: The University of Auckland. Downloaded on November 2, 2008 at 22:06 from IEEE Xplore. Restrictions apply.

To increase the recognition rate we tried to use the
network in a more effective manner by chosing a
suitable configuration and training Uie first layer as
well as the second layer. The results of two different
cases are also shown in Table 1. The first 125 patterns
were used for training and the remaining 125 patterns
were used €or testing the network. With 10 hidden
neurons (using the first 2 vectors of each class for
initializing the first layer weight vectors) and 10
iterations in the first phase of training, the recognition
rate increased to 93.6%. With 20 hidden neurons (using
the first 4 vectors of each class for initializing the first
layer weight vectors) and 10 iterations in the first
phase of training the recognition rate increased to as
high as 98.8%.

The parameters of the network for the vowel
recognition experiment were set to the following
values:
Bias = 0.3 S = 0.05 W = 0.3 p= 0.3.

5. Conclusions
We presented a two-layer supervised network based on
a soft variation of competitive learning. With our soft
competitive learning method, all the neurons
participate in the competition effectively and the
weights converge quickly to the cluster centroids.

The simulation results for a vowel recognition task
and a cluster analysis problem were presented. The
results showed that the use of soft competitive learning
can lead to high recognition rates without requiring
long training sessions.

In our future research, we will concentrate on the
analysis of the network to find methods for automatic
selection of parameters and will apply the network to
some real world problems.

References
[l] S. C. Ahalt, A. K. Krishnamurthy, P. Chen, and

D. Melton, "Competitive learning algorithms for
vector quantization," Neural Networks, vol. 3, no.

[2] T. M. Martinetz, S . G. Berkovich, and K. S.
Schulten, "Neural-Gas network for vector
quantization and its application to time-Series
prediction," IEEE Trans. on Neural Networks, vol.
4, no. 4, pp. 558-568, 1993.

[3] S. J. Kia and G. G. Coghill, "High performance
clustering using dynamic competitive learning,''
Electronics Letters. vol. 28, no. 18, pp. 1753-
1755, 1992.

[4] S . J. Kia, and G. G. Coghill, "Unsupervised
clustering and centroid estimation using dynamic
competitive learning," Biological Cybern. vol. 67,

[5] R. Hecht-Nielsen, "Applications of
counterpropagation networks," Neural Networks,

[6] S . J, Nowlan, "Maximum likelihood competitive
learning," in Advances in Neural Inforniation
Processing Systems 2, D. Touretzky Ed., New
York, Morgan Kauffman, 1990, pp. 574-582.

[7] K. Rose, F. Gurewitz, and G. Fox, "Statistical
mechanics and phase transitions in clustemg,"
Physicall Rev. Lett., vol. 65, no. 8, pp. 945-948,
1990.

[8] T. Kohonen, Self-organization and Associative
Memory. Springer-Verlag, 1989, third ed.

[9] S . J. Kia and G. G. Coghill, "A mapping neural
network using unsupervised and supervised
training," In Proc. Int. Joint Conf. Neural
Networks (IJCNN-91), Seattle, USA, July 1991,

[lo] J. Makhul, "Linear prediction: A tutorial review,"

3, pp. 277-290, 1990.

pp. 433-443, 1992.

vol. I , pp 131-139, 1988.

vol. 2, pp. 587-590.

in P ~ o c . IEEE, vol. 63(4), pp. 561-580, 1975.

718

Authorized licensed use limited to: The University of Auckland. Downloaded on November 2, 2008 at 22:06 from IEEE Xplore. Restrictions apply.

