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ABSTRACT
AIMS: New Zealand has one of the highest rates of breast cancer incidence in the world. We investigated the 
gene expression profiles of breast tumours from New Zealand patients, compared them to gene expression 
profiles of international breast cancer cohorts and identified any associations between altered gene 
expression and the clinicopathological features of the tumours.

METHODS: A� ymetrix microarrays were used to measure the gene expression profiles of 106 breast tumours 
from New Zealand patients. Gene expression data from six international breast cancer cohorts were collated, 
and all the gene expression data were analysed using standard bioinformatic and statistical tools.

RESULTS: Gene expression profiles associated with tumour ER and ERBB2 status, molecular subtype and 
selected gene expression signatures within the New Zealand cohort were consistent with those found in 
international cohorts. Significant di� erences in clinicopathological features such as tumour grade, tumour 
size and lymph node status were also observed between the New Zealand and international cohorts.

CONCLUSIONS: Gene expression profiles, which are a sensitive indicator of tumour biology, showed no 
clear di� erence between breast tumours from New Zealand patients and those from non-New Zealand 
patients. This suggests that other factors may contribute to the high and increasing breast cancer incidence 
in New Zealand compared to international populations.

Breast cancer is the most common 
cancer among women and is the lead-
ing cause of cancer death in women 

worldwide. It is a multi-factorial disease, 
with considerable inter-patient heterogene-
ity, and complex aetiology involving genet-
ic, endocrinological, environmental and 
lifestyle factors.1 New Zealand has one of 
the highest breast cancer incidences in the 
world.2 The age-standardised breast cancer 
incidence rate is 92.1 per 100,000 popula-
tion,3 and there has been a steady increase 
in reported breast cancer incidence from 
1978–2004,4 most likely due to improved 
diagnostic rates through breast cancer 
screening. Although breast cancer mortality 
in New Zealand has declined over the last 20 
years,5 breast cancer remains a signifi cant 
cause of death in New Zealand women,2 
with an age-standardised rate of 20.3 per 

100,000 population.3 While New Zealand 
breast cancer incidence is comparable to its 
neighbouring country Australia, New Zea-
land women appear to have higher breast 
cancer mortality,5,6 possibly due to the high 
cancer mortality rates for Māori and Pacifi c 
women, and the relatively slow funding of 
new drug treatments in New Zealand.

Gene expression profi ling using primary 
breast tumours has transformed under-
standing of the molecular aspects of this 
disease,7,8 especially when gene expression 
data has been integrated with data about 
DNA mutation and copy number, epigenetic 
factors such as microRNAs and gene meth-
ylation, plus protein expression and in vitro 
experimental data.9–12 These integrated 
studies now have enabled a re-classifi -
cation of breast tumours into 10 molecular 
subtypes from the initial fi ve molecular 
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subtypes,13,14 as well as an understanding of 
pathway signalling in breast cancer,15 associ-
ation between DNA copy number variation, 
gene expression and patient survival,16 
identifi cation of drivers of proliferation in 
the luminal molecular subtype of breast 
cancer,17 confi rmation of the heterogeneity 
of breast tumours18 and the development of 
molecular tests for breast cancer prognosti-
cation and stratifi ed therapy.19,20

In this study, we aimed to generate gene 
expression profi les of breast tumours from 
a cohort of 106 New Zealand patients. We 
compared these profi les and their asso-
ciated clinical and pathological data with 
data from non-New Zealand patient cohorts, 
and have made this new dataset available 
to the breast cancer research community 
(see Methods). We found that the statis-
tical associations between gene expression 
profi les and clinicopathological param-
eters seen in New Zealand breast tumours 
are remarkably similar to the associations 
observed in breast tumours from non-New 
Zealand breast cancer cohorts.

Materials and 
methods

Ethics statement
All women provided written consent 

to their tissue being utilised and their 
clinical records accessed for this project. 
This study was approved by the New 
Zealand Multi-Region Ethics Committee 
(project MEC-09/06/060) and the Northern X 
Regional Ethics Committee (NTX-05/08/096). 
In addition, the study was reviewed by 
Auckland District Health Board Research 
Committee (project A+4567), the Christ-
church Cancer Society Tissue Bank Board 
(project 10101PS) as well as the Māori 
Research Review Committees associated 
with the Auckland District Health Board and 
Cancer Society Tissue Bank.

New Zealand primary breast 
tumour collection

Breast tumour samples were obtained 
from 47 female patients (Auckland) and 
59 female patients (Christchurch) who 
provided written consent (Supplementary 
Table 1). Patients included in the study were 
females aged ≥18 years with breast cancer, 
had no previous breast malignancies and 

had not received neoadjuvant treatment 
prior to surgery. Resected tumours ranged 
from 6–100mm in size, and were frozen at 
-80°C within 60 min of surgical resection.
The Auckland samples were collected in
two stages, 30 between 2005 and 2007, and
17 in 2010. The Christchurch samples were
collected between 2003 and 2005. Clinical
and pathological data, including up to eight
years of follow-up data, were obtained from
patient notes collected by the Auckland
Breast Cancer Registry for Auckland (http://
www.adhb.govt.nz/AucklandBreastCan-
cerRegister/) and the Cancer Society Tissue
Bank for Christchurch (http://www.otago.
ac.nz/mackenzie-cancer/tissue-bank/).
The oestrogen receptor (ER) status of the
tumours were determined using standard
diagnostic immunohistochemistry (IHC)
methods. The ERBB2 status of the tumours
was also determined using IHC, and where
the IHC results were equivocal, they were
determined using fl uorescence in situ hybri-
disation (FISH).

RNA extraction and microarray 
hybridisation

Breast tumour tissues were homogenised 
in TRIzol (Thermo Fisher Scientifi c Inc., 
Waltham, MA, USA), and total RNA was 
isolated from TRIzol homogenates using 
chloroform and purifi ed using RNA affi  nity 
mini columns (manufacturer’s protocols; 
RNeasy Mini Kit, Qiagen, Germany; PureLink 
Pro 96 Total RNA Purifi cation Kit, Thermo 
Fisher Scientifi c Inc.). RNA yields and purity 
were determined using the NanoDrop spec-
trophotometer (NanoDrop Technologies Inc., 
DE, USA). RNA integrity was assessed (Agilent 
2100 Bioanalyser, Agilent Technologies Inc., 
CA, USA; Experion, Bio-Rad Laboratories, CA, 
USA) and the average 260/280 ratio of total 
RNA was 2.0 (range 1.8–2.2) and the average 
RIN/RQI was 8.68 (range 5.6–9.7). Total RNA 
was labelled, fragmented and hybridised to 
Affymetrix Human Genome (HG) U133 Plus 
2.0 arrays (manufacturer’s protocol). For 
samples GSM900586-GSM900662 of Gene 
Expression Omnibus (GEO) record GSE36771, 
100μg RNA was used (MessageAmp 
Premier RNA Amplifi cation Kit, Thermo 
Fisher Scientifi c Inc.), for samples 
GSM900663-GSM900692 of GSE36771, 5μg 
RNA was used (Affymetrix GeneChip Kit, 
Affymetrix, Santa Clara, CA, USA). 
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Microarray data analysis
Raw and normalised microarray data 

together with clinicopathological annota-
tions are available as GEO record GSE36771 
(microarrays GSM900586-GSM900692). 
Quality assessment was performed using 
Affymetrix Expression Console and dChip21 
to exclude low-quality samples. Data were 
analysed in R using the affy and limma 
packages.22–24 Briefl y, the data was quantile 
normalised using the RMA method (without 
background correction),25 followed by 
differential gene expression analysis in 
limma using Benjamini and Hochberg 
false discovery rate control,26 followed by 
testing for functional enrichment using 
GeneSetDB,27 GATHER,28 and Ingenuity 
Pathway Analysis (http://www.ingenuity.
com). Analyses of the New Zealand tumour 
gene expression data using limma showed 
no signifi cant differences between the 
Auckland and Christchurch tumours, or 
between tumour RNA purifi ed using the 
RNeasy or PureLink methods (data not 
shown). Therefore no batch correction was 
applied to tumours collected from the two 
New Zealand regions in subsequent compar-
isons between New Zealand  and non-New 
Zealand tumours described below.

Meta-analysis of microarray data 
from primary breast tumours from 
multiple cohorts

Microarray data for 1,034 primary 
breast tumours were assembled from 
raw Affymetrix HG U133 “.cel” fi les from 
GEO records; the New Zealand cohort 
consisted of GSE36771 (n=106), and the 
non-New Zealand cohort consisted of 
cohorts: GSE1456 (n=159, Stockholm, 
Sweden),29 GSE3494 (n=232, Uppsala, 
Sweden),30 GSE4922 (n=40, Singapore),31 
GSE6532 (London and Oxford, UK),32,33 
GSE7390 (n=198, France),34 and GSE36772 
(n=57, Singapore, unpublished) (Supple-
mentary Table 1). Duplicate samples were 
removed from all cohorts and 22,277 probe 
sets common to the U133 Plus 2.0 and 
U133A arrays were used for this analysis, 
as described previously.35 Array quality 
assessment was performed using the ‘Affy-
QCReport’ package in R, and normalised 
using RMA (without background correction) 
and loess splining. Statistical meta-analysis 
was performed using the metaMA package 
in R,36 and differential gene expression 

was assessed from normalised microarray 
data using limma. Genes and probe 
sets were hierarchically clustered using 
Euclidean distance and the Ward agglom-
eration method of the hclust function in R. 
Molecular subtypes were assigned to each 
tumour using the Single Sample Predictor 
algorithm applied per cohort.37 The algo-
rithm uses pre-computed subtype centroids 
and calculates the correlation between 
each tumour and each subtype centroid. 
A tumour was assigned the subtype that 
it was most highly correlated with, unless 
none of the correlations were above a 
certain threshold; a threshold of 0.1 was 
used. Differences between selected clinico-
pathological features of the New Zealand 
and the non-New Zealand cohorts were 
analysed using Pearson's Chi-squared tests 
and Student’s t-tests. Principal components 
for the expression data were calculated by 
singular value decomposition using the svd 
function in R, after the data had been zero 
centered and scaled to unit variance.38 For 
visualisation purposes, expression values 
for each probe set were transformed into 
Z-scores by mean centreing the data then
expressing variation above and below the
mean on a scale of standard deviation, using
the apply function in R. Differences in time
to a distant metastastic event (up to eight
years in New Zealand cohort and up to 12
years in the non-New Zealand cohort) were
assessed visually via Kaplan-Meier curves
and statistically via log rank tests and Cox
proportional hazards models using the
survival package in R.39 The visualisations
for many of the analyses presented in this
paper were scripted using the shiny package
from R Studio (http://www.rstudio.com/
products/shiny/shiny-server/).

Results
Analysis of gene expression profiles 
of New Zealand breast tumours 

Using normalised gene expression data, 
we compared gene expression differ-
ences between two designated groups 
using limma, within the New Zealand 
cohort. We fi rst compared the mRNAs 
differentially expressed between ER+ and 
ER- breast tumours, as determined using 
IHC in the clinic. This analysis identifi ed 
64 and 13 probe sets signifi cantly differ-
entially expressed at an absolute log fold 
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change ≥1.5, between ER+ and ER- tumours 
(adj-P≤1x10-12). Due to redundancy in the 
microarray probe sets, these 77 differen-
tially expressed probe sets represented 50 
unique annotated genes (38 with increased 
and 12 with decreased expression between 
the ER+ and ER- tumours, respectively). 
The list of mRNAs differentially expressed 
between ER+ and ER- tumours are provided 
in Supplementary Table 2, and a heatmap 
depicting differentially expressed mRNAs 
between ER+ and ER- tumours are provided 
in Supplementary Figure 1. The proteins 
encoded by these differentially expressed 
mRNAs included known ERα targets such 
as the progesterone receptor (encoded by 
the gene PGR), trefoil factor 1 (encoded 
by the gene TFF1), anterior gradient 2 
homolog (encoded by the gene AGR2) and 
carbonic anhydrase XII (encoded by the 
gene CA12), as well as proteins that function 
together with ERα such as forkhead box A1 
(encoded by the gene FOXA1), epidermal 
growth factor receptor 4 (encoded by the 
gene ERBB4) and GATA binding protein 3 
(encoded by the gene GATA3).

Next, the mRNAs differentially expressed 
between 14 ERBB2+ (also known as 
HER2/neu) and 48 ERBB2- tumours were 
compared; ERBB2 status was available for 
only 62 tumours. This analysis identifi ed 28 
and two probe sets (representing 18 unique 
annotated genes) that showed signifi cantly 
increased or decreased expression respec-
tively (adj-P=0.0001). The list of differentially 
expressed mRNAs are provided in Supple-
mentary Table 3 and a heatmap depicting 
signifi cantly regulated mRNAs between 
ERRB2+ and ERRB2- tumours are provided 
in Supplementary Figure 2. Interestingly, 17 
of the 28 signifi cantly upregulated probe sets 
in ERBB2+ tumours represented 10 mRNAs, 
including ERBB2, located at locus 17q21 
(encoded by the genes: CDK12, CWC25, 
FBXL20, GRB7, GSDMB, MIEN1, ORMDL3, 
PCGF2 and PGAP3).

When we compared the gene expression 
between tumours of histological grade 1 
(n=11) and grade 3 (n=53), no differentially 
expressed genes were identifi ed (adj-P≤0.05; 
data not shown).

Comparison of the gene expression 
profiles of New Zealand breast 
tumours and international breast 
tumours 

We next compared gene expression 
profi les of New Zealand breast tumours with 
gene expression profi les of breast tumours 
from women recruited from other parts of 
the world: Sweden, Singapore, France and 
the UK (See Supplementary Table 1). Gene 
expression data from six published interna-
tional breast cancer cohorts were combined 
(n=927; called “non-New Zealand”), and a 
number of clinicopathological character-
istics were analysed to identify if there were 
any gene expression differences between 
the breast tumours from the New Zealand 
and non-New Zealand cohorts, based on the 
selected clinicopathological characteristics 
(summarised in Table 1).

The average tumour sizes (P=0.0001) and 
patients’ ages (P=0.03) in the New Zealand 
cohort were signifi cantly larger than the 
non-New Zealand cohort (Table 1). There 
were also signifi cant differences in the 
proportions of lymph node positive and 
lymph node negative patients between the 
New Zealand and non-New Zealand cohort 
(P=0.00001; Table 1). There were differences 
between the proportions of histological 
grade 1, grade 2 and grade 3 tumours 
between the New Zealand and non-New 
Zealand cohort (P=0.001; Table 1). Further 
analyses revealed signifi cant differences in 
the proportion of grade 3 tumours compared 
to grade 2 (P=0.009), and in the proportion 
of grade 3 tumours compared to grade 1 
(P=0.002), between the New Zealand and 
non-New Zealand cohort. Analysis of the 
composition of the cohorts based on ER 
status and molecular subtype showed that 
there were no signifi cant differences in 
these variables.

We have previously reported that ESR1 
(which encodes the ERα protein) mRNA 
expression progressively increased from 
basal-like to ERBB2 to normal-like to 
luminal tumours.40 After classifying our 
breast tumour gene expression data into 
their molecular subtypes using the PAM50 
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predictor (see Methods), we compared the 
distribution of ESR1 mRNA expression 
between the fi ve molecular subtypes in the 
New Zealand and non-New Zealand tumour 
samples. We found that New Zealand and 
non-New Zealand tumours showed similar 
patterns of ESR1 mRNA expression within 
and between each molecular subtype, 
whereby ESR1 mRNA expression decreases 
from the luminal subtypes, to normal-like, 
to ERBB2 to basal-like tumour subtypes 
(Figure 1).

These box plots show the levels of ESR1 
mRNA in each of the molecular subtypes in 
the New Zealand (A) and non-New Zealand 
(B) breast tumour cohorts. The molecular
subtypes are shown on the x-axis, and the
Z-transformed level of ESR1 mRNA (based
on ESR1 microarray probeset 205225_at)
is shown on the y-axis. The box plots show
the medians, upper and lower quartiles,
with whiskers extending to the 5th and 95th

percentiles.

Table 1: Comparison of selected clinicopathological features of New Zealand and non-New Zealand 
breast cancer cohorts.

Clinical parameter NZ cohort (n=106) Non-NZ cohort (n=927) P-value (P)

Mean (range) Mean (range)

Patient age (y)* 60 (31–94) 57 (24-93) 0.0271

Patient tumour size 
(mm)*

29 (6–100) 24 (1–130) 0.0001

Tumour ER statusa Numbers (% of total) Numbers (% of total)

ER positive 79 (74.5) 743 (74.5) 0.082

ER negative 27 (25.5) 168 (18.1)

Histological tumour gradeb

Grade 1 11 (10.4) 169 (18.2) 0.00121

Grade 2 42 (39.6) 403 (43.5)

Grade 3 53 (50.0) 288 (31.1)

Patient lymph node statusc

Lymph node positive 59 (55.7) 225 (24.3) 0.00001

Lymph node negative 45 (42.5) 528 (57.0)

Tumour molecular subtype

Luminal A 31 (29.2) 260 (28.0) 0.456

Luminal B 23 (21.7) 187 (20.2)

Normal-like 14 (13.2) 162 (17.5)

Her2 8 (7.5) 92 (9.9)

Basal-like 27 (25.5) 181 (19.5)

None 3 (2.8) 45 (4.9)

All calculations were using Pearson’s Chi square tests except *patients’ age and *tumour size, where a Student’s 
t-test was used. aUnavailable ER status information for four patients in GSE3494; exclusion of 12 ER-/PGR+ patients 
(GSE1456=6, GSE4922=5, GSE36772=1). bUnavailable tumour grade information for 67 patients (GSE1456=12, 
GSE6532=51, GSE7390=2, GSE3494=2); cUnavailable lymph node status information for 176 patients (GSE1456=159, 
GSE36771=2, GSE6532=6, GSE3494=9). See Supplementary Table 1 for patient clinical information.
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We next determined whether a number of 
commonly-used gene expression signatures 
used to stratify tumours showed similar 
stratifi cation of breast tumours from New 
Zealand women as from non-New Zealand 
cohorts.41–43 To do this we used the fi rst prin-
cipal component (PC) calculated from the 
expression data represented by the genes 
in the selected signature (see Methods) to 
act as an indicator of pathway activity of 
that gene signature. We assessed similarities 
and differences between cohorts in terms of 

the clinical features that correlated with the 
1st PC of three well-known gene signatures 
(see Figure 2 for a short description of these 
gene signatures): (1) the PAM50 signature,41 
(2) the Genomic Grade Index (GGI)42,44 and
(3) the ER attractor.43 The results of the
analyses were displayed as heatmaps (see
Figure 3 for a description of heatmaps)
where the tumours were sorted based on
the magnitude of the 1st PC of each signature
that was analysed.

Figure 1: The distribution of ESR1 mRNA expression levels in breast tumours stratifi ed by molecu-
lar subtype are similar in the New Zealand and non-New Zealand cohorts.

Figure 2: Description of gene signatures.

PAM50
The PAM50 signature is a 50-gene subtype predictor that is used to identify the molecular subtype of 
breast tumours.41 It has recently been approved for use in the clinic (as the Prosigna diagnostic assay) 
to indicate long-term risk of recurrence in patients with ER+ breast tumours treated with endocrine 
therapy, in conjunction with other clinicopathological factors.

Genomic Grade Index
The Genomic Grade Index (GGI) is a 97 gene signature that is strongly associated with histological 
grade 1 and grade 3 breast tumours.42 It also stratifies histological grade 2 breast tumours into high and 
low risk of recurrence within five years and is currently being evaluated in clinical trials. The GGI is also 
able to identify better endocrine therapy-treated patients with very low risk of distant recurrence at 10 
years, better than histological grade.44

ER Attractor
Gene expression signatures can serve as surrogates of cancer phenotypes or signalling pathways. 
The ER attractor gene signature is a surrogate signature for the ER signalling pathway, and the top 50 
ranked genes in this signature consist of numerous genes that are strongly co-expressed with ESR1, 
such as CA12, TFF1, XBP1, NAT1, GATA3 and FOXA1.43

ARTICLE

http://www.nzma.org.nz/journal


46 NZMJ 27 October 2017, Vol 130 No 1464
ISSN 1175-8716                 © NZMA
www.nzma.org.nz/journal

Figures 4A and B showed that the PAM50 
signature did indeed stratify the New 
Zealand breast tumours into molecular 
subtypes (boxed in red), similar to that 
seen in the non-New Zealand cohort. For 
example, in both cohorts the basal-like 
breast tumours (boxed in red) were asso-
ciated with a higher magnitude of the 1st 
PC (green) or higher inferred activity of the 
PAM50 signature and these tumours also 
tended to be histological grade 3 (Figure 4). 
Similarly, for both cohorts the luminal A 
tumours were mostly ER+, associated with a 
lower magnitude of the 1st PC (red) or lower 
inferred activity of the PAM50 signature, 
and tended to be of lower histological grade 
(Figure 4).

The expression profi les of 50 genes 
comprising the PAM50 signature are shown 
as heatmaps for (A) New Zealand and (B) 

non-New Zealand cohorts.41 The data are 
sorted by the magnitude of the 1st PC (prin-
cipal component) of the PAM50 signature 
from low (green) to high (red). The PAM50 
genes were hierarchically clustered using 
Euclidean distance and the Ward agglom-
eration method. Gene expression data 
were Z-transformed and expression levels 
mapped to colours on a red-black-green 
scale as indicated by the colour key at 
the top left of the plot. Shown above the 
heatmaps, indicated by multi-coloured solid 
bars are clinical and pathological infor-
mation, with histologic grade, molecular 
subtype, ER status (IHC), PGR status (IHC), 
ESR1 mRNA expression (microarray), Ki67 
mRNA expression (microarray; Ki67 protein 
is a marker of proliferation) and the 1st PC 
magnitude for the PAM50 signature genes 
for each tumour.

Figure 3: Guide to heatmaps.

Heatmaps are useful for visualising the expression (ie, the use) of a set of genes in a set of tumours. 
They show individual genes as rows and individual tumours as columns, with clinical features of each 
tumour such as ER status, tumour grade and molecular subtype indicated above the heatmap. For 
each gene in each tumour, heatmaps will show the level of expression (ie, the level of use) represented 
visually by a gradient of colours from red (high gene expression) through black (median gene expres-
sion) to green (low gene expression). In heatmaps the genes and the tumours are sometimes clustered 
based on their similarity, with the relationships between them summarised in the form of a tree dia-
gram (dendrogram) at the top and/or side of the heatmap. Clinical and pathological information can be 
added to heatmaps, to visualise links between gene expression and clinicopathological information.

Figure 4: The PAM50 signature stratifi es both the New Zealand and non-New Zealand cohort of tumours 
into their molecular subtypes.
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Analysis of the Genomic Grade Index (GGI) 
signature showed that this gene signature 
similarly separated both the New Zealand 
breast tumours and the non-New Zealand 
tumours into three molecular grades (boxed 
in blue) in Figures 5A and B. Similar to 
Figure 4, in both cohorts the basal-like 
breast tumours were associated with a 
higher magnitude of the 1st PC (green) or 
higher inferred activity of the GGI signature 
and these tumours also tended to be histo-
logical grade 3 (Figure 5).

The expression profi les of 97 genes 
comprising the Genomic Grade Index (GGI) 
are shown as heatmaps for (A) New Zealand 
and (B) non-New Zealand cohorts.42 The 
data are sorted by the magnitude of the 
1st PC (principal component) of the GGI 
signature from low (green) to high (red). 
The GGI genes were hierarchically clustered 
using Euclidean distance and the Ward 
agglomeration method. Gene expression 
data were Z-transformed and expression 
levels mapped to colours on a red-black-
green scale as indicated by the colour key 
at the top left of the plot. Shown above the 
heatmaps, indicated by multi-coloured solid 
bars are clinical and pathological infor-
mation, with histologic grade, molecular 
subtype, ER status (IHC), PGR status (IHC), 
ESR1 mRNA expression (microarray), Ki67 
mRNA expression (microarray; Ki67 protein 

is a marker of proliferation) and the 1st PC 
for the GGI signature for each tumour. 

Analysis of the expression of genes asso-
ciated with the ER attractor43 signature 
predominantly stratifi ed both New Zealand 
and non-New Zealand cohorts of breast 
tumours by ER status, as indicated by both 
ER positivity by IHC and by expression of 
ESR1 mRNA (boxed in pink) in Figures 6A 
and B. As seen in Figure 6, almost all IHC 
ER-negative tumours were of the basal-like 
subtype.

The expression profi les of 50 genes 
comprising the ER attractor signature are 
shown as heatmaps for (A) New Zealand 
and (B) non-New Zealand cohorts.43 The data 
are sorted by the magnitude of the 1st PC 
(principal component) of the ER attractor 
signature from low (green) to high (red). 
The ER attractor genes were hierarchically 
clustered using Euclidean distance and 
the Ward agglomeration method. Gene 
expression data were Z-transformed and 
expression levels mapped to colours on 
a red-black-green scale as indicated by 
the colour key at the top left of the plot. 
Shown above the heatmaps, indicated by 
multi-coloured solid bars are clinical and 
pathological information, with histologic 
grade, molecular subtype, ER status (IHC), 
PGR status (IHC), ESR1 mRNA expression 

Figure 5: The Genomic Grade Index signature stratifi es the New Zealand and non-New Zealand cohort 
of tumours into their molecular tumour grades.
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(microarray), Ki-67 mRNA expression 
(microarray; Ki67 protein is a marker of 
proliferation) and the 1st PC for the ER 
attractor signature for each tumour. 

We next evaluated how two of these prog-
nostic signatures are associated with breast 
cancer patient prognosis in New Zealand 
women and in the non-New Zealand cohort. 
We analysed the 1st PC of genes comprising 
the PAM50 and GGI signatures. In both cases 
the PC magnitude was signifi cantly asso-
ciated with distant-metastasis events, as 
illustrated by Kaplan-Meier curves (Figure 
7). These results showed that even with 
small numbers of New Zealand samples, 

both the PAM50 (Figure 7A) and the GGI 
(Figure 7B) signatures, were signifi cantly 
associated with patient prognosis in the 
New Zealand and non-New Zealand cohorts. 
As described in the Methods, we assessed 
time to a distant metastastic event for up to 
eight years in New Zealand cohort (median 
follow-up time=4.43 years, n=106), and up 
to 12 years in the non-New Zealand cohort 
(median follow-up time=6.17 years, n=756). 
For this analyses, patients in each cohort 
(New Zealand and non-New Zealand) were 
divided into two groups based on the level of 
expression of each gene signature for both 
the PAM50 and GGI.

Figure 7: Kaplan-Meier curves showing prognosis of New Zealand and non-New Zealand breast cancer 
patients classifi ed using the PAM50 and Genomic Grade Index signatures.

Figure 6: The ER attractor gene signature stratifi es both the New Zealand and non-New Zealand cohort 
of tumours by ER status and ESR1 mRNA expression.

ARTICLE

http://www.nzma.org.nz/journal


49 NZMJ 27 October 2017, Vol 130 No 1464
ISSN 1175-8716                 © NZMA
www.nzma.org.nz/journal

Kaplan-Meier curves were plotted using 
the 1st principal component (PC) of (A) the 
PAM50 or (B) the GGI signatures for patients 
from all treatment groups. Patients with 
tumours that have lower than the median 
1st PC of either of the signatures (“low”) are 
shown as red curves (New Zealand n=53, 
non-New Zealand n=443), and patients with 
tumours that have greater than the median 
1st PC of either the signatures (“high”) are 
shown as green curves (New Zealand n=53, 
non-New Zealand n=444).

Discussion
In this study, we have generated a gene 

expression dataset of 106 prospectively 
collected fresh frozen breast tumours 
from New Zealand women using standard 
RNA extraction methods and microarray 
analysis techniques. This dataset, with 
associated clinical data, is available for 
other investigators to use. Certain clinico-
pathological parameters such as patient 
age, patient tumour size, lymph node 
status and proportion of histological grades 
differed signifi cantly between this cohort 
and non-New Zealand cohorts (Table 1). 
However, when analysed at the level of 
mRNA gene expression, we observed that 
the New Zealand and non-New Zealand 
cohorts share multiple clinical associations 
with common gene expression signatures 
involving the ERα signalling pathway, 
the ERBB2 signalling pathway, prolifer-
ation-based pathways and distribution 
patterns of ESR1 mRNA expression between 
breast tumour subtypes.

Our study is the fi rst to analyse the gene 
expression of breast tumours from New 
Zealand women. The gene expression data 
within our New Zealand cohort showed 
signifi cant gene expression differences 
between histopathology-determined ER+ 
and ER- tumours, and ERBB2+ and ERBB2- 
tumours. The genes differentially expressed 
between ER+ and ER- tumours in our New 
Zealand cohort (Supplementary Table 2) 
consisted of genes that have already been 
described in the literature as differentially 
expressed in breast tumours dependent on 
ER status, such as PGR, TFF1, AGR2, CA12, 
ERBB4, FOXA1 and GATA3.45–48 Some of these 
genes are overexpressed in breast carci-
nomas (CA12, FOXA1, GATA3, TFF1, TFF3),49 
some are co-expressed with the ER and 
PGR (EVL, SLC39A6, TBC1D9)50 and other 
genes have been shown to be GATA3 targets 
(DACH1, THSD4).51

The genes differentially regulated between 
ERRB2+ and ERRB2- tumours included 17 
upregulated probe sets, and represented 
10 genes including ERBB2 itself, that were 
all located at locus 17q21 (CDK12, CWC25, 
FBXL20, GRB7, GSDMB, MIEN1, ORMDL3, 
PCGF2 and PGAP3; Supplementary Table 
2). These fi ndings are consistent with other 
published studies that have shown that 
the genes on this particular locus, together 
with ERBB2 are both overexpressed and 
amplifi ed in breast tumours,52–54 and breast 
cancer cell lines,55,56 when analysed using 
various methods: IHC, FISH, array compar-
ative genomic hybridisation and gene 
expression. Many of these genes are also 
required for the proliferation and survival 
of ERBB2+ breast cancer cells.55

Strikingly similar associations between 
each tumour's pathology and underlying 
gene expression makeup were observed in a 
parallel analysis between our New Zealand 
patient cohort and a compiled international 
non-New Zealand cohort.

These similarities include multi-way rela-
tionships between the expression of breast 
cancer-associated gene sets (PAM50Ge-
nomic Grade Index and ER attractor), with 
ER status, histological tumour grade, ESR1 
mRNA expression, molecular subtype and 
Ki67 mRNA (MKI67 gene; Figures 4–6). The 
expression of the Ki67 protein in breast 
tumours is a useful proliferation marker, 
and is used clinically to assess for prog-
nosis and response to endocrine therapy in 
patients.59–61 Our analyses show that indi-
vidually, the expression of MKI67 mRNA 
is associated with both histological grade 
and with the Genomic Grade Index, and 
inversely associated with ESR1 mRNA 
expression. We also noted similarities 
in expression patterns of ESR1 mRNA 
between the molecular subtypes in both 
cohorts (Figure 1) and similarities in patient 
outcome in both cohorts when strat-
ifi ed using the PAM50 and GGI signatures 
(Figure 7). However, despite this simi-
larity between New Zealand and non-New 
Zealand tumours at the gene pathway level, 
a comparison between tumours of histo-
logical Grade 1 (n=11) and Grade 3 (n=53) 
in the New Zealand cohort failed to identify 
genes signifi cantly enriched for prolifer-
ation-based functions, possibly due to the 
small cohort size. 

We note that like many non-New Zealand 
breast cancer gene expression datasets, 
the New Zealand breast tumours were 
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biased towards a larger size than the 
tumours commonly identifi ed today by 
mammographic screening. Although tumour 
size appears not to strongly infl uence breast 
tumour gene expression patterns,57 it is 
possible that small breast tumours may 
have a different biology, which reduces 
their clinical progression.58 Therefore, addi-
tional prospective gene expression profi ling 
studies using smaller tumours than were 
collected historically in New Zealand may 
be needed to fully understand the smaller 
and biologically different breast cancers 
detected by screening programs. As there 
might be diffi  culties in obtaining diagnosti-
cally spare tumour tissue from small breast 
tumours for research purposes, prospective 
studies that utilise tissue from biopsies such 
as fi ne needle aspiration (FNA) may need to 
be considered.

As previously mentioned, most of the 
studies on breast cancer in New Zealand 
have mainly focused on health system 
inequalities, various life style factors, 
epidemiology and ethnic and socio-eco-
nomic associations for breast cancer risk. 
The small number of studies that have 
attempted to investigate any differences in 
breast cancer biology between the various 
ethnic populations such as between New 
Zealand Māori and New Zealand European 
women have been contradictory and incon-
clusive; albeit with small patient numbers 
for robust investigation.62–67 In the future, 
carefully designed and adequately powered 
genomic studies, using census-compatible 
ethnicity data may be able to exclude or 
confi rm whether there are indeed biological 
factors associated with low breast cancer 
survival of New Zealand Māori women.68 
However, given the past negative impact 
on Māori of some New Zealand genomic 
studies analysing ethnicity,69–71 future studies 
will require careful design to capture 
ancestry and ethnicity accurately, careful 
interpretation, and should be led by Māori 
researchers, to avoid inaccurate conclusions 
or misinterpretation.

In conclusion, in this study we describe 
the results of the fi rst microarray analysis 
conducted on a large number of breast 
tumours from New Zealand women and 
make the data available for others to use. 
The clinical-gene expression relation-
ships evident in New Zealand patients 

were consistent with published breast 
cancer gene expression data from outside 
New Zealand, highlighting the similarities 
between breast cancer in New Zealand and 
other regions. This consistency is reas-
suring, and it provides confi dence that 
the gene expression data generated from 
our New Zealand cohort can be collated 
with other published, international gene 
expression cohorts and used in validation 
studies. With the introduction of inter-
nationally-developed genomic tests into 
the clinic in New Zealand, it is reassuring 
that breast tumours from New Zealand 
women exhibit similar molecular features 
to international cohorts, suggesting these 
tests should have the same relevance to 
clinical practices in New Zealand as they 
do overseas. Since the technically robust 
diagnostic test Prosigna (the PAM50 clas-
sifi er) is clearly associated with ER+ patient 
prognosis in the clinic, our fi ndings invite 
further investigation of the potential clinical 
utility of the Prosigna assay and related 
tests in New Zealand. We hope that future 
analysis of this New Zealand breast tumour 
data, potentially alongside non-New Zealand 
datasets, will provide valuable insights 
into breast cancer that ultimately improve 
patient outcomes in New Zealand.

Clinical summary
When analysed at the gene expression 

level, breast tumours from New Zealand and 
non-New Zealand cohorts share multiple 
clinical associations with common gene 
expression signatures involving ER status 
and ERBB2 status.

These similarities include multi-way 
relationships between the expression of 
genes that constitute the PAM50 signature, 
Genomic Grade Index (GGI), and the ER 
attractor (an oestrogen pathway-associated 
gene signature), as well as similar distri-
bution patterns of ESR1 mRNA expression 
between breast tumour subtypes and 
patient outcome using the PAM50 and GGI 
signatures.

Our fi ndings suggest that breast tumours 
from New Zealand women exhibit similar 
molecular features to international cohorts, 
suggesting that genomic tests and gene 
expression signatures should have the same 
relevance to clinical practice in New Zealand 
as they do overseas.
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Supplementary Figure 1: Differentially expressed mRNAs between ER+ and ER- tumours in the New 
Zealand cohort.

Heatmap depicting significantly regulated mRNAs between IHC-determined ER+ and ER- tumours in the New 
Zealand breast cancer cohort (statistical cuto� s used for di� erential expression were adj-P≤1x10-12 and absolute 
log fold change ≥1.5). ER+ tumours are represented by magenta bars above heatmap; ER- tumours are represented 
by light blue bars above heatmap. Probe sets were hierarchically clustered using Euclidean distance and the 
Ward agglomeration method (probe sets listed in Supplementary Table 2). Expression data for each gene was 
Z-transformed across tumours and expression levels mapped to colours on a red-black-green scale as indicated by 
the colour key at the top left of the plot.
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Supplementary Figure 2: Differentially expressed mRNAs between ERBB2+ and ERBB2- tumours in the 
New Zealand cohort.

Gene expression in New Zealand breast tumours known by pathological analysis to be ERBB2+ (n=14) and ERBB2- 
tumours (n=48) was compared (adj-P=0.0001). ERBB2+ and ERBB2- tumours are represented by magenta bars above 
heatmap and light blue bars above heatmap respectively. Tumours and genes were hierarchically clustered using 
Euclidean distance and the Ward agglomeration method (gene probe sets listed in Supplementary Table 3). Gene 
expression data was Z-transformed and expression levels mapped to colours on a red-black-green scale as indicated 
by the colour key at the top le�  of the plot.
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