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Abstract

It is often perceived that an object with a higher thermal diffusivity will heat faster in com-
parison to that with a lower thermal diffusivity. This is however not always the case, as previously
numerically proved by Palazoglu (2006). In this short communication, an analytical explanation
of this is provided. Three generic cases are discussed which reinforce the observations made by
Palazoglu (2006).
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Introduction 

 
It is well known that many thermal processing operations in food industry involve 
heat transfer between a solid food and a fluid medium. Heat is transferred to the 
surface of the food product by convection and within the solid food is by 
conduction. As summarised by Palazoglu (2006), the rate of heat penetrating 
within the solid food is a function of several factors including thermal 
conductivity (k), density (ρ), and specific heat capacity (c) of the food. It is often 

perceived that an object with a higher thermal diffusivity (
c

k

ρ
α = ) will always 

heat faster in comparison to that with a lower thermal diffusivity. He commented 
that Özişik (1993) and Singh (1982) described that the higher the thermal 
diffusivity, the shorter the time required for heat propagating within the solid. 
Özisik (1993) demonstrated this by comparing the times for several materials with 
different thermal diffusivity values to cool from an initial temperature to half of 
this value. From this analysis, he concluded that heat penetrates faster within a 
solid that has a higher thermal diffusivity. Incropera and De Witt (2002) also 
indicated that materials of higher thermal diffusivity respond more quickly to 
temperature changes in their environment (Palazoglu, 2006). Palazoglu (2006) has 
shown that this is not always true. He made the remarks that whether an object 
with a higher thermal diffusivity will heat faster than that with a lower thermal 
diffusivity is actually a function of the surface convective heat transfer coefficient. 
He then concluded that it is not really possible to determine which object will heat 
faster without knowing the heat transfer coefficient. 
 In the current paper, a generic and simple analysis is provided, which is 
analytical by nature, to capture the effect(s) suggested by Palazoglu (2006). It can 
be seen from the more analytical approach taken in this study, the ‘not so 
obvious’ can become much more obvious. 
 
Cases considered 

 
To unveil the kind of ‘mystery’ described above, two extreme conditions are 
considered in this study.  
(i) Very small Biot number (Bi → 0) 

Conventionally, the Biot number is introduced through a scenario of 
steady state heat conduction in a slab with one side cooled by convection (Cengel, 
1998; Incropera and DeWit, 2002; Chen, 2007). In this case, the conductive heat 
flux through the wall must be equal to the convection heat flux to the surrounding 
fluid (see Figure 1): 
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The ratio of the temperature differences can then be expressed as  
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The Biot number is defined as  
 

k

Lh
Bi

⋅
=         (3) 

 
For a spherical object, the characteristic dimension L may be set as the 

radius of the sphere.  
On the other hand, equation (2) may be re-written as: 
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Equation (4) reflects the temperature ratio as in equation (2) and more 
importantly, the Biot number indicates the ratio of the internal thermal resistance 
( condR ) to the external thermal resistance ( convR ). 

When Bi is very small, i.e. Bi → 0 (very small heat transfer coefficient for 
instance), say Bi < 0.1, the material being heated can be considered to have 
approximately uniform temperature throughout ( TTT ss == 2,1, ). This rule can be 

made ‘tighter’, as required (for instance Bi < 0.01). The simple heating law for 
this is well known, called the ‘lumped capacitance’ model (Incropera and DeWit, 
2002), as follows: 

( )∞−−= TThA
dt

dT
mcp      (5) 

where m is mass (kg), cp is the specific heat capacity (J.kg-1.K-1), T is the 
temperature of the object (K) and T∞ is the bulk fluid temperature (K), h is the 
heat transfer coefficient (W.m-2.K-1) and A is the heat transfer surface area (m2). 
This has a simple solution: 
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Where Ti is the initial temperature (K) of the object. 
or 
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In the other words, under this extreme condition, and for the given 
geometry, the property that dominates the heating rate is in fact: 

pc

h

ρ
β =  (m.s-1)      (8) 

and the characteristic dimension Lc = V/A would be of interest. V is the volume 
(m3) and A is the surface area (m2). 

 
(ii) Very large Biot number (Bi → ∞)   
When the internal thermal resistance can not be ignored, equation (7) is no longer 
valid. Usually, the Heisler charts of standard objects may be used. When Bi → ∞ 
(for example, very large heat transfer coefficient), the surface temperature of the 
object, as soon as it is subjected to heating, moves up from initial temperature Ti 
to T∞, instantaneously. The surface temperature is then held at constant T∞ for the 
rest of the heating period. 

In this case, the heat penetration of the same object as mentioned in case (i) 
but for Bi → ∞, is determined by the thermal diffusivity: 

pc

k

ρ
α =  (m2.s-1)      (9) 

 
 

T ∞∞∞∞ 

x  = 0 x  =  L 

L 

T s ,1 

T s ,2 

x 

q ” x 

 
Figure 1 The definition of Biot number. 
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For the very initial penetration time (or very shallow depth into the object being 
heated), i.e. when the sample may be viewed as a semi-infinite domain, as an 
illustration, it is known that the penetration depth is approximately (Welty, Wicks 
and Wilson, 1984): 

t⋅⋅≈ αδ 12        (10) 
One can see that for the fixed location inside the object in this case, the 

rate of heat penetration is proportional to (1/α)0.5 and therefore it is not difficult to 
see that process is dominated by the value of thermal diffusivity. 
(iii) Intermediate values of Biot number 

The roles played by finite α and β are of interest and to this end of the 
analysis the approximate approach following van der Sman (2003) becomes very 
useful. In his approach, a critical characteristic dimension δc was introduced 
(δc=Lc/4). It is then possible that the heating of a particle can be simulated using 
the overall heat transfer concept (or the overall thermal resistance concept): 

( )∞−−= TTUA
dt

Td
mcp      (11) 

 
This is in contrast to equation (1) and for simplicity, the average 

temperature is considered here. The overall heat transfer coefficient is calculated 
as follows: 

khU

cδ+≈
11

       (12) 

The solution of this is simple again: 
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This solution has been found to be suitable for accurately predicting the 
average temperature-time profiles at different Biot numbers with only small errors 
at the start of the heating processes (van der Sman, 2003). 
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Before the heat penetration reaches δc, the following may be used to 
approximate the initial warming up: 

t⋅⋅≈ αδ 12        (10) 
therefore, 
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As soon as this thickness δc is exceeded, the fixed δc is used. This 
‘warming up’ period may become more important for thicker or larger samples. 
 Equation (14) shows a clear understanding that when β is very large, the 
controlling parameter is α. Taking the equivalent sphere of the cube sample 
(assuming equal volume) used by Palazoglu (2006), the equivalent radius is 
0.00744m. Thus the critical dimension proposed by van der Sman (2003) is δc 
=0.00744m /4≈ 0.00186m. The materials used by Palazoglu (2006) were potato 
tissue and polymethyl-pentene polymer (TPX) respectively. The physical 
properties are respectively: 
Potato: ρ = 1090 kg.m-3, k = 0.554 W.m-1.K-1, cp = 3517 J.kg-1.K-1, α = 1.45 x 10-7 
m2.s-1; 
TPX: ρ = 833 kg.m-3, k = 0.17 W.m-1.K-1, cp = 1968 J.kg-1.K-1, α = 1.04 x 10-7 
m2.s-1; 

Two heat transfer coefficients were used to investigate the behaviour: 50 
and 1000 W.m-2.K-1 respectively. Equation (14a) was employed to predict the 
average temperature versus time with the two different h values. Figure 2 shows 
that the potato heats up more slowly than TPX when h = 50 W.m-2.K-1. This 
makes the point that the higher thermal diffusivity of potato (1.45 x 10-7 m2.s-1) 
did not make potato heats up faster. Figure 3 shows that the development of the 
average temperature profiles are similar when h = 1000 W.m-2.K-1.  
One needs to note that the results shown so far and that by Palazoglu (2006) do 
not suggest that the conventional Heisler charts are incorrect, which are based on 
the exact solutions (Incropera and De Witt, 2002).  In the Heisler charts, the 

dimensionless time is the Fourier number
2

c

o
L

t
F

α
= . Furthermore, the value of the 

temperature history curve is determined by the value of Bi
-1 (i.e. chLk ). One can 

see that both dimensionless parameters contain k thus the effect of k is 
encapsulated in both expressions. Therefore, it is not straightforward to identify 
the effect of h from the Heisler chart. A different time scale may be useful, 

t
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Note here δc may be made time-dependent for the ‘warming up’ period as 
mentioned earlier. However, the perfection of this requires more accurate 
approach, which is beyond the current scope of analysis.  
 

 

 

h = 50 W.m-2.K-1
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Figure 2 Average temperature versus time for h = 50 W.m-2.K-1 
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Figure 3 Average temperature versus time for h = 1000 W.m-2.K-1 
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In any case, a plot of the temperature ratio such as θ as a function t* would 
be very useful already. Actually as θ =exp(t*), the plot of t* vs t (Figure 4) shows 
the clear trends that with higher heat transfer coefficient, dimensionless time is 
higher with higher thermal diffusivity. However when the heat transfer coefficient 
is relative lower, the opposite trend of dimensionless time vs thermal diffusivity is 
found.   
  

 
Conclusion 

 
In this paper, the analytical explanation of the observations made by Palazoglu 
(2005) is provided, which reinforces his observations in a generic way. Three 
cases have been considered which have adequately addressed the perception that 
thermal diffusivity alone can not determine the rate of heating. Two parameters α 
and β have been singled out which are useful in the context of the problem 
addressed in this study. A new t* vs t diagram has been drawn, which seems to be 
very instructive to show the matter of interest. 
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Figure 4 Dimensionless time vs time 
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Notation 

 
A surface area or heat transfer area (m2) 
Bi Biot number 
cp specific heat capacity (J.kg-1.K-1) 
h heat transfer coefficient (W.m-1.K-1) 
k thermal conductivity (W.m-2.K-1) 
Lc length or dimension (m) 
R  particle (sphere) radius (m) 
t  time (s) 
t*         dimensionless time (s) 
T temperature (K) 
T∞ drying air temperature (K) 
V volume (m3) 
X          water content on a dry basis (kg.kg-1) 
δc critical characteristic dimension (m) 
ρ density (kg.m-3) 
 
Subscripts 

 

∞ bulk fluid or surrounding or infinitive value 
1,2 surface 1 and surface 2 

i initial temperature  
s surface 
c charactreistic dimension 
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