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Adverse Selection and Insurance Contracting:
A Rank-Dependent Utility Analysis

Matthew Joseph Ryan and Rhema Vaithianathan

Abstract

Stiglitz (1977) established three well-known features of monopoly insurance markets subject
to adverse selection: (i) at least one market segment is served, despite the informational asymme-
try; (ii) there is always some screening of risk classes; and (iii) efficiency is sacrificed to achieve
screening. We modify Stiglitz’s model, replacing his expected utility assumption on consumer
behavior with a version of Quiggin’s (1982) rank-dependent utility model that has received strong
experimental support. We show that none of the conclusions (i)—(iii) is robust to this revision. In
particular, asymmetric information need not lead to any loss in efficiency.
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1 Introduction
A growing body of experimental work has placed increasing strain on the axioms of
classical expected utility (EU) theory. In an attempt to represent the sort of behavior
observed by these experimenters, various generalizations of EU have been developed.
One such model is rank-dependent utility (RDU), originally formulated by John Quiggin
(1982).1 In this paper, we explore the implications of RDU behaviour for insurance
contracting under asymmetric information.

Since RDU generalizes the EU model, it is possible to experimentally test the hypoth-
esis of EU under a maintained assumption of RDU preferences. Such tests regularly reject
EU — see section 2.2. More surprisingly, observed deviations from EU show remarkable
consistency across individual subjects and experiments. There is a systematic tendency
for extreme (best or worst) outcomes having low probability to exert an influence on
choice that far exceeds their relative likelihoods. Subjects are therefore “overly pes-
simistic” about the possibility of suffering rare disasters; but “overly optimistic” about
the prospect of unlikely windfalls.

RDU is able to capture this behavioral propensity through an inverse-S transforma-
tion of the (decumulative) probabilities attached to outcomes. Such a transformation
accentuates the weights on extreme outcomes, and de-emphasizes those on intermedi-
ate outcomes. This is precisely the version of RDU favored by Quiggin in his original
proposal (Quiggin, 1982).

RDU behavior of this type has significant implications for insurance contracting. Pes-
simism with respect to adverse events increases the gains from trade with risk-neutral
insurance companies. Pessimistic consumers may even purchase full insurance on actu-
arially unfair terms. By contrast, EU predicts that full insurance is never demanded
at an actuarially unfair premium. This implication of EU has long been regarded as
empirically and intuitively implausible. Kunreuther and Hogarth (1989) further observe
that the propensity to pay above the fair premium for full insurance is especially marked
for consumers exposed to low levels of risk. This, too, is consistent with RDU and an
inverse-S probability transformation. As the likelihood of the adverse event increases,
pessimism diminishes. Wakker, Thaler and Tversky (1997) show that the commonly
observed aversion to “probabilistic insurance” — insurance for which there is a small
probability of default — is incompatible with EU, but explicable if consumers conform to
RDU with an inverse-S transformation.

This probability-dependent propensity toward pessimism or optimism also underpins
our results on adverse selection. Low risk consumers are more pessimistic than high
risks, and the latter may even exhibit optimism. Since screening requires that high risks
be offered greater coverage than low risks, this relative pessimism effect can work against
screening in two ways. First, if low-risk sales are particularly lucrative and low risks are
1Quiggin called his theory “anticipated utility”.
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a large fraction of the market, then it may be optimal to fully insure both types. In this
case, all agents receive Pareto optimal contracts.2 Second, if high risks are so optimistic
that they need a subsidy in order to buy any insurance, and since it is impossible to
serve only low risks under asymmetric information, pooling may again be optimal. In
this case, the pooled contract will offer partial cover. It is even possible that neither
type is served and the entire market breaks down.

In summary, for the class of RDU preferences that we study, one may observe pooling
in a monopolized insurance market subject to adverse selection, including the extreme
cases of complete market failure (neither type insured) and Pareto optimal contracting
(both types fully insured). Each of these possibilities is absent from the EU version
of the model (Stiglitz, 1977). A companion paper — Ryan and Vaithianathan (2003) —
demonstrates that Pareto efficient contracting is also possible under moral hazard. Taken
together, these two papers convey the message that asymmetric information need not
undermine the efficient allocation of risk through insurance markets, contrary to received
wisdom based on EU analysis.

Several authors — especially Machina (1995) — have attested to the robustness of
classical insurance theory to deviations from EU under symmetric information. Machina
notes (ibid., p.36) that the area of insurance under asymmetric information had not been
explored from a non-EU perspective to that time.3 In addition, Machina (1995) restricts
attention to “smooth” (Fréchet differentiable) preferences, which RDU preferences, in
general, are not.4 Smoothness excludes the phenomenon of first-order risk-aversion,5
which plays an important role here.6

The outline of the rest of the paper is as follows. In the next section we review the
theory of RDU maximization, and the experimental evidence in favor of the inverse-S
transformation. In section 3 we examine its implications for Pareto optimal contracting
under symmetric information. Section 4 contains the main results on insurance under
adverse selection. Section 5 concludes. Proofs are contained in the Appendix.
2Shi (1988) and Young and Browne (2000) demonstrate the possibility of Pareto optimal pooling for

the case of competitive insurance markets. Shi (1988) assumes quasi-linear preferences (Chew, 1983),
while Young and Browne adopt Yaari’s (1987) “dual” model — a special case of RDU in which utility
is linear in wealth — and further assume that the probability transformation is convex, rather than
inverse-S.

3Apparently Machina had overlooked the contribution of Shi (1988).
4See Karni’s (1995) discussion of Machina’s paper.
5Segal and Spivak (1990).
6See also Dupuis and Langlais (1997).
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2 RDU preferences
2.1 Theory
Consider a lottery

L = (x1, p1; x2, p2; ... ; xn, pn) .
Each xi ∈ R+ is a monetary outcome, and pi ∈ (0, 1] is the probability of this outcome.
As usual, we assume that∑i pi = 1. For the RDU model, an outcome’s rank in L is also
important, so we adopt the convention that lottery prizes are listed in descending order.
That is:

x1 ≥ x2 ≥ · · · ≥ xn.
The RDU preference representation involves a utility function u : R+ → R, and a

strictly increasing function w : [0, 1] → [0, 1], satisfying the normalization conditions
w(0) = 0 and w(1) = 1. Adopting the convention that ∑0

i=1 pi = 0, the lottery L is
evaluated as follows:

n
∑

i=1
u(xi)

[

w
( i
∑

j=1
pj
)

− w
( i−1
∑

j=1
pj
)]

(1)

Observe that
n

∑

i=1

[

w
( i
∑

j=1
pj
)

− w
( i−1
∑

j=1
pj
)]

= 1,

so RDUmaximizers do perform expected utility calculations, but using a (rank-dependent)
transformation of the true probabilities. Moreover, if w is linear (i.e. the identity func-
tion), then (1) is a standard expected utility calculation. However, experiments consis-
tently reject the linearity of w.

As a matter of interpretation, it is important to note that non-linear probability
transformations need not imply misperception of the true probabilities, any more than
non-linearity in the utility function indicates a failure to appreciate the value of a dol-
lar. For a better understanding of the foundations for the RDU model, see the simple
axiomatization of Chateauneuf and Wakker (1999), or the intuitive motivation provided
by Diecidue and Wakker (2001).

2.2 Evidence on the shape of w
Wakker (2001, Appendix A) reviews the experimental literature on the shape of w, and
concludes that there is strong evidence for w having the inverted-S shape of Figure 2.1.
Such decision-makers tend to overweight (small) probabilities attached to very highly or
very lowly ranked outcomes, and hence to underweight the probabilities of non-extreme
outcomes. In particular, the transformation function depicted in Figure 2.1 implies the
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violation of global risk aversion. For example, the over-weighting of small probabilities
attached to very high-ranking outcomes is compatible with gambling behavior.

10

1
w(π)

ππ *

Figure 2.1: Typical probability transformation function
Wu and Gonzalez (1996) develop direct preference-based tests for the concavity and

convexity of w. These tests assume RDU, but are independent of the form of the utility
function. Wu and Gonzalez find significant evidence of concavity of w up to a critical
probability level of between 0.3 and 0.4, with convexity thereafter. Camerer and Ho
(1994), Gonzalez and Wu (1999) and Abdellaoui (2000) obtain similar results.

It is also worthy of note that Quiggin (1991) has shown that the inverse-S weighting
function implies an optimal lottery design that conforms well with evidence from actual
lotteries: an increasing sequence of prizes, rather than one large prize. Karni and Safra
(1990) demonstrate that an inverse-S model has the potential to explain “preference
reversal” phenomena in laboratory experiments.

3 Pareto optimal contracts (symmetric information)
Consider a population of RDU maximizing agents with the following common features:
wealth level y, utility function u, and transformation function w. We distinguish two
types of agent: a “high risk” type, with probability pH ∈ (0, 1) of suffering a financial
loss of c < y; and a “low risk” type, with probability pL ∈ (0, pH) of suffering the same
loss. Let θ ∈ (0, 1) be the proportion of high risks in the population.

An uninsured high risk agent therefore faces the lottery
(y, 1− pH ; y − c, pH)

4

Contributions to Theoretical Economics , Vol. 3 [2003], Iss. 1, Art. 4

http://www.bepress.com/bejte/contributions/vol3/iss1/art4



while low risks face the lottery
(

y, 1− pL; y − c, pL)

Using (1), a lottery (y, 1− p; y − c, p) is evaluated as
u(y − c) + w (1− p) [u(y)− u(y − c)]

Let w be as in Figure 2.1, and suppose that 1−pH < π∗ < 1−pL. Then, relative to EU
maximizers, high risk individuals act as if they are over-optimistic about their chances
of avoiding the loss, while low risk individuals act in an overly pessimistic fashion. This
distortion of probability information will augment the potential gains from trade (relative
to the EU case) between an expected profit maximizing insurance company and a low
risk client; but will squeeze potential gains in the case of high risk clients. Indeed, it is
possible that gains from trade may vanish altogether in the latter case.7

For two-state problems such as these, it is convenient to visualize matters using a
Hirshleifer-Yaari diagram. Fix two states, having probabilities p and 1− p respectively.
The vertical axis in the Hirshleifer-Yaari diagram will measure wealth (z2) in the state
that occurs with probability p; while the horizontal axis measures wealth (z1) in the
other state. If u is differentiable, the slope of an RDU indifference curve at the point
(z1, z2) is

−(1− w(p))
w(p)

u′(z1)
u′(z2) (2)

when z2 > z1 and
−w(1− p)

1− w(1− p)
u′(z1)
u′(z2) (3)

when z2 < z1. Notice that:
(i) There is a non-differentiability (“kink”) along the 45 degree (or certainty) line unless

w (1− p) + w (p) = 1.8
(ii) Upper contour sets (points on or above a given indifference curve) are convex if u

is concave and w (1− p) + w (p) ≤ 1.
Figure 3.1 illustrates these two properties.

7Quiggin (1991, p.6) makes a similar observation: “the effects of probability weighting discourage
insurance against high-probability events.”

8Non-linearity of the weighting function is not sufficient for a kink. For example, the function
w(p) = 1

2(2p− 1)
3 + 1

2 ,
has the inverse-S shape, but w(p) = 1 − w(1 − p) for all p, so the associated RDU indifference curves
are smooth in any Hirschleifer-Yaari diagram.
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z1

z2

z2 = z1

-[1-w(p)]/w(p)

-w(1-p)/[1-w(1-p)]

Figure 3.1: RDU indifference curve with convex upper contour set
Since we confine attention in what follows to two-outcome lotteries, the analysis gen-

eralizes immediately to a suitable sub-class of biseparable preferences (Ghirardato and
Marinacci, 2001).9 These are preferences that admit a non-trivial, monotonic repre-
sentation, which is of the form (1) when n = 2 (ibid., Definition 1). Ghirardato and
Marinacci provide an axiomatization of such preferences. The analysis in the present
paper is compatible with any biseparable preference ordering that satisfies:
Assumption 1 The utility function u in (1) is strictly increasing, concave and con-
tinuously differentiable, and the transformation function w has an inverse-S form with
w (1− p) + w (p) ≤ 1, for p the consumer’s individual probability of loss.

We maintain Assumption 1 throughout. It guarantees convex upper contour sets,
though it does not imply risk aversion.10 Indeed, from Figure 3.1 it is clear that a Pareto
optimal contract (with an expected profit maximizing insurance company) will imply:

1. over-insurance if p < w (p);
2. partial (and possibly no) insurance if 1− p < w (1− p); and
3. full insurance otherwise.
9We thank Simon Grant for this observation.
10See Chew, Karni and Safra (1987) for sufficient conditions for (strong) risk aversion.
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Figure 3.2 summarizes these three possibilities. Observe that Case 3 exists as a
possibility only if π∗ ≤ 12 . However, the latter is quite consistent with the experimental
evidence — see Section 2.2.

10

1
w(p)

pπ * 1 − π *

OVER FULL PARTIAL

Figure 3.2: Pareto optimal coverage vs loss probability, p
Under Case 3, the decision-maker will exhibit first-order risk-aversion (Segal and

Spivak, 1990) unless 1− p = w (1− p): full insurance is strictly preferred to any partial
level of cover for a range of premia above the actuarially fair rate. This property is
important for the discussion in Section 4.1.

4 Adverse selection
What if the consumer’s risk type is private information? Models of adverse selection
almost invariably assume risk-averse EU consumers. Under this assumption, Stiglitz
(1977) considered the case of a risk-neutral, monopoly insurance company. He showed
that the market will either (a) offer full insurance and serve high risks only; or (b)
serve both types with a screening menu of contracts in which high risks receive full
insurance, but low risks receive only partial cover. In particular, pooling contracts are
never observed, and risks are misallocated — low risks receive Pareto sub-optimal contacts
(partial or no cover).11
11These facts generalize to more than two types as follows: the highest risk type always receives a

full-insurance contract; if more than one type is served, the highest risk type is always screened, so
all other types receive an inefficient contract (partial or no cover). See Laffont and Martimort (2002,
Chapter 3).
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If consumers exhibit RDU (or biseparable) preferences satisfying Assumption 1, then
other possibilities arise. First, one may observe pooling in which both types receive a
Pareto optimal full insurance contract. Second, a pooled partial insurance contract may
be offered, with low risks cross-subsidizing high risks. Because of the need for cross-
subsidization, such contracts are viable only if θ (the proportion of high risks in the
population) is sufficiently low. If not, then neither type is served. Therefore, the range
of possible market configurations expands to include both Pareto efficiency and complete
market failure (neither type served).

We now illustrate each of these possibilities. Throughout, we assume a risk-neutral,
monopoly insurer.

4.1 Pareto optimal pooling
In this section we consider a scenario in which all consumers must be fully insured for
risk to be allocated in a Pareto efficient manner. Crucially, we consider a case in which
low risks exhibit first-order risk-aversion. In this case, low risks are willing to pay an
actuarially unfair premium for full insurance, and pursuit of this profit may discourage
insurers from offering a partial insurance contract to screen low risks.

In an EU (or any other “smooth”) model, marginal deviations from full insurance
that maintain expected utility constant have zero first-order effects on expected profit.
Since there are first-order gains from being able to reduce the information rent paid
to risk-averse high risks, screening is optimal. However, when low risks exhibit first-
order risk-aversion, this logic breaks down. Marginal deviations from full insurance now
impose first-order reductions in expected profit earned on low-risk contracts. When θ
(the proportion of high risks in the population) is low, these losses may outweigh any
consequent savings on the information rent paid to high risks.

In the following Proposition, π∗ refers to the cross-over point in Figure 3.2.
Proposition 1 Under Assumption 1, if π∗ < pL < pH ≤ 1 − π∗, then a pooled full-
insurance contract will be offered when θ is sufficiently close to zero. A Pareto optimal
allocation of risk results.

The proof of Proposition 1 goes through even if π∗ = 0. This limiting case of the
inverse-S gives a convex transformation function, and implies global risk aversion (Chew,
Karni and Safra, 1987). Hence, Proposition 1 demonstrates the possibility of pooling
even when all consumers are globally risk-averse. In particular, as the intuition given
prior to the statement of Proposition 1 suggests, it is first-order risk-aversion that is
crucial here, not the change in curvature of w at π∗. Conversely, the latter feature of the
inverse-S RDU model underpins the next result, while first-order risk-aversion plays no
role.
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4.2 Inefficient pooling
Suppose that high risks are sufficiently optimistic that it is unprofitable to sell them any
insurance. Such will be the case if

w(1− pH)
[1− w(1− pH)]

u′(y)
u′(y − c) ≥

1− pH
pH (4)

so that the high-risk indifference curve is at least as steep as the “fair bet” line at the
point (y, y − c). Condition (4) requires that pH > 1 − π∗ and that u′ (y) /u′ (y − c) is
not too small.

Given (4), it is intuitive that it will be optimal to pool the risk types. Low risks
must be served if expected profit is to be non-negative, and the insurer will offer as
little insurance to high risks as possible, subject to meeting the incentive compatibility
constraints. The latter requires high risks to receive at least as much cover as low
risks (by the usual single-crossing property), so a single contract will be offered. The
optimal pooling contract will be “null” if high risks are a sufficiently large fraction of the
population, since there will not be enough low risks on which to recover losses suffered
on high-risk contracts.
Proposition 2 Under Assumption 1, if pL ≤ 1 − π∗ and condition (4) obtains, there
exists some θ ∈ (0, 1) such that a non-null pooling contract is offered whenever θ < θ,
and neither type is served otherwise. In either case, risk sharing deviates from the Pareto
optimum.

Figure 4.1 illustrates the result. Locus L is a low-risk indifference curve, while H1 and
H2 are high-risk indifference curves.12 Point E represents the endowment. Low-risk types
are strictly profitable to serve (recall that pL ≤ 1− π∗). Suppose that A in Figure 4.1 is
the low-risk component of a screening menu of contracts. Incentive compatibility requires
that the high risk contract must lie to the northwest of A, between the indifference curves
labelled L and H2. The most profitable of these is A itself.

Therefore, pooling is more profitable than screening. The optimal pooling contract
approaches E as θ→ 1, and it is always Pareto inefficient: low risks receive strictly less
than their optimal level of insurance since θ > 0.
12For simplicity, we have drawn the indifference curves without kinks at certainty, since first-order

risk-aversion plays no role in the analysis.
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z1

z2

z2 = z1

y-c

y

E

H1

L

A

H2

-(1-pH)/pH

Figure 4.1
The inverse-S transformation is at work here. The implied probability-dependent risk

attitude is what makes it possible that only low risks are profitable to serve. When this
fact is combined with asymmetric information — which necessitates high risks receiving
at least as much insurance cover as low risks — we immediately obtain the optimality of
pooling.

5 Conclusion
In this paper we adopt the view that consumer behavior conforms to the RDU model (or
biseparability) with an inverse-S transformation function. This assumption has greater
experimental support than EU.

The main message of the paper is that such preferences are compatible with pooling
in monopoly insurance markets subject to adverse selection. It is even possible that fully
Pareto optimal risk sharing is achieved, despite the asymmetric information. Ryan and
Vaithianathan (2003) establish a similar result for the case of insurance subject to moral
hazard.

In summary, plausible deviations from the EU assumption fundamentally alter insur-
ance market predictions when asymmetric information is present. This is so if consumers
are assumed to be globally risk averse, or if the more experimentally supported inverse-S
transformation is imposed.
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Appendix

Proof of Proposition 1: The insurance company’s options may be usefully divided
into the following three categories: (i) offer a single contract attractive only to high risks;
(ii) offer a single contract attractive to both types (pooling); or (iii) offer a screening
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menu of contracts. Option (ii) clearly dominates option (i) for θ sufficiently close to zero.
Moreover, since pL ∈ (π∗, 1 − π∗), P is the most profitable pooling contract for θ close
to zero — see Figure A.1. It therefore suffices to show that, for θ near zero, pooling at P
is strictly more profitable than any screening menu.

z1

z2

z2 = z1

L

P

-(1-pL)/pL

-[1-w(pL)]/w(pL)

-w(1- pL)/[1-w(1- pL)]

Figure A.1
Consider Figure A.2. Standard arguments — as in Stiglitz (1977) or Kreps (1990,

Chapter 18) — give that an optimal menu will offer low risks a contract on L between P
and E. Define the function fL : [a, y] → R by the condition
u(fL(z1)) + w(1− pL) [u(z1)− u(fL(z1))] = u(y − c) + w(1− pL) [u(y)− u(y − c)] .
That is, for each z1 ∈ [a, y], (z1, fL(z1)) lies on the indifference curve L. Since u is strictly
increasing and continuously differentiable, fL is continuously differentiable. Next, define
the function fH : [a, y] → R as follows:

u(fH(z1)) = u(fL(z1)) + (1− pH) [u(z1)− u(fL(z1))] .
Since, pH ∈

(pL, 1− π∗], standard arguments imply that (fH(z1), fH(z1)) is the most
profitable incentive compatible contract for high risks, when (z1, fL(z1)) is available to
low risks. By the continuous differentiability of fL and the aforementioned properties of
u, fH is also continuously differentiable.
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z1

z2

z2 = z1

L

P

H

fL(z1
*)

fH(z1
*)

a z1
*

E

y

Figure A.2
Finally, let us define the following expected profit function:
Π(z1, θ) = θ [y − fH(z1)− pHc] + (1− θ) [(y − z1) + pL (z1 − c− fL(z1))] (A.1)

The RHS of (A.1) is the expected profit (per customer) from offering the contract menu
((z1, fL(z1)), (fH(z1), fH(z1))).

Consider the difference
Π(z1, θ) − Π(a, θ) =

θ [a− fH(z1)] + (1− θ) [(1− pL) (a− z1) + pL (a− fL(z1))] (A.2)
This is the net gain from using the menu ((z1, fL(z1)), (fH(z1), fH(z1))) instead of the
pooling contract P . The first term on the RHS represents the average gain on the sales
to high risks, since fH(z1) ≤ a (with equality if and only if z1 = a). The second term
represents the average loss on sales to low risks, since fL(z1) ≤ a (with equality if and
only if z1 = a). We wish to show that, for θ sufficiently small, Π (z, θ)−Π(a, θ) < 0, for
all z1 ∈ (a, y]. Let

δ = max
z1∈[a,y]

∣

∣

∣

∣

dfH(z1)
dz1

∣

∣

∣

∣

> 0
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(taking one-sided derivatives when z1 = a or z1 = y).13 Then the first term in (A.2) is
bounded above by θδ (z1 − a). That is:

θ [a− fH(z1)] ≤ θδ(z1 − a) (A.3)
Similarly, we may bound the second term by noting that

max
z1∈[a,y]

∣

∣

∣

∣

dfL(z1)
dz1

∣

∣

∣

∣

= (fL)′
+ (a) = w(1− pL)

1− w(1− pL) .

Hence:
(1− θ) [(1− pL) (a− z1) + pL (a− fL(z1))]

(z1 − a) ≤ (1− θ)
[ pLw(1− pL)
1− w(1− pL) − (1− pL)

]

(A.4)
Let

β =
[

(1− pL) − pLw(1− pL)
1− w(1− pL)

]

> 0.
Combining (A.3) and (A.4), a sufficient condition for Π(z1, θ) − Π(a, θ) < 0 for all
z1 ∈ (a, y] is that

θ < β
δ + β .

Hence, for such θ, Π(z1, θ) < Π(a, θ) for all z1 ∈ (a, y], so P is strictly more profitable
than any screening menu of contracts. �

Proof of Proposition 4.2: The insurance company must either serve both types, with
low-types cross-subsidizing high, or neither, since it is not possible to serve low types
only, and high types are unprofitable.

13The maximum is well defined. For example, it is equal to

max
{

max
z � ∈[a, a+ �

� (y−a)]

∣

∣

∣

(fH) �

+ (z1)
∣

∣

∣
, max
z � ∈[a+ �

� (y−a), y]

∣

∣

∣

(fH) �

−
(z1)

∣

∣

∣

}

,

which exists because each one-sided derivative is continuous over the specified compact domain.
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z1

z2

z2 = z1

E

H

L

πL = 0

-(1- pH)/pH

-(1- pL)/pL

πH = 0

Figure A.3
Suppose, then, that the insurance company serves both types. We claim that a

pooling contract will be offered. To see why, consult Figure A.3.14 Point E is the
endowment: that is, the point (y, y − c). Since the low-type contract must be weakly
profitable and meet the low-risk’s participation constraint, it must lie between the line
πL = 0, which is the set of contracts yielding zero expected profit when sold to low
risks, and the indifference curve L. This region is non-empty by virtue of the fact that
pL ≤ 1− π∗.

Incentive compatibility requires that the high-risk contract lie to northwest of the
low-risk contract, between the high- and low-risk indifference curves through the low-
risk contract. All such points lie above the curve H and to the west of point E in Figure
A.3. Since u is concave, indifference curves get steeper as we move directly northward.
Therefore, condition (4) implies that, for any low-risk contract between L and the line
πL = 0, the high-risk indifference curve through that point is steeper than the πH = 0
line. Therefore, given any such low-risk contract, it is optimal to offer high risks the
same contract.

Thus, if both types are served, a pooling contract on L will be offered. Because θ > 0,
θpH +(1− θ) pL > pL, so there will be Pareto inefficient risk sharing with low risks. Any
(non-null) contract is Pareto inefficient for high risks. As θ increases, the optimal pooling
contract moves down the indifference curve L toward E. If θ becomes high enough, E
will be optimal — neither type will be served — since the losses on high risks cannot be
recovered on the small population of low risks.
14As with Figure 4.1, we omit kinks in the indifference curves for simplicity.
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The critical level θ is the solution to the equation
1− θpH − (1− θ) pL
θpH + (1− θ) pL = w(1− pL)

1− w(1− pL)
u′ (y)

u′ (y − c) (A.5)

This says that the iso-expected profit locus for pooling contracts is tangent to the low
risk indifference curve at E. The left-hand side of (A.5) is strictly decreasing in θ. A
unique solution to (A.5) therefore exists in (0, 1) since

1− pL
pL > w(1− pL)

1− w(1− pL)
u′ (y)

u′ (y − c)
by virtue of pL ≤ 1− π∗, while condition (4) and pL < pH imply

1− pH
pH ≤ w(1− pH)

1− w(1− pH)
u′ (y)

u′ (y − c) < w(1− pL)
1− w(1− pL)

u′ (y)
u′ (y − c)

This completes the proof. �
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