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Abstract 

Normal ovarian development is crucial for female reproductive success and longevity. 

Interruptions to the delicate process of initial folliculogenesis may lead to ovarian 

dysfunction. We have previously demonstrated that an early life immune challenge in 

the rat, induced by administration of lipopolysaccharide (LPS) on postnatal day (PND) 3 

and 5, depletes ovarian follicle reserve long term. Here, we hypothesised that this 

neonatal immune challenge leads to an increase in peripheral and ovarian inflammatory 

signalling, contributing to an acute depletion of ovarian follicles. Morphological analysis 

of neonatal ovaries indicated that LPS administration significantly depleted PND 5 

primordial follicle populations and accelerated follicle maturation. LPS exposure 

upregulated circulating interleukin 6 (IL6), tumour necrosis factor alpha (TNFa), and C-

reactive protein (CRP) on PND 5, and upregulated ovarian mRNA expression of Tnfa, 

mitogen-activated protein kinase 8 (Mapk8/Jnk1), and growth differentiation factor 9 

(Gdf9) (p <0.05). Mass Spectrometry and cell signalling pathway analysis indicated 
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upregulation of cellular pathways associated with acute phase signalling, and cellular 

survival and assembly. Apoptosis assessed by TUNEL indicated significantly increased 

positive staining in the ovaries of LPS treated neonates. These findings suggest that 

increased proinflammatory signalling within the neonatal ovary may be responsible for 

the LPS-induced depletion of the primordial follicle pool. These findings also have 

implications for female reproductive health, as the ovarian reserve is a major 

determinate of female reproductive longevity. 

 

Introduction 

Despite significant medical advances, idiopathic infertility and the prevalence of 

reproductive disorders in younger female cohorts is increasing [1-4]. As the 

fundamentals of reproductive health and longevity are established in early life, the 

pathogenesis of female reproductive dysfunction may have developmental roots. 

Abnormalities occurring during this critical period of development may lead to sustained 

ovarian pathophysiology, including premature ovarian failure (POF) and other fertility 

issues [5-7]. Recent evidence indicates that the female reproductive system is sensitive 

to early life stressors, such as xenobiotics, infections, and malnutrition, which can 

perturb reproductive development and negatively impact long term fertility levels [8-12]. 

Mammalian female reproductive health and success is reliant on the normal 

establishment of the non-renewing ovarian primordial follicle reserve, which is the 

foundation of all future follicles and determines the reproductive lifespan [as reviewed in 

13, 14]. This initial folliculogenesis occurs prenatally in humans, however finalises 

during the 1st postnatal week in rodents. Early follicles containing oocytes ultimately 
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develop from the primordial stage through to the ovulatory stage, until the reserve is 

diminished and menopause, or senescence in rats, occurs [15]. Initial folliculogenesis is 

governed by numerous mechanisms which remain to be fully elucidated, however 

current evidence indicates that complex interactions of chemokines, cytokines, 

neurotrophins, growth factors, and transcription factors mediate the bidirectional 

communication between the oocyte and its supporting granulosa cells [16-19]. This 

oocyte-granulosa crosstalk controls the quiescence, activation, and maturation of the 

primordial follicular pool to regulate both the quantity and quality of the ovarian reserve 

[20, 21]. Variation or perturbation to these delicate developmental processes, via 

immune activation for example, can potentially lead to sustained changes in ovarian 

development, and overall reproductive health [6, 22]. 

Immune activation is a common perinatal environmental stressor that is modelled 

experimentally using gram negative bacterial mimetic, lipopolysaccharide (LPS). 

Lipopolysaccharide provokes an innate immune response by binding to toll like 

receptor-4 (TLR4). This instigates a proinflammatory cascade via activation of nuclear 

factor kappa beta (NFkB) and map kinase (MAPK) pathways, and the subsequent 

secretion of proinflammatory cytokines interleukin (IL) 6, IL1beta (B), tumour necrosis 

factor alpha (TNFa), C-reactive protein (CRP) and interferon gamma (IFNy) from 

activated macrophages and immune cells [23, 24]. Animal models of neonatal immune 

stress via LPS exposure have demonstrated a broad range of long term physiological 

and behavioural alterations, including neuroendocrine dysfunction, brain morphological 

alterations, and innate immune system dysfunction [25-28]. 
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The ovary expresses innate immune cells including monocytes, macrophages 

and adipocytes [29]. Additionally, cytokines and their receptors, and TLRs are locally 

expressed in ovarian cells and participate in immune functioning essential to ovarian 

processes [30, 31]. Importantly, LPS exposure has been demonstrated to detrimentally 

affect female reproductive outcomes [32, 33] including; premature puberty and 

senescence onset, downregulation of hypothalamic-pituitary-gonadal (HPG) hormone 

expression, and impairments in mating and maternal behaviours [8, 11, 26, 34, 35]. 

Moreover, neonatal and adulthood LPS exposure has been demonstrated to lead to in 

vitro follicular atresia, reduced prepubertal ovarian follicle reserve, and upregulated 

ovarian TLR4 expression [36-38]. Taken together, these findings suggest that early life 

LPS exposure produces sustained detrimental effects on ovarian functioning. 

To date, little research has focused on the acute in vivo impact of early life 

immune activation on ovarian morphology and inflammation. Previous studies from our 

laboratory indicate ovarian inflammatory pathway activation on PND 7 from LPS 

administration at PNDs 3 and 5 [37], but none to our knowledge have examined the 

immediate effect of this LPS exposure. Considering the importance of immune 

involvement for ovarian development and continuing reproductive health [29], the 

current study aims to examine the acute inflammatory mediators activated by neonatal 

administration of LPS and associated growth and transcription factors that may 

underpin the sustained ovarian morphological and behavioural reproductive alterations 

seen previously in our  laboratory with this model, including the early onset of 

reproductive senescence in female rats, indicated by premature cessation of oestrus 

cycling [11]. Given that our PND 3 and 5 model of neonatal immune activation falls 
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within the critical period of ovarian development and sensitivity to immune stress for the 

rodent ovary [35], we propose that LPS exposure may directly perturb the critical, 

gonadotropin-independent final stages of neonatal primordial folliculogenesis via 

excessive immune stimulation occurring both at a systematic and local level. 

 

Methods 

Animals and neonatal immune challenge 

All animal experimental procedures were undertaken with the approval of the University 

of Newcastle Animal Care and Ethics Committee (ACEC, A-2012-2813). Twenty one 

experimentally naïve female Wistar rats were obtained from the University of Newcastle 

animal house and mated with proven male studs in the Laboratory of Neuroimmunology 

Vivarium. This resulted in 18 litters and a total of 62 female pups used for this study. 

Animals were maintained under normal housing conditions at 21-22°C on a 12 hour 

light/dark cycle (0600-1800) with food available ad libitum. As previously described [11, 

26-28, 37, 39], at birth (postnatal day (PND) 1) whole litters were randomly allocated to 

treatment conditions, either LPS (derived from 10 litters) or saline (derived from 8 

litters). Whole litters were exposed to LPS (Salmonella enterica, serotype Enteritidis: 

Sigma-Aldrich Chemical Co., USA in sterile pyrogen-free Saline, 0.05mg/kg) or Saline 

(equivolume; Livingstone International, Australia) on PND 3 and again on 5. This low 

dose and timing of LPS administration has been demonstrated in our laboratory and 

others to elicit a rapid, sustained and controlled immune and endocrine response during 

a critical developmental period, without inducing mortality seen at higher doses [26, 28, 

37, 40-43]. Briefly, pups were temporarily removed from the home cage and transferred 
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to an incubator to maintain body temperature, weighed, administered with an 

intraperitoneal injection of LPS or vehicle, and then returned to the home cage/dam. 

 

Blood and tissue collection 

Female pups were euthanized by rapid decapitation. A subset of female animals were 

culled on PND 3 for analysis of ovarian morphology (n = 6 per group derived from 3 

litters per group). The remaining females were euthanized on PND 5, at 2 hrs following 

the last neonatal injection, as this has been demonstrated to be the optimal time point 

for peripheral, central and genetic cytokine expression following LPS [44, 45]. PND 5 

trunk blood was collected into EDTA coated tubes and centrifuged for 20 min at 1000g. 

Plasma was collected and stored at -20°C for assessment of plasma cytokine levels. 

Ovaries were dissected with fine tip forceps in 4°C sterile phosphate buffered saline 

(PBS, Sigma) under a dissection microscope, where all surrounding tissue was 

removed. One ovary from a subset of animals was randomly chosen and placed in 

Bouins fixative for histological examination (PND 5; n = 6 LPS, 6 Saline, derived from 3-

4 litters per group). Remaining ovaries were snap-frozen on dry ice, and stored at -

80°C. All remaining tissue was randomly pooled within treatment conditions to create 

sufficient tissue for biological samples and allocated to either qRT-PCR or proteomic 

analysis. Male and female animals remaining in litters were allocated to other 

experiments. 
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Blood analysis for peripheral inflammatory cytokines. 

PND 5 plasma was analysed by ELISA according to the manufacturer’s instructions for 

proinflammatory markers IL6 (Abcam, ab119548 rat ELISA kit, minimum detection rate 

12pg/mL, intra- and inter-assay variability <5% and <10% respectively), TNFa (R&D 

Systems Rat TNF alpha Quantikine ELISA Kit, RTA00, minimum detection rate <5 

pg/mL, intra- and inter-assay variability 2.1 - 5.1% and 8.8 - 9.7% respectively) and 

CRP (Abcam, ab108827, minimum detection rate 0.7ng/mL, intra- and inter-assay 

variability 3.8% and 9.6% respectively). Each ELISA contained biological samples from 

at least three different litters per treatment group, with n = 6-12 per group. All samples 

were assayed in duplicate. 

 

Histological evaluation of ovarian follicles 

Ovaries were fixed in Bouins fixative (Sigma Aldrich, castle Hill, Australia) solution for 

4h, then washed four times in 70% ethanol, dehydrated, embedded in paraffin and 

sectioned at 4um. Every 4th slide was stained with hematoxylin and eosin (H&E) for 

quantification of ovarian follicles, resulting in approximately 8-10 H&E slides per rat 

neonatal ovary [12, 37]. An experimenter blind to experimental groups examined the 

samples, and only follicles with a visible oocyte were counted. Primordial, activated 

primordial, and primary follicles only were classified on H&E sections as follows [see 

12]: (1) Primordial follicle: an oocyte surrounded by one layer of flattened cuboidal 

granulosa cells (2) Activated primordial follicle: a maturing oocyte surrounded by both 

flattened granulosa and one or more cuboidal granulosa cells in a single layer (3) 

Primary follicles: an oocyte surrounded by 4 or more cuboidal granulosa cells in a single 
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layer. Total counts were carried out on the first and third section of every H&E stained 

slide, resulting in the quantification of all visible follicles [46]. 

 

 

Proteomic identification in ovarian tissue 

Post-natal day 5 ovarian protein (10-20 ug) was submitted to the Australian Proteome 

Analysis Facility (APAF) for proteomic analysis. Prior to submission, protein was 

extracted from each sample containing 15-20 pooled neonatal ovaries using a modified 

sodium dodecyl sulfate (SDS) extraction method. Briefly, neonatal ovaries were 

manually homogenised in extraction buffer (0.375M Tris, ph6.8, 2ml 10%SDS, 3ml MQ 

H2O, 1g sucrose), heated at 100°C for 5 min and centrifuged at 13000rpm. Supernatant 

was removed, then stored and shipped at -80°C. For proteomic analysis, excised gel 

bands were resized, destained, dried then digested with trypsin in ammonium 

bicarbonate (pH 8) overnight. Supernatant from gel was made up to 40 uL in ESI 

loading buffer then was injected onto a peptide trap (Michrome peptide Captrap) for 

preconcentration and desalted with 0.1% formic acid, 2% ACN, at 8uL/min. The peptide 

trap was then switched into line with the analytical column. Peptides were eluted from 

the column using a linear solvent gradient, with steps, from H2O:CH3CN (100:0, + 0.1% 

formic acid) to H2O:CH3CN (10:90, + 0.1% formic acid) at 500nL/min over an 80 min 

period. The LC eluent was subject to positive ion nanoflow electrospray MS analysis on 

QSTAR which was operated in an information dependant acquisition mode (IDA). In IDA 

mode a TOFMS (time of flight mass spectrometry) survey scan was acquired (m/z 400-

1600, 0.5s), with the three largest multiply charged ions (counts >25) in the survey scan 
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sequentially subjected to MS/MS analysis. MS/MS spectra were accumulated for 2 s 

(m/z 100-1600). The data were processed using the database search program, Mascot 

(Matrix Science Ltd, London UK) with peaklists searched against Rattus in the 

SwissProt database [47]. High scores in the database search indicate a likely match 

that was confirmed or qualified by operator inspection. Search results were generated 

with a significance threshold of p < 0.05 with an ion score cut-off of 25 for all samples. 

This work was undertaken at APAF, the infrastructure provided by the Australian 

Government through the National Collaborative Research Infrastructure Strategy 

(NCRIS). LPS and saline groups were compared and Ingenuity Pathway Analysis (IPA: 

Ingenuity Systems, Redwood City, CA) software was used to identify top canonical 

signalling protein pathways and upstream regulators affected by neonatal treatment. 

 

RNA extraction, Reverse Transcription and Real-Time Quantitative (qRT)-PCR 

In order to isolate sufficient quantity and quality mRNA from whole PND 5 ovaries, 6-8 

ovaries from the same treatment group were randomly pooled within treatment groups 

to create biological replicates. Total RNA was isolated from ovaries using a modified 

acid guanidinium thiocyanate-phenol-chloroform protocol, followed by an isopropanol 

precipitation as previously described [48, 49] and DNase treated prior to reverse 

transcription for the removal of genomic DNA. Reverse transcription was performed as 

outlined in Sobinoff, et al. [48] with 2 ug of total isolated RNA, 500ng oligo(dT), 15 ug of 

primer (FWD and REV), 40ug of RNasin, 0.5mM dNTPs, and 20 ug of M-MLV-Reverse 

Transcriptase (Promega; Madison, WI, USA). Reverse transcription reactions were 

verified by Actin beta (Actb) or Cyclophilin qPCR using cDNA amplified with GoTaq 
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Flexi (Promega). Quantitative RT-PCR was performed in 20ul reactions using SYBR 

Green GoTaq qPCR master mix (Promega) according to manufacturer's instructions on 

a LightCycler 96 SW 1.0 (Roche, Castle Hill, NSW, Australia) for transcription factor 

Forkhead box O3a (Foxo3a) and growth differentiation factor 9 (Gdf9), as well as 

inflammatory markers; Tnfa, mitogen activated protein kinase 8/Jun N-terminal kinase 

(Mapk8/Jnk1), protein kinase C beta (Prkcb) and Tlr4. These markers are associated 

with both LPS activated inflammatory pathways and are essential to steroidogenesis 

during this critical time-point in gonadotropin-independent ovarian development, as well 

as continued ovarian-immune functioning throughout the lifespan [18, 50-60]. Gene and 

protein markers assessed were chosen to reflect the nature and timing of our early life 

immune stress exposure model, based on previous research from our laboratory [37] 

and in line with broad proteomic identification of factors in the current study associated 

with ovarian cell proliferation, migration, apoptosis, and LPS induced inflammation (see 

supplementary data table S5). Each sample was accompanied by a RT-negative 

replicate as a negative control. Quantitative RT-PCR data were normalised to the 

housekeeping control gene Cyclophilin as per Sutherland, et al. [49] and analysed using 

the comparative CT method equation 2-ΔΔC(t) (where C(t) is the threshold cycle at which 

fluorescence is first detected as statistically significant above background) and 

presented as a fold increase relative to the saline control group [61]. Experiments were 

replicated a minimum of 3 times prior to statistical analysis, with all PCR performed on 

at least 3 separate tissue isolations/biological replicates [as per 62]. Primer sequences 

are supplied (table 1) and were optimised by qPCR both here and previously [37]. 
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Immunohistochemistry 

Immunohistochemistry was used to localise TNFa protein and DNA damage via 

Phosphorylated histone gamma H2AX (yH2AX) expression. Caspase 3 (CASP3) and 

terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining were 

used to quantify apoptosis. Toll like-receptor 4 localization was assessed to confirm 

LPS activation via TLR4 binding in the neonatal ovary. TNFa was localised in PND 5 

ovarian tissue using a Vector DAB peroxidase substrate kit (Vector Laboratories, 

Burlingame, CA, USA) following manufacturer’s instructions. Slides were deparaffinised 

in xylene and rehydrated in ethanol washes. Antigen retrieval was carried out in 

preheated Na citrate buffer (10mM, pH6), microwaved for 12 min. Endogenous 

peroxidase quenching was performed (0.3%) for 20 min; slides were rinsed in PBS-TX 

and blocked in 3% BSA in PBS for 1 hour. Slides were incubated with primary antibody 

overnight at 4°C (anti-TNFa, Abcam ab6671, 1:200 dilution), then rinsed with PBS-TX 

and incubated with biotinylated secondary antibody (rabbit IgG; Abcam ab191866, 

1:500) for 30 min. Sides were rinsed, incubated with Vectorstain ABC prepared to 

manufactures instructions for 30 min at room temperature, then incubated with DAB for 

2 min, counterstained with Carezzis blue for 2 min, rinsed in bluing solution, dehydrated 

in ethanol and xylene, then mounted and viewed using an Axio imager A1 microscope 

(Carl Zeiss Microimaging, Inc., Thornwood, NY). Images were taken using an Olympus 

DP70 microscope camera (Olympus America, Centre Valley, PA, USA). For TLR4, 

yH2AX, immunohistochemistry was carried out following the dewaxing, rehydrating and 

antigen retrieval previously mentioned. Cooled slides were blocked in 3% BSA/Tris-

buffered Saline (TBS) for 1 hour at room temperature. Sections were incubated 
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overnight at 4°C with anti-TLR4 (1:100; Santa Cruz, sc-16240), anti-yH2AX (1:200; 

Abcam ab26350) and anti-CASP-3 (cleaved form, ~17kDa, 1:100; Abcam, 

ab13847). Slides were washed in TBX (0.1% Triton X-100) and incubated with 

appropriate fluorescent conjugated secondary antibodies (Alexa Fluor 594 goat anti-

rabbit/goat anti-mouse IgG, 1:200, Abcam; ab150080, ab150120 respectively). TUNEL 

was performed using an ApopTag Fluorescein in situ Apoptosis Detection Kit (Millipore, 

S7110) according to the manufacturer’s instructions. Sections for immunofluorescence 

were counterstained with either YOYO-1 nuclear stain (green) or DAPI (blue), mounted 

with Mowiol and viewed as described above. Positive controls included treated mouse 

and rat reproductive tissues and spleen for antibody specificity and DNase treated 

tissue where appropriate, and no primary antibody/TdT enzyme negative controls on 

target tissue (see supplementary tables S1 for antibody information and S6 for IHC 

control imaging). TUNEL positive cells were quantified by an experimenter blind to 

treatment conditions. Caspase-3 corrected total cell florescence (CTCF) was measured 

in Image J (National Institutes of Health, MD, USA) and calculated using the formula 

CTCF = integrated density – (area of selected section x mean fluorescence of 

background readings) [63]. 

 

Statistical analysis 

Data were analysed using IBM SPSS statistics (Version 24, IBM Australia) with a two-

way ANCOVA design, repeated measures ANOVA, and student independent t-test 

where appropriate, with pairwise comparisons between treatment groups carried out 

using the Bonferroni correction. Where covariates including litter size, body weight, and 
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male-to-female ratio did not significantly impact dependent variables, they were 

removed from the analysis to maximise statistical power. Statistical assumption 

violations were corrected by a log10 transformation (IL6 only). Data are presented here 

as the mean + standard error of the mean (SEM). Significance was assumed at p ≤ 

0.05. 

 

Results 

Neonatal weight gain 

No significant weight difference was observed between treatment groups on PND 3 or 

PND 5, however, LPS females gained significantly less weight between PND 3 and 5 

compared to controls (Neonatal Treatment x Age: F (1, 57) = 42.02, p ≤ .0001; pairwise 

contrast: t(43) = 4.5, p < .0001; Fig 1A). An expected significant main effect of age (F (1, 

57) = 105.49, p < .0001) was also observed, with PND 5 animals weighing more than 

PND 3 animals. 

 

Impact of LPS on peripheral inflammatory markers on PND 5 

As anticipated, circulating CRP, IL6 and TNFa was significantly upregulated in LPS 

treated animals compared to controls (F (1, 17) = 11.782, p = .003 (Fig 1B), F (1, 15) = 

10.47, p = .006 (Fig 1C), F (1, 24) = 4.71, p = .04 (Fig 1D), respectively). 

 

Impact of LPS on early ovarian follicle pool 

On PND 5, LPS treated animals had significantly reduced primordial follicles compared 

to saline controls (t (10) = 4.02 p = .002, Fig 2A; Neonatal Treatment effect: F (1, 20) = 
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18.78, p < .001; Neonatal Treatment x Age effect: F (1, 20) = 10.90, p =.004). Neonatal 

LPS exposure altered the quantity of activated primordial follicles, with reduced 

numbers of follicles in LPS treated rats compared to saline controls on PND 3 (t (10) = 

2.39, p = .03, Fig 2B), but significantly increased activated primordial follicles on PND 5 

(t (10) = 2.31, p = .044); Age x Treatment effect: F (1, 20) = 10.97, p = .003; Fig 2 B). 

There were no significant differences in primary follicle numbers on either treatment day 

(Fig 2C). As expected, a significant effect of age was seen on all follicle types 

(primordial: F (1, 20) = 104.4; activated primordial F (1, 20) = 13.48; primary; F (1, 20) = 26.47, 

p < .005 for all), with PND 5 ovaries containing more follicles overall compared to PND 

3. 

 

Impact of LPS on ovarian proteome 

There was significant expression of 598 proteins in the ovaries of PND 5 LPS females 

(p ≤ .05). Protein expression was compared to saline control levels, resulting in 29 

proteins differentially expressed in LPS treated animals. Functional analysis of these 

identified several molecular networks, canonical pathways and cellular functions 

implicated in acute phase response signalling and innate immune responses, amino 

acid and lipid metabolism, molecular transport, and cellular movement, signalling, 

assembly and survival (Fig 3; A, B & supplementary tables S2 - S5). 

 

Ovarian qRT-PCR 

PND 5 ovaries were probed for mRNA expression of proinflammatory markers and 

growth and transcription factors. Fold-change mRNA expression of Gdf9 was 
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significantly upregulated in the ovaries of PND 5 LPS treated females (t (4) = 8.05), 

compared to saline controls, p ≤ .001 (Fig 4A). There were no significant changes in 

expression of Foxo3a (Fig 4 B). We observed a trend towards downregulated Tlr4 

mRNA expression in LPS treated animals (p = .061) (Fig 4C). Expression of Tnfa and 

Mapk8/Jnk1 were significantly upregulated in LPS treated animals on PND 5, (t (4) = 

3.54 and t (4) = 0.14, respectively; both p ≤ .05), (Fig 4; D, E). LPS females displayed a 

non-significant increase in Prkcb mRNA expression (p = .170, Fig 4F). 

 

Ovarian protein localization and quantification 

Immunohistochemical processing was carried out on the PND 5 ovaries of LPS and 

saline treated females to detect the localized expression of TLR4 and TNFa protein, 

yH2AX as a marker of double stranded DNA damage, and cleaved CASP-3 and TUNEL 

for assessment of apoptosis. Gamma H2AX was detected in oocytes of both LPS and 

saline animals (Fig 5; A, B). Toll-like receptor 4 immunolabelling was detected 

surrounding the oocyte (Fig 5; C, D). Tumour necrosis factor alpha expression was 

detected both in the granulosa cells and oocytes in both treated and control samples 

(Fig 5; E, F). Caspase-3 quantification in the ovaries of LPS treated animals 

demonstrated a 2.3 x fold change increase in CTCF compared to saline treated 

controls. However, this increase was not statistically significant (t (4) = 2.291, p = .084 

(Fig 6; A – C). LPS treated animals demonstrated a significantly greater number of 

TUNEL positive ovarian cells (t (4) = 5.191, p = .007, particularly in oocytes (Fig 6; D – 

F). 
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Discussion 

Early life is a critical period for fundamental ovarian development and associated 

neuroendocrine and immune system maturation. Disruption of developmental 

trajectories via immune activation during this sensitive period may have persisting 

detrimental effects. Here, we demonstrate in female neonatal rodents that a low dose of 

LPS in the first week of life has an acute effect on the neonatal ovary during the final 

stages of follicular pool formation in vivo. Lipopolysaccharide administration on PND 3 

and 5 upregulated circulating inflammatory mediators, altered early follicle populations, 

and had an immediate effect on ovarian immune status on PND 5. This study is one of 

the first to show the immediate effect of perinatal immune stress on early ovarian follicle 

populations and associated ovarian transcriptome. 

Neonatal LPS exposure resulted in reduced weight gain between PND 3 and 

PND 5, consistent with our previous findings [11, 27, 28]. As expected, administration of 

LPS on PND 3 and 5 caused significant increases in circulating acute phase protein 

CRP, IL6 and TNFa. These results confirm the efficacy of LPS treatment in what is 

considered a hypo-responsive period for immune responses and stress in the neonatal 

rodent [64, 65]. Peripheral increases in proinflammatory cytokines may stimulate and 

exacerbate normal inflammatory mediator levels within the ovary at this critical time, 

regardless of ovarian immune privilege. 

Neonatal LPS exposure altered early follicle populations in the PND 5 ovary, 

leading to a significant decrease in primordial follicle numbers and a significantly greater 

number of activated primordial follicles. This suggests that early life immune activation 

may prematurely activate quiescent follicles, leading to follicle depletion. Previous 
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findings from our laboratory demonstrated a depleted PND 14 primordial follicle pool 

[37], as well as advanced senescence at 1 year of age [11], indicating that the 

morphological changes seen here are sustained through to prepubescence and may 

contribute to an early fertility decline. Premature follicle diminishment reduces the 

number of viable follicles for later ovulation, in turn affecting the quality of the dominate 

follicle. The untimely depletion of primordial follicle pool seen here may be occurring via 

intra-ovarian autocrine and paracrine immune signalling [66] or via gap junctions 

operating within the oocyte-granulosa cell complex [67], stimulated by excessive 

immune perturbation. Rapid follicle formation, proliferation, maturation and atresia is 

typical in the PND 2 to 5 female rodent, where oogonia migration is occurring [15]. LPS 

administration may exacerbate these typical ovarian processes, particularly as LPS 

stimulation has been demonstrated to cause oocyte and granulosa cell apoptosis in fully 

developed ovaries [36, 68]. This is substantiated in the current study by the localization 

of yH2AX in the oocyte complex, indicative of rapid DNA damage [69], and the 

significant increase in TUNEL positive oocytes in LPS treated animals, demonstrating a 

combined effect of PND 3 and PND 5 LPS injections. Primary follicle populations did not 

differ, suggesting that primordial follicles may have already undergone apoptosis post-

activation, and that the primordial follicle population may have a heightened vulnerability 

to the effects of LPS. Likewise, Bromfield and Sheldon [36] demonstrated that the 

primordial follicle pool is particularly sensitive to LPS driven apoptosis, whereas larger 

follicles display some resilience. 

Using mass spectrometry, we identified 29 proteins differentially expressed in the 

PND 5 ovaries of LPS treated animals. Pathway analyses indicated that these proteins 
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were associated with acute-phase response signalling, liver X receptor/retinoic X 

receptor (LXR/RXR) activation, mechanism of viral exit, and glycogen degradation 

signalling (see Fig 3 & supplementary tables S2 - S5). This indicates transcription of 

acute phase mediators within the PND 5 ovary, confirmed here with qRT-PCR. These 

results are congruent with our previous microarray findings demonstrating LPS 

stimulated upregulation of immune pathways in PND 7 ovaries [37]. Activation of the 

LXR/RXR pathway is of novel interest, as LXR/RXRs are involved in the macrophage 

response to TLR4 activation and are expressed in the ovary [70, 71], with LXR null mice 

displaying subfertility and oocyte meiotic incompetence [72]. Interestingly, LXR/RXR 

activation inhibits inflammatory signalling [73], hence activation of LXR/RXR seen here 

may serve to protect the developing ovary from excessive inflammation. Further 

investigation is needed as this may be a novel pathway to examine in the early life 

immune stress model, particularly considering the association between early life stress, 

fertility dysfunction, and metabolic and inflammatory diseases. 

In the current study, LPS administration significantly upregulated the mRNA 

expression of inflammatory mediators MAPK8/JNK1 and TNFa in the ovaries of LPS 

treated animals on PND 5. MAPK8/JNK1 signalling is a major component in acute 

phase responses, cell survival and apoptosis [60] and both LPS and proinflammatory 

cytokines, particularly TNFa, activate the MAPK8/JNK1 pathway [74, 75]. The 

MAPK8/JNK1 pathway is also implicated in the activation and maturation of early 

follicles [60, 76]. Recent evidence indicates MAPK8/JNK signalling contributes to follicle 

activation via mTOR signalling, which may merit further investigation within the current 

model [77]. The significantly increased expression seen here may indicate a 
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downstream acute phase response is activated within the ovary, with immune 

mechanisms contributing to early follicle depletion. Concomitant to MAPK8/JNK1 

stimulation, is the activation of other inflammatory pathways and mediators including 

NFKB, PI3K/AKT, PKCB, IL1B, IL6, nitric oxide synthase-1 (NOS2) and 

cyclooxygenase-2 (COX2) [78], which are all associated with both normal and 

pathological ovarian function [66, 79-82], and early life activation of MAPK pathways 

may lead to long term functional differences with these mediators. 

It is known that TNFa activates and exacerbates the LPS-driven immune and 

stress responses, and plays a fundamental role in the immature ovary, facilitating 

normal oocyte atresia and follicular assembly to define the size of the primordial follicle 

pool [58, 83]. As TNFa alone can impair ovarian functions and override factors that 

inhibit follicle activation [59, 84], these higher gene expression levels of Tnfa seen here 

may be a driving factor increasing primordial follicle activation in LPS treated animals, 

leading to superfluous and premature depletion. Tumour necrosis factor alpha protein 

was localized to granulosa cells, oocytes, and the surrounding complex in both groups, 

indicating that expression may be facilitating bidirectional crosstalk between the oocyte-

granulosa matrixes. The strong trend for Tlr4 downregulation seen here is most 

probably due to a habituation effect of the temporal proximity of dual LPS administration 

and the time point at which tissue was taken. These findings were contrary to those 

hypothesised, as we previous demonstrated a significant upregulation of Tlr4 gene 

expression in the PND 7 ovary, however TLR4 staining here was localised to the oocyte 

cytoplasm as previously demonstrated [37]. The current and previous findings 

suggesting that the ovary may adapt to the level of LPS signalling and display altered 
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TLR4 expression as a way to manage a predicted high-immune-stress or bacterial-rich 

environment. Permanent alterations in TLR4 expression may be detrimental, particularly 

considering that TLR4 overexpression is involved in the growth and survival of ovarian 

cancer cells [85] and poor ovarian response (POR) [86], and TLR4 under expression is 

implicated in polycystic ovarian syndrome (PCOS) and endometriosis [87, 88]. Protein 

Kinase C beta aids the regulation of early follicular proliferation, survival and activation 

[89] and although upregulation here is non-significant, it may be contributing to the 

perpetuation of cytokine secretion [90]. 

Growth factor GDF9 and transcription factor FOXO3A are implicated in early follicle 

primordial growth, maturation and apoptosis. The significantly increased Gdf9 mRNA 

expression demonstrated here may indicate that immune activation is prematurely 

instigating the maturation signalling between the oocyte and its granulosa cells, 

particularly as GDF9 stimulates small follicle proliferation of granulosa cells in rats in 

vivo [91, 92] and promotes growth of human ovarian follicles in vitro [93]. Abnormal 

expression of GDF9 and Gdf9 mutations of are apparent in women with PCOS and POF 

[53, 94]. Additionally, the Gdf9 increases seen here may also be an attempt to 

downregulate inflammation, as Gdf9 activation stimulates transforming growth factor 

(TGF)-beta-like SMAD2/3 intracellular pathways [95] which have been shown to inhibit 

immune cells, including macrophage activation, with LPS exposure [96]. As 

macrophages that express TLR4 are present in the ovary, the increase in Gdf9 

expression in LPS challenged animals may indicate a protective mechanism undertaken 

by the ovary in order to self-modulate inflammatory signalling, with activation and 

atresia of some early follicles being compensation for overall ovarian reserve defence. 
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Neonatal immune insults may not only impact the quantity, but also the long term quality 

of the remaining follicular pool. As GDF9 and associated TGF-b superfamily members 

are modulators of sex hormone sensitivity, aberrant GDF9 signalling during ovarian 

development may have long term effects on follicle stimulating hormone (FSH) and 

luteinising hormone (LH) receptor densities and sensitivities, affecting post-pubertal 

ovarian processes [97, 98]. Forkhead box-O3a has been suggested as a key mediator 

of naked oocyte and primordial follicle apoptosis within the neonatal rat ovary [56]. As 

FOXO is negatively regulated by PKB/AKT/PI3K and MAPK8/JNK1 activation [55, 99], 

this may be contributing to our unexpected non-significant findings as  previous findings 

with this LPS model indicate significant upregulation of Prkb/Akt/Pi3k pathways in PND 

7 ovaries [37]. The non-significant difference in Foxo3a at this current time-point 

indicates that analysis at an alternate time point is needed to capture Foxo3a 

translocation, transcription and apoptosis induction. Forkhead box O3-null mice 

demonstrate normal follicle assembly, followed by global activation and early depletion 

of the primordial follicle pool, leading to POF and infertility [100]. This implicates 

FOXO3A in the maintenance of quiescent follicles, as transgenic models of 

constitutively active Foxo3a expression demonstrate suppression of follicular maturation 

and infertility [101], meriting future investigation in this model. Future studies are 

necessary to examine FOXO3A and additional growth/transcription factor gene and 

protein expression in the neonatal LPS model, particularly given the links between 

FOXO3A and LPS-induced innate inflammatory pathway upregulation, ovarian follicular 

development, and studies demonstrating LPS inactivating FOXO3A in other tissues 

[102-104]. 
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Our current findings indicate that LPS exposure activates and depletes the early 

primordial follicle pool. This may be occurring via immune pathways to affect 

transcription and growth factor-mediated early follicular control, particularly considering 

the shared, complex immune-regulatory properties and capabilities of TNFa, 

MAPK8/JNK1, and GDF9. These mediators influence early follicle formation, 

development, and maintenance during a critical period, where follicle dynamics are both 

intricate and elusive in nature. The development of the finite ovarian follicular pool is 

dependent on homeostatic processes, which if disrupted, may lead to sustained 

alterations to ovarian physiology. Premature loss of the ovarian reserve not only has a 

detrimental effect on the female reproductive lifespan, but is associated with a myriad of 

heath complications due to deficiency of ovarian produced oestrogen, including 

osteoporosis, cardiovascular disease, autoimmunity and psychological disorders. Early 

life stress is already a well-established risk factor for morbidity and mortality from a 

range metabolic, immune and neuroendocrine disorders [105], and is known to lead to a 

physiological vulnerability to stressors in later life [43, 106]. The pathogenesis of 

idiopathic reproductive disorders may have developmental origins, as well as be 

intensified by the additional stress these disorders exert. The current study provides 

further insight into the link between early life immune disturbances and ovarian 

development. A number of female reproductive disorders associated with skewed 

inflammatory profiles such as; PCOS, endometriosis, and POF are increasingly 

presenting in a younger female demographic, often with no apparent origin. Examining 

stressful events in the early life environment can therefore provide valuable insight into 

the pathogenesis and progression of reproductive disorders, as well as aid in the 
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understanding of mechanisms regulating the formation and longevity of the ovarian 

reserve. 
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Figure 1. Weight gain between PND 3 and PND 5 and circulating proinflammatory 

cytokines. A) Neonatal females treated with LPS (n = 29) gained significantly less 

weight between treatment days compared to saline treated females (n = 31), mean 

difference in weight gain between groups represented in grams. LPS treated animals 

displayed significantly increased plasma levels of B) CRP, C) IL6, and D) TNFa. White 

bars represent saline controls, filled bars represent LPS treated animals. * indicates p < 

.05. 
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Figure 2. PND 3 and 5 mean ovarian follicle counts. Mean counts of early follicle 

populations A) primordial follicles on PND 3 and PND 5; B) Activated primordial follicles 

on PND 3 and PND 5; C) Primary follicles on PND 3 and PND 5. Mean ovarian follicle 

count +SEM is graphed. White bars represent saline treated controls, filled bars 

represent LPS treated animals, * indicates p < .05. 
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Figure 3. Mass Spectrometry and Top Canonical Pathways significantly upregulated by 

neonatal LPS treatment on PND 5, as identified by Ingenuity Pathway Analysis (IPA) A) 

Representation of mass spectrometry information obtained from PND 5 LPS-treated 

ovaries. 29 proteins were significantly differentially expressed in the ovaries of LPS-

treated females out of the total number of proteins significantly expressed, compared to 

controls. B) Blue bars (column graph, x-axis) represents the significance of associated 

upregulated expressed proteins and the canonical pathway assessed using a right-

tailed Fisher’s exact test to calculate p-values determining the probability that the 

association is explained by chance alone. Ratio score (line graph, z-axis) indicates the 

proportion of coverage from a pathway related to total number of molecules, subject to 

pathway size bias. 
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Figure 4. QRT-PCR analysis of growth and transcription factors, and inflammatory 

pathways associated with initial folliculogenesis. Fold change mRNA expression of 

ovarian growth factor Gdf9 (A) and transcription Foxo3a (B). Fold change mRNA 

expression of inflammatory mediators associated with ovarian follicular development 

and function; Tlr4 (C), Tnfa (D), Mapk8/Jnk1 (E), and Prkcb (F). White bars represent 

saline controls, filled bars represent LPS treated animals. * indicates p < .05. 
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Figure 5. Observational fluorescent and Immunohistochemical protein localization of 

yH2AX, TLR4 TNFa. (A-B) Representative yH2AX immunolabelling detected in oocytes 

in both treatment groups; (C-D) TLR4 immunolabelling was expressed in the oocytes 

and oocyte cytoplasm in both treatment groups; (E-F) TNFa expression was localized to 

the oocyte and surrounding granulosa cells in both LPS and saline. Fluorescent green 

(YOYO) represents nuclear staining, fluorescent red staining represents specific 

staining for protein of interest (A-D). White arrow = area of interest. DAB TNFa staining 

is indicated in brown, counterstained with Carezzis blue (E-F). Yellow arrow = 

granulosa, black arrow = oocyte. 
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Figure 6. Quantification of cleaved CASP-3 and TUNEL positive cells in PND 5 ovaries. 

Localisation representative images of cleaved CASP-3 in A) saline treated females and 

B) LPS treated females.  Fluorescent green (YOYO) represents nuclear staining, 

fluorescent red staining represents CASP-3 staining. C) Quantification of CASP-3 

represented as normalised fold change CTCF compared to saline controls +SEM. 

Localisation representative images of TUNEL positive ovarian cells in D) saline treated 

females and E) LPS treated females. F) Quantification of TUNEL positive cells in saline 

and LPS treated groups represented as mean count +SEM. Fluorescent blue (DAPI) 

represents nuclear staining. White bars represent saline controls, filled bars represent 

LPS treated animals. * indicates p < .05. 
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Table 1. qRT-PCR primer information. Forward and reverse sequence and efficiency for 

target genes analysed involved in early ovarian follicular control and development, and 

inflammation. 

Target Gene Forward Reverse efficiency 

Mapk8/Jnk1 CGGAACACCTTGTCCTGAAT GAGTCAGCTGGGAAAAGCAC 1.94 

Prkcb ATCAGCCCTACGGGAAGTCT CGTTGTGCTCCATGATTGAC 1.91 

Tlr4 ACTGGGTGAGAAACGAGCTG CGGCTACTCAGAAACTGCCA 1.97 

Actin B TCTGTGTGGATTGGTGGCTCTA CTGCTTGCTGATCCACATCTG 1.94 

Cyclophilin A CGTCTCCTTCGAGCTGTTT ACCCTGGCACATGAATCCT 1.9 

Gdf9 CAACCAGATGACAGGACCC AGAGTGTATAGCAAGACCGAT 1.83 

Foxo3a CACAGAACGTTGTTGGTTTG CAGTTTGAGGGTCTGCTTTG 1.84 
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