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High-intensity training enhances executive
function in children in a randomized,
placebo-controlled trial
David Moreau*, Ian J Kirk, Karen E Waldie

Centre for Brain Research, The University of Auckland, Auckland, New Zealand

Abstract Background: Exercise-induced cognitive improvements have traditionally been
observed following aerobic exercise interventions; that is, sustained sessions of moderate intensity.
Here, we tested the effect of a 6 week high-intensity training (HIT) regimen on measures of
cognitive control and working memory in a multicenter, randomized (1:1 allocation), placebo-
controlled trial. Methods: 318 children aged 7-13 years were randomly assigned to a HIT or an
active control group matched for enjoyment and motivation. In the primary analysis, we compared
improvements on six cognitive tasks representing two cognitive constructs (N = 305). Secondary
outcomes included genetic data and physiological measurements. Results: The 6-week HIT regimen
resulted in improvements on measures of cognitive control [BFM = 3.38, g = 0.31 (0.09, 0.54)] and
working memory [BFM = 5233.68, g = 0.54 (0.31, 0.77)], moderated by BDNF genotype, with met66

carriers showing larger gains post-exercise than val66 homozygotes. Conclusion: This study
suggests a promising alternative to enhance cognition, via short and potent exercise regimens.
Clinical Trial Registration: Protocol #015078, University of Auckland. Funding: Centre for Brain
Research: David Moreau and Karen E Waldie (9133-3706255).
DOI: 10.7554/eLife.25062.001

Introduction
Possibly the most reliable means to induce cognitive improvements behaviorally, physical exercise
has become known for its effects on the brain in addition to its well-documented impact on the
body (see for a review Moreau and Conway, 2013). Individuals with higher cardiovascular fitness
typically show higher performance on a wide range of cognitive measures, from cognitive control
(Pontifex et al., 2011) to working memory (Erickson et al., 2013) and executive functioning
(Colcombe and Kramer, 2003; Hillman et al., 2008). In addition, long-term sport practice is associ-
ated with higher working memory capacity (Moreau, 2013), spatial ability (Moreau, 2012), and
more efficient visual processing of movements (Güldenpenning et al., 2011). In neuroimaging stud-
ies, greater fitness indices have also been linked to differences in white matter integrity (Chaddock-
Heyman et al., 2014; Voss et al., 2013), as well as with larger hippocampal (Weinstein et al.,
2012) and cortical areas (Erickson et al., 2009; Makizako et al., 2015). These results are corrobo-
rated by increased long-term potentiation (LTP) in the visual system of physically fit individuals com-
pared to the non-fit (Smallwood et al., 2015), a key finding given the primary role of LTP in major
cognitive processes such as learning and memory (Bliss and Collingridge, 1993, 1973).

Importantly, these correlational findings are further supported by longitudinal designs. Exercise
interventions can elicit cognitive improvements in diverse populations ranging from children
(Davis et al., 2011) to the elderly (Fabre et al., 2002), as well as in individuals with various clinical
conditions such as developmental coordination disorders (Tsai et al., 2012) and schizophrenia
(Pajonk et al., 2010). Furthermore, improvements appear to be dose-dependent (Davis et al.,
2007; Vidoni et al., 2015), and are not restricted to atypical or clinical populations—adults at their
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cognitive peak show similar benefits (Gomez-Pinilla and Hillman, 2013; Moreau and Conway,

2013; Voss et al., 2011).
In school settings, exercise interventions have shown to be associated with higher levels of aca-

demic achievement (Coe et al., 2006), and exercise regimens in children typically lead to improve-

ments in various aspects of cognition, including executive function, cognitive control and memory

(see for a review Tomporowski et al., 2015a). Interventions implemented in early stages of life allow

capitalizing on higher cortical plasticity, potentially maximizing their impact (Cotman and Berchtold,

2002). The appeal of early interventions has motivated a whole line of research exploring the effect

of physical exercise regimens on behavior, cognitive function, and scholastic performance

(Castelli et al., 2007; Davis et al., 2007, Davis et al., 2011; Donnelly et al., 2016; Jackson et al.,

2016; Pontifex et al., 2013). Consistent with these findings, Sibley et al. found a robust effect of

physical exercise on cognitive function in children, in a meta-analytic assessment of the literature at

the time (Sibley and Etnier, 2003).
Most studies in this line of research have evaluated the impact of a rather specific type of regi-

men, based on aerobic exercise. Usually defined as a sustained regimen performed at moderate

intensity (e.g., McArdle et al., 2006), aerobic exercise has come to be accepted as the form of exer-

cise typically associated with neural changes and cognitive enhancement (Hillman et al., 2008;

Thomas et al., 2012), for at least two reasons. First, current interventions are rooted in early findings

in the animal literature, which typically investigated the effects of physical exercise in rodents—ani-

mals who naturally favor aerobic forms of exercise (Gould et al., 1999; Shors et al., 2001). Second,

the most dramatic gains in cognition have been observed in the elderly (Erickson et al., 2015; but

see also Etnier et al., 2006; Young et al., 2015, for a more nuanced view), a population for which

moderate-intensity exercise is seemingly most adequate. Subsequent studies have stemmed from

this line of research, therefore expanding the initial paradigm to a wider range of populations.

eLife digest Exercise has beneficial effects on the body and brain. People who perform well on
tests of cardiovascular fitness also do well on tests of learning, memory and other cognitive skills. So
far, studies have suggested that moderate intensity aerobic exercise that lasts for 30 to 40 minutes
produces the greatest improvements in these brain abilities.

Recently, short high-intensity workouts that combine cardiovascular exercise and strength
training have become popular. Studies have shown that these brief bouts of strenuous exercise
improve physical health, but do these benefits extend to the brain? It would also be helpful to know
if the effect that exercise has on the brain depends on an individual’s genetic makeup or physical
health. This might help to match people to the type of exercise that will work best for them.

Now, Moreau et al. show that just 10 minutes of high-intensity exercise a day over six weeks can
boost the cognitive abilities of children. In the experiments, over 300 children between 7 and 13
years of age were randomly assigned to one of two groups: one that performed the high-intensity
exercises, or a ‘control’ group that took part in less active activities – such as quizzes and playing
computer games – over the same time period. The children who took part in the high-intensity
training showed greater improvements in cognitive skills than the children in the control group.
Specifically, the high-intensity exercise boosted working memory and left the children better able to
focus on specific tasks, two skills that are important for academic success.

Moreau et al. further found that the high-intensity exercises had the most benefit for the children
who needed it most – those with poor cardiovascular health and those with gene variants that are
linked to poorer cognitive skills. This suggests that genetic differences do alter the effects of
exercise on the brain, but also shows that targeted exercise programs can offer everyone a chance
to thrive.

Moreau et al. suggest that exercise need not be time consuming to boost brain health; the key is
to pack more intense exercise in shorter time periods. Further work could build on these findings to
produce effective exercise routines that could ultimately form part of school curriculums, as well as
proving useful to anyone who wishes to improve their cognitive skills.
DOI: 10.7554/eLife.25062.002
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Yet current trends of research suggest other promising directions. For example, regimens based
on resistance training have shown sizeable effects on cognition (Best et al., 2015; Liu-

Ambrose et al., 2012; van Uffelen et al., 2007), despite underlying mechanisms of improvements
being potentially different from those elicited by aerobic exercise (Goekint et al., 2010). More com-
plex forms of motor training that combine high physical and cognitive demands also appear encour-
aging (Moreau et al., 2015; Tomporowski et al., 2015b). Moreover, a compelling body of research
in the field of exercise physiology indicates that interventions based on short, intense bursts of exer-
cise can induce physiological changes that mirror those following aerobic exercise on a wide variety
of outcomes. These include measures of cardiovascular function (Chrysohoou et al., 2015;
Gayda et al., 2016), overall fitness (Benda et al., 2015), and general health (Milanović et al., 2015).
In some cases, physiological improvements following high-intensity training (HIT) can even go
beyond those typically following aerobic regimens (Rognmo et al., 2004). For example, HIT appears
to be particularly effective to increase the release of neurotrophic factors essential to neuronal trans-
mission, modulation and plasticity—potentially surpassing aerobic exercise regimens (Ferris et al.,

2007). This body of research is promising, as it suggests a plausible mechanism by which intense
bursts of exercise could meaningfully influence cognitive function and behavior.

A few studies have partially tested this idea. Short bouts of exercise have been shown to alleviate
some of the difficulties typically associated with Attention-deficit/hyperactivity disorder (ADHD) in
children (Piepmeier et al., 2015), demonstrating the potential of this type of intervention to
enhance cognitive abilities. The benefits reported in this study were not limited to children diag-
nosed with ADHD, however—typical children also exhibited cognitive improvements. More strikingly
perhaps, Pontifex and colleagues found that a single 20 min bout of exercise was sufficient to
improve cognitive function and scholastic performance in children (Pontifex et al., 2013). This is an
impressive finding, given that exercise-induced cognitive improvements typically occur after longer
training periods (Etnier et al., 2006; Sibley and Etnier, 2003). Importantly, these effects should be
distinguished from short-term improvements immediately following acute bouts of exercise (Tom-

porowski, 2003), which typically dissipate after a few hours. The two types of outcomes (short-term
consequences of single acute sessions vs. more durable benefits) are sometimes conflated, resulting
in misleading conclusions (Jackson et al., 2016). The hypothesized mechanisms are, however, differ-
ent—heightened state of alertness induced by neurotransmitter increases for the former (Tompor-
owski, 2003), and slower but more durable neurophysiological adaptations in the case of the latter
(Erickson et al., 2011, Erickson et al., 2015; Moreau and Conway, 2013; Voss et al., 2013).

One aspect that remains to be formerly investigated relates to the specific influence of exercise
intensity. Although focused on short sessions, the aforementioned studies utilized regimens of mod-
erate intensity—a reported 62–72% (Piepmeier et al., 2015) and 65–75% (Pontifex et al., 2013) of
individual maximum heart rate, respectively. Yet based on findings from the physiological literature
(e.g., Rognmo et al., 2004), there are clear mechanisms via which exercising at a high intensity could
influence cognition in a meaningful manner. Arguably, HIT could elicit improvements above and
beyond those typically following short sessions of moderate intensity, and provide a legitimate,
time-efficient alternative to longer aerobic exercise regimens (Costigan et al., 2015). Together, the
conjunction of promising early findings and clear mechanisms of action has prompted discussions to
implement HIT interventions more systematically within the community (Gray et al., 2016).

In an effort to better understand and predict individual responses to physical exercise interven-
tions, several studies have investigated the role of specific genetic polymorphisms on the magnitude
of exercise-induced improvements (Erickson et al., 2008, Erickson et al., 2013). Among these,
many have focused on the brain-derived neurotrophic factor (BDNF) val66met polymorphism, given
its direct influence on serum BDNF concentration (Lang et al., 2009). BDNF is known to support
neuronal growth and has been shown to facilitate learning, a process that in turn induces BDNF pro-
duction (Berchtold et al., 2001; Cotman and Berchtold, 2002; Kesslak et al., 1998). This dynamic
coupling makes BDNF an important underlying factor of exercise-induced cognitive improvements.
Consistent with this idea, it has been proposed that individuals whose particular BDNF polymor-
phism is associated with lower activity-dependent BDNF levels (met66 carriers) might benefit from
exercise interventions to a greater extent than individuals whose activity-dependent BDNF levels are
higher (val66 homozygotes).

Similarly, a few studies have shown that individuals with lower cardiovascular function might maxi-
mize benefits from physical exercise interventions designed to improve cognitive function
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(Sofi et al., 2011; Strong et al., 2005). The implicit assumption is that although lack of physical
exercise might be a limiting factor for individuals whose fitness level is low, more active individuals
might be less impacted by an exercise intervention program (Heyn et al., 2004;
Lautenschlager et al., 2008; Sniehotta et al., 2006). Despite the intuitive appeal of this assump-
tion, several studies, including one from our group, have failed to find a positive correlation between
exercise-induced cognitive improvements and the associated physiological changes (Moreau et al.,
2015; Tsai et al., 2014). Arguably, the absence of a clear link between the hypothesized physiologi-
cal mechanisms of improvements and tangible cognitive gains might stem from the plurality and
complexity of variables underlying these changes, rendering coherent associations elusive.

Despite similarities in the physiological mechanisms linking aerobic exercise and HIT on cognition,
the precise impact of the latter on cognitive performance remains to be confirmed experimentally.
In the present study, we tested the viability of HIT as a substitute for aerobic exercise to induce cog-
nitive improvements in school populations. In particular, we postulated that HIT would result in
improvements in measures of cognitive control and working memory, as both constructs have been
linked to fitness levels (Pontifex et al., 2011) and appear to be malleable via aerobic regimens
(Erickson et al., 2013). The choice of these constructs was also motivated by previous research
showing the malleability of both cognitive control and working memory in training studies, thus pro-
viding theoretical and empirical support for the plausibility of expected improvements
(Hampshire et al., 2012; Mishra et al., 2014). Consistent with recent efforts to better model and
understand the mechanisms of cognitive improvement (Young et al., 2015; Moreau and Waldie,
2015), the present study also intended to address interindividual variability so as to isolate the
underlying factors of improvement. Based on previous literature (Erickson et al., 2013;
Moreau et al., 2015), we hypothesized that exercise training would elicit substantially larger cogni-
tive benefits in individuals whose cardiovascular fitness is low, and in BDNF met66 carriers, whose
activity-dependent BDNF levels are naturally limited. Finally, we expected physiological improve-
ments with exercise, as typically induced from aerobic interventions (see for a review Gomez-
Pinilla and Hillman, 2013).

Results
Statistical analyses were performed in R (RRID:SCR_001905; Core Team R, 2016). The following R
packages were used for our analyses (in alphabetical order): BayesFactor (Morey and Rouder,
2015), car (Fox and Weisberg, 2011), dplyr (Wickham, 2011), ggplot2 (Wickham, 2009), gridExtra
(Auguie, 2012), lsr (Navarro, 2015), psych (Revelle, 2015), pwr (Champely, 2015), rjags
(Plummer, 2016). All packages were retrieved from CRAN (RRID:SCR_003005; https://cran.r-proj-
ect.org/). Figures 4–6 were generated in JASP (JASP Team, 2016). R code and data are freely avail-
able on GitHub (https://github.com/davidmoreau/2017_eLife; a copy is archived at https://github.
com/elifesciences-publications/2017_eLife-1). The repository includes data sets, R scripts, details and
script of the HIT workout, the CONSORT flow diagram and the CONSORT checklist.

In this section, we report Bayesian model comparisons, to allow quantifying the degree of evi-
dence for a given model compared to other models tested, as well as Bayesian parameter estima-
tions when relevant. All the equivalent frequentist analyses can be found at the end of the Results
section.

Normality of distribution was examined for all continuous variables. If distributions were skewed,
we compared results using non-corrected vs. log-transformed data, and looked for discrepancies.
Although the analyses we present below are fairly robust to outliers, as priors can be adapted to
reflect deviations from normality, we systematically checked consistency using standard approaches
to outlier exclusion, to facilitate direct comparisons with frequentist tests. We defined outliers as val-
ues more than 3/2 times the upper quartile or less than 3/2 times the lower quartile of a given distri-
bution, and systematically checked consistency of our results with and without inclusion.

Physiological improvements
Participants in the exercise group saw a greater decrease in resting heart rate than controls, as dem-
onstrated by a Bayesian ANCOVA with Condition (HIT vs. Control) as a fixed factor and baseline
heart rate as a covariate. The full model was preferred to the model with baseline resting heart rate
only: BFM = 40.45, and was the most likely given our data: P(M | Data)=0.93, assessed from equal
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prior probabilities (Figure 1A). In-depth analyses focused on individuals with elevated resting heart

rate at baseline allowed further insights into the potency of our exercise intervention. Specifically, a

Bayesian t-test on resting heart rate change showed a sizeable difference between the two groups,

with larger gains for the HIT group (BF10 = 3.47, with Mgain = 6.11, SDgain = 11.64 and Mgain = 1.89,

SDgain = 8.63, for HIT and Control, respectively; Hedges’ g = 0.41 (0.09, 0.73). Test-retest reliabil-

ity—assessed via a comparison between pretest and posttest resting heart rate for controls only—

was acceptable (r = 0.77, BF10 = 1.75 e+51).
Physiological data also provided important indications about workout intensity idiosyncrasies. We

used resting heart rate at pretest to determine target intensities for each individual, such that:

HRTarget ¼HRResetþ dðHRMax $HRRestÞ (1)

where HRMax = 220 Age, and d is set to. 80. This yielded an individual target range (HRTarget or

Figure 1. Physiological and effort-dependent measures. (A) Violin and box plots showing change in resting heart rate (in BPM) between pretest and

posttest sessions, for HIT and control groups. The dashed line shows the point of perfect equivalence between pretest and posttest measurements;

values below the line indicate heart rate decreases. (B) Targeted range accuracy, defined as the ratio of maximum measured heart rate per participant

(in BPM) to targeted heart rate (expected), averaged across sessions. Dark dots show accuracy based on pretest resting heart rate, whereas light dots

show accuracy based on posttest resting heart rate. The blue dashed line represents the point of perfect agreement between individual targeted heart

rate and maximum measured heart rate. Values above the line represent higher measured heart rate than expected from baseline. (C) Time series of

the maximum heart rate (in BPM) measured for a single workout, averaged over participants, plotted across sessions. Smoothing is modeled via a non-

parametric locally weighted regression using a nearest neighbor approach (i.e. local polynomial regression fitting). (D) Time series of the total number

of steps for a single workout, averaged over participants, shown across sessions. Smoothing is modeled via a non-parametric locally weighted

regression using a nearest neighbor approach (i.e. local polynomial regression fitting).

DOI: 10.7554/eLife.25062.003

Moreau et al. eLife 2017;6:e25062. DOI: 10.7554/eLife.25062 5 of 26

Research article Human Biology and Medicine Neuroscience



above) while exercising. We then compared this range with the maximum intensity measured during

each workout, to obtain an index of accuracy, or agreement, between target zone and actual effort.

Results showed that participants did exercise at a suitable intensity overall, as expressed by the devi-

ation from individual target heart rate values (MDev = 1.65, SDDev = 5.87; Figure 1B). Importantly,

effort intensity was maintained stable across time, as demonstrated by moderate evidence favoring

the null model over an alternate model that included time as a predictor of maximum heart rate in a

Bayesian linear regression analysis [BFM = 2.87, P(M | Data)=0.74, Figure 1C]. Because individual

resting heart rates tended to decrease throughout the intervention, sustained effort indicates that

individuals incrementally increased workout volume, which was confirmed by additional measures

such as step count [BFM = 2.979e + 10, P(M | Data) » 1, for the model that included Session as a

covariate, Figure 1D]. Together, these results support the notion that the intervention was adaptive,

allowing workout intensities tailored to each individual.
Physiological improvements are informative in two key aspects: they provide corroborating evi-

dence for the hypothesized changes associated with exercise, and they allow identifying idiosyncratic

parameters often characteristic of training interventions. However, the main goal of a cognitive inter-

vention is to elicit cognitive gains, which were the primary outcomes of the present intervention. In

the following sections, we first identify latent constructs from cognitive assessments, before discus-

sing the impact of the intervention on these two constructs.

Exploratory factor analysis
An exploratory factor analysis using principal component extraction and promax rotation was per-

formed on all six cognitive measures at pretest. Although less common than orthogonal rotations,

oblique rotations such as promax allow factors to correlate; this property is especially appropriate

when the factors extracted are assumed to be correlated to some degree$a reasonable assumption

given our design. The corresponding scree plot and eigenvalues (i.e. the variance in all variables

accounted for by each factor) suggested a two-component solution (see factor loadings in Table 1

and Table 1—source data 1 and 2). Subsequent test of the two-factor model confirmed that the

number of factors was sufficient (!2 (4)=0.59, p=0.96; Bayesian Information Criterion, BIC = $22.05).

We refer to these two components hereafter as Cognitive Control and Working Memory. The corre-

lation between the two factors was r = 0.32. Uniqueness values indicated that the tasks spanned an

adequate range within the sample space of each construct (Table 1).

Table 1. Exploratory factor analysis for cognitive measurements at baseline. F1 (Cognitive Control)
and F2 (Working Memory) refer to the factor loadings of each measure from an exploratory factor
analysis with promax rotation (N = 287). Uniqueness represents the variance of each item not
accounted for by the two factors.

Measure CC WM Uniqueness

Flanker 0.89 0.21

Go/no-go 0.71 0.48

Stroop 0.55 0.71

Backward digit span 0.70 0.51

Backward Corsi blocks 0.27 0.91

Visual 2-back 0.33 0.90

Note: Only factor loadings greater than. 25 are included in the table.

DOI: 10.7554/eLife.25062.004
Source data 1. Scree plot for the exploratory factor analysis on all cognitive measures. The plot shows the eigen-

values associated with each factor plotted against each factor, and supports the decision to retain two factors.

DOI: 10.7554/eLife.25062.005

Source data 2. Path diagram for the exploratory factor analysis on all cognitive measures. F1 (Cognitive Control)

and F2 (Working Memory) refer to the factors extracted from an exploratory factor analysis on all six cognitive

measures, with promax rotation (N = 287).

DOI: 10.7554/eLife.25062.006
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Cognitive improvements
Here, we report cognitive improvements broken down by constructs, defined based on the factors
extracted from the exploratory factor analysis.

A Bayesian repeated measures ANOVA on Cognitive Control scores, with Session (pretest vs.
posttest) as a within factor and Condition (HIT vs. Control) as a between factor, showed moderate
evidence for the interaction model over the main effect model [BFM = 3.38, p(M | Data)=0.46;
Table 2]. Participants in the HIT group showed larger improvements than controls from pretest to
posttest (Mgain = 0.25, SDgain = 0.6 and Mgain = 0.08, SDgain = 0.47, respectively, Hedges’ g = 0.31
[0.09, 0.54]; Figure 2A, see also Figures 4–6). A Bayesian repeated measures ANOVA on Working

Memory scores, with Session (pretest vs. posttest) as a within factor and Condition (HIT vs. Control)
as a between factor showed strong evidence for the interaction model over the main effect model
[BFM = 5233.68, p(M | Data) » 1; Table 3]. Participants in the HIT group showed larger improve-
ments than controls from pretest to posttest (Mgain = 0.48, SDgain = 0.83 and Mgain = 0.12,
SDgain = 0.44, respectively, Hedges’ g = 0.54 [0.31, 0.77]; Figure 2B).

Because the cognitive improvements we reported are presumably based on physiological
changes, we directly tested the relationship between the two types of variables. A Bayesian regres-
sion analysis showed that change in resting heart rate was a reliable predictor of cognitive gains in
the HIT group, with respect to Cognitive Control (BF10 = 6.34, p(M | Data)=0.86). This was not the
case in the Control group (BF10 = 0.20, p(M | Data)=0.16). The contrast was weaker when comparing
Working Memory gains in the HIT group (BF10 = 0.56, p(M | Data)=0.36) with those of the Control
group (BF10 = 0.18, p(M | Data)=0.15). Additional Bayesian regression analyses showed that lower
resting heart rate at pretest did not predict improvements in either Cognitive Control or Working
Memory in the HIT group (BF10 = 0.41, p(M | Data)=0.29. and BF10 = 0.18, p(M | Data)=0.15, respec-
tively). This was also the case when the analyses were restricted to the. 75 quantile of individuals
with the lowest resting heart rate at baseline (BF10 = 0.34, p(M | Data)=0.25. and BF10 = 0.62, p(M |
Data)=0.38, respectively). Overall, baseline resting heart rate was a fairly noisy measure (M = 85.2,
SD = 14.77, over the entire sample) and this might have contributed to the lack of clear impact of
resting heart rate change on cognitive function.

Effect of BDNF genotype
A subsample of our data allowed for a better understanding of individual differences in exercise-
induced cognitive improvements. Specifically, we looked at the effect of variations in the BDNF poly-
morphism on cognitive gains in the HIT group, via a comparison between met66 carriers (i.e. met66/
met66 or val66/ met66) and non-carriers (val66 homozygotes). Separate Bayesian repeated measures
ANOVAs on Cognitive Control and Working Memory scores, with Session (pretest vs. posttest) as a
within factor and BDNF polymorphism (val66 homozygotes vs. met66 carriers) as a between factor
showed strong evidence for the interaction model in both cases [BFM = 31.17, p(M | Data)=0.89, and
BFM = 675.92, p(M | Data)=0.99, for Cognitive Control and Working Memory, respectively, see
Table 4 and Table 5]. These findings suggest that met66 carriers benefited to a greater extent than
non-carriers from the exercise intervention (Cognitive Control: Mgain = 0.93, SDgain = 1.20 and
Mgain = 0.05, SDgain = 0.13, Hedges’ g = 1.36 [0.52, 2.2]; Working Memory, Mgain = 0.87,
SDgain = 0.64 and Mgain = 0.14, SDgain = 0.24, Hedges’ g = 1.83 [0.94, 2.72]; Figure 3). Unequal

Table 2. Model comparisons for the Cognitive Control construct (CC) with condition as a fixed
factor. The table shows the probability of each model given the data P(M | Data), the corresponding
Bayes Factor, BF10 and the percentage of error. The unconditional probability for each model is 0.2.

Models P(M | Data) BFM BF10 Error (%)

Null 1.01e $5 4.05e $5 1 -

Session 0.43 3.06 43120.06 0.98

Condition 2.32e $6 9.28e $6 0.23 3.93

Main effects 0.11 0.49 11143.87 4.52

Interaction 0.46 3.38 43792.87 5.52

DOI: 10.7554/eLife.25062.007
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baseline scores cannot fully account for this effect since evidence for differences in Cognitive Control

was limited at pretest (BF10 = 4.03, Error (%)=1.55 e $6 from a Bayesian independent samples

t-test) and more substantial, but unable to account for the full effect, for Working Memory

(BF10 = 17.47, Error (%)=1.22 e $6 from a Bayesian independent samples t-test). Together, these

findings indicate that although genetic variations in the BDNF polymorphism are associated with

cognitive differences, the latter are malleable and can be reduced with physical exercise.

Figure 2. Cognitive improvements. Violin and box plots showing gains in Cognitive Control (A) and Working Memory (B) between pretest and posttest

sessions, for HIT and control groups.

DOI: 10.7554/eLife.25062.009

Table 3. Model comparisons for the Working Memory construct (WM) with condition as a fixed
factor. The table shows the probability of each model given the data P(M | Data), the corresponding
Bayes Factor, BF10 and the percentage of error. The unconditional probability for each model is 0.2.

Models P(M | Data) BFM BF10 Error (%)

Null 2.92e $13 1.17e $12 1 -

Session 4.49e $4 0 1.54e + 9 1.23

Condition 1.84e $13 17349e $13 0.63 0.69

Main effects 3.15e $4 0 1.08e + 9 3.13

Interaction 1 5232.68 3.42e + 12 2.91

DOI: 10.7554/eLife.25062.008
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Priors and robustness
All priors used in the reported analyses are default prior scales (Morey and Rouder, 2015). For

Bayesian repeated measures ANOVA and ANCOVA, the prior scale on fixed effects is set to 0.5, the

prior scale on random effects to 1, and the prior scale on the covariate to 0.354. The latter is also

used in Bayesian Linear Regression. The Bayesian t-test uses a Cauchy prior with a width of H2/2

(~0.707), that is half of parameter values lies within the interquartile range [$0.707; 0.707].
It is worth pointing out that the Bayesian repeated measures ANOVA that showed only moderate

evidence for the effect of our HIT intervention on Cognitive Control shows stronger evidence with a

slight variation on the prior scale. Although this variation in priors is consistent with our data and

provides stronger evidence for our claim, we chose to report analyses with default prior scales, as

these were the intended parameters a priori. For transparency, we plotted below the prior and pos-

terior distribution for the comparison between Conditions (HIT vs. Control) for Cognitive Control

(Figure 4), as well as the Bayes Factor robustness check (Figure 5). Both indicate that our findings

are robust and supported by a wide range of priors, as corroborated by a sequential analysis

(Figure 6).

Markov chain Monte Carlo (MCMC) Parameters
Broadly speaking, MCMC methods approximate the true posterior density p(" | y) by constructing a

Markov chain on the state space " 2 Q. The probability of the subsequent state in a given chain can

be defined as:

PðXnþ1 ¼ inþ1jXn ¼ InÞ; I 2 " (2)

where {X0, X1,..} is a sequence of random variables and " is the state space. Accordingly, the state
at time step n + 1 is dependent only on the state at time n. This process is best represented with a

random walk where each vertex is defined by ", and weighted by the transition probabilities:

Table 4. Model comparisons for the Cognitive Control construct (CC) with BDNF polymorphism as a
fixed factor. The table shows the probability of each model given the data P(M | Data), the corre-
sponding Bayes Factor, BF10 and the percentage of error. The unconditional probability for each
model is 0.2.

Models P(M | Data) BFM BF10 Error (%)

Null 0.01 0.06 1 -

Session 0.03 0.12 1.94 1.45

Condition 0.02 0.10 1.65 2.60

Main effects 0.04 0.19 3.05 1.71

Interaction 0.89 31.17 59.49 24.61

DOI: 10.7554/eLife.25062.010

Table 5. Model comparisons for the Working Memory construct (WM) with BDNF polymorphism as a
fixed factor. The table shows the probability of each model given the data P(M | Data), the corre-
sponding Bayes Factor, BF10 and the percentage of error. The unconditional probability for each
model is 0.2.

Models P(M | Data) BFM BF10 Error (%)

Null 2.47e $5 9.90e $5 1 -

Session 0 0.01 79.86 0.77

Condition 3.52e $5 1.41e $4 1.42 0.69

Main effects 0 0.01 155.37 5.84

Interaction 0.99 675.92 40159.39 3.51

DOI: 10.7554/eLife.25062.011
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pij ¼ PðXnþ1 ¼ jjXn ¼ iÞ; i; j2 " (3)

In the analyses reported in the paper, MCMC was used to generate posterior samples via the
Metropolis-Hastings algorithm (see for details Rubinstein and Kroese, 2011). All analyses were set

at 10,000 iterations, with diagnostic checks for convergence. One chain per analysis was used for all

analyses reported in the paper, with a thinning interval of 1 (i.e., no iteration was discarded).

Frequentist analyses
We reported Bayesian analyses throughout the paper. Because we understand that some readers

may wish to compare these results with the equivalent frequentist analyses, we are providing all of

these herein, in the order of presentation in the paper. Note that an a priori power analysis based

on previous studies (Erickson et al., 2013; Moreau et al., 2015) indicated the need for a minimum

N of 129 participants per group to detect an effect of d = 0.35 on the primary outcome measures,

with 1 – b = 0.80 and a = 0.05. The actual sample size of the present study (N = 152 and N = 153,

for HIT and control groups, respectively) allowed an a priori power of. 86, given d and a constant.

. ANCOVA on change in resting heart rate, with Condition (HIT vs. Control) as a fixed factor
and baseline heart rate as a covariate. Main group effect: F(1, 301)=9.84, p=0.002, h2 = 0.02

Figure 3. Effect of BDNF allele on cognitive improvements. # and s2 parameter estimates from the posterior distribution for the difference between

BDNF met carriers and non-carriers (met66 – val66 homozygotes) in cognitive gains. Estimates were generated from 10,000 iterations, in one chain, with

thinning interval of one (no data point discarded). (A) Trace of # for Cognitive Control. (B) s2 estimate for Cognitive Control. (C) Trace of # for Working

Memory. (D) s2 estimate for Working Memory.

DOI: 10.7554/eLife.25062.012
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(.00,. 08), Figure 1A. Levene’s test for homogeneity of variance was not statistically significant:
F(1, 302)=0.29, p=0.59.

. Welch two-sample t-test on resting heart rate change, by Condition (HIT vs. Control), after
split on resting heart rate at pretest: t(1, 146.4)=2.57, p=0.01. Mgain = 6.11, SDgain = 11.64
and Mgain = 1.89, SDgain = 8.63, for HIT and Control, respectively; Hedges’ g = 0.41 (0.09,
0.73).

. Linear regressions showed sustained effort across training sessions (b110.04, p>0.05;
Figure 1C), but incremental workout load (b118.81, p<0.01; Figure 1D).

. Repeated measures ANOVA on Cognitive Control scores, with Session (pretest vs. posttest) as
a within factor and Condition (HIT vs. Control) as a between factor. Interaction effect: F(1, 295)
=7.17, p=0.008, h2 = 0.02 (.00,. 07). Participants in the HIT group showed larger improve-
ments than controls from pretest to posttest (Mgain = 0.25, SDgain = 0.6 and Mgain = 0.08,
SDgain = 0.47, respectively, Hedges’ g = 0.31 [0.09, 0.54]). Levene’s test for homogeneity of
variance was not statistically significant: F(1, 295)=0.35, p=0.56 and F(1, 295)=0.82, p=0.37, at
pretest and posttest respectively.

. Repeated measures ANOVA on Working Memory scores, with Session (pretest vs. posttest) as
a within factor and Condition (HIT vs. Control) as a between factor. Interaction effect: F(1, 287)
=21.89, p<0.001, h2 = 0.06 (.00,. 11). Participants in the HIT group showed larger improve-
ments than controls from pretest to posttest (Mgain = 0.48, SDgain = 0.83 and Mgain = 0.12,
SDgain = 0.44, respectively, Hedges’ g = 0.54 [0.31, 0.77]). Levene’s test for homogeneity of
variance was not significant at pretest: F(1, 287)=0.16, p=0.69, but was statistically significant
at posttest: F(1, 287)=19.75, p<0.001.

. Regression analysis on Cognitive Control gains with change in resting heart rate as a predictor:
HIT, F(1, 149)=7.93, p<0.01, R2 = 0.05, RMSE = 0.58. Control group, F(1, 144)=0.24, p=0.63,
R2 = 0.002, RMSE = 0.48.

. Regression analysis on Working Memory gains with change in resting heart rate as a predictor:
HIT, F(1, 137)=2.47, p=0.12, R2 = 0.02, RMSE = 0.82. Control group, F(1, 147)=0.08, p=0.77,
R2 = 0.001 RMSE=0.44.

. Regression analysis on Cognitive Control gains with baseline resting heart rate as a predictor
(HIT group only): F(1, 149)=1.83, p=0.18, R2 = 0.01, RMSE = 0.59. When restricted to the. 75
quantile: F(1, 44)=0.37, p=0.54, R2 = 0.01, RMSE = 0.73.

Figure 4. Prior and posterior distributions for the comparison between Conditions (HIT vs. Control) for Cognitive

Control. The graph shows the density of each distribution as a function of effect size, with the prior centered on

the null effect.

DOI: 10.7554/eLife.25062.013
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. Regression analysis on Working Memory gains with baseline resting heart rate as a predictor
(HIT group only): F(1, 137)=0.02, p=0.90, R2 = 0, RMSE = 0.83. When restricted to the. 75
quantile: F(1, 40)=1.79, p=0.19, R2 = 0.04, RMSE = 0.40.

. Repeated measures ANOVA on Cognitive Control scores, with Session (pretest vs. posttest) as
a within factor and BDNF polymorphism (val vs. met) as a between factor. Interaction effect: F
(1, 30)=12.73, p=0.001, h2 = 0.22 (.00,. 50). Met66 carriers benefited to a greater extent than
non-carriers from the exercise intervention (respectively Mgain = 0.93, SDgain = 1.20 and
Mgain = 0.05, SDgain = 0.13, Hedges’ g = 1.36 [0.52, 2.2]). Levene’s test for homogeneity of var-
iance was statistically significant a pretest: F(1, 30)=25.20, p<0.001, but not at posttest F(1,
30)=2.16, p=0.15.

. Repeated measures ANOVA on Working Memory scores, with Session (pretest vs. posttest) as
a within factor and BDNF polymorphism (val vs. met) as a between factor. Interaction effect: F
(1, 30)=23.01, p<0.001, h2 = 0.24 (.01,. 47). Met66 carriers benefited to a greater extent than
non-carriers from the exercise intervention (respectively Mgain = 0.87, SDgain = 0.64 and
Mgain = 0.14, SDgain = 0.24, Hedges’ g = 1.83 [0.94, 2.72]). Levene’s test for homogeneity of
variance was statistically significant a pretest: F(1, 30)=14.48, p<0.001, but not at posttest F(1,
30)=0.33, p=0.57.

. Welch two-sample t-test on Cognitive Control score at pretest, by BDNF polymorphism (val66

vs. met66): t(1, 8.3)=1.68, p=0.13, Hedges’ g = 1.01 (0.20, 1.81).
. Welch two-sample t-test on Working Memory score at pretest, by BDNF polymorphism (val66

vs. met66): t(1, 8.7)=2.30, p<0.05, Hedges’ g = 1.31 (0.47, 2.14).

We present below analyses for each cognitive tasks included in this study. Descriptive statistics
are reported in Table 6.

. Repeated measures ANOVA on Flanker scores, with Session (pretest vs. posttest) as a within
factor and Condition (HIT vs. Control) as a between factor. Interaction effect: F(1, 301)=4.00,

Figure 5. Bayes factor robustness check for the comparison between Conditions (HIT vs. Control) for Cognitive

Control. The figure shows our default prior, as well as wide and ultrawide priors. Importantly, the curve shows

stronger evidence for our hypothesis with narrower priors, indicating that our conclusions are not based on a

restricted range of priors.

DOI: 10.7554/eLife.25062.014
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p<.05, h2 = 0.01 (.00,. 05). Levene’s test for homogeneity of variance was not statistically sig-
nificant: F(1, 301)=0.38, p=0.56 and F(1, 301)=1.14, p=0.29, at pretest and posttest
respectively.

. Repeated measures ANOVA on Go/no-go scores, with Session (pretest vs. posttest) as a within
factor and Condition (HIT vs. Control) as a between factor. Interaction effect: F(1, 301)=4.52,
p=0.03, h2 = 0.01 (.00,. 05). Levene’s test for homogeneity of variance was not statistically sig-
nificant: F(1, 297)=1.24, p=0.26 and F(1, 297)=0.02, p=0.88, at pretest and posttest
respectively.

. Repeated measures ANOVA on Stroop scores, with Session (pretest vs. posttest) as a within
factor and Condition (HIT vs. Control) as a between factor. Interaction effect: F(1, 301)=2.63,
p=0.11, h2 <0.01 (.00,. 04). Levene’s test for homogeneity of variance was not statistically

Figure 6. Sequential analysis. The graph shows the strength of evidence (as expressed by BF10) as N increases.

DOI: 10.7554/eLife.25062.015

Table 6. Mean cognitive scores (SDs) for the two conditions at pretest and posttest. Scores are scaled
and centered for each task (z-transformed by row).

HIT Control

Pretest Posttest Pretest Posttest

Flanker $0.14 (1.20) 0.16 (0.66) $0.06 (1.18) 0.04 (0.85)

Go/no-go $0.09 (1.11) 0.08 (0.96) 0.01 (1.04) 0.01 (0.88)

Stroop $0.11 (1.19) 0.16 (0.38) $0.09 (1.31) 0.04 (0.83)

Backward digit span $0.14 (1.07) 0.25 (0.55) $0.13 (1.34) 0.02 (0.82)

Backward Corsi blocks $0.13 (1.55) 0.31 (0.35) $0.17 (0.92) 0.00 (0.73)

Visual 2-back $0.24 (1.62) 0.33 (0.51) $0.06 (0.74) $0.03 (0.69)

DOI: 10.7554/eLife.25062.016
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significant: F(1, 301)=0.05, p=0.83 and F(1, 301)=2.53, p=0.11, at pretest and posttest
respectively.

. Repeated measures ANOVA on Backward digit span scores, with Session (pretest vs. posttest)
as a within factor and Condition (HIT vs. Control) as a between factor. Interaction effect: F(1,
301)=5.66, p=0.02, h2 = 0.02 (.00,. 06). Levene’s test for homogeneity of variance was not sta-
tistically significant at pretest but was statistically significant at posttest: F(1, 301)=0.63,
p=0.43 and F(1, 301)=6.41, p=0.01, respectively.

. Repeated measures ANOVA on Backward Corsi blocks scores, with Session (pretest vs. post-
test) as a within factor and Condition (HIT vs. Control) as a between factor. Interaction effect:
F(1, 297)=4.49, p=0.03, h2 = 0.01 (.00,. 05). Levene’s test for homogeneity of variance was not
statistically significant at pretest but was statistically significant at posttest: F(1, 297)=0.07,
p=0.79 and F(1, 297)=34.69, p<0.001, respectively.

. Repeated measures ANOVA on Visual 2-back scores, with Session (pretest vs. posttest) as a
within factor and Condition (HIT vs. Control) as a between factor. Interaction effect: F(1, 292)
=16.22, p<0.001, h2 = 0.05 (.02,. 11). Levene’s test for homogeneity of variance was not statis-
tically significant at pretest but was statistically significant at posttest: F(1, 292)=2.27, p=0.13
and F(1, 292)=16.41, p<0.001, respectively.

Additional analyses
Here, we report analyses for which our a priori hypotheses were null effects. These variables were
collected either to control for potential confounds, or for exploratory purposes.

There was no difference between groups regarding self-reported enjoyment or motivation
(W = 12058, p=0.54 and W = 11497, p=0.86, respectively). This finding allows controlling for expec-
tation effects, and thus stronger causal claims (Boot et al., 2013; Stothart et al., 2014). In addition,
participants’ self-reported belief about cognitive malleability (i.e., mindset) indicated a statistically
significant difference (p<0.03) in favor of the control group (M = 7.11, SD = 2.65 and M = 6.42,
SD = 2.74, respectively, Hedges’ g = 0.26 [0.03, 0.48]). There was no statistically significant differ-
ence between groups at either time points (pretest or posttest) in terms of ethnic background, age,
gender, handedness, height, weight, diagnosis of learning disorder, brain trauma or epileptic seiz-
ures, current or past enrolment in a remediation or a cognitive training program, English as first lan-
guage, videogaming experience, physical exercise, self-reported happiness, sleep quality, or general
health.

Discussion
The present study reported the first experimental evidence that HIT can elicit robust cognitive
improvements in children. We confirmed the main hypothesis that exercise could induce gains in
both cognitive control and working memory, as assessed from multiple measures. This finding is par-
ticularly promising given that the two constructs are reliable predictors of success in many domains,
including professional and academic (Deary et al., 2007); in the classroom, cognitive control and
working memory have been associated with effective learning and overall achievement (Rohde and
Thompson, 2007). Importantly, these effects are also meaningful at the level of single tasks. Our
main findings thus emphasize the potency of short but intense exercise interventions to enhance
cognition, and suggests that aerobic exercise is not the sole means to elicit cognitive gains, in line
with a growing body of research (Liu-Ambrose et al., 2012; Moreau et al., 2015; Pesce et al.,
2016; Tomporowski et al., 2015b). HIT appears to be a viable and promising alternative to longer
workouts to enhance cognition.

In addition to the main effect of training, we also postulated that specific genetic profiles would
be correlated with different responses to training, with BDNF met66 carriers (i.e. met/met or val/met)
benefiting from exercise to a greater extent. This hypothesis, confirmed by the present findings, was
based on previous literature showing a relationship between BDNF polymorphism and serum BDNF
(Lang et al., 2009), and the influence of exercise interventions on the latter (Leckie et al., 2014).
BDNF met66 carriers showed greater gains from pretest to posttest on both cognitive constructs. As
the substitution from valine to methionine at codon 66 typically results in decreases of activity-
dependent secretion of BDNF at the synapse (Egan et al., 2003), BDNF met66 carriers are thought
to be particularly impacted by post-exercise BDNF increases (Nascimento et al., 2015). Conversely,
val66 homozygotes might benefit less from BDNF increases given above-average baseline levels.
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This finding is interesting because of its predictive power$controlling for BDNF polymorphism can
allow more accurate forecasting of individual training responses, and better estimates of effect size.
Given the current trend toward more personalized interventions (Medalia and Richardson, 2005;
Moreau and Waldie, 2015), factoring in genetic information has the potential to refine and improve
regimens, for each individual.

Importantly, the main effect of exercise on cognitive function is unlikely to be explained by the
placebo effect. Self-reported measures of enjoyment and motivation did not differ between groups,
supporting the notion that both types of intervention were equally appealing to children, or at least
not fundamentally different with respect to intrinsic motivating factors. In addition, we also con-
trolled for mindset—the degree to which individuals believe their cognitive abilities can change over
time (Dweck et al., 1995). Previous research suggests that individual mindsets may be of influence
in cognitive growths: individuals with a more ‘malleable’ mindset are thought to be more likely to
improve in cognitive and academic domains than individuals with a ‘fixed’ mindset (Paunesku et al.,
2015). Although we did find a difference between conditions, it was to the advantage of children in
the control group, who held a more malleable view about the dynamic properties of cognitive func-
tion than did the HIT group. This finding was reported as an additional analysis in the Results sec-
tion, rather than in the main section, because the effect was not hypothesized a priori. In any case,
and with warranted caution regarding post hoc interpretation, this effect would suggest that con-
trols were more likely to improve over time, an assumption that was not corroborated by our main
finding. If anything, this strengthens our main claim—greater improvements in the HIT condition are
inconsistent with a differential placebo effect, a critical point in light of recent findings in the field of
cognitive training (Foroughi et al., 2016).

Effort-dependent variables provided additional insight about the mechanism underlying improve-
ments. Consistent with previous interventional studies that have investigated the influence of exer-
cise on cognition, we actively monitored several variables throughout the intervention. We could
thus ensure that training was adequate, performed at a suitable intensity, and could test directly the
dynamic coupling of these variables and their effects on cognitive outcomes. Indeed, we found that
almost all participants stayed within the overall targeted range of effort required by the design of
the workout and by initial individual measurements. This indicates a high degree of agreement, or
fidelity, to the intended protocol—an essential component of the intervention given the underlying
assumption that participants would exercise at a high intensity. Performed at a more moderate
intensity, the same regimen becomes an aerobic training program, for which substantially longer
time commitment might be required to elicit improvements. In addition, it is important to note that
participants incrementally increased workout load, thus maintaining appropriate intensity throughout
the intervention. Arguably, this adaptive property emerged from the design of the intervention,
whereby participants were encouraged to exercise at maximum intensity at the time of the work-
out—an intrinsically individual and dynamic variable by definition.

In the present study, the effect of exercise could also be appreciated on changes in resting heart
rate from pretest to posttest, a finding that confirms previous research in the field (e.g.,
Moreau et al., 2015). More specifically, exercise appears to be a valuable regulating mechanism,
with elevated resting heart rate values likely to normalize as a result of HIT. This effect could not be
attributed to regression toward the mean, as it was not found in controls, thus suggesting that the
intervention is especially beneficial to individuals who need it most. Together with the finding that
HIT benefited more individuals with a genetic polymorphism (BDNF met66 carriers) that was associ-
ated with lower cognitive performance, this idea emphasizes the relevance of exercise interventions
to individuals with specific genetic or physiological attributes to reduce interindividual differences
(Gómez-Pinilla et al., 2001; Leckie et al., 2014). Disparities are genuine, yet targeted interventions
allow low-performing individuals to improve dramatically.

Our design allowed delving deeper into the relationship between exercise and cognitive improve-
ments. In particular, we found that change in resting heart rate was predictive of cognitive control,
but not working memory, gains. This finding is of interest because we postulated that the mecha-
nisms of improvement were physiological, given that HIT has been shown to elicit neurophysiological
changes similar to those following aerobic exercise regimens (Ferris et al., 2007). However, we
should point out that baseline resting heart rate did not predict gains in cognitive control or working
memory in the HIT group, emphasizing the inherent noise associated with the relationship between
physiological and cognitive measures. This lack of clear association between both types of variables
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is fairly common in the literature, suggesting that the hypothesized mechanisms of improvements
are difficult to elucidate (Moreau et al., 2015; Tsai et al., 2014). Potentially, this also suggests that
other variables may be of importance, a question we attempted to address with additional measure-
ments, in an exploratory manner (see Additional Analyses in the Results section).

Regardless of the strength of the evidence reported in the present study, one might question the
genuine impact of such a short training regimen. Although perhaps counterintuitive, the extreme
potency of short, intense bursts of exercise has come to light in recent years (Lucas et al., 2015;
Rognmo et al., 2004). In a review of the impact of HIT on public health, Biddle and Batterham,
2015 go as far as to premise their entire argument on the idea that the cardio-metabolic health out-
comes are not to be questioned—rather, their only concern was about whether or not such regimens
can be widely implemented and sustained over time (Biddle and Batterham, 2015). In a similar
vein, Costigan and colleagues concluded that HIT is a time-efficient approach for improving cardio-
respiratory fitness in adolescent populations (Costigan et al., 2015). These are strong, unequivocal
statements, which reflect current views in exercise physiology—HIT has tremendous health benefits,
with little, if any, disadvantages.

More direct evidence for the impact of HIT on brain function comes from neurophysiological stud-
ies. In an experiment that directly assessed the impact of short bursts of exercise on BDNF levels,
Ferris et al. found that exercise leads to BDNF increases, and that the magnitude of the increase is
intensity-dependent (Ferris et al., 2007). This result emphasizes the importance of controlling exer-
cise intensity in HIT studies, given that the main determinant of improvement appears to be the
intensity of the workout. Indeed, previous studies have looked at the effect of short, but not intense,
bursts of exercise on cognition, and found no clear evidence of improvement (Craft, 1983). The
high-intensity component of this type of exercise regimen is intended to allow for higher workout
intensity than traditional workouts, despite shorter overall volume. The brevity of exercise, on the
other hand, is simply a byproduct of intensity—one cannot maintain a near-maximal exercise inten-
sity for long periods of time, given that this type of regimen depletes energetic resources rapidly
(Parolin et al., 1999). In terms of practical implications, this aspect is critical, as it allows designing
shorter, more potent workouts.

Despite our findings being in line with previous literature showing that short bursts of exercise
can elicit potent cognitive improvements in children (Piepmeier et al., 2015; Pontifex et al., 2013),
and, more generally, with a wider, more general literature linking physical exercise and cognition in
children (Jackson et al., 2016; Sibley and Etnier, 2003), we should also point out a few limitations
of the present study. These open up interesting avenues and directions for future research. First, the
duration of training was not experimentally manipulated, and therefore the specific question of
dose-dependence was not directly assessed. Therefore, we cannot claim that a 6 week regimen is
optimal—larger cognitive improvements could possibly be elicited with longer durations, or, alterna-
tively, similar improvements could be induced with a shorter intervention. Similarly, no follow-up
tests were performed to assess durability of improvements post-training; although it should be
noted that maintaining benefits is arguably less important with short, potent interventions such as
the HIT regimen we proposed. In addition, both the duration of the intervention and the specific
experimental protocol were constrained by external factors (e.g. feasibility, academic schedule).
With respect to the potency of the intervention, however, this is also promising—as little as six
weeks of training can induce noticeable improvements, with possible larger effects if physical exer-
cise is sustained.

Related to this idea, we had to work around constraints typically imposed by interventional stud-
ies; namely, the necessity to keep testing sessions time-efficient. Beyond logistic considerations, this
was also intended to minimize the influence of cognitive fatigue on our results. Despite time con-
straints, we aimed to preserve testing diversity (i.e., number of tasks per construct) for a few reasons.
First, we strived to provide estimates of constructs that minimize task-specific components and
extract meaningful domain-general scores. In psychometric testing of working memory capacity,
Foster and colleagues demonstrated that the majority of the variance explained by a single WM task
is accounted for in the first few blocks, and that the predictive nature of the task remains largely
unchanged for practical purposes when tasks are shortened (Foster et al., 2015). Second, simulation
studies have shown that incorporating more tasks within constructs leads to a better signal-to-noise
ratio, resulting in more meaningful measures of an underlying ability (Moreau et al., 2016). To fur-
ther validate this approach, we piloted different versions of our testing tasks and determined that
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the validity of the versions we retained for the present study was acceptable, given appropriate reli-
ability across task lengths.

Second, because training occurred in schools, the environment was possibly less standardized
and controlled than laboratory settings, highlighting typical tradeoffs between impoverished but
highly reliable environments and ecological but less controlled settings. Our view remains that eco-
logical validity is of primary importance when training cognitive abilities, because of the wide range
of applications stemming from this line of research (Moreau and Conway, 2014). Accordingly, fixed,
predictable training regimens are unlikely to favor durable improvements of cognitive function
(Moreau and Conway, 2014; Moreau et al., 2015; Posner et al., 2015). We have previously
stressed the importance of novelty and variety in cognitive training interventions (Moreau and Con-
way, 2014), and this limitation applies to exercise regimens as well. Importantly, this echoes similar
views across research groups worldwide, which suggest that training-induced cognitive improve-
ments are often restricted to specific activities (Harrison et al., 2013; Tomporowski et al., 2012),
and are best nurtured within complex, dynamic environments (Diamond and Lee, 2011). Therefore,
the regimen we have presented in this paper constitutes a potent short-term intervention, but more
variety might be required to elicit long-lasting improvements. In a field that has suffered from set-
backs such as lack of replication (e.g. Redick et al., 2013; Thompson et al., 2013) or common meth-
odological flaws (Moreau et al., 2016), it is wise to remain cautious about preliminary studies and
emphasize the need for replication.

Despite these limitations, the present findings represent a promising first step toward reliable
and affordable exercise-based cognitive interventions, highlighting effective alternatives to aerobic
exercise. Together with complementary findings (e.g. Moreau et al., 2015), the type of physical
exercise regimen we described in this paper could pave the way for novel exercise interventions par-
ticularly suited to school environments, which are often constrained by time and equipment. The
high-intensity workout we designed did not require any special equipment or any instructors train-
ing, and each 10 min session was all-inclusive with warm-up and stretching. Therefore, this type of
regimen could also be generalized to other populations; for instance, individuals whose schedule
allows little time for exercise, or those who do not intrinsically enjoy exercising, could appreciate
opportunities to shorten workouts while preserving the typical benefits of exercise. Adaptations to
older populations also represent interesting opportunities considering the benefits typically associ-
ated with exercise regimens in these communities (Colcombe and Kramer, 2003). The present regi-
men might require adjustments, given that practicality in a specific context (e.g. managing time
constraints in school or professional schedules) potentially differs from practical considerations in
another (e.g. mitigating risks of injury in older populations). In any case, generalization is of the ratio-
nale, not necessarily of the specific workout that was designed for this intervention.

Finally, it is important to acknowledge that physical exercise, regardless of the specific training
regimens considered, is not a panacea when it comes to addressing cognitive deficits$in some
cases, especially in the presence of specific conditions or disorders, more targeted or individualized
interventions might be required (e.g., Moreau and Waldie, 2015), and the ability for exercise regi-
mens to remediate core cognitive deficits might appear inherently limited. However, it remains that
physical exercise is one of the most potent and wide-ranging means currently available to enhance
cognition non-invasively, with a myriad of positive side effects.

Materials and methods
We report here a multicenter, randomized (1:1 allocation), placebo-controlled trial. Design and
reporting are consistent with CONSORT guidelines (http://www.consort-statement.org/). Partici-
pants, parents and school principals gave their informed consent for inclusion in this study, and the
Ethics Committee at the University of Auckland approved all procedures. The full protocol and statis-
tical analysis plan are available online at https://github.com/davidmoreau/2017_eLife.

Participants
A total of 318 children participated in this study. Thirteen participants were not included in the anal-
yses because of dropouts (N = 7), extensive missing data (N = 4) or problems in data collection
(N = 2, see CONSORT flow diagram for details). Our final sample consisted of 305 children
(Mage = 9.9 (7–13), SDage = 1.74, 187 female, MBMI = 18.3, SDBMI = 6.26). They were recruited from
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six schools across New Zealand, providing a sample of various socioeconomic deciles (three public

institutions, three private), locations (three urban institutions, three rural), and ethnic backgrounds

representative for the country (70% New Zealand European, 20% Pacific, 7% Asian, 3% Other). The

number of students involved per school ranged from 5 to 83 (M = 50.8, SD = 31). All participants

reported no history of brain trauma or epilepsy, and all had self-reported normal or corrected-to-

normal vision. A subset of 22 children reported a learning disability diagnosis (dyslexia: 14, ADHD:

3, Autism spectrum disorder: 3, mild developmental delay: 2, Irlen syndrome: 2, dyscalculia: 1, dys-

praxia: 1). Respective subsets of 284, 99 and 32 participants underwent all assessments, measure-

ments and genotyping described below. All the variables measured in the experiment are reported

hereafter.

Cognitive assessments
Testing was conducted on school premises. All cognitive assessments were computer-based, admin-

istered in groups of a maximum of 15 students. This limit on the number of participants tested at a

given time was implemented to minimize potential averse effects of group testing. These assess-

ments have shown to be adequate measures of both cognitive control and working memory (Ander-

son-Hanley et al., 2012; Aron and Poldrack, 2005; Kane et al., 2004; Nee et al., 2007;

Pajonk et al., 2010; Rudebeck et al., 2012; Unsworth and Engle, 2007). For each task, we mea-

sured accuracy and response time. Different stochastic variations of all tasks were used at pretest

and posttest. Unless specified otherwise, the number of trials varied based on individual perfor-

mance to allow reaching asymptotes, with a minimum and a maximum specified for each task. The

reliability of this method for each task was assessed from a separate sample (N = 34, Mage = 10.3

(8–12), 15 females), and deemed acceptable (all $s > 0.65) based on Spearman-Brown prophecy for-

mula (Brown, 1910; Spearman, 1910). Specifically, reliability was calculated by comparing test

scores on the asymptotic version vs, the maximal-length version, for each task (see trial length details

below and online repository for source code data). The order below was the order of presentation

for every participant at both pretest and posttest (i.e., Flanker – Go/no-go – Stroop – Backward digit

span – Backward Corsi blocks – Visual 2-back). Both testing sessions were scheduled at the same

time of the day, and lasted approximately one hour.

Flanker
Participants viewed a series of arrows, either pointing to the left of the right of the screen. They

were instructed to ignore all stimuli but the arrow at the center of the screen (target), and respond

by pressing the left or right key when presented with arrows pointing left or right, respectively. For

any given trial, the number of arrows displayed ranged from three to 25, with equal probability for

congruent and incongruent trials. All sessions included 20 trials. We recorded accuracy and response

time for both congruent and incongruent trials.

Go/no-go
Participants were presented with a series of circles, either uniform or patterned. The uniform circle

required a key response (‘go’) whereas the other required no response (‘no-go’). If response was

required, the stimulus remained visible indefinitely, until a response was made. When the stimulus

required no response, it disappeared after 2000 ms. A self-paced button press triggered the start of

the next trial. The interval from the button press to the presentation of the stimulus ranged from 500

ms to 2000 ms (randomly jittered). A session included between 12 and 40 trials.

Stroop
Participants were presented with a series of color words, in a colored font either congruent or incon-

gruent, drawn with equal probability. They were instructed to attend to the color of the font, and to

respond by pressing the key corresponding to the appropriate color on the keyboard. Stimuli

remained visible until a response was made. A session included between 20 and 50 trials. We

recorded accuracy and response time for both congruent and incongruent trials.
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Backward digit span
Participants viewed a series of digits from 1 to 9 presented sequentially for 1000 ms, with 500 ms

intertrial intervals. They were instructed to respond by entering the corresponding digits on the key-

board at the end of each trial. Hierarchical item randomization allowed the presentation of a maxi-

mum of two identical digits consecutively. For each trial, answers could be corrected until

submitted. A self-paced button press triggered the start of the next trial. A session included 12 to

40 trials.

Backward Corsi blocks
Participants were presented with a series of locations on a block, sequentially for 1000 ms, with 500

ms intertrial intervals. They were instructed to respond by clicking on the corresponding locations at

the end of each trial. Hierarchical item randomization did not allow presentation of identical loca-

tions consecutively. For each trial, no correction was allowed once submitted. A self-paced button

press triggered the start of the next trial. A session included 12 to 40 trials.

Visual 2-back
Participants viewed a series of pictures presented sequentially for 2000 ms, with 500 ms intertrial

intervals. They were instructed to press a key to signal a match, that is, two identical pictures inter-

leaved with one stimulus in between (i.e., 2-back). No action was required in the absence of match.

The number of matches ranged from 20 to 35 per session, randomized. A session included 40 to 70

trials.

Physiological measurements
Physiological measures were collected using FitbitChargeHRTM, powered by the MEMS tri-axial

accelerometer. This multisensory wristband has shown adequate accuracy and reliability in previous

studies for the measures of interest in the present study (e.g., de Zambotti et al., 2016). Measures

included minutes of activity, calories burned, intensity, intensity range (sedentary, lightly active, fairly

active, very active), steps and heart rate (measured by changes in blood volume using PurePulseTM

LED lights).

Questionnaire
Participants provided information about the following: ethnic background, age, gender, handedness,

height, weight, diagnosis of learning disorder, brain trauma or epileptic seizures, current or past

enrolment in a remediation or a cognitive training program, and whether English was their first lan-

guage. In addition, self-reported information was gathered to quantify videogaming and physical

exercise habits (4-point Likert scale in both cases), as well as to evaluate overall health, happiness,

sleep quality, and mindset (6-point Likert scale for each item). The latter was intended to capture

beliefs about the malleability of cognitive ability in the context of schoolwork, that is, the extent to

which students perceive academic achievement in a predominantly fixed or malleable manner (see

for example Paunesku et al., 2015). All measures were collected prior to the intervention, but varia-

bles susceptible to change over time were reassessed post-intervention.

Genotyping
DNA collection was performed using Oragene-DNA Self-Collection kits, in a manner consistent with

the manufacturer’s instructions. DNA was subsequently extracted from all saliva samples according

to a standardized procedure (Nishita et al., 2009). All resultant DNA samples were resuspended in

Tris-EDTA buffer and were quantified used Nanodrop ND-1000 1-position spectrophotometer

(Thermo Scientific, Waltham, MA, USA).
DNA samples were diluted to 50 ng/mL. A modified version of the method described by

Erickson et al., 2008 was used for DNA amplification. Amplification was carried out on the 113 bp

polymorphic BDNF fragment, using the primers BDNF-F 5-GAG GCT TGC CAT CAT TGG CT-3 and

BDNF-R 5-CGT GTA CAA GTC TGC GTC CT-3. Polymerase chain reaction (PCR) was conducted

using 10X Taq buffer (2.5 L mL), Taq polymerase (0.125 mL), dNTPs (5 nmol), primers (10 pmol each),

Q solution (5 mL), and DNA (100 ng) made up to 25 mL with dH2O. The PCR conditions consisted of
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denaturation at 95˚C for 15 min, 30 cycles on a ThermoCycler (involving denaturation at 94˚C for 30

s, annealing at 60˚C for 30 s, and extension at 72˚C for 30 s) and a final extension at 72˚C.
PCR product (6.5 mL) was incubated with Pm1l at 37˚C overnight. The digestion products were

analyzed using a high-resolution agarose gel (4%) with a Quick Load 100 bp ladder (BioLabs) and a

GelPilot Loading Dye (QIAGEN). After immersion in an ethidium bromide solution for 10 min, DNA

was visualized under ultraviolet light. Enzyme digestion resulted in a 113 bp fragment for the BDNF

met66 allele, and 78 and 35 bp fragments for the val66 allele. This procedure is consistent with the

one described by Erickson et al. (2008).

Intervention
Participants were randomly assigned to either an exercise group (N = 152) or a control (N = 153)

group (see Table 7). Randomization was computer-based, generated in R (Core Team R, 2016) by

one of the authors (D.M.). Group allocation was performed at the individual level. Testers were blind

to group allocation.
The exercise intervention consisted of a high-intensity workout including the following: warm-up

(2 min), short bursts (5 & 20 s, interleaved with incremental breaks (30 s, 40 s, 50 s, 60 s, and a

shorter 20 s break after the last workout period), and stretching (2 min). The video-based workout

did not require previous experience or knowledge, as it included basic fitness movements. All move-

ments were designed so that participants could maintain their gaze fixed on the screen at all times.

All instructions were provided both verbally (audio recording) and visually (on-screen captions). Com-

plete details and script can be found in the online repository. A complete session lasted 10 min, and

was scheduled every morning on weekdays. The control condition consisted of a blend of board

games, computer games, and trivia quizzes, consistent with current recommendations regarding

active control groups (Boot et al., 2013) and findings showing that aerobic exercise interventions

typically do not differ from other regimens with respect to participants’ expectations

(Stothart et al., 2014). Consistent with this assumption, self-reported feedback indicated no differ-

ence in enjoyment or motivation between conditions, and no difference in mindsets regarding cogni-

tive malleability (Paunesku et al., 2015).
Frequency and duration were matched between conditions. The intervention was 6 weeks long,

with five sessions per week, for a total of 30 sessions. This translates to 300 min of actual exercise.

There was no difference between groups regarding the number of sessions completed (M = 29.05,

SD = 1.63, overall). Due to the nature of the intervention, class size was limited to 20 participants in

both conditions. Participants were supervised at all times, to ensure a high degree of fidelity to the

intended protocol. Participants did not differ between groups in any of the self-reported measures

described previously, which include physical exercise habits. Note that participants did not exercise

Table 7. Demographics and sample characteristics at baseline.

HIT Controls Total

Sample (N)
Gender

152
90 f./62 m.

153
97 f./56 m.

305
187 f./118 m.

Age 9.87 (1.81) 9.96 (1.68) 9.91 (1.74)

Handedness (LH/Ambid.) 18/3 14/3 32/6

BMI 18.1 (3.92) 18.51 (7.89) 18.31 (6.25)

LD diagnosis 13 16 29

Previous remediation 8 14 22

Videogaming 2.32 (0.95) 2.43 (0.96) 2.38 (0.97)

Physical exercise 3.06 (0.8) 2.95 (0.78) 3.03 (0.81)

Happiness 4.53 (1.25) 4.61 (1.22) 4.55 (1.27)

Sleep quality 4.07 (1.36) 4.11 (1.39) 4.11 (1.41)

General health 4.88 (1.05) 4.84 (1.01) 4.82 (1.06)

DOI: 10.7554/eLife.25062.017
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on the days of pretest and posttest, to prevent acute effects of physical exercise on cognitive perfor-
mance (see Tomporowski, 2003).
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